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Null cosmic strings disturb electromagnetic (EM) fields of charged sources and sources with magnetic
moments. As has been recently shown by the authors, these perturbations result in a self-force acting on
the sources and create EMwaves outgoing from the sources. We develop an analytic approximation for the
asymptotic of the EM waves at the future null infinity and calculate radiation fluxes for sources of both
types. For magnetic-dipole-like sources the radiation flux depends on orientation of the magnetic moment
with respect to the string. Estimates show that the peak power of the radiation can be quite large for null
strings moving near pulsars and considerably larger in the case of magnetars. The string generated
variations of the luminosities of the stars can be used as a potential experimental signature of null
cosmic strings.
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I. INTRODUCTION

As has been recently shown [1], null cosmic strings
disturb electric fields of charged sources and produce
electromagnetic (EM) pulses outgoing from the sources.
The aim of the present work, based on the approach
developed in [1], is twofold. First, it is to describe in more
detail properties of EM waves at future null infinity
generated by straight null cosmic strings in a locally
Minkowski space-time. Second, it is to study analogous
effects for sources with magnetic moments, such as pulsars
and magnetars. As opposed to electrically charged objects,
the case of pulsars and magnetars is more interesting from
an astrophysical point of view. We show that variations of
luminosities of such objects induced by the null strings can
be large enough to be experimentally observable.
The null strings are one-dimensional objects whose

points move along trajectories of light rays, orthogonally
to strings [2]. As a result, the null strings exhibit optical
properties: they behave as one-dimensional null geodesic
congruences governed by an analogue of the Sachs’ optical
equation [3]. The world sheets of null strings may develop
caustics [4].
The null cosmic strings, like tensile cosmic strings [5,6],

are hypothetical astrophysical objects, which might have
been produced in the very early Universe, at the Planckian
epoch [7–10]. Possible astrophysical and cosmological
effects of null cosmic strings such as deviations of light
rays and trajectories of particles in the gravitational field of
strings [11–12], as well as scattering of strings by massive
sources [4], are similar to those of the tensile strings.
Gravitational fields of null cosmic strings can be

described in terms of holonomies around the string world

sheet. The holonomies are null rotations of the Lorentz
group [11,13] with the group parameter determined by the
string energy per unit length. The null rotations have fixed
points on the string world sheet S. The world sheet belongs
to a null hypersurfaceH, which is the string event horizon.
To find the trajectories of particles and light rays near

null cosmic strings, one should set on the string horizon H
the “initial” data that ensure the required holonomy trans-
formations [11]. Such an approach has been generalized in
[1] to describe the evolution of classical fields under the
gravity of the null strings. Finding solutions to wave
equations in a free field theory on a space-time of a null
string, in the domain above H, is equivalent to solving a
characteristic problem with initial data onH determined by
incoming data. The initial data are null rotated (or, better to
say, transformed by the Carroll group ofH) so to ensure the
required holonomy. It is this approach we use in the present
work to describe perturbations caused by null cosmic
strings on EM fields of pointlike sources.
In [1] we found a useful integral representation for

perturbations of EM fields of point electric charges and
straight strings. We generalize this result to point magnetic-
dipole-like sources (MD sources) and develop an approxi-
mation for the perturbations at future null infinity. The
asymptotic for angular components of the vector potential
at large distances r from the source look as follows:

ABðr;U;ΩÞ≃aBðU;ΩÞþbBðΩÞlnr=ϱþOðr−1 lnrÞ; ð1:1Þ

where U is a retarded time, vector fields aB, bB are in the
tangent space of S2, and ϱ is a dimensional parameter
related to the approximation. The asymptotic holds if r is
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large enough with respect to U and with respect to the
impact parameter between the string and the source.
Equation (1.1) yields a finite energy flux at large r,

lim
r→∞

∂tEðr; tÞ ¼
Z

dΩȧAȧA; ð1:2Þ

where ȧA ≡ ∂UaA, and index A is risen with the help of the
metric on S2. In the found approximation, we analytically
calculate ȧAȧA, the density of the flux, for different sources
and study its properties. The logarithmic term in (1.1)
appears since the Sommerfeld radiation condition is vio-
lated in the presence of null strings. This term, however,
does not affect the flux (1.2).
The paper is organized as follows. In Sec. II we introduce

necessary notions and describe the method. In Sec. II A we
pay a special attention to the isometry group near the string
world sheetS. On the string horizon, the null rotations induce
the Carroll transformations [14,15,16,17], which we use to
set initial data onH. The approach [11] and the characteristic
problem for EM fields [1] are formulated in Sec. II B. The
problem is characteristic since H is a null hypersurface.
Pointlike sourceswe consider are defined in Sec. III A. Fields
of MD sources may be viewed as a far-distance approxima-
tion of fields of finite size bodies with magnetic moments.
Solutions for characteristic problems of vector fields can be
formulated in terms of solutions for the auxiliary scalar
problem defined in Sec. III B. Asymptotic properties of EM
waves and energy fluxes generated from electric and MD
sources are considered in detail in Secs. III C and III D,
respectively. Here we provide explicit expressions for quan-
tities in (1.1) and (1.2). Possibilities to detect EM pulses
generated by null cosmic strings near pulsars and magnetars
are discussed in Sec. IV. A summary and discussion of our
results can be found in Sec. V. Approximations for integral
representations of perturbations caused by null strings are
developed in Appendix A. Some technicalities related to
perturbations for MD sources are given in Appendix B.

II. DESCRIPTION OF THE METHOD

A. Null rotations and Carroll transformations

We consider classical electrodynamics,

∂μFμν ¼ jν; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ. The current jμ, ∂j ¼ 0, will
correspond to a pointlike source, either of electric or MD
type. We study solutions of (2.1) near a straight cosmic
string, which is stretched along the z axis and moves along
the x axis. The space-time is locally Minkowski R1;3, and
we use the light cone coordinates v ¼ tþ x, u ¼ t − x,
where the metric is

ds2 ¼ −dvduþ dy2 þ dz2: ð2:2Þ

The string world sheet S can be defined by equa-
tions u ¼ y ¼ 0.
A number of definitions are needed for further purposes.

We use the null rotations xμ ¼ Mμ
νðλÞx̄ν, which leave

invariant (2.2),

u¼ ū; v¼ v̄þ2λȳþλ2ū; y¼ ȳþλū; z¼ z̄; ð2:3Þ

where λ is some real parameter. Transformations of
quantities with lower indices are

Vu¼V̄u−λV̄yþλ2V̄v; Vv¼V̄v; Vy¼V̄y−2λV̄v; Vz¼V̄z;

ð2:4Þ

or Vμ ¼ Mμ
νðλÞV̄ν, where Mμ

ν ¼ ημμ0η
νν0Mμ0

ν0 . The null
rotations make a parabolic subgroup of the Lorentz group.
For a null string with the world sheet u ¼ y ¼ 0, a

parallel transport of a vector V along a closed contour
around the string results in a null rotation, V 0 ¼ MðωÞV
with ω defined as, see [13],

