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We sketch the construction of a quantum model of three-dimensional de Sitter space, based on the
covariant entropy principle and the observation that semiclassical physics suggests the possibility of a
consistent theory of a finite number of unstable massive particles with purely gravitational interactions. Our
model is holographic, finite, unitary, causal, plausibly exhibits fast scrambling, and qualitatively
reproduces features of semiclassical de Sitter physics. In an appendix we outline some calculations that
might lead to further tests of the model.
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I. INTRODUCTION

In previous work on de Sitter (dS) space by two of the
present authors [1] the underlying hypothesis has always
been that dS space is an infrared regulator of a scattering
theory of particles in Minkowski space. This point of view
is problematic in three space-time dimensions because the
work of [2] shows us that the conventional S-matrix does
not exist. Locally flat space-time cannot support a
total center-of-mass energy larger than the Planck mass,
and there are other peculiar constraints on would-be
Mandelstam invariants. Every different asymptotic boun-
dary condition for particles changes the asymptotics of
space-time.
In this paper we will study dS3, based on the covariant

entropy principle (CEP) [3–5]. The maximal area causal
diamond of dS3 is finite, so according to the CEP its
Hilbert space must be finite dimensional as well. The
Schwarzschild–Sitter geometry suggests another important
lesson about the theory; localized excitations in the bulk are
constrained states of holographic degrees of freedom on the
horizon, causing a reduction in the entropy [6–9]. Generic
states of the holographic degrees of freedom, with respect
to the density matrix of the diamond, carry energy (as
measured along the geodesic in the diamond) that scales
like 1=R as the diamond radius goes to infinity.
Bulk localized energy must satisfy ER≳ 1 and ER is
proportional to the number of constraints on the boundary

qubits.1 The fact that localized bulk excitations have low
entropy suggests that they are all unstable.
In the first part of this paper we examine the instability of

localized excitations from the bulk semiclassical point of
view. Given a fixed static patch, instability is visible already
in the classical limit, for any excitation whose center of
mass follows a geodesic other than the one that connects the
timelike tips of the diamond.2 These states all have lifetimes
roughly equal to the proper time it takes the geodesic to exit
the diamond. Recall that this is independent of the mass of
the particle. In the proper time along any trajectory
connecting the timelike tips of the diamond, the excitation
fades into the generic background equilibrium of the
horizon. Only a particle on the geodesic connecting the
tips of a given static patch is classically stable.
Quantum mechanics modifies this classical behavior in

three ways:
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1In the RMP → ∞ limit, the boundary states might seem to
become “zero-momentum massless particles”. This is probably
an inaccurate description. In a generic causal diamond, massless
particles with momentum of order the diamond radius would
generally have wave functions spread throughout the bulk. The
states that contribute the bulk of the entropy have wave functions
localized infinitely close to the boundary and give rise to a UV
divergence in the entropy.

2The theory of classical relativistic particles coupled to 3D
gravity in de Sitter (dS) space was exactly solved by Deser and
Jackiw [10], following their work with ’t Hooft on the analogous
problem in locally asymptotically flat space-time [2]. A com-
prehensive study of the solutions in flat and AdS spaces can be
found in the paper by Matschull [11]. The latter work makes it
abundantly clear that the gravitational field has no independent
degrees of freedom and merely modifies the structure of the
particle phase space.
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(i) The uncertainty principle limits the localization of
the object and its velocity fluctuations. The proba-
bility that it follows the static geodesic for an infinite
time is zero.

(ii) In d ≥ 4Gibbons-Hawking radiation will subject the
object to momentum kicks, which would cause it to
random walk toward the horizon. Once it gets
sufficiently far, the further time to exit the horizon
is aR, with a mass independent coefficient.

(iii) If the localized object is a black hole, it will decay by
Hawking radiation and the massless radiation will
escape to the horizon. d ¼ 3 pure gravity has no
particle excitations, so it is not clear that every model
must have Gibbons-Hawking radiation. Furthermore,
the static solutions of classical Einstein gravity in
d ¼ 3 with non-negative cosmological constant do
not have horizons apart from the cosmological one.

The first two sources of instability are minimal if the
mass is large, and if the mass is large enough in d ≥ 4 the
object is surely a black hole, or will become one eventually.
Since black holes can have masses of order Rd−3 there are
many long lived systems, gravitationally bound to the
origin, which will have lifetimes ≫ R. Furthermore, we
will argue below that for a large gravitationally bound
object with many semiclassical subsystems, the mathemati-
cal description of the system from the point of view of a
geodesic in dS space is quite irrelevant. Different trajecto-
ries of the center of mass of the system decohere and the
subsystems can use these to define a reference frame in
which to do quantum mechanics. By its definition, this
reference frame is stable until the entire object collapses
into a black hole and begins to emit Hawking radiation.
In d ¼ 3, the situation is quite different. The maximal

mass of a localized object in dS3 (or three-dimensional
Minkowski space for that matter) is of order the Planck
mass. Roughly speaking then, the wave function of a
particle starting out at rest at global time t ¼ 0 in dS3, is
spread over a distance of order at least 1 in Planck units.
Then the nature of the instability in three dimensions is
dominated by the first of the mechanisms above.
In Sec. II we explain and give a summary of previous

results. In Sec. III we examine the evolution of particle
wave functions in dS3. By examining the transition
amplitudes for single particle motion, we argue that a
localized wave function becomes uniformly spread over the
static patch coordinates in a time of order the dS Hubble
scale, R. This means that the probability distribution is
concentrated near the horizon in that time. We interpret this
as an instability of the quantum state corresponding to a
particle on the static geodesic to decay to a “typical”
thermal state of the vacuum ensemble.3 Particles localized

on geodesics other than the static trajectory connecting the
two tips of the static patch are, of course, classically
unstable and have lifetimes of order R as well. We exhibit
the geometrical mechanism by which the “deficit angle” of
such a moving particle disappears from measurements
made by a detector localized on the static geodesic.
In Sec. IV, we discuss a set of finite-dimensional

quantum mechanical models which have the qualitative
properties of the semiclassical dynamics outlined above.
The variables in these models are fermion fields ψðσ; θÞ on
the holographic circle θ times a near-horizon interval σ.
There are cutoffs on both the angular momentum in the θ
direction and the linear momentum on the interval σ. The
cutoffs are correlated in a way we will describe below.
States with a deficit angle are constrained by

ψðθn; σÞjsi ¼ 0; ð1Þ

if n is a multiple of an integerp. θn are a discrete set of angles
such that the fields ψðθn; σÞ are independent canonical
fermion fields. There are many choices of Hamiltonian that
make all such states decay in a time of orderR, and have other
desirable gravitational attributes, like fast scrambling
[12–14]. However, a natural mechanism for fast scrambling,
the “fuzziness” of higher-dimensional geometry, does not
work for the one-dimensional boundary of dS3, and we have
to insert explicit long range interactions into the boundary
Hamiltonian to achieve fast scrambling of quantum infor-
mation. The ideas ofCarlip [15] andSolodukhin [16] provide
a guide to finding the right description of these interactions.

