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We present a Lagrangian approach to counting degrees of freedom in first-order field theories. The
emphasis is on the systematic attainment of a complete set of constraints. In particular, we provide the first
comprehensive procedure to ensure the functional independence of all constraints and discuss in detail the
possible closures of the constraint algorithm. We argue degrees of freedom can but need not correspond to
physical modes. The appendix comprises fully worked out, physically relevant examples of varying
complexity.
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I. INTRODUCTION

In most Lagrangian field theories, there exists a mis-
match between the number of a priori independent field
variables and the number of degrees of freedom NDoF being
propagated. The determination of NDoF is of crucial
importance, as it directly affects the physics. More often
than not, this calls for nontrivial analyses.
Within the realm of modified gravity theories, the

counting of NDoF has been the subject of vivid interest
in recent years. Indeed, there exists a plethora of studies in
this regard around the Dvali-Gabadadze-Porrati (DGP)
model [1], Galileons [2], the de Rham-Gabadadze-Tolley
(dRGT) massive gravity [3], bimetric gravity [4,5], beyond
Horndeski theories [6,7], generalized Proca [8,9], and
degenerate-higher-order-scalar-tensor (DHOST) theories
[10], to mention but a few popular settings. The recently
proposed fðQÞ gravity [11] provides an example wherein
settlement of NDoF remains elusive; see Ref. [12] and
references therein.

All approaches to the degree of freedom count developed
thus far revolve around constraint algorithms, whose
origin dates back to the work of Dirac first and Bergmann
shortly afterwards. These authors considered a coordinate-
dependent approach for autonomous systems within the
Hamiltonian formalism. A nice review of the initial proposal
can be found in [13]. It was only sensibly later that the
geometrization of the procedurewas carried out, yielding the
celebrated presymplectic constraint algorithm (PCA) [14].
A different yet equivalent geometric algorithm was put
forward in [15].
The PCA was adapted into the Lagrangian formalism

stepwise [16–18]. The relation between constraints emerg-
ing in the Lagrangian and Hamiltonian algorithms was
studied in a coordinate-dependent manner in [19]. The said
relation is based on the so-called (temporal) evolution
operator, whose geometric definition and properties were
clarified in [20].
As a remark, we note that even more general geometric

constraint algorithms exist. Prominent examples include an
algorithm for nonautonomous systems in the Lagrangian
formalism [21] and algorithms for dynamical systems
described implicitly via differential equations [22–24].
Unfortunately, there does not seem to exist a complete
review of constraint algorithms and relations between them.
In spite of the vast and sophisticated bodywork on

geometric constraint algorithms, such approaches are
intrinsically covariant and thus demanding for application
in physical theories, where time plays a distinct role. The
need to construct multiple auxiliary objects prior to
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implementation adds to the challenge. This is especially true
for elaborate settings, including modified gravity proposals.
The said and kindred hindrances presumably explain
(at least in part) the extensive use of the Dirac-Bergmann
algorithm, often supplemented by the Arnowitt-Deser-
Misner (ADM) foliation [25], by the gravitational physics
community.
In synergy with such fruitful background, few but

noteworthy Lagrangian algorithms have been put forward,
either providing or developed as a coordinate-dependent
prescription [26–29]. Invariably, they aim to facilitate
implementation in exigent theories and abridge the obten-
tion of physically relevant quantities, such as the number of
degrees of freedom NDoF. The present work delves into this
line of research.

A. Organization

In the main section II, we consider first-order Lagrangian
field theories and present a coordinate-dependent constraint
algorithm for them. Supplemented with information on
local (gauge-like) symmetries, the algorithm yields the
significant number NDoF in the theory. Most remarkably,
a thorough procedure for the verification of functional
independence among constraints is given in sections II B
and II C. This essential feature had only received modest
attention thus far. Distinct closures of the algorithm are
expounded in section II D. For clarity, appendix consists of
minute implementations of the method in diverse physical
theories. In section III, we reflect on the relation between
NDoF and physics. We draw our conclusions in the final
section IV.

B. Conventions

We work on a (d ≥ 2)-dimensional Minkowski mani-
fold M. Spacetime indices are denoted by the Greek
letters ðμ; ν;…Þ and raised/lowered with the metric ημν ¼
diagð−1; 1; 1;…; 1Þ and its inverse ημν. Spacetime coor-
dinates are indicated by xμ ¼ ðx0; x1;…; xd−1Þ≡ ðx0; xiÞ,
with Latin indices ði; j;…Þ labeling spacelike directions.
Dot stands for derivation with respect to time x0. We
employ the shorthand ð∂μ; ∂iÞ for derivation with respect to
ðxμ; xiÞ, respectively. Summation over repeated indices
applies throughout.

II. METHOD

Let QA ¼ QAðxμÞ be a finite set of real field variables.
A ¼ 1; 2;…; N is a collective index, running over all
a priori independent components of possibly multiple
fields of different types. Consider a first-order classical
field theory, defined by the action

S ¼
Z
M

ddxL; L ¼ LðQA; ∂μQAÞ: ð2:1Þ

Notice we do not consider Lagrangians with explicit
spacetime dependence. The action (2.1) may but need
not be invariant under local field transformations of the
form

QA→QAþδθQA;

δθQA¼
XP
p¼0

ð−1Þpð∂μ1∂μ2…∂μpθ
MÞðRM

AÞμ1μ2…μp ; ð2:2Þ

with P∈N0. Here, θM denotes arbitrary functions of
spacetime labeled by a collective index M, while RM

A

refers to fixed functions of ðQA; ∂μQAÞ. All ðθM;RM
AÞ are

taken to be smooth.
Gauge, Lorentz, and diffeomorphism transformations

comprise the physically most relevant examples of (2.2).
Discrete, global, and conformal (including Weyl) sym-
metries of the action do not affect the degree of freedom
count and hence are not discussed. Typically, Lagrangians
are postulated on the basis of a specific field content QA

entertaining certain symmetries, if any. Accordingly and
when pertinent, we assume a priori knowledge of (2.2).
Given a Lagrangian whose symmetries of the relevant
form (2.2) are unknown a priori, there exist systematic
procedures to their disclosure [27,30,31]. See also the
earlier studies [32,33].
The number of degrees of freedom propagated in the

theory can be calculated as [26,27]

NDoF ¼ N −
1

2
ðgþ eþ lÞ; ð2:3Þ

with l; g; e∈N0. g is the number of distinct θM functions in
(2.2), while e ≥ g is the number of distinct θM functions plus
their successive time derivatives ðθ̇M; θ̈M;…Þ in (2.2). The
focus henceforth is on the number l of functionally inde-
pendent Lagrangian constraints, iteratively determined as

l ¼ l1 þ l2 þ…; ð2:4Þ

where l1 ≥ l2 ≥ … count primary, secondary, etc. function-
ally independent Lagrangian constraints.
We stress that (2.3) counts degrees of freedom exclu-

sively in terms of Lagrangian parameters. In particular, it
does not require the classification of constraints into first
and second class. Nonetheless, such information is not lost,
as (2.3) follows from the map between Hamiltonian and
Lagragian parameters [26,34,35]

N1 ¼ e; N2 ¼ lþ g − e; ð2:5Þ

where ðN1; N2Þ denote the number of first and second class
constraints in Dirac’s canonical formalism, respectively.
Accordingly, (2.3) applies to both point particle systems
and classical field theories, with the latter counting
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degrees of freedom per point in spacetime. An intrinsically
Lagrangian count of degrees of freedom is an important
result that was obtained geometrically in [27]—see
Eqs. (2), (3), and (16) therein. We remark that (2.3) was
derived for first-order theories but has also been employed
in higher-order settings [36,37].

A. Initialization

Consider the (primary) equations of motion of the theory,
in the form

EA ≔ ∂μ

�
∂L

∂ð∂μQAÞ
�
−

∂L
∂QA ¼ WABQ̈B þ UA ¼ 0: ð2:6Þ

The (primary) Hessian

WAB ¼ ∂Ȧ∂ḂL ð2:7Þ

captures the linear dependence on the generalized accel-
erations Q̈A, while

UA ¼ ð∂Ȧ∂iBLþ ∂Ḃ∂
i
ALÞ∂iQ̇B

þ ð∂iA∂jBLÞ∂i∂jQB þ ð∂μA∂BLÞ∂μQB − ∂AL: ð2:8Þ

In the above, we have introduced the shorthand

∂Ȧ¼
∂

∂Q̇A ; ∂
i
A¼

∂

∂ð∂iQAÞ ; ∂
μ
A¼

∂

∂ð∂μQAÞ ; ∂A¼
∂

∂QA :

ð2:9Þ

We further rewrite the (primary) equations of motion as

Eð1Þ ≔ Wð1ÞQ̈þ Uð1Þ ¼ 0; ð2:10Þ

where ðEð1Þ; Q̈;Uð1ÞÞ are N-dimensional column vectors
and Wð1Þ is an N × N square matrix.