ω≡ 8πGE: ð2:5Þ

The world sheet is a fixed point set of (2.3).
The null hypersurface u ¼ 0 is the event horizon of the

string. We denote it by H. The properties of null hyper-
surfaces are reviewed, for example, in [18]. We enumerate
coordinates v, y, z on H by indices a; b;…. Coordinate
transformations (2.3) at u ¼ 0 (with λ ¼ ω) induce the
change of coordinates on H:

xa ¼Ca
bx̄b or x¼ x̄þ2ωyq; qa ¼ δav; ð2:6Þ

where x≡ fv; y; zg. Matrices Ca
b can be defined as

Ca
b ¼ Ma

bðωÞ: ð2:7Þ

Transformations (2.6) and (2.7) make the Carroll group of
symmetries of the string horizon. An introduction to the
Carroll transformations can be found in [14,15]. The
components of one-forms θ ¼ θadxa and vector fields
V ¼ Va

∂a on H, in a coordinate basis, change as

θaðxÞ¼Ca
bθ̄bðx̄Þ; VaðxÞ¼Ca

bV̄bðx̄Þ; ð2:8Þ

where Ca
b ¼ Ma

b. Since Mb
u ¼ 0 the matrix Ca

b is
inverse of Ca

c. Forms like θðVÞ ¼ θaVa are invariant with
respect to (2.8). It should be noted, however, that indices a,
b cannot be risen or lowered since the metric of H is
degenerate.
By following the method suggested in [11] one can

construct a string space-time, which is locally flat but has
the required holonomy on S. One starts with R1;3, which is
decomposed into two parts: u < 0 and u > 0. Trajectories
of particles and light rays at u < 0 and u > 0 can be called
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ingoing and outgoing trajectories, respectively. To describe
outgoing trajectories, one introduces two types of coor-
dinate charts: R and L charts, with cuts on the horizon
either on the left (u ¼ 0, y < 0) or on the right (u ¼ 0,
y > 0). The initial data on the string horizon are related to
the ingoing data via null rotations (2.3) taken at u ¼ 0. For
brevity the right (u ¼ 0, y > 0) and the left (u ¼ 0, y < 0)
parts of H will be denoted as Hþ and H−.
For the R charts the cut is along H−. If xμ and x̄μ are,

respectively, the coordinates above and below the horizon,
then the transition conditions on H in the R charts look as

xμ ¼ x̄μjHþ or xa ¼ x̄a; ð2:9Þ
xμ ¼Mμ

νðωÞx̄νjH−
or xa¼Ca

bx̄b: ð2:10Þ
Analogously, three components of 4-velocities of particles
and light rays (with the lower indices) change on H− as
ua ¼ Ca

būb. Change of the uu component can be found by
requiring the invariance of uμuμ, which implies that uμ

experiences the four-dimensional null rotation on H−.
Coordinate transformations (2.10) are reduced to a linear

supertranslation

v¼ v̄þ2ωy; y< 0: ð2:11Þ

Hence the gravitational field of a null string is a particular
example of a gravitational shockwave background. The
method we follow is close to a more general approach
suggested by Penrose [19].
As a result of the Lorenz invariance of the theory the

descriptions based on R or L charts are equivalent. Without
loss of the generality fromnowonweworkwith theR charts.
In this case all field variables experience Carroll trans-
formations onH−, and one needs to solve field equations in
the domain u > 0 with the initial data changed on H−.

B. Characteristic problem for EM fields

Consider the Maxwell theory on the string space-time.
Let Āμ be a solution to the problem in the region u < 0,

∂μF̄μν ¼ j̄ν: ð2:12Þ
The currents at u > 0 and u < 0 are related on H as

jμðxÞjHþ ¼ j̄μðxÞ; jμðxÞjH−
¼Mμ

νðωÞj̄νðx̄Þ: ð2:13Þ
We need to solve (2.1) at u > 0 by setting the following

initial conditions at u ¼ 0:

AbðxÞjH ¼ abðxÞ; ĀbðxÞjH ¼ ābðxÞ ð2:14Þ

abðxÞ¼ ābðxÞjHþ ; abðxÞ¼Cc
b ðωÞācðx̄ÞjH−

: ð2:15Þ

In the theory of hyperbolic second-order partial differ-
ential equations a problem is called the characteristic initial

value problem [20] if the initial data are set on a null
hypersurface. In this case the number of initial data are
twice less, and setting just ab is enough to determine the
solution (see discussion in [1]).
The variation of the action on the string space-time, if we

take into account (2.1) and (2.12), has the form

δA

�
−
1

4

Z ffiffiffi
g

p
d4xFμνFμν þ I½A�

�

¼ 1

2

Z
H
d3xðπbðxÞδabðxÞ − π̄bðxÞδābðxÞÞ; ð2:16Þ

πb ¼Fub; π̄b ¼ F̄ub; b¼ v;y;z: ð2:17Þ

Here I½A� is the action of a charged matter, and πb, π̄b can
be interpreted as canonical momenta conjugated with
ab, āb.
This variation vanishes given conditions (2.15) since the

momenta transform under the Carroll group as components
of a three-vector,

πbðxÞ ¼ π̄bðxÞjHþ ; πbðxÞ ¼ Cb
cπ̄

cðx̄ÞjH−
: ð2:18Þ

This transformation law follows, for example, from the
constraints

∂bπ
b ¼ −jujH; ∂bπ̄

b ¼ −j̄ujH; ð2:19Þ

and the fact that ju ¼ j̄u. The given arguments, of course,
mean that the Maxwell strength is continuous across H on
the string space-time.
In what follows we suppose that charged particles do not

cross the left part of the horizon, that is jμ ¼ j̄μ on H. One
can write a solution to (2.1), (2.14), and (2.15) in the form

AμðxÞ ¼ ĀμðxÞ þ AS;μðxÞ: ð2:20Þ

Here Āμ is an extension of the solution (2.12) to the region
u > 0, and AS;μ is a solution to a homogeneous character-
istic initial value problem

∂μF
μν
S ¼ 0; AS;bðxÞjH ¼ aS;bðxÞ; ð2:21Þ

aS;bðxÞjHþ ¼ 0; aS;bðxÞjH−
¼ C c

b ðωÞācðx̄Þ − ābðxÞ;
ð2:22Þ

where FS;μν ¼ ∂μAS;ν − ∂νAS;μ.
One can interpret Ā as a solution in the absence of the

string, while AS can be considered as a perturbation caused
by the string. This perturbation:

(i) vanishes in the limit ω → 0, where ω is the energy of
the string,

(ii) depends on the choice of the source jμ through initial
data (2.22), and
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(iii) can be written as

AS;μðxÞ ¼ Aω
μ ðxÞ −AμðxÞ; ð2:23Þ

Aω
μ ðxÞ¼Mμ

νðωÞAνðx̄Þ; xμ ¼Mμ
νðωÞx̄ν; ð2:24Þ

where AμðxÞ is a solution to homogeneous problem
∂μF μν ¼ 0 with the following initial data on H:

AbðxÞjHþ ¼ 0; AbðxÞjH−
¼ ābðxÞ: ð2:25Þ

A geometrical interpretation of the perturbation is
that at small ω it is the Lie derivative,

AS ¼ −ωLζA; ð2:26Þ

generated by vector ζμ ¼ 2yδμv þ uδμy associated to
null rotations (2.3).

For the subsequent analysis, it is convenient to use the
Lorentz gauge condition ∂A ¼ 0 since it is invariant under
null rotations and can be imposed globally on the cosmic
string space-time. Thus, equations for the perturbations
caused by the string are reduced to the problem

□AS;a ¼ 0; AS;aðxÞjH ¼ aS;aðxÞ; ð2:27Þ

with initial data (2.22). Component Au is determined by
condition ∂AS ¼ 0. The rest of the paper is devoted to
studying solutions of (2.27) for different sources.