II. SUMMARY OF PREVIOUS RESULTS

The basic principles on which this paper is based are the
assertion [3,17] that the Bekenstein-Hawking area law for
black holes holds for an arbitrary causal diamond in any
model of quantum gravity

hK⋄i ¼
A⋄
4GN

; ð2Þ

and that states localized on a geodesic in de Sitter space
have an entropy deficit

ΔS ¼ 2πRE: ð3Þ

Here R is the dS radius and E is the energy in static
coordinates. In four and higher dimensions, this formula is
only valid to the leading order when ER is small. The
strongest argument for the first assertion is Jacobson’s
demonstration [17] that the hydrodynamic equations of this
entropy law are the double null projections of Einstein’s
equations. It can also be demonstrated by a Euclidean path
integral argument [18] or by the generalization to arbitrary
diamonds [19] of the results of Carlip [15] and Solodukhin
[16]. The latter authors argued that the effective modular

3Typicality is meant in the sense of statistical mechanics and
the eigenvalue thermalization hypothesis. The time for the state to
become Haar random is much longer.
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Hamiltonian4 on the horizon of a black hole was the L0

generator of a (cutoff) (1þ 1)-dimensional conformal field
theory, with central charge proportional to the horizon area.
The conformal field theory (CFT) lives on an interval, the
stretched horizon, and its target space is related to the
geometry of the holographic screen of the diamond.5

The second assertion follows from the first and from the
formula for the Schwarzschild dS black hole metric. It gives
a derivation of the Gibbons-Hawking temperature of dS
space that depends only on the area law, rather than the
details of quantum field theory. It tells us that static energy
is a measure of the number of constrained qubits in a
localized state. The localized state density matrix is the
projection of e−L0 for empty dS space onto a lower-
dimensional subspace. This explains why dS space has a
fixed temperature.
In a number of papers, two of the authors (T. B. and W. F.)

have suggested that the proper variables for describing
the fluctuating geometry of the holographic screen of any
causal diamond were the expansion coefficients of a spinor
field in eigenspinors of the Dirac equation on the back-
ground geometry. The idea is that the background geometry
is a hydrodynamic variable. Connes [20] showed that
Riemannian geometry was entirely encoded in the Dirac
operator on theRiemannianmanifold. The coefficients of the
expansion of a solution of the fluctuating geometry’s Dirac
equation in eigenspinors of the background are a finite set of
variables ifwe impose aUVcutoff on theDirac eigenvalue. If
they are quantized as (cutoff) (1þ 1)-dimensional fermion
fields, following the prescription of Carlip and Solodukhin,
then we can correlate the UV cutoff on the transverse Dirac
eigenvalue with the central charge of the CFT, and thus with
the area of the holographic screen of the diamond. By
contrast, the UV cutoff on the (1þ 1)-dimensional Dirac
momentum is associated with the very smallest diamonds.
Our interpretation of this is that the Carlip-Solodukhin
analysis is semiclassical/hydrodynamic and breaks down
for very small systems.A theoretical lower bound on its use is
that the single fermion CFT must have enough states for
Cardy’s formula to provide a good approximation to the
spectrum. Probably of order 10–20 momentum eigenstates
suffices for that. In the real world, one would have to
determine the correct value of the (1þ 1)-dimensional cutoff
by experiment. In the imaginary world of (2þ 1)-dimen-
sional dS space wewould have to realize this space-time as a
subsystem of some rigorously defined asymptotically flat or
anti–de Sitter (AdS) system, perhaps along the lines of
[21,22], and hope that the larger system contains a suffi-
ciently precise copy of the dS3 subsystem to determine these
delicate UV details. As appears to be the case for linear

dilaton gravity in 1þ 1 dimensions, there might be many
such embeddings, and no unique answer to the question.
The authors of [12–14] have argued that the quantum

systems on stretched horizons are fast scramblers of
quantum information. T. B. and W. F. have argued that
the existing evidence for fast scrambling, for horizons of
dimension 2 or higher, is accounted for if the systems are
invariant under something like the group of volume
preserving diffeomorphisms of the horizon, or some fuzzy
deformation of it. dS3 has a horizon of dimension 1 and
length preserving diffeomorphisms preserve order. Thus any
finite version of this groupwill be aZN translation group and
the resulting system will not have fast scrambling unless it
has long-range interactions. In the text, we have instead
written randomcouplings between different points related by
the ZN symmetry. We imagine that different instances of
these random couplings might be realized from different
realizations of the model in AdS=CFT.

III. QUANTUM MECHANICS OF SINGLE
PARTICLES IN dS3

In quantum field theory, spin zero particles in dS3 are
described by the Klein-Gordon (KG) equation. We can
view this as single-particle Hamiltonian evolution for
particles with positive energy in some particular static
patch. Generic local interactions between particles force us
to give up the single particle picture, because a transition
amplitude in one frame can be viewed as a particle
production amplitude in another. This is not the case for
gravitational interactions in d ¼ 3. As shown by Matschull
[11], the effect of gravitation in three dimensions is merely
to modify the phase space of a fixed number of particles.
While this argument is valid also for negative cosmological
constant, no one has found a quantum theory dual to pure
AdS gravity coupled to a finite number of particles. Note
also that the static solutions of GR in three dimensions with
asymptotically AdS boundary conditions have finite area
horizons. The overwhelming evidence from the AdS=CFT
correspondence is that the entropy/area law is valid and that
those solutions correspond to complicated quantum sys-
tems with large Hilbert spaces. This is not true for dS3 or
Minkowski space.6 The static solutions have an entropy
deficit, just like higher dimensions, but no entropy of their
own. It is certainly impossible to put an infinite number of
particles into dS3 if each particle has any finite energy, and,
at the classical level, no pair of particles remains in causal
contact for more than a finite amount of proper time.
Our proposal, at the semiclassical level, is to study the

quantum mechanics of individual particles. This model

4The modular Hamiltonian is minus the logarithm of the
density matrix.

5The maximal area surface in a null foliation of the boundary
of the diamond.

6The entire concept of asymptotically flat space is problematic
in three dimensions. Classical “scattering” solutions exist for
point particles [2], but traditional Mandelstam invariants are
bounded and there is no obvious Hilbert space on which a
traditional S-matrix could be defined.
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does not explain the entropy of empty dS3 or the entropy
deficits of localized classical particles, but it does demon-
strate the quantum mechanical decay back to the classical
equilibrium state represented by empty dS3. We then
propose a quantum model with a finite-dimensional
Hilbert space that does explain the entropic properties of
solutions. The localized solutions are realized as con-
strained states of the underlying variables, and the decay
rates of those states back to equilibrium agree qualitatively
with the semiclassical results.

A. Classical particles in dS3

Although the physics of dS space can all be understood
in a single static patch, it is convenient for calculations to
work in the flat slicing metric,

ds2 ¼ −dt2 þ e2t=Rdy⃗2; ð4Þ

through coordinate transformations from the static patch
coordinates ðts; rsÞ to the flat slicing coordinates ðt; rÞ,

rs ¼ ret=R;

e−2ts=R ¼ e−2t=R − r2=R2; ð5Þ

where r2 ≡ y⃗2. The geodesic equations can be solved by
writing the conservation law resulting from spatial trans-
lation in these coordinates,