B. First iteration

The (primary) equations of motion (2.10) may but need
not encode second order differential equations (SODEs) in
time for all QA’s. The number of functionally independent
such SODEs is given by the (row) rank of the (primary)
Hessian Wð1Þ. The theory may have up to ðN − rankWð1ÞÞ
primary Lagrangian constraints.

1. Step I. Rank of the Hessian

In full generality, the determination of the (row) rank
of the (primary) Hessian Wð1Þ is a challenging task. A
conceptually neat and algebraically convenient manner to
do so is as follows. Assume Wð1Þ admits left null vectors

Vð1Þ ·Wð1Þ ¼ 0: ð2:11Þ

If no nontrivial solution to (2.11) exists, then the (row)
rank of the (primary) Hessian is N and the theory is said to
be regular. In this case, the theory possesses no (primary)
Lagrangian constraints l ¼ l1 ¼ 0. The constraint deter-
mining algorithm thus terminates.
Else, let Vð1Þ itself denote a maximal set of M1 ∈ ½1; NÞ

linearly independent solutions to (2.11), normalized as per
convenience. In this case, the (row) rank of the (primary)
Hessian is N −M1, the theory is said to be singular and up
toM1 primary Lagrangian constraints may exist, which we
proceed to unveil.

2. Step II. Lagrangian constraints

Consider the left contraction of the M1 null vectors Vð1Þ
with the (primary) equations of motion (2.10)

ϕð1Þ ≔ Vð1Þ · Eð1Þ ¼ Vð1Þ · Uð1Þ ¼ 0: ð2:12Þ

By definition, ϕð1Þ is a set of M1 relations that do not
depend on the generalized accelerations Q̈A. Any maximal
(sub)set of functionally independent relations among (2.12)
can be regarded as the primary Lagrangian constraints in
the theory. Hence, l1 ∈ ½0;M1�.
It may happen that all relations in (2.12) identically

vanish. If so, there exist no (primary) Lagrangian constraints
l ¼ l1 ¼ 0 and the constraint algorithm thus terminates.
In the absence of such trivialization, the distillation

of a maximal (sub)set of functionally independent relations
from (2.12) is generally demanding. A systematic way
around the hurdle is similar to the determination of the
(row) rank of the (primary) Hessian before. Assume the set
of relations in (2.12), written as anM1-dimensional column
vector ϕð1Þ, admits solutions to

Γð1Þ · ϕð1Þ ¼ 0: ð2:13Þ

A generic ansatz for such a vector is

Γð1Þ ¼ ðΓ1;Γ2;…;ΓM1Þ; ΓI ¼ΓI
0þðΓI

1Þi∂iþðΓI
2Þij∂i∂j:

ð2:14Þ

Notice that every component of Γð1Þ includes spatial
derivative operators up to second order. In this manner,
both algebraic and spatial derivative dependences among
the relations in (2.12) can be identified.
If no nontrivial solution to (2.13) exists, then all relations

in (2.12) are functionally independent, implying l1 ¼ M1.
Moreover, the relations (2.12) themselves can be inter-
preted as the primary Lagrangian constraints in the theory.
Else, let Γð1Þ itself denote a maximal set of m1 ∈ ½1;M1Þ

linearly independent solutions to (2.13), normalized as per
convenience. In this case, there exist l1 ¼ M1 −m1 primary
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Lagrangian constraints in the theory, which can be para-
metrized as

ϕð1Þ
� ≔ ðΓð1Þ

0 Þ⊥ · ϕð1Þ ¼ 0; ð2:15Þ

where ðΓð1Þ
0 Þ⊥ stands for a maximal set of linearly inde-

pendent row vectors orthogonal to

Γð1Þ
0 ¼ ðΓ1

0;Γ2
0;…;ΓM1

0 Þ ⊆ Γð1Þ; ð2:16Þ
normalized as per convenience.1

To sum up, for l1 ≠ 0, let

Φð1Þ ¼
(
ϕð1Þ in ð2.12Þ if l1 ¼ M1;

ϕð1Þ
� in ð2.15Þ if l1 ¼ M1 −m1

ð2:17Þ

parametrize the primary Lagrangian constraints in the theory.
For later convenience, let Φð1Þ denote those same primary
Lagrangian constraints, written as an l1-dimensional column
vector.

3. Step III. Stability of the Lagrangian constraints

Let R ¼ 1; 2;…; l1 label the primary Lagrangian con-
straints (2.17). Self-consistency of the theory under time
evolution implies

ER ≡ Φ̇ð1Þ
R ≔ WRAQ̈A þUR ¼ 0 ð2:18Þ

must hold true, where

WRA ¼ ∂ȦΦ
ð1Þ
R þ ð∂i

Ȧ
Φð1Þ

R Þ∂i;
UR ¼ ð∂ijAΦð1Þ

R Þ∂i∂jQ̇A þ ð∂iAΦð1Þ
R Þ∂iQ̇A þ ð∂AΦð1Þ

R ÞQ̇A:

ð2:19Þ

It is convenient to rewrite the above as

Eð2Þ ≡ Φ̇ð1Þ ≔ Wð2ÞQ̈þ Uð2Þ ¼ 0; ð2:20Þ

where ðEð2Þ;Uð2ÞÞ are l1-dimensional column vectors and
Wð2Þ is an l1 × N rectangular matrix.
The l1 conditions (2.18), viewed as the secondary

equations of motion for the system (2.20), may give rise
to up to l1 secondary Lagrangian constraints, which are to
be unveiled in a second iteration of the constraint algo-
rithm. Indeed, a conceptually simple repetition of the just
described procedure yields the secondary Lagrangian con-
straints in the theory, if any. The only formal subtlety
amounts to ensuring that only functionally independent
secondary Lagrangian constraints are considered in the
degree of freedom count (2.3). To this aim, let

Eð2Þ↓ ≔ Wð2Þ↓Q̈þ Uð2Þ↓ ¼ 0 ð2:21Þ

encompass the primary (2.10) and secondary (2.20) equa-
tions of motion, in the form

Eð2Þ↓¼
�
Eð1Þ

Eð2Þ

�
; Wð2Þ↓¼

�
Wð1Þ

Wð2Þ

�
; Uð2Þ↓¼

�
Uð1Þ

Uð2Þ

�
:

ð2:22Þ

Here, Eð2Þ↓ and Uð2Þ↓ are ðN þ l1Þ-dimensional column
vectors, whileWð2Þ↓ is an ðN þ l1Þ × N rectangular matrix.
The second iteration in the constraint algorithm takes Eð2Þ↓

as a starting point, as opposed to merely Eð2Þ.

C. Generic iteration n ≥ 2

For m < n, let ΦðmÞ, denote the m-stage Lagrangian
constraints, written as an lm-dimensional column vector.
Then, let

Φðn−1Þ↓ ≔

0
BBBBB@

Φð1Þ

Φð2Þ

..

.

Φðn−1Þ

1
CCCCCA ð2:23Þ

denote the ordered collection of all Lagrangian constraints
unveiled thus far. We stress that Φðn−1Þ↓ is an ðNþ − NÞ-
dimensional column vector whose components have
already been proven functionally independent, where

Nþ ¼ N þ
Xn−1
p¼1

lp: ð2:24Þ

On the other hand, let

EðnÞ ≡ Φ̇ðn−1Þ ≔ WðnÞ · Q̈þ UðnÞ ¼ 0 ð2:25Þ

denote the n-stage equations of motion, written as an ðln−1Þ-
dimensional column vector. Notice that the n-stage Hessian
WðnÞ is an ðln−1 × NÞ rectangular matrix. Further, let

EðnÞ↓ ≔ WðnÞ↓ · Q̈þ UðnÞ↓ ¼ 0 ð2:26Þ

denote the ordered collection of all equations ofmotion up to
and including the n-stage, in the form

EðnÞ↓¼

0
BBBBB@
Eð1Þ

Eð2Þ

..

.

EðnÞ

1
CCCCCA; WðnÞ↓¼

0
BBBBB@
Wð1Þ

Wð2Þ

..

.

WðnÞ

1
CCCCCA; UðnÞ↓¼

0
BBBBB@
Uð1Þ

Uð2Þ

..

.