III. ASYMPTOTICS AND
RADIATION ENERGY FLUX

A. Definitions

Perturbations AS;μ will be considered for pointlike
sources of electric and magnetic types. Without loss of
the generality we suppose that the source is at rest at a point
with coordinates xo ¼ zo ¼ 0; yo ¼ a > 0. Since the string
trajectory is x ¼ t, y ¼ 0, we interpret a as an impact
parameter between the string and the source. As we agreed,
the source crosses Hþ, see Fig. 1.
The sources of the electric type are just electric charges.

The corresponding current is

j0¼ eδð3Þðx⃗− x⃗oÞ; jiðxÞ¼ 0; i¼ 1;2;3: ð3:1Þ

The field in the absence of the string is

Ā0ðxÞ ¼ eϕðxÞ; ĀiðxÞ ¼ 0; ð3:2Þ

ϕðx; y; zÞ ¼ −
1

4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy − aÞ2 þ z2

p : ð3:3Þ

The sources of the MD type are described by the current

j0 ¼ 0; jiðxÞ ¼ εijkMj∂kδ
ð3Þðx⃗ − x⃗oÞ; ð3:4Þ

where Mi is a magnetic moment. The corresponding field
in the absence of the string is

Ā0ðxÞ ¼ 0; ĀiðxÞ ¼ εijkMj∂kϕ; ð3:5Þ

which is the field of a magnetic dipole [21]. We consider
(3.5) as an approximation for an EM field of a body with a
magnetic moment. Under certain assumptions (3.5) can be
used to describe the EM field of such objects as pulsars.
Note that Mi in (3.5) has the dimension of length.
It is convenient to go from Minkowski coordinates (2.2)

to retarded time coordinates

ds2 ¼ −dU2 − 2dUdrþ r2dΩ2; ð3:6Þ

where U ¼ t − r and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. We denote

coordinates θ;φ on the unit sphere by xA, dΩ2 ¼
γABdxAdxB¼ sin2 θdφ2þdθ2. Our results will be expressed
in terms of a unit vector n⃗ with components nx ¼
x=r; ny ¼ y=r; nz ¼ z=r. If ⃗l is a unit vector along the
velocity of the string and p⃗ is another unit vector along
the string axis (li ¼ δix, pi ¼ δiz), then nx ¼ ðn⃗ · ⃗lÞ,
nz ¼ ðn⃗ · p⃗Þ. We use coordinates (3.6) above the string
horizon, u > 0. In this region U > −rð1 − nxÞ. The region
includes the domain U > 0.
As has been shown in [1] a null string moving near a

pointlike charge disturbs its field and creates an outgoing
EM-pulse traveling to the future null infinity Iþ, r → ∞.
The trajectory of the pulse is the light cone shown on Fig. 1.
The energy of the EM field inside the sphere of the radius

R with the center at the point xi ¼ 0 is

FIG. 1. Shows the world sheet of the string S, the string horizon
H ¼ Hþ ∪ H−, and a trajectory of the pointlike source (the
dashed line) that crossesHþ. At late times perturbation of the EM
field of the source caused by the string propagates along a null
cone, which is tangent to H and has the apex approximately at a
point where the trajectory crosses the horizon.
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EðR; tÞ ¼
Z
r<R

d3xT00; ð3:7Þ

where Tμ
ν is the stress-energy tensor of the EM field,

Tμ
ν ¼ −FμαFνα þ δμν

1

4
FαβFαβ: ð3:8Þ

The energy density T00 is measured in the frame of
reference where the charge is at rest. The conservation
law implies that

∂tEðR; tÞ ¼ R2

Z
dΩTr

U: ð3:9Þ

We consider the energy flow at r ≫ a, r ≫ U. As is shown
in the next section, in the given regime one has the
following asymptotics, which hold for all angles Ω if
U > 0:

AS;μðr;U;ΩÞ ≃ 1

r
ðaμðU;ΩÞ þ bμðΩÞ ln r=ϱÞ

þOðr−2 ln rÞ; μ ¼ U; r; ð3:10Þ

AS;Bðr; U;ΩÞ ≃ aBðU;ΩÞ þ bBðΩÞ ln r=ϱþOðr−1 ln rÞ;
ð3:11Þ

where AS;B are components in the tangent space to S2, ϱ is a
dimensional parameter related to the approximation. This
yields

Tr
U ¼ FUμFrμ ≃

1

r2
γABȧAȧB; ð3:12Þ

where ȧA ≡ ∂UaA, and guarantees a finite energy flux (3.9)
at large r, for U > 0,

lim
R→∞

∂tEðR; tÞ ¼
Z

dΩγABȧAȧB ¼
Z

dΩð ˙a⃗2 − ð ˙a⃗ · n⃗Þ2Þ:

ð3:13Þ

The rhs of (3.13) is given for components in Minkowski
coordinates, ni ¼ xi=r.
The calculation of (3.13) is our main goal. In next

sections we derive the leading terms in (3.10) and (3.11) in
an analytic form for sources of electric and magnetic types.

B. Master problem

As we will see, solutions to vector problem (2.27) can be
generated by a solution of the following scalar problem:

□Φωðu;xÞ ¼ 0; Φωð0;xÞ ¼ θð−yÞfωðxÞ; ð3:14Þ

fωðxÞ≡ fðx̄Þ; fðxÞ≡ ϕðv=2; y; zÞ: ð3:15Þ

Here x̄ is defined in (2.6) and ϕðx; y; zÞ in (3.3). Before
we proceed it is helpful to discuss properties of ΦωðxÞ in
some detail. The key fact is the integral representation
found in [1]:

ΦωðxÞ ¼ −C
Z
S2
dΩ0R

�
Φ̃ωðΩ0Þ

xμmμðΩ0Þ þ iaεðΩ0Þ
�
;

Φ̃ωðΩ0Þ≡ cosφ0

gðΩ0;ωÞ ; ð3:16Þ

whereC ¼ 1=ð8π3Þ. The integration goes over a unit sphere
S2, with coordinates Ω0 ¼ ðθ0;φ0Þ, dΩ¼ sinθ0dθdφ0. Other
notations are

mu ¼ 1 − sin2θ0cos2φ0; mv ¼ sin2θ0cos2φ0;

my ¼ sin 2θ0 cosφ0; mz ¼ sin2θ0 sin 2φ0; ð3:17Þ

gðΩ0;ωÞ¼ eiθ
0 þωsinθ0 cosφ0; εðΩ0Þ ¼ 2sin2θ0 cosφ0:

ð3:18Þ

One can check that vector field mμ is null, m2 ¼ 0, which
guarantees that □Φω ¼ 0.
Let ΦðxÞ be a solution to (3.14) and (3.15) for ω ¼ 0.