�
1 − e2t=R

dy⃗2

dt2

�
−1=2 dy⃗

dt
¼ v⃗0: ð6Þ

The solution is

y⃗ðtÞ ¼ y⃗0 −
v⃗0
v20

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v20

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v20e

−2t=R
q �

: ð7Þ

The classical geometry produced by a particle of massm
traveling on this geodesic is obtained from that of dS3 by
modding out by an SOð1; 3Þ transformation that leaves the
geodesic invariant. For geodesics with v⃗0 ¼ 0, this is just a
rotation around the point y⃗0, producing a deficit angle δ ¼
8πGNm [10]. Let us consider a particle at y⃗0, viewed from
the static patch centered at y⃗ ¼ 0. Take a causal diamond of
finite proper time centered on the y⃗ ¼ 0 geodesic with
future tip t2 and past tip t1. The particle enters the causal
diamond at flat slicing time

ti ¼ −R ln

�
e−

t1
R −

y0
R

�
; ð8Þ

and leaves it at

tf ¼ −R ln

�
e−

t2
R þ y0

R

�
: ð9Þ

Consider past and future oriented nests of diamonds, all
centered at the origin (Fig. 1). The entire effect of the
particle is encoded in the lengths of circles at fixed flat time
t. If a circle winds around the geodesic at y⃗0 its circum-
ference is smaller than it would have been in the absence of
the particle. Note that the flat slicing time is equal to the
proper time along both geodesics. If we look at future
oriented diamonds with future tip Tþ such that

eTþ=R
Z

Tþ

−∞
dte−t=R < ti; ð10Þ

or past oriented diamonds with past tip T− such that

eT−=R

Z
∞

T−

dte−t=R > tf; ð11Þ

then there are no circles in those diamonds that circum-
navigate the geodesic at y⃗0. In both cases, a detector in the
diamond can receive signals from detectors that circum-
navigate the particle trajectory, but cannot send signals
back. The interpretation of this for the early, future-pointing
nested diamonds is that the particle is part of the initial data
on the past boundary of a larger diamond in the nesting.
Since the particle is moving slower than light, the early
detectors can receive signals of its imminent arrival,7 but
cannot perform their own experiments to verify the short-
ened circles around the particle trajectory.
The question we want to answer is how this classical

physics fits into the proposal of [5] that all of the physics of
dS space is captured by a finite-dimensional system
describing a single static patch. A classical relativist is
apt to say that the static coordinate system is not good
because it does not cover the manifold. A hypothetical
quantum system defined on the full flat slices would
certainly argue that on flat slices there are circles at all
times, which exhibit a length deficit that is not redshifted.
The association of an entropy deficit with a length deficit
makes this a challenge for static patch holography. In the
classical picture, there is a subsystem dual to the causal
diamond in Fig. 1, in which the entropy deficits exist for the
entire period that the particle “remains in the static patch”.8

Unlike the length along spacelike circles, an entropy deficit

7This phrase uses the idea that there are things outside the
static patch. From the framework of static patch holography,
“imminent arrival” just means that the dynamics in the patch
respects causality, in the sense that some of the initial conditions
that are necessary to describe the full history of the diamond are
imposed on degrees of freedom that are not in the algebra
defining a smaller diamond in the nest.

8Here period is measured in terms of proper time along the
particle’s geodesic.
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cannot be redshifted away by going to another reference
frame. The quantum principle of relativity says that the
density matrix corresponding to the diamond of Fig. 1 must
have the same spectrum computed along the geodesic in the
static patch as it does when computed along the geodesic
along which the particle travels. In order for static patch
holography to work, the low entropy particle state must
decay back to the static patch equilibrium state.

B. Quantum particles in dS3

Now we consider the evolution of the support of scalar
particle wave functions in dS3. This provides a bulk
semiclassical picture for how the low-entropy particle state
decays back into the equilibrium state.
In flat polar coordinates the horizon is located at r ¼

Re−t=RwhereR is the dS radius, and r the coordinate distance
from the origin. The general massive scalar solutions are

ϕklðt; r; θÞ ¼ eilθe−t=RJlðkrÞðAlk JnðkRe−t=RÞ
þ Blk J−nðkRe−t=RÞÞ; ð12Þ

where n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2m2

p
≈ imR.

In the neighborhood of static time ts ¼ 0 and static
radius rs ¼ 0, the flat t, r coordinates are also close to the
origin. Therefore a lump, localized within a flat radius of
about 1=m of the origin at t ¼ 0, has most of its support in
flat radial wave numbers k < m. The radial part of the
solution above, JlðkrÞ, has its first zero at r ∼ 1=k > 1=m.
So the horizon reaches the first Bessel zero for every
relevant k at flat times t < tmax ¼ R logðmRÞ. At later flat
times, the solution inside the horizon is approximately
homogeneous but exponentially damped like e−t=R. (The
time dependent Bessel functions J�imRðkRe−t=RÞ just
oscillate with increasing t.)
Static time slices ts intersect flat slices t if and only if

ts > t, and they do so at static coordinate radius rXðt; tsÞ
given by

rX ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ðts−tÞ=R

p
: ð13Þ

For all smaller static radii rs < rX, the static time slice
samples the solution at later flat times, where the solution is
more exponentially suppressed. So for static times
ts > tmax þ ðfewÞ × R, the solution in static coordinates
is localized near rX, and rX is exponentially close to the
horizon.

FIG. 1. The Penrose diagram of de Sitter space with flat slicing coordinates contours. Yellow curves are constant-t surfaces and blue
curves are constant-y surfaces in flat coordinates. The static patch is highlighted in light blue. Green (red) lines are boundaries of future
(past) oriented nests of diamonds centered at the origin. The dashed curve is the trajectory of a massive particle at y⃗0 that enters and
leaves the causal diamond at time ti and tf, respectively.
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Note that there are two free mode coefficients Alk; Blk in
the solution above. One linear combination of them is
determined by the initial condition at time ts ¼ t ¼ 0, and
we have analyzed the generic behavior for solutions
localized within 1=m of the origin at that time. The other
linear combination is determined by the requirement that
the solution contains only positive frequencies with respect
to static time. Since the considerations of the previous
paragraph were independent of the choice of A and B for a
given y⃗ space initial condition, the positive frequency
solutions of the KG equation in static coordinates, corre-
sponding to the quantum behavior of a particle of mass m
localized on the static geodesic, will predict overwhelming
probability for the particle to be smeared over the horizon
in a static time of order R lnmR. Recognizing that R is the
natural timescale for interactions on the horizon, this is
consistent with the time for a fast scrambling system to
equilibrate an entropy deficit of order mR.
Now let us consider a particle localized on the geodesic

at y⃗0 with v⃗0 ¼ 0. The momentum space solutions are
exactly the same as the ones above. We just have to Fourier
transform them with respect to y⃗ − y⃗0. Let us consider
initial conditions with vanishing angular momentum
around y⃗0. The resulting wave function remains circularly
symmetric around y⃗0 for all time. We can repeat the
calculation above for a light particle initially localized
near the static geodesic at y⃗0. The position space wave
function is

ϕðy⃗Þ ¼ e−t=R
Z

d2keik⃗·ðy⃗−y⃗0Þ½AðkÞJnðkRe−t=RÞ

þ BðkÞJ−nðkRe−t=RÞ�: ð14Þ

If jy0j is large then the value of the initial wave function in
the static patch centered at the origin is exponentially small.
As we bring y⃗0 closer to the origin, it gets larger and is
concentrated in the angular direction of y⃗0. However, the
dominant effect we discussed for a particle sitting near the
origin remains the same. The static patch at the origin
shrinks exponentially in y coordinate size, but the wave
function converges to

ϕðy⃗Þ ¼ e−t=R
Z

d2keik⃗·ðy⃗−y⃗0Þ½AðkÞJnð0Þ þ BðkÞJ−nð0Þ�:

ð15Þ

y0 is now outside the static patch centered on the origin.
Inside that patch, the solution in flat coordinates is again
approximately homogeneous and exponentially damped in
time, and so the dominant support in static coordinates is
concentrated near the horizon, and the angular dependence
disappears. The component of this solution with angular
momentum l around the origin is proportional to