UðnÞ

1
CCCCCA:

ð2:27Þ
1Toy models for functional dependence detection and char-

acterization by the above procedure are given in Appendix A 1.
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Here, ðEðnÞ↓;UðnÞ↓Þ are Nþ-dimensional column vectors,
while WðnÞ↓ is an Nþ × N rectangular matrix.

1. Step I. Rank of the Hessian

First, the row rank of WðnÞ↓ is to be determined. To this
aim, assume it admits left null vectors

VðnÞ↓ ·WðnÞ↓ ¼ 0: ð2:28Þ

A generic ansatz for such a null vector is2

VðnÞ↓ ≡ ðVð1Þ;Vð2Þ;…;VðnÞÞ;

VðmÞ ¼ V0 þ
Xn−m
p¼1

ðVpÞi1…ip∂i1…∂ip : ð2:29Þ

By construction, there indeed exist solutions to (2.28): they
trivially extend the left null vector(s) Vðn−1Þ↓ found in the
immediately previous stage through VðnÞ ¼ 0. Such sol-
utions do not carry new information. Consequently, they
are to be dismissed.
If no left null vector to WðnÞ↓ exists such that VðnÞ ≠ 0,

then

rrankðWðnÞ↓Þ ¼ rrankðWðn−1Þ↓Þ þ ln−1; ð2:30Þ

where rrank stands for row rank. It follows that ln ¼ 0 and
the algorithm thus terminates. In this case, l ¼ Nþ − N.
Else, let VðnÞ↓ itself denote a maximal set of

Mn ∈ ½1; ln−1� linearly independent left null vectors to
WðnÞ↓ such that VðnÞ ≠ 0, normalized as per convenience.
In this case,

rrankðWðnÞ↓Þ ¼ rrankðWðn−1Þ↓Þ þ ln−1 −Mn; ð2:31Þ

implying that up to Mn n-stage Lagrangian constraints
may exist.
Algebraic ease dictates that the disclosure of the n-stage

Lagrangian constraints, if any, is carried out in two steps.
The first step guarantees functional independence within
the nth iteration. The second step guarantees functional
independence with respect to previous iterations.

2. Step II. Lagrangian constraints

Substep IIA. Functional independence within the stage.
Consider the set of Mn relations

ϕðnÞ ≔ VðnÞ↓ · EðnÞ↓ ¼ VðnÞ↓ · UðnÞ↓ ¼ 0: ð2:32Þ

If the above relations trivially vanish, there exist no n-stage
Lagrangian constraints ln ¼ 0. The constraint algorithm
thus terminates, yielding l ¼ Nþ − N.
Else, a maximal (sub)set of functionally independent

relations among (2.32) is to be extracted. To this aim,
let ϕðnÞ denote the relations (2.32), written as an Mn-
dimensional column vector. Assume ϕðnÞ admits solutions
to

ΓðnÞ · ϕðnÞ ¼ 0: ð2:33Þ

A generic ansatz for such a vector is

ΓðnÞ ¼ ðΓ1;Γ2;…;ΓMnÞ; ΓI ¼ΓI
0þ
Xn−1
p¼1

ðΓI
pÞi1…ip∂i1…∂ip :

ð2:34Þ

If no nontrivial solution to (2.33) exists, then all relations
in (2.32) are functionally independent among themselves.
Else, let ΓðnÞ itself denote a maximal set of mn ∈ ½1;MnÞ

linearly independent solutions to (2.33), normalized as per
convenience. In this case, a maximal subset of Mn −mn
functionally independent relations among (2.32) is

ϕðnÞ
� ≔ ðΓðnÞ

0 Þ⊥ · ϕðnÞ ¼ 0; ð2:35Þ

where ðΓðnÞ
0 Þ⊥ stands for a maximal set of linearly inde-

pendent row vectors orthogonal to

ΓðnÞ
0 ¼ ðΓ1

0;Γ2
0;…;ΓMn

0 Þ ⊆ ΓðnÞ; ð2:36Þ

normalized as per convenience.1

In conclusion, let

φðnÞ ¼
�
ϕðnÞ in ð2.32Þ if ð2.33Þ does not admit nontrivial solutions;

ϕðnÞ
� in ð2.35Þ otherwise

ð2:37Þ

denote a maximal (sub)set of functionally independent
relations among (2.32). LetMn denote their number, where
Mn ¼ Mn or Mn −mn, as per (2.37). For subsequent

convenience, let φðnÞ denote those same relations, arranged
in a column vector of dimension Mn.
Substep IIB. Functional independence with respect to

previous stages. In an n ≥ 2 iteration of the constraint
algorithm, the disclosed maximal (sub)set of functionally
independent relations (2.37) cannot be immediately

2Examples requiring the postulation and calculation of a
nonobvious vector Vð2Þ↓ are given in Appendixes A 5 and A 6.
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regarded as parametrizing the n-stage Lagrangian con-
straints. This is because (2.37) is not necessarily function-
ally independent from the Lagrangian constraints unveiled
in previous iterations. We proceed to ensure such retroac-
tive functional independence.
Let

ΨðnÞ↓ ≔
�
Φðn−1Þ↓

φðnÞ

�
ð2:38Þ

denote the ordered collection of all previous stages’
Lagrangian constraints Φðn−1Þ↓ in (2.23) and the relations
φðnÞ in (2.37). Recall that, by construction, both distinct
sets Φðn−1Þ↓ and φðnÞ comprise only functionally indepen-
dent relations. As a result, upon joint consideration,

ln ¼ rrankðΨðnÞ↓Þ − rrankðΦðn−1Þ↓Þ∈ ½0;Mn�: ð2:39Þ

In order to determine ln, assumeΨðnÞ↓ admits solutions to

ϒðnÞ↓ ·ΨðnÞ↓ ¼ 0: ð2:40Þ

A generic ansatz for such a vector is3

ϒðnÞ↓ ¼ ðϒð1Þ;ϒð2Þ;…;ϒðnÞÞ;

ϒðmÞ ¼ ϒðmÞ
0 þ

Xn−m
p¼1

ðϒðmÞ
p Þi1…ip∂i1…∂ip : ð2:41Þ

If a maximal set ofMn linearly independent solutions to
(2.40) exists, then all relations (2.37) are functionally

dependent with respect to Φðn−1Þ↓. In this case, (2.38)
has the minimal row rank

rrankðΨðnÞ↓Þ ¼ rrankðΦðn−1Þ↓Þ ¼ Nþ − N ð2:42Þ

and therefore ln ¼ 0. The constraint algorithm thus termi-
nates, yielding l ¼ Nþ − N.
Else, start by considering the diametrically opposite

instance. If no nontrivial solution to (2.40) exists, then
the relations (2.37) are functionally independent with
respect to Φðn−1Þ↓. In this case, ln ¼ Mn. Moreover, the
relations (2.37) can be regarded as the n-stage Lagrangian
constraints in the theory.
Next, consider all intermediate instances. Let ϒðnÞ↓ itself

denote a maximal set ofmn ∈ ½1;MnÞ linearly independent
solutions to (2.40), normalized as per convenience. In this
case, ln ¼ Mn −mn and a maximal subset of functionally
independent relations among (2.37) is

φðnÞ
� ≔ ðϒðnÞ↓

0 Þ⊥ ·ΨðnÞ↓ ¼ 0; ð2:43Þ

where ðϒðnÞ↓
0 Þ⊥ stands for a maximal set of linearly

independent row vectors orthogonal to

ϒðnÞ↓
0 ¼ ðϒð1Þ

0 ;ϒð2Þ
0 ;…;ϒðnÞ

0 Þ ⊆ ϒðnÞ↓; ð2:44Þ

normalized as per convenience.
In short, for ln ≠ 0, let

ΦðnÞ ¼
(
φðnÞ in ð2.37Þ if ð2.40Þ does not admit nontrivial solutions;

φðnÞ
� in ð2.43Þ otherwise

ð2:45Þ

denote the n-stage Lagrangian constraints.

3. Step III. Stability of the Lagrangian constraints

Self-consistency demands that the n-stage Lagrangian
constraints are preserved under time evolution: Φ̇ðnÞ ¼ 0,
for all ln relations in (2.45). This condition may yield up to
ln Lagrangian constraints in a subsequent iteration of the
constraint algorithm.

D. Closure

In order to unequivocally establish the number of
degrees of freedom NDoF in a given theory, it is imperative
to pursue any constraint algorithm to its closure.