The initial data for Φω are obtained by the Carroll trans-
formation of initial data for Φ. Let us show that this
transformation generates the null rotation of the solution,
that is

ΦωðxÞ¼Φðx̄Þ; x¼MðωÞx̄: ð3:19Þ

To this aim we introduce a unit vector on S2

lx ¼ sinθ0 cosφ0; ly ¼ cosθ0; lz¼ sinθ0 sinφ0; ð3:20Þ

and express quantities under the integral in (3.16) as

m0 ¼ 1; mx ¼ 2l2x−1; my ¼ 2lxly;

mz ¼ 2lxlz; ε¼ 2lx
ffiffiffiffiffiffiffiffiffiffiffi
1− l2y

q
; ð3:21Þ

wherem0 ¼ mv þmu,mx ¼ mv −mu. According to (3.16)

Φðx̄Þ ¼ Φω¼0ðx̄Þ ¼ −C
Z
S2
dΩ0R

�
Φ̃ðΩ0Þ

xμm0
μ þ iaε

�
; ð3:22Þ

where m0 ¼ MðωÞm and

Φ̃ ¼ Φ̃ω¼0 ¼
lxffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2y
q

ðly þ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2y

q
Þ
: ð3:23Þ

Vector m0 can be further transformed to m̃ ¼ m0=S,
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m̃0¼1; m̃x¼2l̃2x−1; m̃y¼2l̃xl̃y; m̃z¼2l̃xl̃z; ð3:24Þ

l̃x ¼ S−1=2lx; l̃y ¼ S−1=2ðly − ωlxÞ;
l̃z ¼ S−1=2lz; S ¼ 1 − 2ωlxly þ ω2l2x: ð3:25Þ

This yields

Φ̃
ðx0Þμm0

μ þ iaε
¼ S−3=2

Φ̃ω

ðx0Þμm̃μ þ iaε̃
; ð3:26Þ

where Φ̃ω; ε̃ are determined in terms of l̃i. Then (3.19)
easily follows from (3.22) and (3.23) if one changes the
integration measure.

C. Radiation from an electric charge

For an electric source perturbation AS;b is a solution to
(2.27) with

ābðxÞ ¼
1

2
fðxÞδvb; ð3:27Þ

where fðxÞ is defined in (3.15). Equation (3.27) is the
consequence of (3.2) and (3.3). As is easy to see, AS;b is
generated by the solution to scalar problem (3.14) in the
following way:

AS;vðxÞ¼
e
2
ðΦωðxÞ−ΦðxÞÞ; AS;yðxÞ¼−eωΦωðxÞ;

AS;zðxÞ¼0: ð3:28Þ

The rest component, AS;u, is determined by the gauge
condition ∂AS ¼ 0. The solution at u > 0 can be repre-
sented as [1]

AS;μðxÞ ¼ −eC
Z
S2
dΩ0R

�
βμðΩ0Þ

xνmνðΩ0Þ þ iaεðΩ0Þ
�
: ð3:29Þ

The new notations used in (3.29) are

βv ¼−
1

2
cosφ0ðg−1ðΩ0;ωÞ−g−1ðΩ0;0ÞÞ;

βy ¼ cosφ0ωg−1ðΩ0;ωÞ; βz ¼ 0; ð3:30Þ

βu ¼
myβy − 2muβv

2mv
; ð3:31Þ

with gðΩ0;ωÞ, εðΩ0Þ defined in (3.18). The gauge condition,
which results in (3.31), allows residual gauge transforma-
tions. So solution to βu is not unique. This arbitrariness,
however, does not affect physical observables.
In coordinates U; r; xA, see (3.6), the denominator in the

integral in (3.29) can be written as

xνmν þ iaε ¼ U þ rððm⃗ · n⃗Þ þ 1Þ þ iaε:

Since we are interested in a large r asymptotic, the
integration in (3.29) can be decomposed into two parts:
the integration over a domain, where the factor ðm⃗ · n⃗Þ þ 1
is small, that is, m⃗ is almost −n⃗, and the integration over the
rest part of S2. If we introduce a dimensionless parameter Λ
such that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ a2
p

r
≪ Λ2 ≪ 1; ð3:32Þ

then the first region can be defined as ðm⃗ · n⃗Þ þ 1 ≤ Λ2 and
the second as ðm⃗ · n⃗Þ þ 1 > Λ2. Contributions from these
regions to AS will be denoted as A1 and A2, respectively,

AS ¼ A1 þ A2: ð3:33Þ
After some algebra one gets the following estimates at large
r [for components in coordinates (2.2)]:

A1;μðr;U;ΩÞ≃eNðΩÞ
r

R

�
β̄μ ln

�
Uþ iaε̄þ rΛ2

Uþ iaε̄

��
; ð3:34Þ

A2;μðr;U;ΩÞ ≃ b2;μðΩ;ΛÞ
r

; ð3:35Þ

β̄μ ¼ βμjm⃗¼−n⃗; ε̄ ¼ εjm⃗¼−n⃗; ð3:36Þ

NðΩÞ ¼ 1

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 − nx

s
; ð3:37Þ

b2;μðΩ;ΛÞ¼−eC
Z
S2Λ

dΩ0cosφR
�

βμðΩ0Þ
ðm⃗ðΩ0Þ · n⃗Þþ1

�
; ð3:38Þ

where S2Λ is a part of S2 with the restriction
ðm⃗ · n⃗Þ þ 1 > Λ2. Arguments which lead to (3.34) can
be found in Appendix A. Calculation of (3.35) is trivial.
As a result of (3.34) and (3.35) the solution at large r is a

sum of a static U independent part and a dynamical part.
The dynamical part presents only in A1, and it is the only
part which contributes to the flux (3.13). One can show that
formula (3.34) is in a good agreement with numerical
simulations for nx ≠ 1, so it provides a remarkable analytic
tool to compute different characteristics of the EM field at
future null infinity. We come to the following expression
which leads to Eq. (1.1) announced in Sec. I:

AS;μðr; U;ΩÞ ≃ aμðU;ΩÞ
r

þ bμðΩÞ
r

ln ϱ=r; ð3:39Þ

aμðU;ΩÞ ¼ −eNðΩÞR
�
β̄μ ln

�
U þ iaε̄

a

��
þ b2;μðΩ;ΛÞ;

ð3:40Þ
bμðΩ;ΛÞ ¼ eNðΩÞRβ̄μðΩÞ; ð3:41Þ

where ϱ ¼ a=Λ2.
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The power of the radiation is given by (3.13). The
dynamical part is determined by β̄μ, with the condition
β̄μm̄μ ¼ 0. It implies that ȧ0 ¼ −ð ⃗ȧ · n⃗Þ and

Ė¼
Z

dΩγABȧAȧB ¼
Z

dΩðȧμημνȧνÞ≡
Z

dΩfEðU;ΩÞ;

ð3:42Þ

where ημν is the flat metric. If we express ȧv through the
rest components by using the gauge condition ȧμmμ ¼ 0,
where mu ¼ −ð1 − nxÞ, mv ¼ −ð1þ nxÞ, my ¼ −ny, then
the flux density (intensity of the radiation) takes the form

fEðU;ΩÞ¼ ȧμημνȧν¼
4nyȧyȧvþ4ð1þnxÞȧ2vþð1−nxÞȧ2y

1−nx
:

ð3:43Þ

Unit vector n⃗ is introduced after Eq. (3.6). The functions ȧ
are expressed in terms of real and imaginary parts of β̄μ,

ȧμ ¼ −
eNðΩÞ

U2 þ a2ε̄2
½URβ̄μ þ aε̄Iβ̄μ�; ð3:44Þ

see (3.40). We are interested in the limit when the string
energy is small, ω ≪ 1. With the help of (A5)–(A7) one
gets in the linear approximation in ω,

Rβ̄y≃−
ωnyffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1−nx

p
ε̄

; Rβ̄v≃
ω

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1−nx

p
ε̄

ðn2y−ð1−nxÞÞ;