Jlðmjy0jÞJlðmjyjÞ. Since the horizon moves to exponen-
tially smaller values of y all components with nonzero l die
off exponentially. Again we see return to the equilibrium
state. For larger y0 this happens more rapidly because the
amplitude of the initial condition is small to begin with.
There is a subtle point in the analysis above. It is well

known that the space of solutions of the Klein-Gordon
equation is not a Hilbert space, but we have treated the KG
solutions as quantum wave functions with the standard
probability interpretation. This problem is actually resolved
in dS space, if we remain within a single static patch. The
positive frequency solutions of the equationdo form aHilbert
space in the static patch. Positive static patch frequencywave
functions are complicated linear combinations of the flat
coordinate solutions that we have discussed. It is therefore
important that our discussion did not depend on particular
choices of the functionsAðkÞ andBðkÞ but only their general
support in momentum space.
Finally, we have to address the question of why this same

discussion does not apply in higher-dimensional de Sitter
space. The answer has two parts. The first is that the Nariai
bound on the mass of localized objects in dS scales like
Rd−3 in d dimensions, so the wave functions of localized
objects can be much more localized and it takes longer for
them to dissipate. In addition, higher-dimensional gravity
produces gravitational bound states so that even light
objects like electrons can have wave functions that remain
localized in a static patch for much longer than the dS time
R, because they are bound to larger masses. In our own
Universe, if the initial conditions are such that a galaxy can
form, then the static patch in the rest frame of that galaxy
will have localized objects in it until quantum fluctuations
of the galaxy center of mass position predict a very high
probability for the galaxy wave function to be spread
uniformly over the horizon. For detectors bound to the
galaxy, the lifetime is even longer. It is not until the galaxy
collapses to form a black hole that these detectors “cease to
exist.” The parts of the galaxy positional wave function that
follow different timelike trajectories decohere from each
other because the galaxy has so many quantum states for
each position, and makes transitions between them on a
time scale much shorter than the time it takes the center of
mass to move. So the prediction of QM for a detector inside
the galaxy is that it will find itself carried along on some
timelike trajectory, after which observations of things
bound to the galaxy are more or less unaffected by the
fact that the galaxy is in dS space. Particles radiated by the
galaxy will disappear into the Gibbons-Hawking haze in a
time of order R, and it is only when that dissipation leads
the galaxy to gravitationally collapse that the detector is
affected by the dS background. Only cosmological obser-
vations of objects in the causal past of the galaxy, which are
fading into the haze, can detect the global geometry of
space-time. In three space time dimensions there are no
large masses and no complex bound systems that can
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exhibit this kind of interesting long term behavior. The
existence of horizons for the static solutions of GR with
non-negative cosmological constant. in dimension greater
than three is an indication that this kind of complexity
cannot be avoided in any model of quantum gravity.
Although the internal dynamics of black holes does not
provide us with many semiclassical observables, there are
things like local rates of Hawking decay that are correlated
with the center of mass position of the black hole and can
be argued to have a decoherent, if evanescent, semiclassical
existence.
The three-dimensional picture might be modified if we

added electromagnetic interactions to the model since
preliminary estimates suggest we could make a range of
complex atoms and molecules with masses less than the
Planck mass and sizes smaller than the dS radius. However,
such a model raises a number of issues. Among these is the
inevitability of particle production and how to make that
compatible with a bound on the total energy in the system.
In addition, the authors of [23] have suggested that in the
presence of massless particles the static solutions of dS3
gravity will develop genuine horizons and large entropy, so
that our discussion would have to be modified drastically.
We leave the exploration of models with other light fields to
future work.

IV. TOWARDS A QUANTUM MODEL OF dS3

The basic strategy of holographic space-time (HST)
models of quantum gravity is to describe the variables on
the holographic screen of a diamond as cutoff quantum fields
on the screen, with a cutoff that preserves the symmetries of
the diamond. The requirement that the diamond has finite
entropy means that the basic fields are fermions.9 The spin-
statistics connection and the observation of Connes [20] that
Riemannian geometry is encoded in the Dirac operator,
suggests that weview them as belonging to the spinor bundle
over the screen. Thework of Carlip [15] and Solodukhin [16]
suggests that they be viewed as variables in a (1þ 1)-
dimensional CFT, whose L0 generator is the modular
Hamiltonian of causal diamonds in dS3 [24,25].
Let us elaborate a bit on this last point. Consider a causal

diamond defined by a geodesic with proper time interval
½−T; T�. There is a coordinate system ðτ; xÞ on this diamond,
which we will call diamond universe (DU) coordinates,
where the metric takes the form

ds2 ¼ C2ðτ; xÞð−dτ2 þ dx2 þ sinh2 xdϕ2Þ;

C ¼ R sinhðR�=RÞ
coshðτÞ þ coshðxÞ coshðR�=RÞ

; ð16Þ

where τ∈ ð−∞;∞Þ is a time coordinate and x∈ ð0;∞Þ is a
radial coordinate. The relation between T and R� is

T ¼ πR
2

tanhðR�=RÞ: ð17Þ

There is a similar coordinate system for each of the
subdiamonds corresponding to the intervals ½−T; τ�. In each
of these systems, the lines of constant x are flow lines of a
vector fieldV0ðτÞ, which leaves the diamond invariant and is
a conformal Killing vector (CKV) of dS3. The generalization
of the conjecture of [15,16] made in [19] is that in models of
quantum gravity, the quantum operator implementing the
action of the CKVon the bifurcation surface of each of these
diamonds is the L0 generator of a (1þ 1)-dimensional CFT
with central charge proportional to the length of the bifurca-
tion surface. Connes’ results, which motivated the HST
formalism, suggest that this CFT be built from fermion
fields ψnðσ0; σÞ labeled by eigensections χnðyÞ of the one-
dimensional Dirac operator on the bifurcation surface,

γe−1ðyÞi∂yχn ¼ λnχn; ð18Þ

where eðyÞ is the einbein on the boundary and γ is one of the
Pauli matrices. y is the boundary coordinate and σ is a spatial
coordinate on an interval where the model is defined.
The restriction to finite entropy implies that we must

impose cutoffs on both the transverse Dirac operator and
the spectrum of L0. We will require that the (1þ 1)-
dimensional cutoff be independent of the size of the
diamond, so that the entropy scaling is determined by
the transverse cutoff. As we will see, the cutoffs are
correlated, but depend on interactions that we must add
to the free (1þ 1)-fermion Lagrangian in order to satisfy
some important properties of a sensible model of quantum
gravity. These properties have to do with the time evolution
operator. Time evolution in the DU coordinates of necessity
involves a time dependent evolution operator Uðt;−TÞ. We
can impose causality by insisting that at each discrete
Planck time step τ, Uðτ;−TÞ factorizes into an operator
acting only in the Hilbert space of the fermionic variables in
the diamond ½−T; τ� and one which commutes with all
those variables.
If we now consider two diamonds whose future tips are

both many Planck times from −T, but differ by one Planck
step along the geodesic we can define,

e−iLPHðτÞ ¼ Uðτ þ LP;−TÞU−1ðτ;−TÞ: ð19Þ

The geometric relation between the tangent vector we have
chosen to represent by L0 and the one that describes time