Unfortunately and especially within coordinate-dependent
Lagrangian approaches, persistence to termination is not
always the case, as alerted against in [29,38]. In the method
just advocated, there exist three distinct manners in which
the constraint algorithm may close.
Letnf denote the (finite) final iteration,wherein lnf ¼ 0.As

per (2.25), let EðnfÞ andWðnfÞ denote the associated nf -stage
equations of motions and Hessian, respectively. lnf ¼ 0 is a
direct consequence of one of the following instances:

(i) Wðnf Þ has maximal row rank (2.30). In this case,
consistency under time evolution of the ðnf − 1Þ-
stage Lagrangian constraints is ensured dynamically,
through second-order (in time) differential equations
of the variables QA. Examples of this closure can be
found in Appendixes A 2 and A 4–A 6.

(ii) Wðnf Þ does not have maximal row rank, but all
contractions of its chosen left null vectors with Eðnf Þ

3An example requiring the postulation and calculation of a
nonobvious vector ϒð2Þ↓ is given in Appendix A 7.
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identically vanish. Namely, (2.32) is identically
satisfied. This closure is the trivial expression of
the functional dependence of the would-be Lagran-
gian constraints arising at the nf stage on the
previous stages’ Lagrangian constraints. An exam-
ple of this closure is provided in Appendix A 3.

(iii) Equation (2.32) is not identically satisfied, but it
exclusively comprises relations that are functionally
dependent on the previous stages’ Lagrangian con-
straints. Namely, (2.42) is fulfilled. This constitutes
the nontrivial counterpart to the previously described
closure. An example is given in Appendix A 7.

We are not aware of any physical example within the
scope of this work where constraint algorithms fail to close
at a finite number of iterations.

E. Remarks

Lagrangian constraints are not uniquely defined, only the
space they span is. At every iteration, we have advocated
for the most convenient choice. Such choice is model
dependent.
For all iterations in the constraint algorithm, it has been

implicitly assumed that the row rank of the relevant Hessian
remains constant. Presumably, the distinct dynamical
behavior of the field configuration(s) for which there is
a change in the rank of one or more of the Hessians remains
encoded in the final stage’s stack of equations of motion
Eðnf Þ↓—and hence in the later discussed dynamical prob-
lem (3.2).
The method readily applies to higher-order field theories

whose equations of motion are linear in the generalized
accelerations Q̈A, as in (2.10). In this case, the (primary)
Hessian and remaining terms have a more complicated,
order-dependent relation to the Lagrangian than (2.7) and
(2.8), but the algorithm per se remains unaltered.

III. DYNAMICAL VERSUS PHYSICAL MODES

Degrees of freedom are a foundational subject in physics.
As such, they drive sustained investigations on and around
themselves. Prominent questions under survey include
their very definition, the well-posedness and solvability
of their associated dynamical equations, and their relation
to physical observables. In this section, we briefly ponder
on such open-ended problems.
It is customary to view NDoF as counting the (pairs of)

initial conditions needed to define the dynamical problem
of a given theory. We proceed to elucidate the previous
assertion within the scope of Sec. II. This allows us to
confront dynamical and physical modes.
Consider a theory of the form (2.1) for which the

constraint algorithm has been successfully pursued until
closure lnf ¼ 0. As per (2.26) and (2.27), let Eðnf Þ↓ and
Wðnf Þ↓ denote the exhaustive stack of associated equations
of motions and Hessians, respectively.

By construction and for singular theories, WðnfÞ↓ is an
Nþ

f × N matrix with nonmaximal row rank

ϱ≡ rrankðWðnfÞ↓Þ¼Nþ
f −Mtot<Nþ

f ; Nþ
f ¼Nþ l;

Mtot ¼
Xnf
p¼1

Mp: ð3:1Þ

(Recall that Mn denotes the maximal number of linearly
independent left null vectors toWðnfÞ↓ that necessarily and at
most involve then-stageHessianWðnÞ.) It follows thatWðnfÞ↓
admits a maximal set of Mtot linearly independent left null
vectorsVðnf Þ↓, normalized as per convenience. Let ðVðnfÞ↓Þ⊥
denote a maximal set of ϱ linearly independent row vectors
orthogonal to VðnfÞ↓, normalized as per convenience.
Consider

E ≔ ðVðnfÞ↓Þ⊥ · Eðnf Þ↓ ¼ 0: ð3:2Þ

The above comprises ϱ functionally independent second
order differential equations in time for (some of) the
variables QA. Supplemented by 2NDoF initial values for
ðQA; Q̇AÞ, (3.2) defines the dynamic problem of the theory
(2.1). Conversely, NDoF counts the pairs ðQA; Q̇AÞ whose
time dependence is encoded in the just described dynamical
problem. In other words, NDoF counts dynamical modes. If
any, variables QA present in the Lagrangian (2.1) but not
determined by the dynamical problem comprise pure gauge
modes. In this regard, the interested reader is gladly
referred to [39].
The dynamical problem may but need not fall within the

scope of the Cauchy-Kovalevskaya (CK) theorem. When it
does, a unique analytical solution is guaranteed to exist.
When it does not, existence (let alone uniqueness) of
analytical solutions cannot be generically ascertained.
Physics-driven extensions to the CK theorem thus comprise
an enticing line of mathematical research.
Consider a generic Lagrangian field theory, possibly

beyond the subclass in Sec. II. Presume a fortunate case in
which one or more analytical solutions to its dynamical
problem can be found. Even then, the obtained dynamical
modes should not be immediately identified with physical
modes, in the sense that dynamical modes may exhibit a
behavior that is incompatible with well-established physi-
cal principles and/or observation. Reasons are plentiful.
First, consider stability criteria. For instance, solutions

could be perturbatively unstable, in the sense of lacking
robustness against small deviations in the initial data and/or
free parameters. Whenever in conflict with observation,
such solutions are to be disregarded. A lucid introduction to
the most frequent perturbative instabilities in gravitational
settings is [40]. Numerical examples of critical values
for free parameters which dramatically destabilize a theory
can be found in [41]. Moreover, it has been known
for a while that instabilities could also appear only at
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the nonperturbative level [42]. For an enlightening recent
review apropos, see Ref. [43].
Causality is yet another essential requirement for a

dynamical mode to be deemed physical. As a remarkable
example, we note [44], where causality was employed to
constrain dynamical modes for certain massive gravity
theories. Overall, the quest remains for necessary and
sufficient conditions that guarantee physicality of dynami-
cal modes, even within the theoretical realm.
More generally, it is worth considering physicality of a

(classical) field theory as a whole. From a philosophical
perspective, degrees of freedom might help to address the
question of physical equivalence between theories, which
enjoys a long tradition in the philosophy of science, see e.g.
[45–47]. While several notions of equivalence are dis-
cussed in the recent literature [48,49], there exists wide-
spread consensus that dynamical equivalence of two
theories is a necessary condition for their empirical
equivalence [50]. In this context, we regard a match in
the number of degrees of freedom as a prefatory necessary
(but not sufficient) condition for physical equivalence
between two theories.

IV. CONCLUSIONS

We have presented a Lagrangian method to count
degrees of freedom in first-order classical field theories.
The emphasis is two-fold. First, a systematic and algebrai-
cally convenient procedure to establish the functional
independence of the constraints that may be present in
such theories. Second, a detailed discussion on the possible
closures of the associated constraint algorithm. Both are
consequential aspects that are rarely explicitly addressed in
akin Lagrangian approaches. Nonexhaustive counterexam-
ples to the former omission can be found in [27,29]. The
latter was painstakingly discussed in [29] and, for a certain
family of massive electrodynamics theories, in [38].
We stress that functional independence among con-

straints is essential to the postulation of self-consistent
theories. This is particularly relevant when a given con-
straint structure is being pursued, i.e. fixed values for the
number of primary, secondary, etc. (Lagrangian) con-
straints. Against this background, we note that a suitable
(row) rank reduction of an n-stage Hessian does not ensure
the desired number of n-stage constraints are generated.
While such (row) rank reduction is a necessary condition
for the sought constraint structure, it is premature to regard
it as sufficient on its own [38].
Failure to close a constraint algorithm may yield an

incorrect number of degrees of freedom NDoF. It could
happen that NDoF is overestimated, via the overlooking of
overconstrained systems. Contrastively, NDoF may be
underestimated, via the misidentification of functionally
dependent relations of the type in (2.32) as (Lagrangian)
constraints.

