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We demonstrate that the recently introduced evanescent particles of a massive scalar field can be emitted
and absorbed by an Unruh-DeWitt detector. In doing so the particles carry away from or deposit on the
detector a quantized amount of energy, in a manner quite analogous to ordinary propagating particles.
In contradistinction to propagating particles the amount of energy is less than the mass of the field, but still
positive. We develop relevant methods and provide a study of the detector emission spectrum, emission
probability and absorption probability involving both propagating and evanescent particles.
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I. INTRODUCTION

Evanescent particles arise from the quantization of
evanescent degrees of freedom of the field [1]. Standard
treatments of quantum field theory are aimed at an
asymptotic description of scattering theory, where evan-
escent degrees of freedom are absent due to their expo-
nential decay with distance. Thus, it is only when
describing interactions from a finite distance that evanes-
cent particles explicitly come into play [2]. Technically,
they arise when quantizing the field on timelike rather than
spacelike hypersurfaces. A mathematically satisfactory
treatment of evanescent particles has been possible thanks
to the development of the novel twisted Kähler quantization
scheme [3]. In particular, the evanescent particles have a
Fock space representation with creation and annihilation
operators, just like their standard propagating counterparts.
It has been an open problem, however, to characterize their
physical properties. It is clear from the outset that in a
classical limit, evanescent particles cannot approximate the
“billiard ball” behavior of propagating particles. For one,
they do not have a notion of momentum associated to them.
(Technically speaking, we can assign them a “momentum”

that is imaginary.) It is thus crucial to understand what their
physical behavior is and in which sense it has anything to
do with our intuition of a “particle.”
Clearly, a defining property of a particle in a quantum

theory should be its ability to mediate the quantized
exchange of energy and other quantum numbers between
systems. In the present work we study the interaction of
evanescent particles with an Unruh-DeWitt (UDW) detec-
tor. This is a pointlike quantum mechanical system inter-
acting with a quantum field. It was first introduced by
Unruh [4] and refined later by DeWitt [5] to gain a better
understanding of the notions of particle and vacuum in
curved spacetime, in line with the dictum that “particles are
what a particle detector detects” [6]. In the early literature
the focus was on studying the particle concept for a detector
in motion [7]. In more recent years UDW models have
become a powerful tool in the field of relativistic quantum
information [8] and have been treated in several situations
involving the investigation of the behavior of quantum
fields when interacting locally, e.g., [9,10].
In this paper, we consider a pointlike UDW detector at

rest in Minkowski space with a Gaussian switching
function linearly coupled to a massive scalar field. To
study the interaction of the detector with different particle
content of the surrounding quantum field we first provide
a clean description of the usual asymptotic temporal
(S-matrix) picture. That is, we have initial particle states
at asymptotically early times and final particle states at
asymptotically late times. This implies the interaction
picture, where the detector is switched on at intermediate
times only, via the switching function. As was shown by
two of the authors, the asymptotic temporal picture is
equivalent to the asymptotic radial picture [11,12]. In the
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latter we have states with both incoming and outgoing
particles on the asymptotic timelike hypercylinder centered
at the origin, that is the celestial sphere extended over all
of time. Here, we are interested instead in the hypercylinder
arising from extending the sphere of finite radius, with
the UDW detector at the origin in the interior. At finite
radius evanescent particles occur in addition to propaga-
ting particles [2]. The study of their interaction with the
detector, and for comparison that of propagating particles
with the detector is the main objective of the present work.
In Sec. II we recall the basics of the UDW detector and its

interactionwith a scalar quantum field, first in aHamiltonian,
then in a path-integral setup. We introduce the temporal
(S-matrix) picture as well as the radial picture of the
interaction and recall the relation between the two pictures.
Section III is a brief review of the quantization of themassive
Klein-Gordon field on an equal-timehyperplane, using radial
coordinates. The quantization is performed in Sec. IVon the
timelike hypercylinder at finite radius. In this case, evan-
escent modes appear in addition to the propagating ones,
requiring a twisted Kähler quantization. Also, the notion of
incoming and outgoing modes is established, both for the
propagating and for the evanescent sector. The precise
relation between the temporal and radial pictures in terms
of the Hilbert spaces obtained in the previous two sections is
established in Sec. V. In Sec. VI we recall relevant amplitude
and correlator formulas, establish the Feynman diagrams and
Feynman rules for the UDW detector, and introduce our
renormalization procedure. A general discussion of emission
and absorption of both propagating and evanescent particles
by the UDW detector is provided in Sec. VII. The emission
spectrum is studied in some detail in Sec. VIII. The spon-
taneous emission probability of an excited detector is the
subject of Sec. IX. Section X deals with the absorption
probability of a detector initially in the ground state. Exten-
sive discussion and some outlook is provided in Sec. XI.
ThreeAppendices complement formulas and calculations for
Secs. II, IV, and X. We mention in particular Appendix A,
which establishes necessary conditions and sufficient con-
ditions in terms of differentiability and integrability of
the switching function in order to obtain well-defined
probabilities.

II. UNRUH-DEWITT DETECTOR
IN A TIMELIKE HYPERCYLINDER

A. UDW detector in a Klein-Gordon field

We recall the standard description of an UDW detector
interacting with a real scalar field in the Hamiltonian
formalism. Thus, the UDW detector is a nonrelativistic

system with two states, the ground state jgi and the excited
state jei. We consider a raising and a lowering operator
as follows:

σþjgi ¼ jei; σþjei ¼ 0; σ−jgi ¼ 0; σ−jei ¼ jgi: ð1Þ
Taking the excitation energy to be given by Ω, the free
Hamiltonian of the detector may be taken to be

H0 ¼
Ω
2
ðσþσ− − σ−σþÞ: ð2Þ

The monopole interaction of the detector with a real
free Klein-Gordon field is described by the interaction
Hamiltonian,

HIðτÞ ¼ λχðτÞðσ− þ σþÞϕ̂ðxðτÞÞ: ð3Þ
Here, τ is the proper time in the detector frame of reference,
x denotes the trajectory of the detector, ϕ̂ is the field
operator, and λ is a coupling constant. The switching
function χ implements an adiabatic switching on and off
of the detector at early and at late times so as to ensure that
we can have well-defined asymptotic initial and final states
of the detector. That is, 0 ≤ χðτÞ ≤ 1 and χðτÞ converges
to 0 at early and at late time. It turns out, moreover, that for
mathematically well-behaved expressions we need χ to
satisfy additional regularity conditions. A sufficient con-
dition is that χ is twice differentiable and that χ, χ0, and χ00
are all integrable, see Appendix A. Our choice of χ will
satisfy these conditions.
We switch to the interaction picture, where the inter-

action Hamiltonian takes the form,

H̃IðτÞ ¼ λχðτÞðe−iΩτσ− þ eiΩτσþÞϕ̂ðxðτÞÞ: ð4Þ
We denote the time-evolution operator from time τ0 to time
τ by Ũðτ; τ0Þ. Using time-ordered perturbation theory, this
can be expanded in the Dyson series,

Ũðτ; τ0Þ ¼
X∞
n¼0

ð−iÞn
Z

τ

τ0

dτ1

Z
τ1

τ0

dτ2 � � �

×
Z

τn−1

τ0

dτn H̃Iðτ1Þ � � � H̃IðτnÞ: ð5Þ

We are interested in the transition amplitude between initial
and final states of the field and the detector at asymptoti-
cally early and late times. If we denote the corresponding
time evolution operator by S ≔ Ũð∞;−∞Þ and the initial
and final states of the detector by ψ and those of the field by
Ψ, it is easy to work out that

hψ fin ⊗ Ψfin;Sψ ini ⊗ Ψinii ¼
X∞
n¼0

ð−iÞnλn
Z

∞

−∞
dτ1

Z
τ1

−∞
dτ2 � � �

Z
τn−1

−∞
dτn

× χðτ1Þ � � � χðτnÞfψ ini→ψ fin
ðτ1;…; τnÞhΨfin; ϕ̂ðxðτ1ÞÞ � � � ϕ̂ðxðτnÞÞΨinii: ð6Þ
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Here, the function f depends on the initial and final states of the detector as follows:

fg→gðτ1;…; τnÞ ¼ e−iΩðτ1−τ2þτ3���−τnÞ n even;

fe→eðτ1;…; τnÞ ¼ e−iΩð−τ1þτ2−τ3���þτnÞ n even;

fg→eðτ1;…; τnÞ ¼ e−iΩð−τ1þτ2−τ3���−τnÞ n odd;

fe→gðτ1;…; τnÞ ¼ e−iΩðτ1−τ2þτ3���þτnÞ n odd: ð7Þ

Note that the amplitude vanishes if the detector state is
unchanged and n is odd or when the detector state is
changed and n is even.

B. Path integral and detector observable

We note that the n-point function for the field appearing
in the amplitude (6) is time-ordered by construction. Thus,
we can obtain it from a path integral for the field. This is
inspired by the path-integral treatment in [13]. We provi-
sionally return to a setting were initial and final states live at
finite times t1 and t2. Then,

hψ fin ⊗ Ψfin; Ũðt1; t2Þψ ini ⊗ Ψinii

¼
Z

DϕΨiniðϕ1ÞΨfinðϕ2ÞOψ ini→ψ fin
ðϕÞeiSðϕÞ: ð8Þ

Here the path integral is over all field configurations
between the initial time t1 and the final time t2. Ψiniðϕ1Þ
is the Schrödinger wave function of the initial state
Ψini evaluated on ϕ1, the field configuration at time t1.
A corresponding statement holds for the final state.
Supposing that the switching function χ vanishes outside
of the time interval ½t1; t2�, we can write the observable
Oψ ini→ψ fin

as follows:

Oψ ini→ψ fin
ðϕÞ ¼

X∞
n¼0

ð−iÞnλn
Z

∞

−∞
dτ1

Z
τ1

−∞
dτ2 � � �

Z
τn−1

−∞
dτn

× χðτ1Þ � � � χðτnÞfψ ini→ψ fin
ðτ1;…; τnÞ

× ϕðxðτ1ÞÞ � � �ϕðxðτnÞÞ: ð9Þ

We return to the asymptotic setting and introduce the
following notation, where the right-hand side stands for the
limit of the path integral (8) for τ1 → −∞ and τ2 → ∞,

hψ fin ⊗ Ψfin;Sψ ini ⊗ Ψinii ¼ ρ½Oψ ini→ψ fin
�ðΨini ⊗ Ψ�

finÞ:
ð10Þ

Note a subtlety of our notation; Ψ�
fin denotes the dual of the

final state Ψfin in the dual Hilbert space. This reflects the
fact that its wave function is complex conjugated in the path
integral expression (8). More formally, ρ½Oψ ini→ψ fin

� is a
map Hini ⊗ H�

fin → C.