Iβ̄y≃−
ωffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1−nx

p
; Iβ̄v≃

ωny
2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1−nx

p
: ð3:45Þ

Substitution of (3.44) and (3.45) into (3.43) yields

fEðU;ΩÞ ≃ e2ω2

ð2πÞ4a2
1

½U2=a2 þ ε̄2�2

×

�
1 − n2x − n2yð1 − ε̄2Þ

ε̄2
U2

a2

þ 2nyð1 − nx − n2yÞ
U
a
þ ð1 − n2yÞε̄2

�
; ð3:46Þ

where ε̄2 ¼ 2ð1 − nxÞ − n2y, nx ¼ cos θ, ny ¼ sin θ sinφ.
We consider (3.46) at U > 0.
For U=a ≫ 1 the flux density vanishes as ðU=aÞ−2. It

follows from (3.40) and numerical simulations in [1] that
the peak power is near U ¼ 0. Such behavior is demon-
strated in Fig. 2 which shows an angular distribution of the
flux (intensity of the flux) at different moments of U. For
small U the energy flux is focused in the direction of string
motion. For nx → �1 and finite U,

fEðU;ΩÞnx→1 ¼
e2

ð2πÞ4
ω2

U2
;

fEðU;ΩÞnx→−1 ¼
e2

16π4
4ω2

ð4þ U2Þ2 : ð3:47Þ

At U ¼ 0, expression (3.46) takes the simple form

fEð0;ΩÞ ¼
e2

ð2πÞ4
ω2

a2
ð1 − n2yÞ

2ð1 − nxÞ − n2y
: ð3:48Þ

It has a polelike singularity at nx ¼ 1, where our approxi-
mation is not applicable. Note that at U ¼ 0 this point lies
exactly on the string world sheet S.
To better illustrate the intensity of the flux, we present in

Fig. 3 polar radiation plots, which are common in antenna
physics. They refer to the directional (angular) dependence
of the flux density of the EM-waves coming from an
electric source. The flux density (3.46) depends on two
angles and retarded Bondi coordinate U. We fix the

FIG. 2. The flux density [divided by e2ω2=ðð2πÞ4a2Þ] from an electric source. The flux is given in the logarithmic scale in 4π geometry
for U ¼ 0.01, 0.1 and impact parameter a ¼ 1. The radiation has a form of EM burst which is directed mostly toward the velocity of the
string and rapidly decays with increasing of U.
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distance from the source, U ¼ 0.01, and one of the angels,
θ, and draw the flux density in polar coordinates. Then the
polar radiation graphs in Fig. 3 show the dependence of the
flux density on the angle φ in different planes θ ¼ const
and e2ω2=ðð2πÞ4a2Þ ¼ 1. We return to an estimate of the
flux from a null cosmic string and a gas of charged particles
in Sec. IV.

D. Radiation from a magnetic-dipole source

The case of pointlike magnetic-dipole sources has not
been studied in [1]. Therefore, we consider this case in
more detail by taking into account results of [1]. It follows
from (3.5) that incoming data for problem (2.27) for a
magnetic-dipole source are

ābðxÞ ¼ DbfðxÞ; b ¼ v; y; z; ð3:49Þ

where fðxÞ is defined in (3.15), and

2Dv ¼ðMy∂z−Mz∂yÞ; Dy ¼−Mx∂zþ2Mz∂v;

Dz ¼Mx∂y−2My∂v: ð3:50Þ

If we introduce the operators,

Dω
b ¼ Db þ ωð−Mzδ

v
b þ 2Mxδ

z
bÞ∂v; ð3:51Þ

then, according to (2.22), the initial data for perturbations
induced by the string can be written as

abðxÞ ¼ θð−yÞðDω
b fωðxÞ − 2ωδybD

ω
v fωðxÞ −DbfðxÞÞ:

ð3:52Þ

Here fωðxÞ is introduced in (3.15) and operators Dω
b

are obtained from Db by replacing ∂y to ∂y þ 2ω∂v
since ð∂y þ 2ω∂vÞfωðxÞ ¼ ∂yfðxÞx¼x̄.
Let Ψω

b ðu;xÞ be a solution at u > 0 of the following
problem:

□Ψω
b ðu;xÞ¼0; Ψω

b ð0;xÞ¼θð−yÞDω
b fωðxÞ; b¼v;y;z:

ð3:53Þ

Then the solution to (2.27) for the magnetic-dipole source
has the components

AS;bðxÞ ¼ Ψω
b ðxÞ − ΨbðxÞ − 2ωδybΨω

v ðxÞ; ð3:54Þ

where ΨbðxÞ ¼ Ψω¼0
b ðxÞ. To proceed we consider another

auxiliary problem,

□χðu;xÞ ¼ 0; χð0;xÞ ¼ δðyÞfðxÞ: ð3:55Þ

Given solutions to (3.14) and (3.55) one can easily
construct the solution,

Ψ̃ω
b ðxÞ ¼ ∂bΦω þ δybχðxÞ; ð3:56Þ

to the problem,

□Ψ̃ω
b ðu;xÞ ¼ 0; Ψ̃ω

b ð0;xÞ ¼ θð−yÞ∂bfωðxÞ; ð3:57Þ

and represent Ψω
b as

Ψω
b ðxÞ ¼ Dω

bΦωðxÞ þ ðMxδ
z
b − 2Mzδ

v
bÞχðxÞ: ð3:58Þ

Now the final result for components can be written with the
help of (3.54) and (3.58) in the form

AS;aðxÞ ¼ Dω
aΦωðxÞ −DaΦðxÞ − 2ωðDω

vΦωðxÞ
− 2MzχðxÞÞδay; ð3:59Þ

where ΦðxÞ ¼ Φω¼0ðxÞ. Equation (3.59) is our starting
point for computations of the flux.
By taking into account (3.59) and the gauge conditions

perturbation of the vector potential of the magnetic source
caused by the null string can written as

AS;νðxÞ ¼ A1;νðxÞ þ A2;νðxÞ: ð3:60Þ

FIG. 3. Polar radiation plots (far-field patterns) in the planes θ ¼ π=4; π=6; π=10; π=180. The flux density is depicted for U=a ¼ 0.01
when e2ω2=ðð2πÞ4a2Þ ¼ 1. Angles θ and φ are defined by (A1). Angle φ changes clockwise. The intensity of the flux grows in the
direction of the string velocity as θ → 0. The flux is orthogonal to the axis of the string, which corresponds to φ ¼ 0; π.
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By its structure A1;νðxÞ is analogous to potential (3.29) for
an electric source,

A1;νðxÞ ¼ C
Z
S2
dΩ0R

�
ανðΩ0Þ

ðxμmμ þ iaεÞ2
�
; ð3:61Þ

αaðΩÞ ¼ mμððDω
a xμÞ − 2ωδyaðDω

v xμÞÞΦ̃ω

−mμðDaxμÞΦ̃; a ¼ v; y; z ð3:62Þ

αuðΩÞ ¼
myαy þmzαz − 2muαv

2mv
; ð3:63Þ

where Φ̃ωðΩÞ ¼ cosφg−1ðΩ;ωÞ, see (3.16). The rest
part of the solution presents only if Mz ≠ 0 and can be
written as

A2;νðxÞ ¼ 2ωMzð2δyν∂v þ δuν∂yÞχ̄: ð3:64Þ

Here ∂vχ̄ ¼ χ. Properties of function χ are studied in detail
in Appendix B. The u component of Aμ in (3.63) and (3.64)
is determined by the gauge condition ∂A ¼ 0. As has been
pointed out the gauge condition fixes the solution up to
residual gauge transformations, which do not change
physical observables, like the energy flux.
With the help of (3.16) one finds the asymptotic form of