Last but not least, we have discussed several nontrivial
conditions that propagating degrees of freedom must fulfill
before they can be regarded as physical modes.
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APPENDIX: EXAMPLES

We begin in Sec. A 1 by providing simple yet illuminat-
ing examples for the obtention of functionally independent
constraints from a given out-of-context set. The remainder
of the appendix is devoted to the explicit application of the
method presented in Sec. II to count degrees of freedom in
various examples of physical relevance. The appendix thus
serves to amply illustrate the use of the method, at various
levels of algebraic intricacy.
Notation. Brackets denoting symmetrization and

antisymmetrization of indices are defined as TðμνÞ ¼
ðTμν þ TνμÞ=2 and T ½μν� ¼ ðTμν − TνμÞ=2, respectively.
For the two-dimensional examples in Secs. A 1, A 2,
and A 6, we use the shorthand T 0 ¼ ∂1T. Natural units
are employed throughout.

1. Detection and avoidance of functional dependence
among ad hoc constraints

a. Toy model I

Consider a theory of the form (2.1) in two-dimensional
Minkowski spacetime. Further consider the set of Mn
relations in (2.12) for n ¼ 1 or (2.32) for n ≥ 2. Suppose
Mn ¼ 2 has been obtained, with the relations arranged into
a column vector of the form

ϕ ¼
�

F

F0

�
; F ¼ FðQA; ∂μQAÞ: ðA1Þ

(For simplicity, we omit indices indicating the iteration.) In
view of the spatial derivatives’ order difference between the
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two relations, a generic ansatz to (2.13) for n ¼ 1 or to
(2.33) for n ≥ 2 is particularly simple in this case:

Γ ¼ ðΓ0 þ Γ1∂1; Γ̃0Þ; ðA2Þ

which readily yields a single linearly independent solution
mn ¼ 1 parametrized byΓ0 ¼ 0 andΓ1 ¼ −Γ̃0. We choose a
convenient normalization for the solution, look into its
algebraic subspace and choose a convenient normalization
for theMn −mn ¼ 1 linearly independent orthogonal vector:

Γ ¼ ð−∂1; 1Þ; Γ0 ¼ ð0; 1Þ; Γ⊥
0 ¼ ð1; 0Þ: ðA3Þ

The left contraction of the latter with (A1) yields a function-
ally independent relation: ϕ� ¼ Γ⊥

0 · ϕ ¼ F. For n ¼ 1, ϕ�
can be regarded as the primary Lagrangian constraint. For
n ≥ 2, functional independence of ϕ� with respect to
Lagrangian constraints unveiled in previous iterations must
be ensured before regarding ϕ� as the n-stage Lagrangian
constraint.

b. Toy model II

Consider a theory of the form (2.1) in three-dimensional
Minkowski spacetime. Further, consider the following set
ofMn ¼ 3 relations in (2.12) for n ¼ 1 or (2.32) for n ≥ 2,
arranged into a column vector

ϕ ¼

0
B@ Fx

F þ Gy

G

1
CA; Fx ≡ ∂1F; Gy ≡ ∂2G; ðA4Þ

where ðF;GÞ denote obviously functionally indepen-
dent relations; for instance F ¼ FðQA; Q̂B; ∂μQAÞ and
G ¼ GðQA; ∂μQAÞ, with the hat denoting a specific coor-
dinate within the set QA that is not present. Observation of
the relative difference in the order of spatial derivatives
between the relations leads us to postulate a generic ansatz
to (2.13) for n ¼ 1 or to (2.33) for n ≥ 2 of the form

Γ ¼ ðΓ0 þ Γx
1∂1 þ Γy

1∂2; Γ̃0 þ Γ̃x
1∂1 þ Γ̃y

1∂2; Γ̂0 þ Γ̂x
1∂1 þ Γ̂y

1∂2 þ Γ̂xx
2 ∂1∂1 þ 2Γ̂xy

2 ∂1∂2 þ Γ̂yy
2 ∂2∂2Þ: ðA5Þ

The above readily yields a single linearly independent
solution mn ¼ 1 parametrized by Γ̃x

1 ¼ −Γ0 and
Γ̂xy
2 ¼ Γ0=2, with all other free functions set to zero. We

choose a convenient normalization for this solution, look
into its algebraic subspace and choose a convenient
normalization for the Mn −mn ¼ 2 linearly independent
orthogonal vectors:

Γ ¼ ð1;−∂1; ∂ð1∂2ÞÞ; Γ0 ¼ ð1; 0; 0Þ;
Γ⊥
0 ¼ ð0; 1; 0Þ; Γ̃⊥

0 ¼ ð0; 0; 1Þ: ðA6Þ

The left contraction of the last two with (A4) yields two
functionally independent relations

ϕ� ¼ Γ⊥
0 · ϕ ¼ F þGy; ϕ̃� ¼ Γ̃⊥

0 · ϕ ¼ G: ðA7Þ

For n ¼ 1, (A7) can be readily regarded as the primary
Lagrangian constraints. For n ≥ 2, functional independence
of (A7) with respect to Lagrangian constraints unveiled in
previous iterations must be ensured before reaching such a
conclusion.
Notice that the simplest choice of orthogonal vectors

ðΓ⊥
0 ; Γ̃⊥

0 Þ does not yield the obviously simplest span of the
constraint space, given by fF;Gg. Toy model II thus
illustrates our first remark in Sec. II E.

2. Floreanini-Jackiw chiral boson

The Lagrangian for the two-dimensional theory of a
chiral boson due to Floreanini and Jackiw [51] is

LFJ ¼
1

2
ϕ0ðϕ̇ − ϕ0Þ: ðA8Þ

Here, the scalar field ϕ ¼ ϕðx0; x1Þ is the only a priori
independent field variable QA and so N ¼ 1. As is well
known, this theory possesses no local symmetries—neither
of the relevant form (2.2) nor otherwise—in its original
formulation (A8). Therefore, g, e ¼ 0. It is worth mention-
ing that a manifestly Lorentz invariant action for the
Floreanini-Jackiw chiral boson exists, which has been
further generalized into the so-called 2k-form electro-
dynamics family of higher-dimensional theories [52].
The (primary) equations of motion following from (A8)

are of the form (2.10), with

Wð1Þ ¼ 0; Uð1Þ ¼ ϕ̇0 − ϕ00: ðA9Þ

Obviously, the (row) rank of the (primary) Hessian is zero.
A convenient left null vector for it is simply Vð1Þ ¼ 1. As
per (2.12) and since no identical vanishing happens,

ϕð1Þ ≔ ϕ̇0 − ϕ00 ¼ 0 ðA10Þ

can be readily regarded as the only primary Lagrangian
constraint in the theory l1 ¼ 1.
The (primary) equations of motion, together with the

demand for stability under time evolution of the primary
Lagrangian constraint, conform the starting point of the
second iteration (2.21), where
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Wð2Þ↓ ¼
�

0

∂1

�
; Uð2Þ↓ ¼

�
Uð1Þ

−ϕ̇00

�
: ðA11Þ

Clearly, Wð2Þ↓ only admits left null vectors of the form

Vð2Þ↓ ¼ ðVð1Þ; 0Þ: ðA12Þ

According to the discussion below (2.29), there exists no
secondary Lagrangian constraint in the theory l2 ¼ 0. The
constraint algorithm thus terminates, by means of closure 1.
Using (2.3) and (2.4), we reproduce the renowned result

that the theory propagates NDoF ¼ 1=2 degrees of freedom.

3. Maxwell electrodynamics

The Lagrangian for standard electrodynamics in d ≥ 2
dimensions is

LM ¼ −
1

4
FμνFμν; Fμν ¼ 2∂½μAν�; ðA13Þ

where the components of the vector field Aμ ¼ Aμðx0; xiÞ
conform the a priori independent field variables QA and
thus N ¼ d. The theory enjoys a manifest Uð1Þ gauge
invariance, under the transformation

Aμ → Aμ þ ∂μθ; ðA14Þ

which is of the relevant form (2.2). It follows that g ¼ 1
and e ¼ 2.
The (primary) equations of motion for Aμ following from

(A13) are of the form (2.10), with

Wð1Þμν¼ημνþημ0ην0≡Wμν;

Uð1Þμ¼2ðη0ðμηνÞi∂iȦνþηi½νηj�μ∂i∂jAνÞ≡Aμ: ðA15Þ

It is easy to see that the (row) rank of the (primary) Hessian
is d − 1. A convenient left null vector for it is Vð1Þ ¼ δ0μ. As
per (2.12) and since no identical vanishing happens,

ϕð1Þ ≔ ∂
iFi0 ¼ 0 ðA16Þ

can be identified with the primary Lagrangian constraint in
the theory l1 ¼ 1. In fact, this is Gauss’s law for the
electric field.
The (primary) equations of motion, together with the

demand for stability under time evolution of the primary
Lagrangian constraint, conform the starting point of the
second iteration. They can be written as (2.21), where

Wð2Þ↓ ¼
�

Wμν

−ηiν∂i

�
; Uð2Þ↓ ¼

�
Aμ

∇2Ȧ0

�
: ðA17Þ

It is easy to see that, up to normalization, there exists only
one linearly independent left null vector to Wð2Þ↓ that does

not trivially extend Vð1Þ. We choose it as Vð2Þ↓ ¼ ðδiμ∂i; 1Þ.
We remark that the above is a particular instance of the
general form prescribed in (2.29). As per (2.32),

ϕð2Þ ≔ ∂
i
∂
jFij ≡ 0: ðA18Þ

Hence, no secondary Lagrangian constraint exists l2 ¼ 0.
The constraint algorithm thus terminates, by means of
closure 2.
Using (2.3) and (2.4), we obtain the familiar result

NDoF ¼ d − 2.