C. Evanescent particles and the timelike hypercylinder

In the present work we are interested in the interaction of
the detector with different particle states of the Klein-
Gordon field. In particular, we investigate the interaction
with evanescent particles [1]. The evanescent field decays
exponentially away from its source. Correspondingly,
evanescent particles are detectable only at finite distance
from the source.
Up to now we have followed the traditional picture of the

transition amplitude between states at an initial and final
time, but in all of space, see Fig. 1, left-hand side. Instead,
we consider now the amplitude for states at a finite distance
R from the detector, but at all times, see Fig. 1, right-hand
side. In the usual temporal picture interactions may happen
in all of space, but are confined between an initial time t1
and a final time t2. The initial- and final-state spaces are
associated to hypersurfaces that span all of space at fixed
times t1, t2. In contrast, in the radial picture, interactions
may happen at all times, but are confined inside a fixed
radius R. There is only one state space, associated to the
hypersurface given by the sphere of radius R in space,
extended over all of time. This scenario and its probabilistic
interpretation, was first described in [14]. Here, the states
encode both particles that enter and that leave the inter-
action region. In the traditional picture, when initial and
final times are taken to infinity, we recover the S-matrix. In
the radial picture, when the radius is taken to infinity, we
obtain an asymptotic amplitude that can be shown to be
equivalent to the S-matrix [11,12].
The state space H at radius R decomposes as a tensor

product H ¼ Hp ⊗ He, into a propagating sector Hp and
an evanescent sectorHe [2]. In turn, the propagating sector
decomposes into an incoming and an outgoing sector
Hp ¼ Hp

in ⊗ Hp
out.

1 There are natural identificationsHini ¼
Hp

in and H�
fin ¼ Hp

out between Hilbert spaces of the tem-
poral picture and corresponding Hilbert spaces of the
radial picture which lead to an exact equality of amplitudes
between the two pictures in the asymptotic limit. Moreover,
in this limit the evanescent sectorHe no longer contributes,
leading to the mentioned equivalence between the asymp-
totic radial amplitude and the S-matrix. On the other hand,

1In Sec. IV we shall see that the evanescent sector also
decomposes into an incoming and outgoing sector, but this is
unimportant here.
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at finite radius R we still have an equality of the radial
amplitude to the S-matrix if we fix the evanescent sectorHe

to the vacuum state and under the condition that any
interaction or source is confined to the interior of the sphere
of radius R in space. In the present work this is the setting
of interest.
Crucially, the relation (8) between amplitude and path

integral carries over to the radial setting, with exactly the
same expression for the observable (9). For this amplitude
we shall use the notation,

ρ½Oψ ini→ψ fin
�ðΨÞ ≔

Z
DϕΨðϕRÞOψ ini→ψ fin

ðϕÞeiSðϕÞ: ð11Þ

Here, the integral is over field configurations inside the
hypercylinder R × S2R formed by the sphere of radius R in
space, extended over all of time. ΨðϕRÞ denotes the
Schrödinger wave function of the state Ψ, evaluated on
the field configuration ϕR at radius R.2 Ψ is a state in the
radial Hilbert space H. Note that there is no problem in
combining the radial picture for the field with the tempo-
rally asymptotic picture for the detector, since the detector
always remains inside the sphere of radius R.
In light of the equality of amplitudes it is no coinci-

dence that we use the same notation ρ½Oψ ini→ψ fin
� both for

the temporal and the radial picture. More precisely, let

Ψini ∈Hini and Ψfin ∈Hfin be initial and final states of the
field in the temporal picture. Let Ψp

in ¼ Ψini, Ψ
p
out ¼ Ψ�

fin in
Hp

in andH
p
out of the radial picture under the identification of

Hilbert spaces. Then,

ρ½Oψ ini→ψ fin
�ðΨini⊗Ψ�

finÞ¼ρ½Oψ ini→ψ fin
�ðΨp

in⊗Ψp
out⊗Ψe

vacÞ:
ð12Þ

Here, Ψe
vac denotes the vacuum state in the evanescent

sector He.

III. PARTICLES ON THE EQUAL-TIME
HYPERPLANE

In the present section we describe the massive
Klein-Gordon field and its quantization on an equal-time
hypersurface in Minkowski space. The quantization is
completely standard, except for the fact that we shall use
radial coordinates. Our coordinates are ðt; r; θ;ϕÞ, with Ω a
collective notation for angular coordinates ðθ;ϕÞ.

A. Classical solutions

We parametrize the space LC of complexified solutions
of the massive Klein-Gordon equation in a neighborhood of
the equal-time hyperplane at time t0 as follows:

ϕðt; r;ΩÞ ¼
Z

∞

m
dE

p
2π

X
l;m

ðϕE;l;mjlðprÞe−iEtYm
l ðΩÞ

þ ϕ̄E;l;mjlðprÞeiEtY−m
l ðΩÞÞ: ð13Þ

FIG. 1. Temporal picture (left-hand side) vs radial picture (right-hand side). In the temporal picture states of the field and the detector
are fixed at initial and at final time. In the radial picture the state of the field is fixed at fixed radius, but at all time. The state of the
detector remains determined at (asymptotic) initial and final time.

2There are problems with the Schrödinger representation of
states in HR. However, this need not concern us as the path
integral serves here really as a placeholder for the rigorous
algebraic definition of the amplitude [3,15,16].
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Here Ym
l denote the spherical harmonics and p ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 −m2
p

. Also, jl denote the spherical Bessel functions
of the first kind. Real solutions satisfy ϕ̄E;l;m ¼ ϕE;l;m.

3 An
important ingredient for the description of the classical
dynamics and its quantization is the symplectic form on L,

ωðϕ; ξÞ ¼ 1

2

Z
dΩ dr r2ðξðt0; r;ΩÞ∂tϕðt0; r;ΩÞ

− ϕðt0; r;ΩÞ∂tξðt0; r;ΩÞÞ: ð14Þ

In the present parametrization we obtain

ωðϕ; ξÞ ¼ −
Z

∞

m
dE

ip
8π

X
l;m

ðξ̄E;l;mϕE;l;m − ξE;l;mϕ̄E;l;mÞ:

ð15Þ

Recall that the sign of the symplectic form depends on the
orientation of the hypersurface. Here it corresponds to an
initial hypersurface. Thus, for a final hypersurface there
appears a relative minus sign.

B. Quantization

For the quantization we need to choose a vacuum. For an
initial hypersurface the standard choice in our conventions
is the Lagrangian subspace

Lþ ¼ fϕ∈LC∶ϕE;l;m ¼ 0g ð16Þ

corresponding to the negative energy modes. For a final
hypersurface the standard choice is the complex conjugated
Lagrangian subspace of positive energy modes,

L− ¼ Lþ ¼ fϕ∈LC∶ϕ̄E;l;m ¼ 0g: ð17Þ

The decomposition LC ¼ Lþ ⊕ L− written as ϕ ¼ ϕþ þ
ϕ− defines the standard Kähler polarization and complex
structure. The induced positive-definite complex inner
product on L is given by

fϕ; ξg ¼ 4iωðϕ−; ξþÞ ¼
Z

∞

m
dE

p
2π

X
l;m

ðξ̄E;l;mϕE;l;mÞ:

ð18Þ

This defines the commutation relations between creation
and annihilation operators, which are, labeled by elements
ϕ; η∈L,

½aη; a†ϕ� ¼ fϕ; ηg: ð19Þ

C. Particle states

We consider particle states on the hypercylinder, char-
acterized in terms of energy and angular momentum
quantum numbers. This is in contrast to the usual para-
metrization for QFT in Minkowski space, where the most
convenient characterization of particle states is in terms of
3-momenta. Consider the field modes ΦE;l;m ∈L deter-
mined in terms of their expansion (13) as follows:

ðΦE;l;mÞE0;l0;m0 ¼ ðΦE;l;mÞE0;l0;m0 ¼
ffiffiffiffiffiffi
2π

p

s
δl;l0δm;m0δðE−E0Þ:

ð20Þ

The creation and annihilation operators satisfy the com-
mutation relations, due to (18) and (19),

½aE;l;m; a†E0;l0;m0 � ¼ δl;l0δm;m0δðE − E0Þ: ð21Þ

IV. PARTICLES ON THE TIMELIKE
HYPERCYLINDER

In the present section we describe the massive Klein-
Gordon field in radial coordinates and its quantization on
the timelike hypercylinder R × S2R, where S2R denotes the
two-sphere in space of radius R, centered at the origin. We
largely give a summary of the treatment of [2], although
with some modifications. In particular, we treat propagating
and evanescent modes in a more uniform way here, more in
line with the work [15].

A. Classical solutions

We parametrize the space LC of complexified solutions
of the massive Klein-Gordon equation in a neighborhood of
the hypercylinder R × S2R as follows:

ϕðt; r;ΩÞ ¼
Z

∞

0

dE
p
4π

X
l;m

ððϕout
E;l;mdlðprÞ

þϕin
E;l;mdlðprÞÞe−iEtYm

l ðΩÞ
þ ðϕout

E;l;mdlðprÞþϕin
E;l;mdlðprÞÞeiEtY−m

l ðΩÞÞ:
ð22Þ

Here Ym
l denote the spherical harmonics and p ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jE2 −m2j
p

. Also,

dlðprÞ ≔
�
jlðprÞ þ inlðprÞ if E > m

i−ljlðiprÞ − ilnlðiprÞ if E < m
; ð23Þ

where jl and nl are the spherical Bessel functions of
the first and second kind, respectively. Note that the linear
combination jl þ inl is a spherical Bessel function of
the third kind. We remark that i−ljlðiprÞ is real while

3Note that the overline on the left-hand side is notation, while
on the right-hand side it indicates complex conjugation.
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ilnlðiprÞ is imaginary. Real solutions satisfy ϕout
E;l;m ¼

ϕout
E;l;m and ϕin

E;l;m ¼ ϕin
E;l;m.