9Any finite-dimensional Hilbert space is a representation of a
one-(discrete)parameter family of superalgebras since the Gell-
Mann matrices are closed under both commutation and anti-
commutation. Moreover, even if the dimension of the Hilbert
space is not a power of 2, one can realize it as a constrained
subspace of the representation space of a finite number of
canonical fermions.
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evolution along the geodesic between the diamond tips
motivates the conjecture10 that HðτÞ ∝ L0ðτ þ LPÞ. Indeed
HðτÞ should be a Hermitian operator in the larger Hilbert
space. Furthermore, since it should entangle the extant
degrees of freedom with those that are being added, we
conclude that the CFT in question cannot be free fermions.
Note that any continuous deformation of the free fermion
CFT along a conformal manifold will leave the value of the
central charge unchanged, so the Carlip-Solodukhin cal-
culation will be preserved by such a deformation.
We can getmore insight intowhat kinds of interactions are

needed by trying to understand the dissipation of localized
information on the holographic screen.According to [12–14]
this should occur by a nonlocal process of “fast scrambling”.
For the one-dimensional metric e2ðxÞ we can always
introduce a new coordinate ϕ which measures length in
Planck units,

ϕðyÞ ¼ L−1
P

Z
y

0

eðy0Þdy0: ð20Þ

We will normalize the length of every transverse circle to
2πLP since the physical length is counted by the number of
transverse fermion fields ψn. So ϕ goes from 0 to 2π. The
variable ϕ is just the angle variable in DU coordinates on the
diamond. A useful intuition from the work of Carlip and
Solodukhin is to think of the spatial variable σ in the (1þ 1)-
dimensional CFT as a dimensionless interval in the DU
coordinate x, near the boundary x ¼ ∞. This is not strictly
necessary, as we really only use the spectral properties of the
Virasoro generator L0 of the CFT to define our model.
In terms of ϕ, the Dirac eigenfunctions are just propor-

tional to einϕ, and a cut-off keeps all modes between some
wave numbers�M. Our prescription says that we have one
ð1þ 1ÞD fermion field on a spatial interval for each
n∈ ½−M;M�. Using the discrete Fourier transform on
Z2Mþ1 we obtain linear combinations of these that represent
fields labelled by 2M þ 1 discrete angles ϕðmÞ. These
latticized fields are canonical free fermion fields. The free
Virasoro generators can bewritten as sums over either set of
variables.
Beyond the total entropy, which we will return to below,

another piece of physics we can try to realize in the model
is the entropy deficit associated with localized particles. Let
us try to find states of our system that could correspond to
particles of mass μ sitting at the origin. They should

have entropy deficit 2πμR. Candidate states are those
satisfying

ψθðmÞðσÞjs; μi ¼ 0; ð21Þ

for m ¼ 0modp, with p ¼ MS0=ðπμRÞ and S0 is the
entropy of a single-fermion field theory which we dis-
cussed above. These states will have the proper entropy
deficit. In the free fermion theory the constraints could be
removed (but would not be if we had chosen to impose
them on the Fourier transforms of the fields with respect to
σ) by time evolution, but information would not be
homogenized over the transverse dimension, as indicated
by classical field theory computations in the bulk. This is a
second indication that we need interactions.
A general class of interactions is suggested by the dual

constraints of conformal invariance and transverse fast
scrambling. From each of the free fields ψθðmÞðσÞ we
can construct a Uð1Þ current JαθðmÞðσÞ and the interaction

δL ¼ GmnJαθðmÞðσÞJβθðnÞðσÞηαβ; ð22Þ

defines a well-defined conformal manifold of perturbations
of the free fermion model for any symmetric positive
definite matrix Gmn. The eigenvalues of L0 of course
depend on the choice of this matrix. For our problem
we need a sequence of such choices, one for each
sufficiently large sub-diamond of the diamond defined
by ½−T; T�. At each step in time we keep all the old matrix
elements of Gmn and choose the new ones from a random
distribution consistent with the constraints of symmetry and
positivity. It is clear that once τ is large, the perturbation at
each time step will be small. As far as the modular
Hamiltonian is concerned, the main thing that will be
affected is the probability for the previously nonexistent
variables, and their correlations with those that existed in
the prior diamond. It is also clear that the dynamics has no
hint of locality in the transverse circle and so is likely to
exhibit fast scrambling.
By causality, we only need to talk about is time evolution

within a given causal diamond, but it is convenient to have a
unitary operator on the entire Hilbert space at each instant
of time. That operator should factor into a product of one
that operates only on the degrees of freedom present in the
diamond ½−T; τ� and a unitary on its tensor complement in
the full Hilbert space of the interval ½−T; T�. We can
implement this by choosing to make the coefficients Gmn
time dependent. That is, the Hamiltonian is the sum of free
fermion Hamiltonians for all of the fermion fields, with
current-current interactions added gradually as time goes
on and new degrees of freedom enter the expanding
diamond. Note that this means that once τ is large in
Planck units, the incremental change in the Hamiltonian in
each Planck time step is small.

10This conjecture echoes an obscure result in algebraic QFT
that T. B. learned from Nima Lashkari. Causal diamonds in QFT
do not have density matrices, but they do have positive modular
operators, which play a similar role. If we have two nested
diamonds with infinitesimally close tips then the modular flow
(the unitary transformation obtained by raising the modular
operator to a continuous imaginary power) indeed generates
Heisenberg evolution on the operator algebra in the wedge
between the two diamonds.
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The last remark implies that the natural time scale for any
decay process, in geodesic proper time, is of order R, if we
adjust the coefficient relating the dimensionless L0 to the
Hamiltonian appropriately. If, as we have claimed, the
system is a fast scrambler, then the time scale for erasing an
entropy deficit ΔS will be CR lnðΔSÞ. The coefficient C
will depend on the choice of the coefficients Gmn.

A. The cutoff procedure

The Cardy formula for the entropy of a CFT is given by

S ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6

�
L0 −

c
24

�s
: ð23Þ

Cardy and Solodukhin choose L0 by finding an appropriate
solution of the near horizon Liouville equation. Of course, in
a typical CFT there will not be any degeneracies and L0

certainly has a discrete spectrum. This formula represents the
density of states in a particular band of eigenstates. We can
calculate the fluctuations in L0 for large c by integrating

Z≡
Z

dL0eA
ffiffiffiffi
L0

p
−βL0 ; ð24Þ

by saddle point for large A and calculating

∂
2
βðlnZÞβ¼1 ¼ A

ffiffiffiffiffiffiffiffi
L0�

p
: ð25Þ

A is fixed by fitting to the Carlip-Solodukhin (CS) formula
for diamond entropy.
This indicates a prescription for how we are to choose the

two-dimensional cutoff in the fermion model. We first
choose the transverse cutoffM to give a value of the central
charge that scales like the diamond radius for all the causal
diamonds ½−T; τ�. Then we fix the overall normalization by
singling out a band of eigenstates of the CFTs that gives the
CS result and the fluctuation formula ðΔKÞ2 ¼ K on the
nose. (For more detailed discussion of the modular fluc-
tuations, see Refs. [19,26].) We emphasize that the CS
result is really the first term in an asymptotic expansion in
LP=L, where L is the size of the smallest causal diamond
for which we trust the CS argument. In the language of the
analogy with hydrodynamics, we are trying to bootstrap a
quantum system from knowledge of its hydrodynamic
equations. In condensed matter physics, the higher order
corrections to hydrodynamic equations are replete with
system dependent ambiguities, which also depend precisely
on how one defines the hydrodynamic variables in terms of
the microscopic degrees of freedom. The highly symmet-
rical structure of general relativity and quantum field theory
has enabled us to make quite detailed guesses about the
underlying quantum theory but one might imagine that one
would need confrontation with an actual experimental
system to get all of the microscopic details correct.