4. Proca electrodynamics

Consider the simplest massive electrodynamics theory in
d ≥ 2 dimensions

LP ¼ −
1

4
FμνFμν −

1

2
m2AμAμ; m∈R>0: ðA19Þ

As for Maxwell electrodynamics before, the components of
the vector field Aμ ¼ Aμðx0; xiÞ conform the a priori inde-
pendent field variables QA and thus N ¼ d. Contrastively,
the mass term explicitly breaks the Uð1Þ gauge invariance
of (A13), leaving no residual symmetry. Hence, g ¼ e ¼ 0.
The (primary) equations of motion for Aμ following from

(A19) are of the form (2.10), with

Wð1Þμν ¼ Wμν; Uð1Þμ ¼ Aμ þm2Aμ; ðA20Þ

where ðWμν;AμÞ were defined in (A15). The (primary)
Hessian is the same as for Maxwell electrodynamics (A15),
with rank d − 1. We again chose Vð1Þ ¼ δ0μ as a convenient
left null vector for it. Using (2.12) and since no identical
vanishing happens,

ϕð1Þ ≔ ∂
iFi0 −m2A0 ¼ 0 ðA21Þ

can be identified with the primary Lagrangian constraint in
the theory l1 ¼ 1.
Next, consider the (primary) equations of motion,

together with the demand for stability under time evolution
of the primary Lagrangian constraint, in the form (2.21),
where

Wð2Þ↓¼
�

Wμν

−ηiν∂i

�
; Uð2Þ↓¼

�
Aμþm2Aμ

ð∇2−m2ÞȦ0

�
: ðA22Þ

The above conforms the starting point of the second
iteration in the constraint algorithm. We note that Wð2Þ↓
for Proca electrodynamics matches that of Maxwell’s
theory (A17) and we repeat our choice Vð2Þ↓ ¼ ðδiμ∂i; 1Þ
for a conveniently normalized left null vector that is linearly
independent from a trivial extension of Vð1Þ. Using (2.32),
we obtain the relation
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ϕð2Þ ≔ m2
∂
μAμ ¼ 0: ðA23Þ

Clearly, the above does not identically vanish. It is also easy
to see that (A21) and (A23) are functionally independent.
Therefore, l2 ¼ 1 and (A23) can be taken as the secondary
Lagrangian constraint.
In a third iteration of the constraint algorithm,we consider

the (primary) equations of motion, along with the demand
for stability under time evolution of both the primary and the
secondary Lagrangian constraints, in the form (2.21), where
the tertiary equations of motion are given by

Wð3Þ ¼ ðm2ημ0Þ; Uð3Þ ¼ ðm2∇ȦÞ: ðA24Þ

It is obvious thatWð3Þ↓ does not admit left null vectors beyond
trivial extensions of ðVð1Þ;Vð2ÞÞ before. Consequently,
there exists no tertiary Lagrangian constraints l3 ¼ 0 and
the algorithm terminates according to closure 1.
Using (2.3) and (2.4), we reproduce the well-known

result that Proca electrodynamics propagates NDoF ¼ d − 1
degrees of freedom.

5. Podolsky electrodynamics

Podolsky’s proposal for a generalized electrodynamics
theory [53]

LPo ¼ −
1

4
FμνFμν −

a2

2
∂μFμν

∂
ρFρν ðA25Þ

is arguably the best-known higher-order field theory. So as
to remain within the scope of Sec. II, we consider its first-
order formulation [54] in d ≥ 2 dimensions

LPo1¼−
1

4
FμνFμνþa2

2
BμBμ−

a2

2
GμνFμν; Gμν¼2∂½μBν�;

a∈R>0: ðA26Þ

The components of the vector fields Aμ ¼ Aμðx0; xiÞ, Bμ ¼
Bμðx0; xiÞ are the a priori independent field variables QA

and hence N ¼ 2d. The Lagrangian (A26) inherits the
symmetry of Maxwell electrodynamics and is gauge
invariant under the field transformations

Aμ → Aμ þ ∂μθ; Bμ → Bμ; ðA27Þ

which are of the relevant form (2.2). It follows that g ¼ 1
and e ¼ 2, as in the Maxwell case earlier on.
The (primary) equations of motion following from (A26)

are of the form (2.10), with

Wð1Þ ¼
�

1 a2

a2 0

�
Wμν; Uð1Þ ¼

�
Aμþa2Bμ

a2Aμ−a2Bμ

�
; ðA28Þ

where ðWμν;AμÞ were introduced in (A15) and Bμ stands
for the same quantity as Aμ, but in terms of Bμ instead of
Aμ. It is rather obvious that the (row) rank of the (primary)
Hessian is 2ðd − 1Þ. A convenient choice for the two

linearly independent left null vectors is Vð1Þ
1 ¼ ðδ0μ; 0Þ

and Vð1Þ
2 ¼ ð0; δ0μÞ. Using (2.12), since no identical vanish-

ing happens and taking into consideration the manifest
functional independence,

Φð1Þ ≔
�
∂
iFi0 þ a2∂iGi0

a2∂iFi0 þ a2B0

�
¼ 0 ðA29Þ

can be identified with the two primary Lagrangian con-
straints in the theory l1 ¼ 2.
In order to ensure the stability of the primary Lagrangian

constraints, we calculate the theory’s secondary equations
of motions (2.20). We find

Wð2Þ ¼
�

−1 −a2

−a2 0

�
ημi∂i; Uð2Þ ¼

�∇2Ȧ0þa2∇2Ḃ0

a2∇2Ȧ0þa2Ḃ0

�
ðA30Þ

and consider them together with the (primary) equations of
motion, as described in (2.21) and (2.22). Beyond trivial

extensions of Vð1Þ
1 and Vð1Þ

2 before and up to normalization,
there exists another linearly independent left null vector
Vð2Þ↓ toWð2Þ↓. It can be found as prescribed around (2.28).
Explicitly, we postulate

Vð2Þ↓ ¼ ðVi
μ∂i; Ṽi

μ∂i; V̂; V̄Þ such that

� ðVi
μ þ a2Ṽi

μÞWμν − ðV̂ þ a2V̄Þηνi ¼ 0;

Vi
μWμν − V̂ηνi ¼ 0:

ðA31Þ

Our simplified ansatz is a direct consequence of the overall spatial derivatives’ order difference betweenWð1Þ andWð2Þ. We
choose as representative of the one-parameter family of linearly independent solutions

Vð2Þ↓ ¼ ða2δiμ∂i; −δiμ∂i; a2; −1Þ: ðA32Þ
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Using the above and (2.32), we obtain the relation

ϕð2Þ ≔ a2∂μBμ ¼ 0: ðA33Þ

It is easy to see that (A33) does neither identically vanish
nor functionally depend on the primary Lagrangian con-
straints (A29). Therefore, l2 ¼ 1 and (A33) can be regarded
as the secondary Lagrangian constraint in the theory. Note
it matches the secondary Lagrangian constraint (A23) in
Proca electrodynamics.
In a third iteration of the constraint algorithm, we

consider the (primary) equations of motion, together with
the demand for stability of the primary and secondary
Lagrangian constraints, in the form (2.27). For the tertiary
equations of motion, we obtain

Wð3Þ ¼ ð 0; a2ημ0 Þ; Uð3Þ ¼ ða2∇ḂÞ: ðA34Þ

It is a matter of conjunct inspection of ðWð1Þ;Wð2Þ;Wð3ÞÞ
to deduce that Wð3Þ↓ admits no other left null vectors
beyond trivial extensions of the left null vectors obtained in
earlier iterations. Consequently, no tertiary Lagrangian
constraints exist l3 ¼ 0 and the algorithm terminates
according to closure 1.
Using (2.3) and (2.4), we reproduce the well-known

result NDoF ¼ 2d − 3. This count supports the inter-
pretation of Podolsky electrodynamics as the theory of
an interacting pair of vector fields, one of which is massive
e.g. [55,56]. It is also instructive to compare the constraint
structures in this and the two previous sections A 3 and A 4.