(3.61) for nx ≠ 1,

A1;μðxÞ ≃
NðΩÞ
r

R

�
ᾱμ

U þ iaε̄

�
; ð3:65Þ

ᾱμ ¼ αμjm⃗¼−n⃗: ð3:66Þ

Function N is defined in (3.37) and, as earlier,
ε̄2 ¼ 2ð1 − nxÞ − n2y. Components of ᾱμ follow from
(3.62)–(3.63) where one has to replace Φ̃ω to

Φ̄ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − nxÞ3

p
ε̄ð−ny þ ωð1 − nxÞ þ iε̄Þ : ð3:67Þ

Derivation of (3.65) can be performed along the lines of the
electric case elaborated on in Appendix A. Asymptotic of χ
at large r, which is derived in Appendix B, is

χ̄ðxÞ ¼ 1

2π2r

"
1

4ε̄
ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ a2ε̄2

p

2Lr

!
− XðΩÞ

#
: ð3:68Þ

Like in (3.42), we calculate the density of the energy
flux, or the intensity, fMðU;ΩÞ,

Ė≡
Z

dΩfMðU;ΩÞ; ð3:69Þ

fMðU;ΩÞ

¼4ðnyȧyȧvþnzȧzȧvþð1þnxÞȧ2vÞþð1−nxÞðȧ2yþ ȧ2zÞ
ð1−nxÞ

;

ð3:70Þ

where ȧμ is defined by the asymptotic ȦμðxÞ ≃ ȧμ=r at large
r. The difference of this expression, with respect to the case
of the electric source, is in nonvanishing component ȧz.
After some algebra one arrives at the following result valid
at small ω:

ȧb ≃ −
ω

8π2a2ε̄
σiζ

i
b

ððU=aÞ2 þ ε̄2Þ2 ; i ¼ 1; 2; 3; ð3:71Þ

σ1 ¼ ðn2y − ε̄2ÞððU=aÞ2 − ε̄2Þ þ 4ε̄2nyðU=aÞ ð3:72Þ

σ2 ¼ 2ε̄ðnyððU=aÞ2 − ε̄2Þ − ðn2y − ε̄2ÞðU=aÞÞ ð3:73Þ

σ3 ¼ ðU=aÞ2 − ε̄2 ð3:74Þ

ζ1v¼
1

2
Mynz; ζ1z ¼Myð1−nxÞ;

ζ1y¼−ðMxnzþMzð1−nxÞÞ−
ny

1−nx
ðMynz−MznyÞ;

ζ2v¼
ε̄

2
Mz; ζ2z ¼−ε̄Mx; ζ2y¼−

ε̄

1−nx
ðMynz−MznyÞ;

ζ3b¼2Mzð1−nxÞδyb:

Here the presence of ζ3b in (3.75) is related to the part of
the solution defined in (3.64). The intensity of the radiation
fMðU;ΩÞ can be obtained with the help of (3.70)
and (3.71).
Similarly to the case of the electric source fMðU;ΩÞ is

distributed predominantly in the direction of the string
motion, however, now it depends on the direction of the
magnetic moment M⃗ with respect to the string. Figure 4
shows the angular distribution of the flux density over a
unit sphere for different directions of M⃗ in logarithmic
scale. The highest flux density is achieved when the
magnetic moment is aligned with the sting, M ¼ Mz; the
weakest effect is observed when the magnetic moment is
orthogonal both to the string and to its velocity, M ¼ My.
For illustrative purposes we give concrete expressions of

the flux for some special cases at small ω. At finite U > 0
one can conclude that in the given approximation the flux in
the direction nx ¼ 1 tends to zero. This direction corre-
sponds to an observer with coordinates xo¼ r;yo¼ zo¼ 0,
that is the observer between the string and the source on
trajectory of the string. It should be noted that at nx ¼ 1 our
approximation (B20) is violated.
Another observer on the same trajectory positioned such

that the source is between the observer and the string, with
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coordinates xo ¼ −r; yo ¼ zo ¼ 0, sees the flux which
depends on the direction of M⃗:

M⃗¼ð0;0;MÞ fMðUÞ¼ 9

16

ω2M2

π4a4
ðU2=a2−4Þ2
ðU2=a2þ4Þ4 ; ð3:75Þ

M⃗¼ð0;M;0Þ fMðUÞ¼ 1

4

ω2M2

π4a4
ðU2=a2−4Þ2
ðU2=a2þ4Þ4 ; ð3:76Þ

M⃗ ¼ ðM; 0; 0Þ fMðUÞ ¼ 4ω2M2

π4a4
U2=a2

ðU2=a2 þ 4Þ4 : ð3:77Þ

If U ¼ 0, and nx ≠ 1, then one finds for M⃗ ¼ ð0; 0;MÞ,

fMð0;ΩÞ ¼
ω2M2

16π4a4ε̄6
fð2 − nxÞ2ð1 − nxÞ2

þ 2ð1 − nxÞð6þ 2nx − n2xÞn2y
þ ðn2x þ 2nx − 8Þn4y þ n6yg; ð3:78Þ

for M⃗ ¼ ð0;M; 0Þ,

fMð0;ΩÞ ¼
ω2M2

16π4a4ε2
ð1 − n2yÞ; ð3:79Þ

and for M⃗ ¼ ðM; 0; 0Þ,

fMð0;ΩÞ¼
ω2M2

16π4a4ε̄6
ð1−nxÞ2ð1−n2xþð1−2nxÞn2y−n4yÞ:

ð3:80Þ

At nx → 1 the flux density diverges since the observer
intersects trajectory of the string.
For the case of maximal intensity, when the magnetic

moment is parallel to the string axis, M ¼ Mz ¼ 1, the
polar radiation plot of the flux density divided by
ω2=ð64π4a4Þ is shown in Fig. 5 for U=a ¼ 0.1. The angle
ϕ changes from 0 to 2π clockwise. The direction along the
string velocity (along the x axes) is ϕ ¼ π=2. The plots are
given for different angular positions of the observer:
θ ¼ π=3; π=6; π=8; π=9. As θ decreases the plot is stretched
along the x axis. Thus, the radiation is directed toward the
motion of the string. Note that at U=a ¼ 0.01 (the value at
which similar graphs are plotted in the case of an electric
source), the graphs stretch in the direction of the string
velocity by several orders of magnitude.