We want to emphasize that the role of the two-
dimensional cutoff is to delineate the boundary where the
hydrodynamic ansatz of Carlip and Solodukhin becomes an
acceptable approximation to the dynamics of a large causal
diamond in dS3. It is analogous to the choice of a block size
L in the derivation of hydrodynamics from the Schrodinger
equation for lattice quantum systems [27]. As emphasized
in [27] there is a lot of ambiguity involved in that choice.
One needs either a precise microscopic model or a
comparison with experiment to tie down the details more
accurately. At the moment, we have neither.
The details of the program we have outlined will of

course depend on our choice of GmnðτÞ. It is not clear
whether this is a fundamental ambiguity or not. We are far
from exhausting all of the constraints that a sensible
quantum theory of three-dimensional de Sitter space must
satisfy. On the other hand, it might be that one can obtain
many different consistent quantum models of dS3, depend-
ing on the form of “compact dimensions”. The latter
situation seems to hold for two-dimensional models of
quantum gravity with linear-dilaton asymptotics [28,29].
These arise as decoupling limits of linear-dilaton black
holes in four-dimensional supersymmetric compactifica-
tions of Type II string theory. There seem to be many
consistent nonperturbative models of linear dilaton black
holes [30,31], which are plausibly related to the wide
variety of consistent four-dimensional string models.

B. Constraints in two different dS static frames

Let us work in conformal coordinates. One geodesic at
y⃗ ¼ y⃗0, one at the origin. The proper times are synchron-
ized. The cosmological horizons are just at the Euclidean
distances R from each of these points. The proper time
corresponding to conformal time η is

τ ¼
Z

η

η0

ds
s − η0

; ð26Þ

where η0 is the place where we impose our initial condition.
At conformal time s a detector on the geodesic at some
point has a causal diamond that reaches out to sn̂. Note that
the range of s and η0 could go as far back as −∞. The
timelike geodesics that are static in conformal or flat
coordinates all begin within a single causal diamond as
shown in Fig. 1. Thus, constraints on one geodesic have to
appear as constraints on another, since constraints are by
definition acausal. They are imposed globally on the
Hilbert space of the holographic screen, and make sense
as an initial condition but cannot be imposed at an
intermediate time without violating causality.
The static geodesic at y⃗0 leaves the causal diamond

centered at the origin in a particular direction. In conformal
coordinates this happens because the diamond for η > η0
shrinks in the y⃗ coordinate as η0 is made larger, so that the
geodesic at y⃗0 is no longer causally connected to a late time
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detector on the geodesic at the origin. The associated
moving particle solution rapidly approaches the solution
for an empty static patch, healing up a conical defect
centered at y⃗0. We will model this behavior in the quantum
theory by imposing initial conditions on the field ψðθ; σÞ.
We will impose ψðθ̃n; σÞjSi ¼ 0 on the initial state of the
system. The angles θ̃n are determined as follows. At very
early times we consider the ZN symmetric distribution of
points θn on the circle of radius jη0j surrounding y⃗0. We
take η0 large and negative, but finite. Some of the θn are
inside the circle of radius jη0j surrounding the origin and
some are outside. We project each θn to the corresponding
θ̃n by drawing the line connecting θn to y⃗0. θ̃n is the point
where that line intersects the circle surrounding the origin
as shown in Fig. 2.
Note that these constraints are imposed on the full set of

microscopic degrees of freedom of the theory. The dynami-
cal evolution of the system does not couple these degrees of
freedom together immediately. At each proper Planck time
step, a finite set of angular momentum modes interact via
fast scrambling interactions of the maximally transversely
localized Uð1Þ currents that we can form from them. At
early times these currents do not have much overlap with
the highly localized fields at individual θn, when the de
Sitter radius is large in Planck units. The rest of the
individual angular momentum modes evolve as free fer-
mion fields, all obeying the same linear equation of motion.
Thus, their contribution to the constraint equation is
undisturbed by time evolution. As the proper time
approaches the dS Hubble time and beyond, all the modes
participate in the fast scrambling interaction, and the
constraints are removed. It is also clear that the further
y⃗0 is from the origin, the constrained state is more of a
distortion of the homogeneous dS equilibrium state. Since
the fast scrambling interactions immediately transfer

information between points that are separated by arbitrary
distances on the lattice, these will homogenize rapidly.
Much work remains to be done to find a more quantitative

match between lifetimes and entropy deficits for particles in
dS3 as defined by the boundary quantum system, when
compared to the semiclassical calculations based on the KG
equation. The general qualitative behavior of our explicit
quantum system clearlymirrors the semiclassical physics we
have explored. In the Appendixwe begin amore quantitative
exploration by computing the overlap diamonds for pairs of
intervals along different geodesics.

V. CONCLUSIONS

We have argued that the semiclassical physics of
particles propagating in dS3, is compatible with a quantum
theory based on the idea of static patch holography [5]. The
appropriate quantum framework is a Hilbert bundle over
the space of timelike trajectories in dS3 with a finite-
dimensional Hilbert space over each fiber. This is a more
refined version of the HST formalism introduced by two of
the authors. The dS group SOð1; 3Þ acts on this bundle,
with a typical transformation mapping one fiber into
another. Within each fiber only the SOð2Þ × R subgroup
leaving a particular geodesic invariant, acts. Dynamics
within each fiber is provided by time dependent
Hamiltonians adapted to either past or future oriented nests
of causal diamonds. The future oriented nest provides us
with a mathematical description of how the whole dS3
universe evolves, given initial conditions on the past
boundary of the static patch. The past oriented nest is
useful for understanding what a detector traveling along the
geodesic can probe after a given time.
The symmetry action guarantees that the dynamics along

each geodesic is identical. Similarly, time reversal relates
the Hamiltonians for the backward and forward oriented
nests of diamonds. In both cases, the complication lies in

FIG. 2. Mapping constraints on the boundary of causal diamond D1 centered at y⃗0 onto the boundary of causal diamond D0 centered
at 0⃗. Each state onD1 boundary outsideD0 is mapped to the intersection ofD0 boundary and a line connecting this state with y⃗0 (shown
as a dotted line in the diagram). For states on D1 boundary and inside D0, extend the dotted line so it intersects with the D0 boundary as
shown in the diagram, then the intersection gives the mapped state. The closer y⃗0 is to the origin 0⃗, the more spread out the mapped states
are, and the locations of these states tell us where y⃗0 is.
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mapping a particular initial state along one sequence of
nested proper time intervals on a particular geodesic to its
corresponding state in another nesting or another geodesic.
We have made a start on understanding this for the
constrained states corresponding to single particles travel-
ing on geodesics, whose relative velocity in flat coordinates
is zero.
Perhaps the most disturbing consequence of our picture is

the complete failure of quantum field theory in curved space-
time to give any sort of approximation to our picture.One can
view this as a drastic version of the Cohen-Kaplan-Nelson
bound [32–35] on thevalidity of quantum field theory (QFT).
Most states of QFT in dS3 are simply not realizable once the
classical backreaction of matter on geometry is taken into
account. This is dramatically different from the situation in
AdS3. Although the classical analysis of particles coupled to
3D gravity leads to similar conclusions for either sign of the
cosmological constant, the Bekenstein-Hawking principle
tells us that description ismissing a huge number of quantum
states compatible with asymptotically AdS3 geometry. BTZ
black holes have large entropy. In dS3 the CEP identifies
missing states on the cosmological horizonbut not in the bulk
interior. Thus, there seems to be a complete model of a small
finite number of particles, with restricted phase space,
interacting onlywith gravity.Note that this is a self consistent
picture. In 2þ 1 dimensions, gravitational interactions do
not lead to processes with particle-antiparticle production.
Asymptotically flat three-dimensional space, to the