6. Minimal model in extended Proca-Nuevo

We consider the simplest, two-dimensional case in the
so-called extended Proca-Nuevo (EPN) class of massive
vector field theories, dubbed minimal model. EPN was
originally proposed in [57] as an extension of the Proca-
Nuevo (PN) construction in [58]. A study of the constraint
structure of both PN and EPN, including an explicit
discussion of the minimal model here revisited, can be
found in [59].
The Lagrangian for the minimal model is

LMM ¼ Λ2ðαþ 2N − 4Þ; ðA35Þ

where Λ is a constant of length dimension (−1), α is a
dimensionless and at least twice differentiable function of

the square of the vector

α ¼ αðXÞ; X ¼ −A2
0 þ A2

1; ðA36Þ

and N ≠ 0 is given by

N¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−y2

q
; x¼2þA0

1− Ȧ0

Λ
; y¼ Ȧ1−A0

0

Λ
: ðA37Þ

In (A35), the components of the vector field Aμ ¼
Aμðx0; x1Þ are the a priori independent field variables
QA and so N ¼ 2. By definition, theories within the (E)
PN class(es) do not possess any local symmetry. Therefore,
g, e ¼ 0.
The (primary) equations of motion following from (A35)

are of the form (2.10), with

Wð1Þ ¼−
2

N3

�
y2 xy

xy x2

�
;

Uð1Þ ¼
 

2
N3 ½xyð2Ȧ0

0−A00
1Þ−x2A00

0þ N̄2Ȧ0
1�þ2Λ2αXA0

2
N3 ½xyð2Ȧ0

1−A00
0Þ−y2A00

1þ N̄2Ȧ0
0�−2Λ2αXA1

!
;

ðA38Þ

where we have introduced the shorthand

N̄¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
; αX ¼

dαðXÞ
dX

; αXX ¼
d2αðXÞ
dX2

; ðA39Þ

and the second (total) derivative of α has been defined for
later convenience. It is easy to see that the (row) rank of the
(primary) Hessian is 1. Following [58,59], we choose a left
null vector to Wð1Þ as

Vð1Þ ¼ 1

N
ðx;−yÞ: ðA40Þ

As per (2.12) and since no identical vanishing happens,

ϕð1Þ ≔
2Λ
N2

ðxy0 − yx0Þ þ 2Λ2

N
αXðxA0 þ yA1Þ ¼ 0 ðA41Þ

can be readily regarded as the only primary Lagrangian
constraint in the theory l1 ¼ 1.
Following (2.20), at the second iteration we find

Wð2Þ ¼ ðΩ1 Ω2 Þ;

Uð2Þ ¼ −
2

N2
ðxȦ00

0 þ yȦ00
1Þ þ

2N̄2

N4
ðx0Ȧ0

0 − y0Ȧ0
1Þ −

4xy
N4

ðy0Ȧ0
0 − x0Ȧ0

1Þ

−
2Λ
N3

αXðyA0 þ xA1ÞðxȦ0
0 þ yȦ0

1Þ þ
2Λ2

N
αXðxȦ0 þ yȦ1Þ þ

2Λ2

N
αXXðxA0 þ yA1ÞẊ; ðA42Þ
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where we have introduced

Ω1 ¼ ω1 þ ω̄1∂1 ¼
4x
N4

ðxy0 − yx0Þ − 2y0

N2
þ 2Λ

N3
αXyðxA1 þ yA0Þ þ

2y
N2

∂1;

Ω2 ¼ ω2 þ ω̄2∂1 ¼
4y
N4

ðxy0 − yx0Þ − 2x0

N2
þ 2Λ

N3
αXxðxA1 þ yA0Þ þ

2x
N2

∂1: ðA43Þ

As per (2.21) and (2.22), we proceed to the joint consideration of the primary and secondary equations of motion. In
particular, we inspect the row rank of Wð2Þ↓ via a conveniently normalized generic left null vector of the form (2.29)

Vð2Þ↓ ¼ ðV0 þ V1∂1; Ṽ0 þ Ṽ1∂1; 1Þ: ðA44Þ

For the above to fulfill (2.28), four a priori independent equations must be fulfilled. These are

8>>>>>>>>><
>>>>>>>>>:

− 2y
N3 ðV1yþ Ṽ1xÞ þ ω̄1 ¼ 0;

− 2x
N3 ðV1yþ Ṽ1xÞ þ ω̄2 ¼ 0;

− 2y
N3 ðV0yþ Ṽ0xÞ − 2y

N3 ðV1y0 þ Ṽ1x0Þ − 2
�
∂1

y
N3

�
ðV1yþ Ṽ1xÞ þ ω1 ¼ 0;

− 2x
N3 ðV0yþ Ṽ0xÞ − 2x

N3 ðV1y0 þ Ṽ1x0Þ − 2
�
∂1

x
N3

�
ðV1yþ Ṽ1xÞ þ ω2 ¼ 0:

ðA45Þ

The first (second) equation can be easily seen to be
redundant with respect to the second (first) equation.
Assuming x, y ≠ 0, either of these equations poses the
same null vector condition on (A44):

1

N
ðV1yþ Ṽ1xÞ − 1 ¼ 0: ðA46Þ

Additionally and using (A46), the third and fourth equa-
tions can be seen to boil down to the same null vector
condition on (A44):

V0yþ Ṽ0xþ
xy0−yx0

y

�
x
N
− Ṽ1

�
−ΛαXðxA1þyA0Þ¼0:

ðA47Þ

On the whole, a (unique, up to normalization) linearly
independent solution is given by

V0¼ΛαXA0; Ṽ0¼−
y
N
; V1¼ΛαXA1; Ṽ1¼

x
N
:

ðA48Þ

Pursuing the constraint algorithm by means of (2.32), we
find that the left contraction of the above null vector with
Eð2Þ↓ gives rise to the relation

ϕð2Þ ≔
2Λ
N4

ðxy0 − yx0Þ2 þ 2Λ3

N
αXð2x − N2Þ þ 2Λ2

N3
αXðxy0 − yx0ÞðxA0 þ yA1Þ − 2Λ3α2XX

þ 2Λ2

N
αXX½ẊðxA0 þ yA1Þ − X0ðyA0 þ xA1Þ� ¼ 0: ðA49Þ

Close inspection readily reveals that (A41) and (A49) are functionally independent. Complementarily, it can be checked that
there exists no nontrivial solution to (2.40) for theminimal model. As a result, there exists a secondary constraint in the theory
l2 ¼ 1, which can be parametrized by (A49) itself. However, it is more convenient to use (A41) so as to simplify (A49) to

ϕð2Þ ¼ 2Λ3

N
αXð2x − N2Þ − 2Λ3α2XX þ 2Λ2

N
αXX½ẊðxA0 þ yA1Þ − X0ðyA0 þ xA1Þ� ¼ 0: ðA50Þ
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A posteriori, we streamline the discussion on the third
iteration for the minimal model. In particular, we limit
ourselves to proving that Wð3Þ↓, as defined around (2.27),
has maximal row rank equal to 2. As a direct consequence,
there exist no tertiary Lagrangian constraints l3 ¼ 0 and the
constraint algorithm thus terminates, by means of closure 1.
Consider the first and fourth row inWð3Þ↓. All entries are

scalars and thus it is a matter of easy algebra to verify that
their determinant does not vanish:

det

0
B@−2y2

N3 −2xy
N3

∂ϕð2Þ

∂Ȧ0

∂ϕð2Þ

∂Ȧ1

1
CA¼4Λ2

N4
y½N2αX−2αXXðxA0þyA1Þ2�≠0:

ðA51Þ

Moreover, straightforward examination unequivocally indi-
cates that the above determinant is functionally indepen-
dent from both the primary (A41) and the secondary (A50)
Lagrangian constraints. This proves there exists a maximal

row rank minor within Wð3Þ↓. Hence, Wð3Þ↓ itself has
maximal row rank and does not admit left null vectors that
nontrivially extend Vð1Þ and Vð2Þ↓ above.
Using (2.3) and (2.4), we independently reproduce the

recent result in [59] that the minimal model propagates
NDoF ¼ 1 degree of freedom, as a massive electrodynamics
theory in two dimensions must do.