4

Solutions that are regular in the interior M of the
hypercylinder are those where only Bessel functions of
the first kind (and its analytical continuations), but not
of the second kind contribute. We denote the subspace of
these solutions by LC

M ⊆ LC,

LC
M ¼ fϕ∈LC∶ϕin

E;l;m ¼ ϕout
E;l;m;ϕ

in
E;l;m ¼ ϕout

E;l;mg: ð24Þ

We also note that klðzÞ ¼ ðπ=2Þð−iljlðizÞ − ilþ1nlðizÞÞ
and k̃lðzÞ ¼ klð−zÞ are modified spherical Bessel func-
tions that are real for z∈R. klðzÞ decays exponentially for
increasing z. As long as z is not small, k̃lðzÞ decays
exponentially for decreasing z.
An important ingredient for the description of the

classical dynamics and its quantization is the symplectic
form on L,5

ωðϕ; ξÞ ¼ R2

2

Z
dt dΩðξðt; R;ΩÞ∂rϕðt; R;ΩÞ

− ϕðt; R;ΩÞ∂rξðt; R;ΩÞÞ: ð25Þ
In the present parametrization we obtain

ωðϕ; ξÞ ¼ −
Z

∞

0

dE
ip
8π

X
l;m

ðξoutE;l;mϕ
out
E;l;m þ ξinE;l;mϕ

in
E;l;m

− ξoutE;l;mϕ
out
E;l;m − ξinE;l;mϕ

in
E;l;mÞ: ð26Þ

B. Incoming and outgoing modes

In expression (23) we can appreciate the distinction
between propagating modes (with E > m) and evanescent
modes (with E < m), which we denote by LC ¼ Lp;C ⊕
Le;C. The latter only occur in the case where the field is
massive. For a spacelike hypersurface, the latter modes
would not be present even in the massive case as there are
no such modes that are well-defined and bounded in all of
space. The propagating modes are described in terms of
Bessel functions of the third kind, which asymptotically
(for large radius) behave like sine and cosine waves with
an inverse radial decay of the amplitude. In contrast, the
evanescent modes are described by modified spherical
Bessel functions that show exponential behavior (growth
or decay) in the radial direction.
For propagating modes, their asymptotic form shows

that they can always be decomposed into components
consisting of waves that move either radially into the origin
or radially out of the origin. This decomposition into

incoming and outgoing solutions (with respect to the
interior of the hypercylinder), can be formalized as already
suggested by our previous notation as follows:

Lin;C ¼ fϕ∈LC∶ϕout
E;l;m ¼ 0;ϕout

E;l;m ¼ 0g; ð27Þ

Lout;C ¼ fϕ∈LC∶ϕin
E;l;m ¼ 0;ϕin

E;l;m ¼ 0g: ð28Þ

We have the direct sum decomposition LC ¼Lin;C ⊕Lout;C.
For evanescent modes, there is apparently no comparable
sense in which they may be considered incoming or
outgoing with respect to the hypercylinder since they
are not oscillating in the radial direction. However, as we
shall see shortly, there is a well-defined sense in which the
evanescent modes can also be decomposed in terms of
incoming and outgoing modes. What is more, this decom-
position is precisely as indicated implicitly in the para-
metrization (22). To see this, consider the flow of energy
through the timelike hypercylinder as measured by the
energy-momentum tensor. More precisely, we integrate
the T0i component of the energy-momentum tensor over
the sphere of radius r in space, where i denotes the spatial
direction perpendicular to the sphere. We write this com-
ponent as T0r. Additionally, we integrate over time so as to
obtain the total flux F through the hypercylinder. For a real
solution ϕ we obtain,

FðϕÞ ¼ R2

Z
dt dΩT0rðϕÞ

¼ R2

Z
dt dΩð∂0ϕÞðt; R;ΩÞð∂rϕÞðt; R;ΩÞ ð29Þ

¼ iR2

Z
∞

0

dE
p3E
8π

X
l;m

ðjϕin
E;l;mj2 − jϕout

E;l;mj2Þ

× ðdlðpRÞd0lðpRÞ − dlðpRÞd0lðpRÞÞ

¼
Z

∞

0

dE
pE
4π

X
l;m

ðjϕin
E;l;mj2 − jϕout

E;l;mj2Þ: ð30Þ

From this expression we can read off that, indeed, the
incoming modes carry energy flux into the hypercylinder,
while the outgoing modes carry energy flux out of the
hypercylinder. With our conventions [particularly expres-
sion (23)] this is true both for the propagating and the
evanescent sector.

C. Quantization in the propagating sector

For the propagating solutions, quantization proceeds in
close analogy to the standard Kähler quantization which
is well-established for spacelike hypersurfaces. The key
ingredient is the Lagrangian subspace encoding the physi-
cal vacuum in the form of the Wick-rotated asymptotic
vanishing condition of the field where

4Note that the overlines on the left-hand sides are notations,
while on the right-hand sides they indicate complex conjugation.

5Compared with [2], we set ω ¼ ωR̄ ¼ −ωR.
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Lp;C
X ¼ fϕ∈Lp;C∶ϕin

E;l;m ¼ 0;ϕout
E;l;m ¼ 0g: ð31Þ

The decomposition Lp;C ¼ Lp;C
X ⊕ Lp;C

X , which we write
as ϕ ¼ ϕþ þ ϕ−, thus defines a Kähler polarization,
analogous to the decomposition into positive and negative
energy solutions for spacelike hypersurfaces. We obtain a
complex structure and a positive-definite complex inner
product on Lp,6

fϕ; ξgp ¼ 4iωpðϕ−; ξþÞ

¼
Z

∞

m
dE

p
2π

X
l;m

ðξoutE;l;mϕ
out
E;l;m þ ξinE;l;mϕ

in
E;l;mÞ:

ð32Þ

The corresponding quantization defines the commutation
relations between creation and annihilation operators,
which are, labeled by elements ϕ; η∈Lp,

½aη; a†ϕ� ¼ fϕ; ηgp: ð33Þ

D. Quantization in the evanescent sector

For evanescent modes the physical vacuum in the
exterior of the hypercylinder is determined by a (non-
Wick-rotated) decaying boundary condition [17]. This is
encoded in the Lagrangian subspace given by [2]

Le;C
X ¼ fϕ∈Le;C∶ϕout

E;l;m ¼ −ð−1Þliϕin
E;l;m;

ϕout
E;l;m ¼ ð−1Þliϕ in

E;l;mg: ð34Þ

Le;C
X defines a real polarization rather than a Kähler

polarization. This requires the application of the novel
twisted Kähler quantization scheme developed for this
purpose [3]. To this end we choose correspondingly a
vacuum for the interior of the hypercylinder in terms of a
complementary Lagrangian subspace. This is determined
by a decay condition to the interior [2],

Le;C
<R ¼ fϕ∈Le;C∶ϕout

E;l;m ¼ ð−1Þliϕin
E;l;m;

ϕout
E;l;m ¼ −ð−1Þliϕ in

E;l;mg: ð35Þ

Moreover, we need a real structure α∶Le;C → Le;C, com-
patible with the symplectic structure, the polarization, and
positive definite [3]. It turns out that imposing spacetime
symmetries and a certain compatibility condition (called
interior compatibility) determines a unique real structure
given in [2], see relations (B1) of Appendix B. Decom-
posing Le;C ¼ Le;C

X ⊕ Le;C
<R with notation ϕ ¼ ϕþ þ ϕ− we

have for the bilinear form corresponding to (32),

fϕ; ξge ¼ 4iωeðϕ−; ξþÞ ¼
Z

m

0

dE
p
4π

X
l;m

× ðξoutE;l;mϕ
out
E;l;m − ξoutE;l;mϕ

out
E;l;m

þ ξinE;l;mϕ
in
E;l;m − ξinE;l;mϕ

in
E;l;m

þ ð−1Þlþ1iðξinE;l;mϕout
E;l;m þ ξinE;l;mϕ

out
E;l;m

þ ξoutE;l;mϕ
in
E;l;m þ ξoutE;l;mϕ

in
E;l;mÞÞ ð36Þ

This is positive-definite on the α-twisted real solution space
Le;α ¼ fϕ∈Le;C∶αðϕÞ ¼ ϕg. The creation and annihila-
tion operators are labeled by elements of Le;α, and satisfy
the commutation relations analogous to the propagating
sector (33),

½aη; a†ϕ� ¼ fϕ; ηge: ð37Þ
The total Hilbert space of states associated to the
hypercylinder is the (completed) tensor product of the
Hilbert spaces for the propagating and evanescent sec-
tors, H ¼ Hp ⊗ He.
For the evanescent sector, the parametrization of creation

and annihilation operators in terms of elements of the twisted
phase spaceLe;α instead of the ordinary phase spaceLe poses
a problem in terms of the semiclassical interpretation of
states. To remedy this we introduce a linear mapping
Ie∶Le → Le;α, bringing the two spaces into correspondence

]2,3 ]. For our present parametrization this is provided by
relations (B2) of Appendix B. This appendix also contains
additional expressions arising in the quantization problem,
required for some calculations in later sections.

E. Particle states

In this section we consider particle states on the hyper-
cylinder, characterized in terms of energy and angular-
momentum quantum numbers, as well as a binary quantum
number distinguishing incoming from outgoing particles
(in the sense of Sec. IV B). Consider the field modes
Φin;E;l;m;Φout;E;l;m ∈L determined in terms of their expan-
sion (22) as follows:

ðΦout;E;l;mÞoutE0;l0;m0 ¼ ðΦout;E;l;mÞoutE0;l0;m0

¼
ffiffiffiffiffiffi
2π

p

s
δl;l0δm;m0δðE − E0Þ; ð38Þ

ðΦin;E;l;mÞinE0;l0;m0 ¼ ðΦin;E;l;mÞinE0;l0;m0

¼
ffiffiffiffiffiffi
2π

p

s
δl;l0δm;m0δðE − E0Þ: ð39Þ

The other coefficients are zero. In the propagating sector
(see Sec. IV C) the creation and annihilation operators
satisfy the commutation relations, due to (32) and (33),6Compared with [2] we set f·; ·g ¼ f·; ·gR̄.
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½ain;E;l;m; a†in;E0;l0;m0 � ¼ δl;l0δm;m0δðE − E0Þ; ð40Þ

½aout;E;l;m; a†out;E0;l0;m0 � ¼ δl;l0δm;m0δðE − E0Þ: ð41Þ

Commutators involving both incoming and outgoing par-
ticles vanish.