extent such a concept exists in real models of quantum
gravity, would appear to be in the same class as dS3. The
argument that CFT correlators converge to S matrix
elements fails in three dimensions, because the S-matrix
does not exist, and any possible notion of scattering
amplitudes for finite numbers of particles contains bizarre
constraints on Mandelstam invariants. This is consistent
with the empirical fact that every model of AdS3=CFT with
an RAdS=lS → ∞ limit has two or more compact dimen-
sions whose radius (inverse mass of the lightest Kaluza-
Klein state) goes to infinity linearly with RAdS. Although it
is conceivable that a model in asymptotically locally flat
space could be defined by taking the N → ∞ limit of our
model of dS3, we make no such claim at this time.
The failure of quantum field theory in curved space time

to adequately approximate our model deserves further
study. A possible starting point is a model of charged
particles coupled to electromagnetism and gravity. Such a
model has local vertices, which lead to particle-antiparticle
production. If the particles are sufficiently light, then the
geometric back reaction on a single such process is
minimal. It is clear however that multiparticle states with
any finite energy per particle are forbidden by gravitational
constraints whenever the particle number is too high. Thus,
it would appear that neither the constructions of the present
paper, nor conventional field theory descriptions can model
this situation. It might lie in the class of low-energy field

theory models that do not arise as limits of models of
quantum gravity.
Another feature of our analysis that we found surprising

is that so far we do not have a time independent
Hamiltonian description of our static patch model in static
time. We have instead exploited a plausible connection
between modular flow and Planck step geodesic evolution
in the DU coordinates of [25]. In QFT, the Heisenberg
evolution of operators in a small wedge between closely
spaced nested diamonds can be related to modular flow, but
is also generated by the action of the global Hamiltonian
operator, restricted to the subalgebra of the diamond. One
would have hoped that something similar happened in dS
space, but so far we have not found the global description.
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APPENDIX: CAUSAL DIAMOND OVERLAPS

The entropy of the overlap of two causal diamonds is
computed in this section. A causal diamond is a region
accessible to a detector on an interval of a timelike tra-
jectory. The intersection between two diamonds in 2þ 1
dimensions has a boundary that ends, in general, in two
lines rather than two points. One looks at all timelike
geodesics connecting a point on the past line with a point
on the future line and chooses the one whose diamond has
the largest area. Figure 3 gives an example of an inter-
section of two diamonds.11 In 2þ 1 dimensions, the area
reduces to the circumference, thus to determine the entropy
wewant to find the overlap radius. Start with the flat-slicing
metric in de Sitter space Eq. (4), where R is de Sitter radius.
A general solution for timelike geodesics is given by
Eq. (7), and constant y⃗ ¼ y⃗0 is the trial solution when
v⃗0 ¼ 0. For null geodesics, vanishing space-time intervals
give the following general solution:

y⃗nullðtÞ ¼ u⃗þ v⃗Re−t=R; ðA1Þ

where u⃗ and unit vector v⃗ are parameters to be determined.
Note that in a causal diamond, horizontal time slices
correspond to constant conformal times η, which is related

11We emphasize that time coordinates t1; t2; t01; t
0
2 labeled in all

figures in this appendix are flat-time coordinates, and constant
flat time slices are curved in the conformal diagram Fig. 1. In the
conformal diagram, a causal diamond along a timelike geodesic
y⃗0 has a rectangular side view, and it is stretched to a square
diamond in Figs. 3–13 where the horizontal and vertical
directions are in flat-space and conformal time coordinates,
respectively.
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to the flat time t by dη=dt ¼ e−t=R. Constant-time flat slices
are yellow curves in Fig. 1.
Now consider a causal diamond along timelike geodesic

y⃗ ¼ 0. Let ðt1; t2Þ be a time interval along y⃗ ¼ 0, and the
past and future null boundaries of the causal diamond cross
y⃗ ¼ 0 at t1 and t2, respectively. Along with the intersection
of the past and future boundaries of the causal diamond, we
obtain three equations to determine parameters u⃗ and v⃗,

u⃗1 þ v⃗1Re−t1=R ¼ 0;

u⃗2 þ v⃗2Re−t2=R ¼ 0;

u⃗1 þ v⃗1Re−t0=R ¼ u⃗2 þ v⃗2Re−t0=R; ðA2Þ

where t0 is the flat time of the bifurcation surface. In terms of
conformal time η ¼ −Re−t=R, we have η0 ¼ ðη1 þ η2Þ=2.
Solving Eq. (A2) leaves us one parameter, which is the
direction of a free unit vector v⃗1. Express v⃗2; u⃗1; u⃗2 in terms
of unit vector v⃗1, we find the boundaries of the causal
diamond to be

y⃗1ðtÞ ¼ v⃗1Rðe−t=R − e−t1=RÞ;
y⃗2ðtÞ ¼ −v⃗1Rðe−t=R − e−t2=RÞ: ðA3Þ

Let e−t0=R ¼ ðe−t1=R þ e−t2=RÞ=2 to solve for the inter-
section y⃗int of the past and future null boundaries, and we
find the radius of the causal diamond to be

yint ¼
R
2
ðe−t1=R − e−t2=RÞ: ðA4Þ

Then the area of a causal diamond is given by the
circumference of the bifurcation surface, which is the
two-dimensional surface centered at y⃗ ¼ 0 with boundary
y⃗int. The area of the causal diamond is

A ¼ Ωyint ¼
1

2
ΩRðe−t1=R − e−t2=RÞ; ðA5Þ

where Ω ¼ 2π − δ with δ ¼ 8πGNm [10] being the deficit
angle due to the presence of a massive particle with massm.
Now let us consider two maximal causal diamonds with

dS radius Rwhose time runs from−∞ to∞, centered along
two timelike trajectories at y⃗ ¼ 0 and y⃗ ¼ y⃗0. Two time
intervals ðt1; t2Þ and ðt01; t02Þ along the two trajectories give
two smaller causal diamonds. When the two diamonds
overlap, there exists a maximal causal diamond within the
overlapping region and we are interested in determining the
entropy of this maximal overlap, the result depends on
y0; t1; t2; t01; t

0
2 and we will discuss by cases.

1. When y0 > 2R

The two maximal causal diamonds do not overlap, then
no matter how large ðt1; t2Þ and ðt01; t02Þ are, there is no
overlap. This case corresponds to when the causal diamond
centered at y⃗0 is completely unobservable viewed by an

FIG. 3. An example top view (left) of intersecting spatial slices of two diamonds (right). The maximal overlap has radius Roverlap. This
example corresponds to the case in Fig. 13, the particle at 0⃗ is enclosed in the maximal overlap, leading to a deficit angle δ.

FIG. 4. When y0 > 2R, there is no overlap between causal
diamonds ðt1; t2Þ and ðt01; t02Þ.
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observer along y⃗ ¼ 0. See Fig. 4 for a front view of
the case.