7. Two-dimensional Palatini

Consider Einstein-Hilbert theory of gravity in two
dimensions. A popular first-order reformulation attributed
to Palatini [60] is

LPa ¼ −ð∂ρhμνÞGρ
μν þ hμνðGρ

ρμGσ
σν − Gρ

σμGσ
ρνÞ; ðA52Þ

where hμν ¼ hνμ and Gλ
μν ¼ Gλ

νμ denote tensors propor-
tional to the metric and the connection, respectively. Their
independent components conform the a priori independent
field variables

QA ¼ fh≡ h00; h1 ≡ h01; h11; G≡ G0
00; G1 ≡G0

10; G11 ≡G0
11;G

1 ≡G1
00;G

1
1 ≡G1

10;G
1
11 ≡G1

11g; ðA53Þ
where we have introduced multiple renamings for notational simplicity. It readily follows that N ¼ 9. The theory is
invariant under the field transformations [61,62]

hμν → hμν þ 2ϵρðμhνÞσθρσ; Gρ
μν → Gρ

μν þ ϵρσ∂σθμν þ 2ϵσλGρ
σðμηνÞλ; ðA54Þ

which are of the relevant form (2.2). Here, θμν ¼ θνμ, so it has g ¼ 3 independent components. It is easy to see that e ¼ 6.
As a direct consequence of the exclusively linear dependence of the Lagrangian (A52) on the generalized velocities Q̇A,

the (primary) Hessian vanishes Wð1Þ ¼ 0 and its linearly independent left null vectors can be chosen as

ðVð1Þ
I ÞA ¼ δAI ; I ¼ 1; 2;…;M1 ¼ 9: ðA55Þ

Then, the components of the Uð1Þ vector coincide with the relations (2.12): Uð1Þ ¼ ϕð1Þ, where

ϕ1 ≔ −½Ġþ ∂1G1 þ 2ðGG1
1 − G1G1Þ� ¼ 0; ϕ2 ≔ −2ðĠ1 þ ∂1G1

1 þ GG1
11 − G11G1Þ ¼ 0;

ϕ3 ≔ −½Ġ11 þ ∂1G1
11 þ 2ðG1G1

11 − G11G1
1Þ� ¼ 0; ϕ4 ≔ ḣ − 2ðhG1

1 þ h1G1
11Þ ¼ 0;

ϕ5 ≔ 2ðḣ1 þ hG1 − h11G1
11Þ ¼ 0; ϕ6 ≔ ḣ11 þ 2ðh1G1 þ h11G1

1Þ ¼ 0;

ϕ7 ≔ ∂1hþ 2ðhG1 þ h1G11Þ ¼ 0; ϕ8 ≔ 2ð∂1h1 − hGþ h11G11Þ ¼ 0;

ϕ9 ≔ ∂1h11 − 2ðh1Gþ h11G1Þ ¼ 0: ðA56Þ

(For simplicity, we omit indices indicating the iteration.) Observe that the first six relations depend on a distinct generalized
velocity each, while the latter three do not depend on generalized velocities. Namely, functional independence is manifest
for fϕ1;…;ϕ6g. Functional (in)dependence among ϕred ¼ fϕ7;ϕ8;ϕ9g is nonobvious and so we proceed to test it via
(2.13). Postulating

Γred ¼ ðΓ0 þ Γ1∂1; Γ̃0 þ Γ̃1∂1; Γ̂0 þ Γ̂1∂1Þ; ðA57Þ

the reduced left null vector condition Γred · ϕred ¼ 0 yields no nontrivial solution, without much algebraic effort. It follows
that ϕred indeed comprises functionally independent relations. Consequently, l1 ¼ 9 and the relations (A56) themselves can
be regarded as the primary Lagrangian constraints in the theory.
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We proceed to the second iteration. As per (2.18), the secondary equations of motion are given by

Wð2Þ ¼

0
B@ 0 −w 0

w 0 0

0 0 0

1
CA; w ¼ diagð1; 2; 1Þ; Uð2Þ ¼

�
U

ϕ̇red

�
ðA58Þ

where the components of U are

U1 ¼ −∂1Ġ1 − 2∂0ðGG1
1 − G1G1Þ; U2 ¼ −2∂1Ġ1

1 − 2∂0ðGG1
11 −G11G1Þ;

U3 ¼ −∂1Ġ1
11 − 2∂0ðG1G1

11 −G11G1
1Þ; U4 ¼ −2∂0ðhG1

1 þ h1G1
11Þ;

U5 ¼ 2∂0ðhG1 − h11G1
11Þ; U6 ¼ 2∂0ðh11G1 þ h1G1

1Þ: ðA59Þ

It is evident that rrankðWð2ÞÞ ¼ 6. Following (2.28) and
leaving aside trivial extensions of the primary left null
vectors (A52), we find M2 ¼ 3 additional linearly inde-
pendent left null vectors, up to normalization. We conven-
iently choose them as

Vð2Þ↓
R ¼ ð0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}; R̂Þ

15 components

; R ¼ 1; 2; 3; ðA60Þ

where R̂ denotes the standard Cartesian unit vector in
Euclidean 3 dimensions. In accordance with (2.32), we find
the relations

ϕð2Þ
1 ≔ ∂1ḣþ 2ðḣG1 þ ḣ1G11 þ hĠ1 þ h1Ġ11Þ ¼ 0;

ϕð2Þ
2 ≔ 2ð∂1ḣ1 − ḣGþ ḣ11G11 − hĠþ h11Ġ11Þ ¼ 0;

ϕð2Þ
3 ≔ ∂1ḣ

11 − 2ðḣ1Gþ ḣ11G1 þ h1Ġþ h11Ġ1Þ ¼ 0:

ðA61Þ

Following the prescription in (2.33), the search for func-
tional (in)dependence within the secondary stage involves
an ansatz for a vector Γð2Þ with up to two spatial derivatives.
Nonetheless, due to the relative structure of the first term in
each relation, it is easy to see that Γð2Þ · ϕð2Þ ¼ 0 only
admits the trivial solution. As a result, all relations in (A61)
are functionally independent among themselves.
Establishing the functional (in)dependence of (A61) with

respect to the primary Lagrangian constraints (A56) is a
more delicate endeavour. Consider the row vector (2.38). In
this case, the first nine components are (A56), while the

latter three components are (A61). We search for solutions
to (2.40). A generic ansatz ϒ has components given by

ðϒÞT≤9¼ϒT
0 þϒT

1 ∂1; ðϒÞT>9¼ϒT
0 ; T¼1;…;12:

ðA62Þ
The simplest implementation of (2.41) consists in imposing
three independent conditions, each involving a single ϒT>9

0

at a time:

X9
T¼1

ðϒT
0 þ ϒT

1 ∂1ÞϕT − ϕð2Þ
R ¼ 0 ∀ R ¼ 1; 2; 3; ðA63Þ

where, without loss of generality, we have set ϒT>9
0 ¼ −1.

The advantage of fixing the terms accompanying the
secondary constraints is that we can factor the conditions
ϒ ·Ψ ¼ 0 in a more efficient way. For instance, evaluating

(A63) for ϕð2Þ
1 yields the nontrivial solution

ϒ1 ¼ ð0;−h;−2h1; 2G1 þ ∂1; G11; 0; 2G1
1;G

1
11; 0;−1; 0; 0Þ:

ðA64Þ

The above implies ϕð2Þ
1 is functionally dependent on the

primary Lagrangian constraints. The analogous strategy for

ϕð2Þ
2 and ϕð2Þ

3 reveals these too are functionally dependent
on the primary Lagrangian constraints. Therefore there are
no secondary Lagrangian constraints l2 ¼ 0 and the algo-
rithm terminates according to closure 3.
For completeness, we present the relations (A61) in

terms of exclusively the primary Lagrangian constraints:

ϕð2Þ
1 ¼ ð2G1 þ ∂1Þϕ4 − hϕ2 − 2h1ϕ3 þG11ϕ5 þ 2G1

1ϕ7 þ G1
11ϕ8;

ϕð2Þ
2 ¼ ∂1ϕ5 þ 2ðhϕ1 − h11ϕ3 − Gϕ4 þ G11ϕ6 − G1ϕ7 þ G1

11ϕ9Þ;
ϕð2Þ
3 ¼ ð−2G1 þ ∂1Þϕ6 þ 2h1ϕ1 þ h11ϕ2 − ðGϕ5 − G1ϕ8 þ 2G1

1ϕ9Þ: ðA65Þ
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Written in this manner, it becomes obvious that vanishing of the primary Lagrangian constraints implies vanishing of (A61)
without further restrictions on the field variables QA.
Using (2.3) and (2.4), we obtain the familiar result NDoF ¼ 0.
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