In the evanescent sector, the modes we have defined,
cannot be directly considered for quantization as they live
in the real phase space Le rather than in the α-twisted phase
space Le;α. We use the identification map Ie given by (B2)
to obtain the corresponding elements in Le;α and denote
them with a tilde, Φ̃• ¼ IeðΦ•Þ. This yields,

ðΦ̃out;E;l;mÞoutE0;l0;m0 ¼ ðΦ̃out;E;l;mÞoutE0;l0;m0 ¼
ffiffiffiffi
π

p

r
δl;l0δm;m0δðE − E0Þ;

ðΦ̃out;E;l;mÞinE0;l0;m0 ¼ ðΦ̃out;E;l;mÞinE0;l0;m0 ¼ ð−1Þli
ffiffiffiffi
π

p

r
δl;l0δm;m0δðE − E0Þ; ð42Þ

ðΦ̃in;E;l;mÞoutE0;l0;m0 ¼ ðΦ̃in;E;l;mÞoutE0;l0;m0 ¼ ð−1Þli
ffiffiffiffi
π

p

r
δl;l0δm;m0δðE − E0Þ;

ðΦ̃in;E;l;mÞinE0;l0;m0 ¼ ðΦ̃in;E;l;mÞinE0;l0;m0 ¼
ffiffiffiffi
π

p

r
δl;l0δm;m0δðE − E0Þ: ð43Þ

Using the obvious notation for the corresponding creation
and annihilation operators, from (36) and (37), these satisfy
the same commutation relations (40) and (41), as in the
propagating case.
The commutation relations (40) and (41), lead to a

simple completeness relation for the 1-particle subspace
H1 ⊆ H,

id1 ¼
X
l;m

Z
∞

0

dEðPin;E;l;m þ Pout;E;l;mÞ: ð44Þ

Here, P•;E;l;m represents a projectionlike operator onto the
corresponding state,7

P•;E;l;m ¼ a†•;E;l;mj0ih0ja•;E;l;m: ð45Þ

The completeness relation extends straightforwardly to
the n-particle sector of the state space. In that case there
will be n sums and integrals over the energy and angular-
momentum quantum numbers.
For the calculation of amplitudes it will be instrumental

to consider the following decomposition of the complexi-
fied phase space arising from the choice of vacuum,

LC ¼ LC
M ⊕ LC

X; written as ξ ¼ ξint þ ξext: ð46Þ

We calculate the components ξint of the (twisted) phase
space elements ξ encoding the particle states. For propa-
gating particles, ξ ¼ Φ• ∈Lp, we obtain with (38) and (39),

ðΦout;E;l;mÞintðt; r;ΩÞ ¼
ffiffiffiffiffiffi
p
2π

r
jlðprÞeiEtY−m

l ðΩÞ; ð47Þ

ðΦin;E;l;mÞintðt; r;ΩÞ ¼
ffiffiffiffiffiffi
p
2π

r
jlðprÞe−iEtYm

l ðΩÞ: ð48Þ

For the evanescent particles, ξ ¼ Φ̃• ∈Le;α we obtain with
(42) and (43),

ðΦ̃out;E;l;mÞintðt; r;ΩÞ

¼
ffiffiffiffiffiffi
p
4π

r
ð1þ ð−1ÞliÞi−ljlðiprÞeiEtY−m

l ðΩÞ; ð49Þ

ðΦ̃in;E;l;mÞintðt; r;ΩÞ

¼
ffiffiffiffiffiffi
p
4π

r
ð1þ ð−1ÞliÞi−ljlðiprÞe−iEtYm

l ðΩÞ: ð50Þ

V. EQUIVALENCE OF AMPLITUDES

In terms of the quantizations discussed in Secs. III and IV,
the equivalence of amplitudes for the temporal and the radial
picture mentioned in Sec. II C can be expressed as follows.8

Underlying this are two maps from the space of solutions on
an equal-time hyperplane to the propagating sector of the
space of solutions on the timelike hypercylinder,

τini∶L → Lp; and τfin∶L → Lp: ð51Þ

7The operators P•;E;l;m are not actual projection operators due
to the singular nature of the commutation relations with respect to
the energy variable.

8Tools and notations used to express the equivalence here
differ considerably from those used in the original papers [11,12].
The present methods are based on more recent works, in
particular [3,15–17].
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Here, L denotes the space of solutions for the equal-time
hyperplane (Sec. III), while Lp denotes the propagating
sector of the space of solutions for the timelike hypercylinder
(Sec. IV). These maps are given as follows:

ðτiniðϕÞÞinE;l;m ¼ ϕE;l;m; ðτiniðϕÞÞinE;l;m ¼ ϕ̄E;l;m;

ðτiniðϕÞÞoutE;l;m ¼ ðτiniðϕÞÞoutE;l;m ¼ 0; ð52Þ

ðτfinðϕÞÞoutE;l;m ¼ ϕ̄E;l;m; ðτfinðϕÞÞoutE;l;m ¼ ϕE;l;m;

ðτfinðϕÞÞinE;l;m ¼ ðτfinðϕÞÞinE;l;m ¼ 0: ð53Þ

The Fock quantization of these maps gives rise to the
isomorphisms of Hilbert spaces Hini → Hp

in and H�
fin →

Hp
out. The nontrivial result of [11,12] is that this establishes

an equivalence of interacting amplitudes between the
temporal and the radial picture (Sec. II C) at the level of
perturbation theory. It is useful to express this more con-
cretely at the level of states. To this end we use the following
notation for n-particle states, where ξ1;…; ξn ∈L,

Ψξ1;…;ξn ≔ a†ξ1 � � �a
†
ξn
Ψvac: ð54Þ

Here, Ψvac denotes the vacuum state. We may now express
the equivalence of amplitudes as follows:

ρ½F�ðΨξ1;…;ξn ⊗ Ψ�
η1;…;ηmÞ

¼ ρ½F�ðΨτiniðξ1Þ;…;τiniðξnÞ;τfinðη1Þ;…;τfinðηmÞÞ: ð55Þ

The left-hand side represents the amplitude in the temporal
picture, for initialn-particle stateΨξ1;…;ξn and finalm-particle
state Ψη1;…;ηm . The right-hand side represents the ampli-
tude in the radial picture, for the (nþm)-particle state
Ψτiniðξ1Þ;…;τiniðξnÞ;τfinðη1Þ;…;τfinðηmÞ in the propagating sector of
the Hilbert space. The symbol F represents a generic
observable or source, restricted to the interior of the hyper-
cylinder and vanishing at positive and negative infinite time.
As we have seen in Sec. II, the UDW detector with fixed
initial and final state induces precisely such an observable.
Note that the structure of the maps τ means that initial
particles are mapped to incoming particles and final particles
are mapped to outgoing particles, as one should expect.
Furthermore, the particle states with definite quantum
numbers defined in Secs. III C and IV E are mapped to each
other conserving the quantum numbers, again, as one should
expect. That is, an initial particle with given energy and
angularmomentum corresponds to an incoming particlewith
the same energy and angular momentum. The same for final
particles corresponding to outgoing particles.
In the remainder of this work, we focus exclusively on the

radial picture in evaluating amplitudes and probabilities for
the interaction of the UDWdetector with particles. However,
when restricting to the vacuum state in the evanescent sector,
due to the discussed equivalence, this implies the exact

corresponding results for the temporal picture. We shall
comment on this relation from time to time.

VI. AMPLITUDES, FEYNMAN DIAGRAMS
AND RENORMALIZATION

In the present section we show how to evaluate the
amplitudes (11) describing the interaction of the UDW
detector with states of the Klein-Gordon field.

A. Amplitudes

We review some (generalizations of) mostly well-known
identities from quantum field theory. As a specific reference
adapted to the present framework we point the reader to [3].
We write ρðΨÞ to denote the free field theory amplitude
for a stateΨ∈H on the hypercylinder. As noted previously,
we can think of this amplitude as given by the Feynman
path integral over field configurations in the interior of the
hypercylinder. We recall that the free amplitude for an
n-particle state decomposes into products of 2-particle
amplitudes if n ¼ 2m is even, and vanishes otherwise,

ρðΨξ1;…;ξnÞ ¼
1

2mm!

X
σ ∈ S2m

Ym
j¼1

ρðΨξσð2j−1Þ;ξσð2jÞ Þ: ð56Þ

Here, σ runs over the elements of the permutation group
S2m of 2m elements. The 2-particle amplitude can be
written as the following bilinear symmetric expression,

ρðΨξ1;ξ2Þ ¼ fξ1; ξint2 g ¼ fξ2; ξint1 g
¼ fξ1; uðξ2Þg ¼ fξ2; uðξ1Þg: ð57Þ

Apart from the structures defined in Sec. IV we are also
using here the map u defined in Appendix B.
Before considering the amplitudes arising in the field

theory from the interaction with the UDWdetector (compare
Secs. II B and II C), we consider amplitudes with generic
insertions of observables. We use the notation ρ½O�ðΨÞ to
denote the amplitude for a stateΨwith observableO inserted.
We recall that it is convenient in the description of scattering
processes to distinguish contributions according to whether
or not external particles participate in the scattering process.
This leads to the following decomposition of the interacting
amplitude see Sec. 6.6 in Ref. [3],

ρ½O�ðΨξ1;…;ξnÞ ¼
Xbn=2c
m¼0

X
σ ∈ Sn

1

ð2mÞ!ðn − 2mÞ! ρðΨξσð1Þ;…;ξσð2mÞ Þ

× ρc½O�ðΨξσð2mþ1Þ;…;ξσðnÞ Þ: ð58Þ

Here, ρc½O� denotes the connected amplitude,9 where
all external particles participate in the scattering process.