2. When R < y0 < 2R

This case corresponds to when the particle along y⃗0
trajectory is outside the observable Universe, but part of
its causal diamond overlaps with the causal diamond
centered at y⃗ ¼ 0. ðt1; t2Þ and ðt01; t02Þ need to satisfy
conditions to allow overlap (which we will show below),
then the entropy is given by 2πRoverlap since neither timelike
trajectory passes through the overlapping causal diamond,
thus the deficit angle is 0. The intersection of minor null
surfaces of small causal diamond with ðt1; t2Þ is given by
Eq. (A4), which is the radius of the red diamond in Fig. 5. As
shown in the Figure, any time interval with larger t1 or
smaller t2 than such ðt1; t2Þ in Fig. 5 gives no overlap, i.e.
overlap exists when

t1 < ta ¼−R ln
y0
R

and t2 > tb¼−R ln

�
2−

y0
R

�
: ðA6Þ

Considerwhen t1, t2 satisfy the above conditions, Fig. 6 gives
the critical case when there is no overlap, which depends on

ðt01; t02Þ. Similarly let y0int be the radius of minor causal
diamond with time ðt01; t02Þ, then

y0int ¼
R
2
ðe−t01=R − e−t

0
2
=RÞ: ðA7Þ

Solve yint þ y0int ¼ y0 for conditions on t01; t
0
2 to allow

overlap, where conformal time η01 þ η02 ¼ η1 þ η2. We find
that overlap exists only if

t01 < −R ln

�
e−t2=R þ y0

R

�
;

and t02 > −R ln

�
e−t1=R −

y0
R

�
: ðA8Þ

Now consider when all conditions are met, i.e., when
Eqs. (A6) and (A8) are satisfied. Then overlap exists, as
shown in Fig. 7, and Roverlap is a function of y0; t1; t2; t01; t

0
2

which is given by

Roverlap ¼
1

2
½yint þ y0intððη1 þ η2Þ=2Þ − y0�: ðA9Þ

Here y0intððη1 þ η2Þ=2Þ is the radius of the ðt01; t02Þ causal
diamond evaluated at flat time t whose conformal time is
ðη1 þ η2Þ=2,

FIG. 5. When R < y0 < 2R and causal diamonds centered at y⃗0
and ðta; tbÞ meet.

FIG. 6. When R < y0 < 2R and causal diamonds ðt1; t2Þ and
ðt01; t02Þ meet.

FIG. 7. When R < y0 < 2R and causal diamonds ðt1; t2Þ and
ðt01; t02Þ overlap.

FIG. 8. When y0 < R, there is no overlap if t1 > tb or t2 < ta.
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y0intððη1 þ η2Þ=2Þ ¼
(

R
2
ðe−t1=R þ e−t2=R − 2e−t

0
2
=RÞ if η01 þ η02 ≥ η1 þ η2:

R
2
ð2e−t01=R − e−t1=R − e−t2=RÞ if η01 þ η02 < η1 þ η2;

ðA10Þ

Note that when η1 þ η2 ¼ η01 þ η02, the radius y0intððη1 þ η2Þ=2Þ ¼ y0int.

3. When y0 < R

There are 3 cases:
(1) when neither trajectory is enclosed by the overlap,

the deficit angle is zero;
(2) when overlapping causal diamond encloses one

trajectory, one particle contributes to the deficit
angle, either δ or δ0 depending on which particle
is enclosed;

(3) when the overlap encloses both trajectories, both
particles contribute, i.e., the deficit angle is δþ δ0.

Determine range for t1, t2 where η1 þ η2 ¼ −R by
symmetry about η ¼ −R as shown in Fig. 8, we find that
overlap exists when

t1 < tb ¼−R ln
y0
R

and t2> ta ¼−R ln

�
2−

y0
R

�
: ðA11Þ

Now consider conditions on t01; t
0
2 to allow overlap.

4. When yint ≤ y0
The conditions on t01; t

0
2 to allow overlap is determined by

solving yint þ y0int ¼ y0 with η1 þ η2 ¼ η01 þ η02 just like in
case 2, and we get the same result, that overlap exists only if
ðt01; t02Þ satisfy Eq. (A8).

a. When y0int ≤ y0
See Fig. 9, then results from case 2 hold, that the entropy

is given by 2πRoverlap.

b. When y0int > y0
See Fig. 10, here y0int < R holds automatically because

t01 > −∞ and t02 < ∞, whether or not there is a deficit angle
depends on the following:
(a) If η1 þ η2 ¼ η01 þ η02, the entropy of overlapping

causal diamond is ð2π − δÞRoverlap where δ is the
deficit angle due to particle at y ¼ 0.

(b) If η1 þ η2 ≠ η01 þ η02 and y0intððη1 þ η2Þ=2Þ ≤ y0, the
entropy is 2πRoverlap.

(c) If η1 þ η2 ≠ η01 þ η02 and y0intððη1 þ η2Þ=2Þ > y0, the
entropy is ð2π − δÞRoverlap where δ is the deficit angle
due to particle at y ¼ 0.

5. When yint > y0
See Fig. 11 (yint < R holds because t1 > −∞ and

t2 < ∞), the conditions on t01; t
0
2 are determined by solving

FIG. 9. When y0 < R and neither trajectory is enclosed in the
overlap.

FIG. 10. Whether the maximal overlap encloses the trajectory is
conditional.

FIG. 11. When yint > y0, there is no overlap when t01 > t0b or
t02 < t0a.
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y0int ¼ yint − y0 with η1 þ η2 ¼ η01 þ η02. We find the con-
ditions for overlap to exist is

t20 > t0a ¼ −R ln

�
e−t1=R −

y0
R

�
;

and t01 < t0b ¼ −R ln

�
e−t2=R þ y0

R

�
: ðA12Þ

a. When y0int ≤ y0
See Fig. 12. By symmetry of the geometry, the results, in

this case, are exactly the same as in case when y0int > y0,
except that the deficit angle is δ0 instead of δ.

b. When y0int > y0
See Fig. 13. Whether there are one or two deficit angles

depends on the situation. Here yintððη01 þ η02Þ=2Þ is the
radius of the ðt1; t2Þ causal diamond evaluated at time
ðη01 þ η02Þ=2, similar to the definition of y0intððη1 þ η2Þ=2Þ.
(a) If η1 þ η2 ¼ η01 þ η02, the entropy of overlapping

causal diamond is ð2π − δ − δ0ÞRoverlap.
(b) If η1 þ η2 ≠ η01 þ η02 and maxfy0intððη1 þ η2Þ=2Þ;

yintððη01 þ η02Þ=2Þg ≤ y0, the entropy is 2πRoverlap.
(c) If η1 þ η2 ≠ η01 þ η02, maxfy0intððη1þη2Þ=2Þ;yintððη01þ

η02Þ=2Þg>y0 and minfy0intððη1 þ η2Þ=2Þ; yintððη01þ
η02Þ=2Þg ≤ y0, the entropy is ð2π − fδ; δ0gminÞRoverlap

where the deficit angle given by

fδ; δ0gmin ¼
�
δ if minfy0intððη1 þ η2Þ=2Þ; yintððη01 þ η02Þ=2Þg ¼ yintððη01 þ η02Þ=2Þ;
δ0 if minfy0intððη1 þ η2Þ=2Þ; yintððη01 þ η02Þ=2Þg ¼ y0intððη1 þ η2Þ=2Þ:

ðA13Þ

(d) If η1 þ η2 ≠ η01 þ η02 and minfy0intððη1 þ η2Þ=2Þ;
yintððη01 þ η02Þ=2Þg > y0, the entropy is ð2π − δ − δ0Þ×
Roverlap.

To conclude, the radius of the overlapping causal
diamond is always given by Eq. (A9) which is a function

of y0; t1; t2; t01; t
0
2. The deficit angle Δ takes value of

0; δ; δ0; δþ δ0, which value it takes depends on the relation
among y0; t1; t2; t01; t

0
2. The entropy is the area of the

bifurcation surface of the overlapping diamond which
is ð2π − ΔÞRoverlap.
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