IV. TOWARD EXPERIMENTAL OBSERVATIONS
OF EM RADIATION GENERATED

BY NULL STRINGS

To understand at which energies of null strings the pulses
can be potentially observable we consider the power of the
generated radiation. This power can be considered as the
luminosity of the system which consists of the charge and
the null string. We take 0 < U=a ≪ 1 for the peak power.
As the preceding analysis shows, the flux densities are
maximal at these values.
Let us start with the radiation from electrically charged

sources. Formulae (3.42) and (3.46) yield the crude
estimate for the luminosity:

Ė ∼
e2

ð2πÞ4
ω2

a2
: ð4:1Þ

There is an upper limit on the tension of tensile strings
Gμ ≤ 10−7, which follows from cosmic microwave back-
ground (CMB) [22–24]. Since the effects of null strings on
the CMB spectrum are similar to those of the tensile strings
[11] we use the energy parameter ω0 ¼ 1 × 10−7 as some
reference value to proceed with computations. With the
help of this parameter the peak luminosity of the radiation
emitted by N charged particles can be written as

Ė ∼ 0.6

�
ω

ω0

�
2
�
1 cm
a

�
2 N
NA

erg
s
: ð4:2Þ

FIG. 4. Shows the flux density [divided by ω2=ð64π4a4Þ]
from a magnetic-dipole source for U=a ¼ 0.1 and U=a ¼ 0.01,
jMj ¼ 1 in logarithmic scale. Three different directions of the
magnetic moment are chosen: toward the string velocity,Mx ¼ 1,
orthogonally to the string and its velocity, My ¼ 1, and along the
string, Mz ¼ 1.
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Here NA is the Avogadro number, and we assumed
that e2=ð4πÞ ≃ 1=137.
Suppose a null string with energy ω ¼ ω0 moves

through 1 mole of ionized hydrogen atoms being under
normal conditions. For the mole volume 14 cm3 one can
assume a ≃ 1 cm and get from (4.2) the estimate

Ė ∼ 1
erg
s

¼ 1 × 10−7 W: ð4:3Þ

Corrections to (4.2) related to motion of particles with
velocity v is negligible since under normal conditions
v=c ∼ 10−6. Power (4.3) is extremely small. It is just 2
orders of magnitude larger than the power of radiation of a
star which goes through 1 square meter of the Earth’s
surface. Thus, radiation from charged sources generated by
null cosmic strings may have rather theoretical interests.
Consider now the radiation from magnetic-dipole

sources. Equations (3.70) and (3.75) yield the following
estimate for the luminosity at small U:

Ė ∼
1

ð2πÞ4
ω2M2

a4
: ð4:4Þ

To proceed we need a physical source with a large magnetic
moment M whose field can be approximated by magnetic-
dipole potential (3.5). As such sources we consider pulsars,
whose electromagnetic fields in a near zone [25] have form
(3.5). The near zone of a pulsar is defined by distances from
the source r < c=Ω, where Ω is the pulsar rotation
frequency. Say, if we take Ω ∼ 200 s−1, the near zone
is r < r0 ¼ 3.29 × 102 km.
A typical value of the surface magnetic field of a pulsar is

B0 ∼ 1012 G, which corresponds to a magnetic moment
M0 ¼ 4.17 × 1030 erg=G ¼ 3.7 × 1052 GeV−1, see [26].
One can write (4.4) roughly as

Ė ∼ 3.4 × 1021
�
ω

ω0

�
2
�
r0
a

�
4
�
B
B0

�
2

W; ð4:5Þ

where B is the surface magnetic field of the pulsar, and B is
assumed to be proportional to M. According to (4.5) a null

string passing a pulsar in the near zone at a distance
a ¼ 102 km, generates an EM pulse with the peak power

Ė ∼ 1021
�
ω

ω0

�
2

W: ð4:6Þ

For ω ¼ ω0 (4.6) is still extremely small, if we compare it
with the radiation power of the Sun, Ė⊙ ∼ 1026 W, or with
the rate of rotation energy loss of the pulsar, 1030 W. For a
typical pulsar a null string may cause considerable varia-
tions of its luminosity if ω ≃ 102ω0.
Luminosity (4.5) can be increased if the string moves

closer to the star or if the star has a larger magnetic moment.
For instance, for a magnetar with the surface magnetic field
B ∼ 1015 G the estimate is

Ė ∼ 1027
�
ω

ω0

�
2

W; ð4:7Þ

which is comparable to the luminosity of a star even
for ω ≃ ω0.
Let us emphasize that the above estimates are quite

rough. As has been shown in the previous sections the
intensity of the radiation is not homogeneous and is
maximal in the direction of the string velocity. In addition
to the intensity and luminosity of the radiation the EM
pulses generated by strings are specified by other physical
parameters such as spectrum, duration of the pulse, etc. The
systems we consider, the string and the point sources, are
characterized by an effective size of the interaction, which
is the impact parameter a. This parameter determines the
duration of the generated EM pulse and its typical fre-
quency. For instance, in the case of pulsars, the duration of
the pulse is a=c ≃ 3 × 10−4 s.
It should be noted that for tensile cosmic strings there is a

stronger limit on the energy, Gμ ≤ 10−12, which is imposed
by studying stochastic gravitational-wave background [27].
If a similar restriction is applicable to null strings, then the
EM pulses generated by these strings are hardly observable.

FIG. 5. Shows polar radiation plots (far-field patterns) in the planes θ ¼ π=3; π=6; π=8; π=9 for a MD source, for U=a ¼ 0.1, when
e2ω2=ðð2πÞ4a2Þ ¼ 1. The magnetic moment is directed along the string. Angles θ and φ are defined as for Fig. 3, φ changes clockwise.
Like in the case of the electric source the intensity of the flux grows in the direction of the string velocity θ ¼ 0. The flux is orthogonal to
the axis of the string.
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V. DISCUSSION

The aim of this work was to find an analytical description
of EM perturbations at future null infinity caused by null
cosmic strings which move near charged particles or point
to magnetic-dipole-like sources. By using the explicit
asymptotic form of the perturbations we proved that there
is a nonvanishing flux of the radiation whose intensity is
maximal in the direction of the velocity of the string. For
strings with energies ω ∼ 10−5 moving in the near zones of
pulsars the generated perturbations of EM fields of the
pulsars can cause considerable variations of the luminos-
ities. For magnetars these variations can be caused by
strings with even lower energies, ω < 10−7.
We studied a simplified model of a straight null string

with a constant energy per unit length. The string, however,
changes its form in the gravitational field of the source, and
its energy density is not homogenously distributed over the
length [4]. This effect should be taken into account in the
subsequent calculations.
Although our computations have been done for point

sources they can be easily extended to sources of a finite
size. Then numerical methods can be used, say, to describe
the interaction of strings with more realistic fields of
pulsars.
Another interesting development of our approach to

asymptotic form of perturbations is application to pertur-
bations of gravitational fields of massive sources generated
by null cosmic strings. By analogy with EM perturbations
one may expect that null strings create fluxes of gravita-
tional waves. This work is in progress.
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APPENDIX A: ASYMPTOTIC FOR FIELDS
OF ELECTRIC TYPE SOURCES

Here we present details of estimate (3.34) for A1 in
Sec. III C. Part A1 of the vector potential, see (3.33), is
determined by (3.29) when integration goes over a domain
where ðm⃗ · n⃗Þ þ 1 is small. To proceed with computations it
is convenient to set coordinates xA ¼ θ;φ,

nx ¼ cosθ; ny ¼ sinθ sinφ; nz ¼ sinθcosφ; ðA1Þ

where ni ¼ xi=r, and use parametrization (3.21) on the
sphere S2 in (3.29) with the help of the unit three-vector li.
It is convenient to change parametrization (3.20) as

lx ¼ cosθ00; ly ¼ sinθ00 sinφ00; lz¼ sinθ00 cosφ00 ðA2Þ

to correspond to (A1). In terms of l the condition

ðm⃗ · n⃗Þ ¼ −1; ðA3Þ

which determines A1, yields two solutions,

l�x ¼�
ffiffiffiffiffiffiffiffiffiffiffi
1−nx
2

r
; l�y ¼∓ nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1−nxÞ
p ; l�z ¼∓ nzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1−nxÞ
p ;