9This is not to be confused with the notion of connected
Feynman diagram.
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In terms of Feynman diagrams, the connected amplitude
only comprises diagrams where all external particles are
connected to interaction vertices. For a generic Feynman
diagram, the other particles are paired up as seen in
expression (56). Each of these pairs thus represents a single
particle that enters and leaves the hypercylinder undisturbed,
without interacting.
We proceed to consider the connected amplitude of

an arbitrary state Ψ with a product D1 � � �Dn of linear
observables. This decomposes as follows (see Sec. 6.5 in
Ref. [3]):

ρc½D1 � � �Dn�ðΨÞ

¼
Xbn=2c
m¼0

X
σ ∈ Sn

1

2mm!ðn − 2mÞ! ρc½∶Dσð2mþ1Þ � � �DσðnÞ∶�ðΨÞ

×
Ym
j¼1

ρ½Dσð2j−1ÞDσð2jÞ�ðΨvacÞ: ð59Þ

Here, ρc½∶O∶�ðΨÞ denotes the connected amplitude with
the observable O quantized according to normal ordering.
This in turn is nonvanishing only if the degree of the
observable coincides with the particle number,

ρc½∶D1 � � �Dn∶�ðΨξ1;…;ξnÞ ¼
X
σ ∈ Sn

Yn
k¼1

ρ½Dk�ðΨξσðkÞ Þ: ð60Þ

The last two relations have the following interpretation in
terms of Feynman diagrams. The observable D1 � � �Dn
represents a single or a product of various vertices. In total
these vertices have n legs. In each Feynman diagram some
of these legs are connected to each other with propagators.
This is represented by the rightmost term in expression
(59), the vacuum amplitudes with pairs of linear observ-
ables. The other legs, represented by the normal ordered
amplitude appearing in expression (59) carry the external
particle lines, as becomes clear from expression (60).
It remains to evaluate the amplitude for a linear observ-

able on a single-particle state. For ξ∈Lp ⊕ Le;α,

ρ½D�ðΨξÞ ¼
ffiffiffi
2

p
DðξintÞ: ð61Þ

[Recall the decomposition (46).]

B. Feynman diagrams and Feynman rules

We are now ready to evaluate amplitudes for the inter-
action of multiparticle states of the field with the UDW
detector. Thus, we consider amplitudes with the observable
Oψ in→ψout

given by expression (9). With the previously
established relations, we can read off Feynman rules and
Feynman diagrams. We focus on the integrand at a fixed
order m (in λ) contribution to the observable,

ð−iÞmλmχðτ1Þ � � � χðτmÞfψ in→ψout
ðτ1;…; τmÞϕðxðτ1ÞÞ

� � �ϕðxðτmÞÞ: ð62Þ

This yields Feynman diagrams with m vertices, one for
each time variable. These Feynman diagrams naturally live
in a spacetime representation, rather than the more usual
momentum space representation. The vertex k is located in
spacetime at event xðτkÞ, i.e., the event that the detector
passes at proper time τk. It is convenient to depict this
diagrammatically as a vertical line with time running from
bottom to top. We mark m points on the line, labeled from
top to bottom by τ1 to τm. Each vertex corresponds to a flip
of the state of the detector, either from ground to excited
state, or from excited to ground state. Thus, to each line
segment between adjacent vertices corresponds a definite
state of the detector. Moreover, these detector states
alternate at each vertex. We depict the ground state by a
straight line and the excited state by a dashed line. We can
read off from expression (62) and the formula (7), a factor
for each vertex, depending on the detector transition at
the vertex,

g → e∶ − iλχðτÞeiΩτ; e → g∶ − iλχðτÞe−iΩτ: ð63Þ

As usual, we depict the bosonic field ϕ by wavy lines.
We read off from expression (62) that a wavy line ends at
each vertex, corresponding to the factor ϕðxðτkÞÞ. The
other end points of the wavy lines are the external particle
lines. For an n particle state Ψξ1;…;ξn we have n such
external particle lines, labeled by the phase space elements
ξ1;…; ξn. This is illustrated in Fig. 2 with Feynman
diagrams with a single vertex. In general, the wavy lines
may connect:
(1) external particle lines with each other;
(2) a vertex with another vertex; or
(3) a vertex with an external particle line.

In the first case we have a non-connected amplitude and
obtain a factor fξk; ξintl g for the wavy line, as can be read
off from formulas (56) and (57), taking into account
formula (58). In the second case we obtain a factor
ρ½ϕðxðτkÞÞϕðxðτlÞÞ�ðΨvacÞ as can be read off from for-
mula (59). This is just the Feynman propagator evaluated at

FIG. 2. Vertices corresponding to particle emission (a) and
absorption (b).
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the points xðτkÞ and xðτlÞ. In the third case we obtain a
factor of

ffiffiffi
2

p
ξintk ðxðτlÞÞ as can be read off from formulas (60)

and (61). Taking the product of the vertex factors and field-
line factors we obtain an expression Aðτ1;…; τnÞ that
depends on the times τ1 ≥ τ2 ≥ � � � ≥ τn assigned to the
vertices. It remains to perform the interdependent time
integrals, as can be read off from expression (9). This yields
the amplitude associated to the Feynman diagram,Z

∞

−∞
dτ1

Z
τ1

−∞
dτ2 � � �

Z
τn−1

−∞
dτnAðτ1;…; τnÞ: ð64Þ

C. Renormalization

Consider the Feynman diagrams (a) and (b) of Fig. 3.
The first is a correction to the UDW propagator due to the
interaction of the detector with the field vacuum. The
second is a corresponding correction to the UDW vertex.
There are more complicated corrections as well. In any
case, already these simple corrections are divergent, when
the involved vertices approach each other (in detector
proper time). This is not surprising as we allow the detector
to interact with the field vacuum repeatedly on arbitrarily
short time scales. This was not the intended meaning when
writing down the UDW Hamiltonians (2) and (3). These
Hamiltonians were meant to describe the free evolution
already with the field vacuum present, and the interaction
with real (rather than virtual) particles only. That is, they
should be regarded as describing the complete propagator
and interaction, where the mentioned corrections are
already taken into account and have been summed up.
This is our renormalization prescription. UDW propagator
and interaction already being complete translates in terms
of diagrams simply into the absence of any diagram with
wavy lines connecting vertices with each other. As can be

seen from formula (59), this is precisely achieved if
we impose normal ordered quantization on the detector
observable Oψ ini→ψ fin

from the outset. We remark that the
relation (58) for the decomposition into connected ampli-
tudes has an exact analog for normal ordered quantization,

ρ½∶O∶�ðΨξ1;…;ξnÞ ¼
Xbn=2c
m¼0

X
σ ∈ Sn

1

ð2mÞ!ðn − 2mÞ!
× ρðΨξσð1Þ;…;ξσð2mÞ Þ
× ρc½∶O∶�ðΨξσð2mþ1Þ;…;ξσðnÞ Þ: ð65Þ

The evaluation of the normal ordered connected amplitude
then proceeds directly with relation (60) while relation (59)
is dropped. The Feynman rules are the same as before,
while Feynman diagrams are restricted to not allow wavy
lines connecting pairs of vertices. That is, the Feynman
diagrams are tree-level only and may not contain any loops.

VII. EMISSION AND ABSORPTION

In this paper we study the interaction of an inertial UDW
detector with different particle states, with an emphasis on
the novel notion of evanescent particle. Thus, the UDW
detector remains at the origin, xðτÞ ¼ ðτ; 0⃗Þ. What is more,
it is switched on and off adiabatically via a switching
function that we take to be a Gaussian,

χðτÞ ¼ exp

�
−π

�
τ

T

�
2
�
: ð66Þ

Note that this function satisfies the sufficient regularity
conditions laid out in Appendix A. Here, T is a timescale.
It is chosen so that the integral over χ yields T. In other
words, if the switching function was a characteristic
function for a time interval, T would be the duration of
the interval. We can thus think of T intuitively as the time
duration for which the detector is switched on.
We start with the simplest process corresponding to

emission or absorption of a single particle. We consider
emission first. With the previously discussed Feynman
rules, the amplitude for the transition of the UDW detector
from the excited to the ground state with a single particle
state on the hypercylinder is given by

ρ½Oe→g�ðΨξÞ ¼ −i
ffiffiffi
2

p
λ

Z
∞

−∞
dτ χðτÞe−iΩτξintðτ; 0⃗Þ: ð67Þ

Similarly, for absorption, we obtain

ρ½Og→e�ðΨξÞ ¼ −i
ffiffiffi
2

p
λ

Z
∞

−∞
dτ χðτÞeiΩτξintðτ; 0⃗Þ: ð68Þ

Recall that ξint is a regular (i.e., well-defined in the interior
of the hypercylinder), but in general complexified, solution

FIG. 3. Examples of diagrams renormalizing the propagator (a)
and the vertex (b).
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of the Klein-Gordon equation determined by the particle
state. Since ξint is evaluated at the origin in space, we can
read off from the parametrization (22) and (23) that the
coefficients ðξintÞ•E;l;m corresponding to nontrivial angular
momentum l ≠ 0 do not contribute. In other words,
particles with nonvanishing angular momentum can neither
be emitted nor absorbed by the detector. This is, of course,
exactly what we expect due to the spherical symmetry of
the system. In the following, we limit ourselves thus to
external particles with vanishing angular momentum. The
remaining quantum numbers that we use are the energy and
the binary in/out quantum number. For simplicity, we use
the notation Ψin

E ≔ ΨΦin;E;0;0 and Ψout
E ≔ ΨΦout;E;0;0 for propa-

gating 1-particle states and Ψin
E ≔ ΨΦ̃in;E;0;0 and Ψout

E ≔
ΨΦ̃out;E;0;0 for evanescent 1-particle states.

A. Propagating particles

We consider propagating particles first. With the particle
states defined as in Sec. IV E, the amplitude for emission of
an outgoing particle of energy E is [compare particularly
Eq. (47)]

ρ½Oe→g�ðΨout
E Þ ¼ −

i
2π

λ
ffiffiffiffi
p

p Z
∞

−∞
dτχðτÞeiðE−ΩÞτ: ð69Þ

To evaluate this and similar integrals we recall the equality,

Z
∞

−∞
dτ χðτÞeisτ ¼ T exp

�
−
s2T2

4π

�
: ð70Þ

As a function of s, this is a Gaussian peaked at s ¼ 0. The
emission amplitude is thus,

ρ½Oe→g�ðΨout
E Þ ¼ −

i
2π

λ
ffiffiffiffi
p

p
T exp

�
−
ðE −ΩÞ2T2

4π

�
: ð71Þ

The amplitude peaks when the particle energy E coincides
with the detector energy gap Ω. On the grounds of con-
servation of energy we would expect the detector to emit a
particle of energy exactly E ¼ Ω. That the amplitude and
thus the probability of emission is non-zero, but exponen-
tially suppressed for E away from Ω is attributed to the
unmodeled external influence that switches the detector on
and off. Indeed, the peak of the amplitude increases in height
and decreases in width when T increases, i.e., when the
switching is more adiabatic. In the limit of large T, we obtain
a well-known delta-function dependence,

lim
T→∞

ρ½Oe→g�ðΨout
E Þ ¼ −iλ

ffiffiffiffi
p

p
δðE −ΩÞ: ð72Þ

Note that we have taken the particle to be outgoing, which
is what we expect to be produced by the detector (recall
Sec. IV B). If, in contrast,we take the particle to be incoming,
we obtain the emission amplitude,

ρ½Oe→g�ðΨin
E Þ ¼ −

i
2π

λ
ffiffiffiffi
p

p Z
∞

−∞
dτ χðτÞe−iðEþΩÞτ

¼ −
i
2π

λ
ffiffiffiffi
p

p
T exp

�
−
ðEþ ΩÞ2T2

4π

�
: ð73Þ

As expected, this is highly suppressed and vanishes in the
limit T → ∞. We consider this type of amplitude as
unphysical, and an artifact of the simplicity of the model.
Considering single particle absorption instead of emis-

sion leads to precisely the same amplitudes, except for the
interchange of incoming and outgoing quantum numbers.
The discussion of particle energies is also analogous with
absorption peaks where the incoming particle energy
matches the detector energy gap. Absorption of outgoing
particles is highly suppressed and vanishes in the limit of
large T.

B. Evanescent particles

We proceed to consider the interaction of the UDW
detector with evanescent particles. With the mathematical
machinery in place, we can read off the amplitudes as in the
propagating case. Thus, the amplitude for the emission of
an outgoing evanescent particle is given by [compare
Eq. (49)]

ρ½Oe→g�ðΨout
E Þ¼−

ieπi=4

2π
λ

ffiffiffiffi
p

p Z
∞

−∞
dτχðτÞeiðE−ΩÞτ

¼−
ieπi=4

2π
λ

ffiffiffiffi
p

p
T exp

�
−
ðE−ΩÞ2T2

4π

�
: ð74Þ

This looks strikingly similar to the amplitude for a
propagating particle [compare Eqs. (69) and (71)].
Apparently, the difference is only a phase factor eπi=4.
However, there is another important difference. In the
evanescent case, p is not the particle momentum, but
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

p
. (In both cases p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE2 −m2j

p
.)

The first and most important result here is that, yes,
evanescent particles are emitted by the detector and carry
away energy. Moreover, they do so in a manner very similar
to propagating particles. The amplitude peaks when the
particle energy coincides with the detector energy gap. For
this to occur the detector energy gap has to be smaller than
the mass of the field. Also, as in the propagating case, in the
infinite time limit T → ∞ the amplitude becomes a delta
function. If we replace the outgoing particle with an
incoming one, the amplitude becomes

ρ½Oe→g�ðΨin
E Þ ¼−

ieπi=4

2π
λ

ffiffiffiffi
p

p
T exp

�
−
ðEþΩÞ2T2

4π

�
: ð75Þ

This is again completely analogous to the propagating case
with an amplitude that is highly suppressed. What is more,
the amplitudes for absorption are exactly the same as those

COLOSI, OECKL, and ZAMPELI PHYS. REV. D 109, 025009 (2024)

025009-12



for emission, except for the interchange of “incoming” and
“outgoing” quantum numbers.
As a second significant result we thus find that the

evanescent particles can indeed be meaningfully charac-
terized as “incoming” and “outgoing” in the sense of
transporting energy into or out of the hypercylinder, just
like their propagating counterparts. This might seem
surprising from the point of view of an intuition trained
on situations in classical physics where evanescent waves
are associated with a lack of transport of energy. However,
as seen in Sec. IV B, this behavior has an exact classical
counterpart.
This leads us to the third result we would like to stress.

That is, the modes labeled as “incoming” or “outgoing” in
the classical theory (Sec. IV B) are precisely mapped to the
quantum particle states with the corresponding property,
not only in the propagating, but also in the evanescent
sector. And this is the case in spite of significant differences
in the quantization scheme between the two sectors. In
other words, the novel twisted Kähler quantization scheme
is “correct” not only for the energy quantum number
(which is easy to achieve due to time-translation sym-
metry), but also for the much more intricate “incoming”/
“outgoing” quantum number. This appears to be a non-
trivial result.

VIII. EMISSION SPECTRUM

In the present section we consider the emission spectrum
of the UDW detector. That is, we quantify the probability
density of particle emission as a function of the particle
energy. The precise assumptions are the following:

(i) The detector is at early times in the excited state and
at late times in the ground state.

(ii) There is exactly one particle in the boundary Hilbert
space. The particle is outgoing and has exact energy
and angular momentum quantum numbers.

As we saw previously, the amplitude vanishes if the angular
momentum of the particle is nonvanishing, so we can
restrict to consider the energy as the only explicit variable.
With the completeness relation (44) restricted to the out-
going sector, we obtain the probability per unit energy,

PðEÞ ¼ jρ½Oe→g�ðΨout
E Þj2R

∞
0 dE0jρ½Oe→g�ðΨout

E0 Þj2 : ð76Þ

With expressions (71) and (74) this is

PðEÞ ¼
pðEÞ exp

�
− ðE−ΩÞ2T2

2π

�
R
∞
0 dE0pðE0Þ exp

�
− ðE0−ΩÞ2T2

2π

� : ð77Þ

We emphasize that within the assumptions made, this
expression is exact. Due to the fixed particle number
and the renormalization, there are no other diagrams that
contribute. Apart from the peak of the spectrum at the
detector energy gapΩ that we have already discussed in the
context of the amplitude, there is another interesting feature
of the spectrum. Namely, the momentum factor p causes a
suppression when the particle energy E is close to the
mass m.
Figure 4 shows plots of the emission spectrum for

different values of the detector energy gap Ω and time
T. The peak of the spectrum at coincidence of particle
energy with the detector gap is clearly visible. Moreover,
we can appreciate that the peak becomes narrower when
the detector time T increases, compare the left-hand plot

FIG. 4. Emission spectrum, namely probability per unit energy, for different values of the detector energy gap Ω expressed in units
of the mass of the field. In the left-hand (right-hand) plot the time T takes the value 10 (100). The coupling constant λ has been set
equal to 0.01.
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(T ¼ 10) to the right-hand one (T ¼ 100). In the adiabatic
limit T → ∞, the probability density is a delta function,

lim
T→∞

PðEÞ ¼ δðE − ΩÞ: ð78Þ

We can also appreciate in the plots the mentioned sup-
pression of emission when the particle energy is close to
the mass of the field. This is more clearly visible at
relatively shorter detector times due to the larger width
of the spectrum (here at T ¼ 10 compared to T ¼ 100).
Another feature we observe is that for both values of T
the maximum of the probability density is independent of
Ω, both in the evanescent sector (Ω < m) and the propa-
gating one (Ω > m). To see this, we approximate (77) for
relatively large T by the Laplace method, yielding,

PðEÞ ≈ Tffiffiffi
2

p
π

pðEÞ exp
�
− ðE−ΩÞ2T2

2π

�
pðΩÞ : ð79Þ

This shows that the maximum of the probability, achieved
when the energy of the outgoing particle equals the detector
energy gap, is given by Tffiffi

2
p

π
. This is indicated by the

horizontal dashed line in the right-hand plot of Fig. 4.

IX. SPONTANEOUS EMISSION
PROBABILITY

We proceed to consider the total emission probability. In
contrast to the considerations of the previous section this
means that we allow for the possibility that no particle is
emitted. The precise assumptions are the following:

(i) At early times the detector is in the excited state.
The late-time state of the detector is unknown.

(ii) There are only outgoing particles in the boundary
Hilbert space.

(iii) We exclude as spurious contributions that involve an
outgoing particle being absorbed by the detector.
(Compare the discussion in Sec. VII.)

There are precisely two processes allowed by the assump-
tions. Firstly, this is the transition of the detector from the
excited to the ground state while a single outgoing particle
is emitted, as in Sec. VIII. Secondly, this is the detector
remaining in the excited state while the field is in the
vacuum. The total spontaneous emission probability is thus
given as follows:

P ¼
R
∞
0 dEjρ½Oe→g�ðΨout

E Þj2
jρ½Oe→e�ðΨvacÞj2 þ

R∞
0 dEjρ½Oe→g�ðΨout

E Þj2 : ð80Þ

Inserting expressions (71) and (74), we get

P ¼
λ2T2

4π2

R∞
0 dEp exp

�
− ðE−ΩÞ2T2

2π

�
1þ λ2T2

4π2

R∞
0 dEp exp

�
− ðE−ΩÞ2T2

2π

�
¼ 1

1þ 4π2

λ2T2
R

∞
0

dEp exp

�
−ðE−ΩÞ2T2

2π

� : ð81Þ

For large T we can approximate the integral by the Laplace
method, yielding,

P ≈
1

1þ 2
ffiffi
2

p
π

λ2TpðΩÞ
: ð82Þ

A key characteristic quantity for spontaneous emission is
the emission rate R. This is the probability of emission of a
detector evolving from an initial excited state, per unit time.