ðA4Þ

or θ00� ¼ ðπ ∓ θÞ=2, φ00þ ¼ φþ π, φ00
− ¼ φ. By using (A2)

and (A4) one gets the corresponding quantities for these
solutions:

gðΩþ;ωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − nxÞ
p ð−ny þ ωð1 − nxÞ þ iεþÞ;

gðΩ−;ωÞ ¼ −ðgðΩþ;ωÞÞ�; ðA5Þ

ε�ðΩ�Þ ¼ ε� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − nxÞ − n2y

q
: ðA6Þ

It then follows that vector βμðΩÞ defined by (3.30) and
(3.31) has the property

βμðl−Þ ¼ ðβμðlþÞÞ�; ðA7Þ

where βμðl�Þ≡ βμðΩ�Þ. Since we are estimating integral
(3.29) near θ00�;φ

00
�, it is convenient to introduce, near each

point, new coordinates ζ1 ¼ θ00 − θ00�, ζ2 ¼ φ00 − φ00
�. At

small ζA,

ðm⃗ · n⃗Þ þ 1 ≃ 2ζ21 þ
1

2
sin2 θ�ζ22: ðA8Þ

The integration region is determined by the scale Λ, see
(3.32). If jζAj < Λ, then

A1;μðxÞ≡ −C
Z
jζAj<Λ

dΩ00R
�

βμðΩ00Þ
xνmνðΩ00Þ þ iaεðΩ00Þ

�
≃ −

X
�
C
Z
jζAj<Λ

sin θ00�dζ1dζ2R
�

βμðl�Þ
U þ rð2ζ21 þ 1

2
sin2θζ22Þ þ iaε�

�

¼ −
πC
r

X
�

sin θ00�
sin θ

R
�
βμðl�Þ ln

�
U þ iaε� þ Λ2r

U þ iaε�

��
: ðA9Þ
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By taking into account (A7) and relation

sin θ00�
sin θ

¼ 1

sinðθ=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1 − nx

s
;

one gets

A1;μðxÞ ≃
NðΩÞ
r

R

�
β̄μ ln

�
U þ iaε̄þ Λ2r

U þ iaε̄

��
; ðA10Þ

β̄μ ¼ βμðlþÞ; ε̄¼ εþ; ðA11Þ

NðΩÞ ¼ −2πC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 − nx

s
: ðA12Þ

Equation (A10) reproduces (3.34). The approximation is
not applicable at nx ¼ 1.

APPENDIX B: ASYMPTOTIC FOR FIELDS
OF MAGNETIC TYPE SOURCES

Here we give some details of our computations in
Sec. III D. Consider the solution to the following problem:

□χðu;xÞ¼ 0; χð0;xÞ¼ δðyÞfðxÞ; ðB1Þ

which appears in the y component in Eq. (3.59). The
solution can be written as

χðu; v; y; zÞ ¼
Z

dy0dz0dv0Dðu; v − v0; y − y0; z − z0Þ

× δðy0Þfðv0; y0; z0Þ; ðB2Þ

where the D function,

DðxÞ ¼ 1

π

∂

∂v
δðx2Þ; x2 ¼ −uvþ y2 þ z2; ðB3Þ

is the solution to the problem:

□DðxÞ ¼ 0; Dðu ¼ 0;xÞ ¼ δð3ÞðxÞ; ðB4Þ

see details in [1]. This yields χ ¼ ∂vχ̄, where

χ̄ðu; v; y; zÞ ¼ C
Z

∞

−∞
dz0½ðuv − y2 − ðz − z0Þ2Þ2

þ 4u2ððz0Þ2 þ a2Þ�−1=2; ðB5Þ

and C ¼ −1=ð2π2Þ. In coordinates (3.6)

χ̄ðxÞ¼C
r
XðU;r;ΩÞ; XðU;r;ΩÞ¼

Z
∞

−∞

dx

f1=2ðxÞ ðB6Þ

fðxÞ¼ð−x2þ2xnzþc1ð2þc1ÞÞ2
þ4ðx2þc22Þðc1þð1−nxÞÞ2; ðB7Þ

where x ¼ z0=r, c1 ¼ U=r, c2 ¼ a=r. To estimate X at
large r we decompose X ¼ X1 þ X2,

X1ðU;r;ΩÞ¼
Z
jxj<L

dx

f1=2ðxÞ ; X2ðU;r;ΩÞ¼
Z
jxj≥L

dx

f1=2ðxÞ:

ðB8Þ

L is some parameter which is assumed to be L ≫ ci. In the
leading order X2 is a quasistatic function,

X2ðU;r;ΩÞ≃X2ðΩÞ¼
Z
jxj≥L

dx

xððx−2nzÞ2þ4ð1−nxÞ2Þ1=2
:

ðB9Þ

As for X1, the main contribution to the integral comes from
x near the point x⋆, where fðxÞ has a minimum. At large r

f0ðx⋆Þ ¼ 0; x⋆ ≃ −
nzc1
ε̄2

; ðB10Þ

fðx⋆Þ ≃ 4ð1 − nxÞ2
c1 þ ε̄2c2

ε̄2
; f00ðx⋆Þ ≃ 8ε̄2: ðB11Þ

To guarantee that f00ðx⋆Þ > 0 we assume that nx ≠ 1. Then
one has

X1ðU; r;ΩÞ ≃
Z
jxj<L

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx⋆Þ þ f00ðx⋆Þðx − x⋆Þ2=2

p
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f00ðx⋆Þ
p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L̄2 þ 1

p
þ L̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L̄2 þ 1
p

− L̄

�
;

L̄ ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f00ðx⋆Þ
2jfðx⋆Þj

s
: ðB12Þ

This yields

X1ðU; r;ΩÞ ≃ 1

4ε̄
ln

�
2Lr

ð1 − nxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ a2ε̄2

p
�
; ðB13Þ

χ̄ðxÞ ¼ 1

2π2r

�
1

4ε̄
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ a2ε̄2

p

2Lr

�
− XðΩÞ

�
; ðB14Þ

where XðΩÞ is some static part.
To find asymptotic (3.64) of A2ðxÞ we compute the

derivatives of χ̄

∂yχ̄¼nyð∂rχ̄−∂Uχ̄Þþ
1

r
nz

1−n2x
∂ϕχ̄þ

1

r

nxnyffiffiffiffiffiffiffiffiffiffiffiffi
1−n2x

p ∂θχ̄; ðB15Þ
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∂vχ̄ ¼ nx
2
∂rχ̄ þ

ð1 − nxÞ
2

∂Uχ̄ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2x

p
2r

∂θχ̄; ðB16Þ

where

∂rχ̄ðxÞ ¼
1

2π2r2

"
XðΩÞ − 1

4ε̄

 
ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ a2ε̄2

p

2Lr

!
þ 1

!#
;

ðB17Þ

∂bχ̄ðxÞ ¼
1

2π2r

"
−

1

4ε̄2
ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ a2ε̄2

p

2Lr

!
∂ε̄

∂b

−
a2

U2 þ a2ε̄2
∂ε̄

∂b
−
∂X
∂b

#
; ðB18Þ

∂U χ̄ðxÞ ¼
1

8π2rε̄
U

U2 þ a2ε̄2
; ðB19Þ

with b ¼ ϕ; θ. With the help of (B15)–(B19) we finally
obtain

A2;νðxÞ ¼ 2ωMzð2δyν∂v þ δuν∂yÞχ̄

≃
ωMz

π2r

ðδyνð1 − nxÞ − δuνnyÞ
4ε̄

U
U2 þ a2ε̄2

: ðB20Þ

The terms in the right hand side, which decay as r−2 ln r or
faster, are omitted.
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