FIG. 5. Spontaneous emission probability as a function of the time parameter T, for different values of the detector energy gap Ω
expressed in unit mass of the field, at λ ¼ 0.01. On the right-hand side, the focus is on relatively small values of T, with an appreciably
linear dependence of the probability on T.
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In the graphs of P as a function of T this corresponds to the
slope of the curve in the regime of low probability, where it
approximates a straight line. We can easily extract this from
formula (81) by pretending λ is small, then dividing by T,
and then taking the adiabatic limit T → ∞. This yields

R ¼ λ2pðΩÞ
2

ffiffiffi
2

p
π

: ð83Þ

In Fig. 5 the probability of spontaneous emission is shown
as a function of T. In the regime where the probability is
low (right-hand plot), the linear dependence with approx-
imately P ¼ RT can be clearly appreciated. In fact, in this

regime the curves for P ¼ RT are not visually distinguish-
able from the true curves given by Eq. (81).
We note that the emission probability is not given by an

exponential decay law, determined by the rate R, which
would give P ¼ 1 − expð−RTÞ. The actual increase of the
probability of emission with increased detector interaction
time until saturation at unit probability can be observed in
the left-hand plot shown in Fig. 5. Comparing different
detector energy gaps shows that higher-energy gaps lead to
a higher emission probability in the propagating sector. In
the evanescent sector it is lower energies that lead to higher
probability. When the energy gap equals the mass of the
field, particle emission becomes suppressed and its prob-
ability vanishes in the adiabatic limit T → ∞. This is also
clearly visible in the plot of Fig. 6, showing the probability
as a function of the energy gap for different fixed values of
the time T.
It is instructive to compare the emission spectrum for the

present radial picture with that which would be obtained for
the temporal picture. As explained previously, the proba-
bilities for the latter are precisely obtained by removing
the evanescent sector. That is, the integrals over the energy
in numerator and denominator of expression (80) restrict
in this case to the range E > m. In Fig. 7 the emission
probabilities for both pictures are compared as a function of
the detector gap energy Ω near the field mass, i.e., near
Ω ¼ m. At Ω < m it is not surprising that the results are
different, because in the radial picture the detector can
decay by emitting evanescent particles with energy less
than m, while in the temporal picture it cannot. However,
even at Ω > m, the difference is notable if Ω −m is small.
This “spillover” effect of the evanescent sector into the
propagating sector is linked to the nonadiabaticity of the
detector switching. That is, as T is taken to be larger, Ω has
to be increasingly closer tom for the effect to be noticeable.

FIG. 6. Spontaneous emission probability as a function of the
detector energy gap Ω expressed units of mass of the field for
different values of T, at λ ¼ 0.01.

FIG. 7. Spontaneous emission probability as a function of the detector energy gap Ω, at λ ¼ 0.01. In addition to the emission
probability for the radial picture (solid line), the emission probability for the temporal picture (dashed line) is also indicated. The
characteristic time T is 5 (left-hand plot) and is 100 (right-hand plot).
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X. ABSORPTION PROBABILITY

In this section we consider the probability of absorption
of a single particle by the UDW detector as a function of the
particle energy.

A. Assumptions and probability formula

Our assumptions this time are the following:
(i) At early times the detector is in the ground state.

The late-time state of the detector is unknown.
(ii) There is precisely one incoming particle in the

boundary Hilbert space. The outgoing sector of
the boundary Hilbert space is unknown.

(iii) We disregard as spurious contributions that involve
an outgoing particle being absorbed by the detector.

There are three processes that contribute:
(a) The incoming particle is absorbed by the detector and

the detector ends up in the excited state.
(b) The incoming particle is absorbed by the detector, but

subsequently the detector emits an outgoing particle.
The detector ends up in the ground state.

(c) The incoming particle does not interact with the
detector, but leaves as an outgoing particle. The
detector remains in the ground state.

The corresponding Feynman diagrams are depicted in
Fig. 8. The probability of absorption for a particle char-
acterized by a phase space element ξ∈Lp;in ⊕ Le;α;in is

P ¼ jρ½Og→e�ðΨξÞj2
jρ½Og→e�ðΨξÞj2 þ

R
dEjρ½Og→g�ðΨξ ⊗ Ψout

E Þj2 : ð84Þ

The first term in the denominator corresponds to process
(a), while the second term comprises both processes (b) and
(c). From Eq. (65) we obtain the decomposition of the
amplitude in the second term of the denominator into
connected and disconnected parts, corresponding to proc-
esses (b) and (c) respectively,10

ρ½Og→g�ðΨξ ⊗ Ψout
E Þ ¼ ρc½Og→g�ðΨξ ⊗ Ψout

E Þ
þ ρðΨξ ⊗ Ψout

E Þ: ð85Þ

It is useful to separate the different terms arising when
taking the modulus square and integrating over the right-
hand side of Eq. (85). We denote these terms by [b], [c], and
[m]. Here, [b] and [c] arise from the modulus square of the
amplitudes for (b) and (c) respectively, while [m] denotes
the mixed term involving both amplitudes (b) and (c). We
also call [a] the term arising as the modulus square of the
amplitude for (a).

B. Relations and simplifications

Before proceeding to evaluate the different terms, we look
for relations and simplifications. The mixed term [m] is,Z

dEρc½Og→g�ðΨξ ⊗ Ψout
E ÞρðΨξ ⊗ Ψout

E Þ þ c:c: ð86Þ

The factor consisting of the free amplitude can be evaluated
with (57) as follows:

ρðΨξ ⊗Ψout
E Þ¼ fΦout;E;0;0;uðξÞg¼fuðξÞ;Φout;E;0;0g: ð87Þ

By linearity of the amplitude we can take this as a factor
multiplying the state, allowing us to resolve the integral as a
completeness relation,Z

dEfuðξÞ;Φout;E;0;0gΨout
E ¼ ΨuðξÞ: ð88Þ

We have used here that ξ encodes an incoming particle with
vanishing angular momentum. Thus, the mixed term [m] is

ρc½Og→g�ðΨξ ⊗ ΨuðξÞÞ þ c:c: ð89Þ
There is a way to read this off, combining the amplitude of
process (b) with the conjugate one for process (c) from the
Feynman diagrams. Concretely, relative conjugation and
the completeness relation imply that we can glue together the
two external legs labeled “out” in Figs. 8(b) and 8(c) which
both carry the particle state Ψout

E0 that is integrated out. The
detector line in Fig. 8(c) is inert and may simply be ignored.
The result is a diagram identical to that of Fig. 8(b), but with

FIG. 8. Feynman diagrams for processes relevant to absorption.

10Strictly speaking, the connected amplitude also includes a
version of process (b), where the roles of the incoming and
outgoing particles are interchanged. However, this terms is very
highly suppressed, considered as spurious in agreement with the
stated assumptions, and ignored in the following.
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the leg labeled “out” carrying now the “dualized” version
(due to complex conjugation) of the state originally labeling
the “in” leg in Fig. 8(c).
We may notice that the Feynman diagram of process

(b) looks like the diagram of process (a) glued together with

a mirror image copy of itself on top (Fig. 8). It turns out that
we can transform also this statement into a statement about
the corresponding amplitudes. The term [a] corresponding
to the modulus square of the amplitude for process (a) takes
the form [recall Eq. (68)],

ρ½Og→e�ðΨξÞρ½Og→e�ðΨξÞ ¼
�
−i

ffiffiffi
2

p
λ

Z
∞

−∞
dτχðτÞeiΩτξintðτ; 0⃗Þ

��
þi

ffiffiffi
2

p
λ

Z
∞

−∞
dτχðτÞe−iΩτξintðτ; 0⃗Þ

�
: ð90Þ

Observe that, except for the overall sign and the replacement of ξint by its conjugate, the second factor is identical to the
amplitude for the emission process, expression (67). On the other hand, the term [m] takes the form,

ρc½Og→g�ðΨξ ⊗ ΨuðξÞÞ þ ρc½Og→g�ðΨξ ⊗ ΨuðξÞÞ

¼ −2λ2
Z

∞

−∞
dτ

Z
τ

−∞
dτ0χðτÞχðτ0ÞeiΩðτ0−τÞξintðτ0; 0⃗ÞðuðξÞÞintðτ; 0⃗Þ

− 2λ2
Z

∞

−∞
dτ

Z
τ

−∞
dτ0χðτÞχðτ0ÞeiΩðτ−τ0Þξintðτ0; 0⃗ÞðuðξÞÞintðτ; 0⃗Þ: ð91Þ

Given that ξ is assumed to have vanishing angular momentum, one can show, using the relations of Appendix B,

ðuðξÞÞint ¼ cξint: ð92Þ

Here c ¼ 1 in the propagating case and c ¼ i in the evanescent case. We may thus rewrite the term [m] as

− 2cλ2
Z

∞

−∞
dτ

Z
τ

−∞
dτ0χðτÞχðτ0ÞeiΩðτ0−τÞξintðτ0; 0⃗Þξintðτ; 0⃗Þ

− 2cλ2
Z

∞

−∞
dτ

Z
∞

τ
dτ0χðτÞχðτ0ÞeiΩðτ0−τÞξintðτ0; 0⃗Þξintðτ; 0⃗Þ: ð93Þ

In the second term we have also interchanged τ and τ0 and
adapted the integral accordingly. This makes it manifest
that in the propagating case c ¼ 1 the integration ranges
of the two terms precisely combine to give exactly the
expression [a] of Eq. (90), except for an opposite overall
sign. That is, in the propagating case, the terms [a] and [m]
precisely cancel out. In the evanescent case, this is not so.
We want to consider the absorption probability (84) as a

function of the energy of the incoming particle. The most
straightforward implementation of this would be to take an
energy eigenstate, as in previous sections. However, the term
[c] yields a singular contribution in this case. Indeed, [c] is

Z
dEjρðΨξ ⊗ Ψout

E Þj2

¼
Z

dEjfΦout;E;0;0; uðξÞgj2

¼
Z

dEfuðξÞ;Φout;E;0;0gfΦout;E;0;0; uðξÞg

¼ fuðξÞ; uðξÞg ¼ fξ; ξg ¼ kΨξk2: ð94Þ

We have used here again that ξ encodes an incoming
particle with vanishing angular momentum. We see
that this contribution is the square of the norm of ξ in
Lp ⊕ Le;α. But for the particle states with sharp energy
defined in Secs. III C and IV E this diverges as they are
δ-function normalized. Physically this means that a particle
with an exact sharp energy cannot be absorbed by the
detector, but will always “miss” the detector.11

To address this situation, we introduce states with a
Gaussian energy spread Δ around a central energy value E.
Also, we avoid superposing propagating and evanescent
particles. That is, we cut off the energy spread at E ¼ m so
that any particle we consider is either purely propagating or
purely evanescent,

11To be clear, the expected divergence of the term [c] for a state
of infinite norm alone is not enough to merit this physical
interpretation. Rather, this interpretation arises by taking this
together with the fact that the term [a] is only finite for the sharp
energy state of infinite norm.
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Ψin
E;Δ ≔ cE;Δ

Z
∞

m
dE0 exp

�
−π

�
E − E0

Δ

�
2
�
Ψin

E0 if E > m; ð95Þ

Ψin
E;Δ ≔ cE;Δ

Z
m

0

dE0 exp
�
−π

�
E − E0

Δ

�
2
�
Ψin

E0 if E < m: ð96Þ

The constants cE;Δ may be chosen so that the states Ψin
E;Δ are normalized. However, they are irrelevant for the probability

(84) as they cancel out.

C. Evaluation

We are now ready to evaluate the absorption probability (84) for an incoming particle stateΨin
E;Δ. We first suppose that the

particle is propagating and consider the relevant terms in turn. The term [a] reads,

ρ½Og→e�ðΨin
E;ΔÞρ½Og→e�ðΨin

E;ΔÞ ¼ jcE;Δj2
Z

∞

m
dE0dE00e−π

ðE−E0Þ2þðE−E00Þ2
Δ2 ρ½Og→e�ðΨin

E0 Þρ½Og→e�ðΨin
E00 Þ: ð97Þ

The absorption amplitude ρ½Og→e�ðΨin
E Þ is easily seen to be the same as the corresponding emission amplitude (71),

ρ½Og→e�ðΨin
E Þ ¼ −

i
2π

λ
ffiffiffiffi
p

p
T exp

�
−
ðE −ΩÞ2T2

4π

�
: ð98Þ

The integrals over E0 and E00 can be evaluated using the Laplace method, as reported in Appendix C 1, valid in the regime,

4π2 þ T2Δ2

4πΔ2
≫ 1: ð99Þ

Note that we are in this regime if either Δ ≪ 1 or T ≫ 1. We obtain,

ρ½Og→e�ðΨin
E;ΔÞρ½Og→e�ðΨin

E;ΔÞ ≃
λ2T2Δ2

4π2 þ T2Δ2
jcE;Δj2 exp

�
−

2πT2

4π2 þ T2Δ2
ðE −ΩÞ2

�
p

�
4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�
: ð100Þ

Recall that the term [b] is given here by Z
dE0jρc½Og→g�ðΨin

E;Δ ⊗ Ψout
E0 Þj2: ð101Þ

In this expression the amplitude of the process (b) is

ρc½Og→g�ðΨin
E;Δ ⊗ Ψout

E0 Þ ¼ cE;Δ

Z
∞

m
dE00e−πðE−E

00
Δ Þ2ρc½Og→g�ðΨin

E00 ⊗ Ψout
E0 Þ; ð102Þ

where

ρc½Og→g�ðΨin
E00 ⊗ Ψout

E0 Þ ¼ −2λ2
Z

∞

−∞
dτχðτÞe−iΩτðΦout;E0;0;0Þintðτ; 0Þ

Z
τ

−∞
dτ0χðτ0ÞeiΩτ0 ðΦin;E00;0;0Þintðτ0; 0Þ: ð103Þ

In Appendix C 2 the integrals are evaluated yielding the result

ρc½Og→g�ðΨin
E;Δ ⊗ Ψout

E0 Þ ≃ −
λ2ΔT2

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2 þ T2Δ2

p cE;Δe
− πT2

4π2þT2Δ2
ðE−ΩÞ2e−

ðE0−ΩÞ2
4π T2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðE0Þp

�
4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�s �
erf

�
i

T

2
ffiffiffiffiffiffi
2π

p
�
4π2ðE −ΩÞ
4π2 þ T2Δ2

þ E0 −Ω
	�

þ 1

�
: ð104Þ

The integral over E0 of the modulus square of the above amplitude, corresponding to the term [b] of (101) is evaluated in the
regime T ≫ 1 with the Laplace method, yielding
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Z
∞

m
dE0jρc½Og→g�ðΨin

E;Δ ⊗ Ψout
E0 Þj2 ≃ λ4Δ2T3

ffiffiffi
2

p
π

16π2ð4π2 þ T2Δ2Þ jcE;Δj
2e−

2πT2

4π2þT2Δ2
ðE−ΩÞ2

× pðΩÞp
�
4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

��
1 − erf2

�
i

T

2
ffiffiffiffiffiffi
2π

p
�
4π2ðE −ΩÞ
4π2 þ T2Δ2

	��
: ð105Þ

The term [c] is just the norm square of the state Ψin
E;Δ due to (94), which we take to be unity,Z

dE0jρðΨin
E;Δ ⊗ Ψout

E0 Þj2 ¼ kΨin
E;Δk2 ¼ 1: ð106Þ

Conversely, we calculate the normalization constant cE;Δ,

1

jcE;Δj2
¼

Z
∞

m
dE0dE00e−π

ðE−E0Þ2þðE−E00Þ2
Δ2 fΦin;E0;0;0;Φin;E00;0;0g ¼

Z
∞

m
dE0e−π

2ðE−E0Þ2
Δ2 ≃

Δffiffiffi
2

p : ð107Þ

In the last step, we have approximated the integral by removing the energy cutoff. This is valid if Δ ≪ E −m.
Combining all the ingredients, the absorption probability of an incoming propagating particle takes the form

P ≃
1

λ2T
ffiffi
2

p
π

16π2
pðΩÞ

�
1 − erf2

�
i T
2
ffiffiffiffi
2π

p
h
4π2ðE−ΩÞ
4π2þT2Δ2

i��
þ 4π2þT2Δ2

λ2T2Δ
e
2πT2ðE−ΩÞ2
4π2þT2Δ2ffiffi

2
p

p

�
4π2EþT2Δ2Ω
4π2þT2Δ2

� : ð108Þ

This probability presents a maximum for E ¼ Ω,

PjE¼Ω ≃
1

λ2T
ffiffi
2

p
16π pðΩÞ þ 4π2þT2Δ2

λ2T2Δ
1ffiffi

2
p

pðΩÞ
: ð109Þ

For an evanescent incoming particle, the amplitudes of the
processes (a), (b), and (c) differ from those of a propagating
incoming particle by a phase. This is clear by comparison of
expression (48) with expression (50). This means that the
terms [a], [b] and [c] take the exact same form,

½a�evanescent ¼ ½a�propagating; ð110Þ

½b�evanescent ¼ ½b�propagating; ð111Þ

½c�evanescent ¼ ½c�propagating: ð112Þ

The difference between the propagating and the evanescent
sector occurs in term [m], as previously noted. In the
evanescent case this is expression (93) with c ¼ i.
Appendix C 3 presents the calculation of [m], yielding

ρc½Og→g�ðΨin
E;Δ ⊗ Ψout

E;ΔÞ þ c:c: ¼ −i
λ2Δ2T2

4π2 þ T2Δ2
jcE;Δj2e−

2πT2

4π2þT2Δ2
ðE−ΩÞ2p

�
4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�
erf

�
i

Tffiffiffiffiffiffi
2π

p 4π2ðE −ΩÞ
4π2 þ T2Δ2

�
:

ð113Þ

Finally, the absorption probability takes the following form,

P ≃
1

1þ λ2T
ffiffi
2

p
π

16π2
pðΩÞ

h
1 − erf2

�
i T
2
ffiffiffiffi
2π

p
h
4π2ðE−ΩÞ
4π2þT2Δ2

i�i
− ierf

�
i Tffiffiffiffi

2π
p 4π2ðE−ΩÞ

4π2þT2Δ2

�
þ 4π2þT2Δ2ffiffi

2
p

λ2T2Δ
e
2πT2ðE−ΩÞ2
4π2þT2Δ2

p

�
4π2EþT2Δ2Ω
4π2þT2Δ2

� : ð114Þ

This probability presents a maximum for E ¼ Ω,

PjE¼Ω ≃
1

1þ λ2T
ffiffi
2

p
π

16π2
pðΩÞ þ 4π2þT2Δ2ffiffi

2
p

λ2T2ΔpðΩÞ
: ð115Þ
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D. Results

We start by considering the absorption probability as a
function of the energy of the incoming particle, see Fig. 9.
As expected, the absorption probability is peaked at the
detector energy gap, with a Gaussian spread around it. In
contrast to the case of spontaneous emission (e.g., Fig. 4,
right-hand side), this spread is not only caused by lack of
adiabaticity (finite T), but also by the spread Δ explicitly
introduced for the incoming wave packet. Another char-
acteristic behavior that can be read off from Fig. 9 is the
suppression of the absorption probability when the detector
gap energy approaches the field mass, due to the square-
root of momentum factor in the amplitude (98).
To explore the dependence of the absorption probability

on the other variables we fix in the following the energy of

the incoming particle to be equal to the detector gap energy.
That is, we fix the particle energy so that the absorption
probability is maximized. The dependence of this maximal
absorption probability on the characteristic time T is shown
in Fig. 10. The graph on the left-hand side shows the
propagating sector, the one on the right-hand side the
evanescent sector. Apart from the already noted decrease of
the probability, in both sectors, when the detector energy
gap approaches the field mass, we can read off the
following. In the regime of small characteristic time T,
the absorption probability increases markedly with T.
Process (a), the possible absorption of the particle by the
detector in the ground state dominates. At large T, on the
other hand, we see a clear decay of the probability that the
particle has been absorbed. Process (b) dominates here.
That is, it is increasingly likely that the particle was
absorbed by the detector and moreover has already been
reemitted. For intermediate times, there appears to be a
plateau, signaling an equilibrium of the likelihoods that the
particle is just being absorbed or already being reemitted.
The maximal absorption probability as a function of the

energy spread Δ of the incoming particle is shown in
Fig. 11. For relatively large values of Δ the absorption
probability decreases. This is because more and more parts
of the incoming wave packet correspond to energies
increasingly different from the detector energy gap, moving
them to the outer parts of the Gaussian peak of the
absorption amplitude (98). From this point of view it might
seem surprising that we also see a strong suppression of the
absorption probability whenΔ becomes very small, i.e., the
particle energy becomes very peaked on the detector gap
energy. Recall, however, that this is the regime where
process (c) comes to dominate. That is, a particle with a
more and more peaked energy is more and more likely
to completely miss the detector, independent even of the

FIG. 9. Absorption probability of an incoming particle as a
function of the particle energy, for different detector gap energies
at λ ¼ 0.01, Δ ¼ 0.01, and T ¼ 100.

FIG. 10. The absorption probability of an incoming particle with energy E ¼ Ω is represented as a function of the characteristic time T
for the propagating sector (left-hand side) and the evanescent sector (right-hand side). Here, λ ¼ 0.01 and Δ ¼ 0.01.
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detector gap energy. The physical explanation is that the
particle’s wave packet is increasingly delocalized in space,
making it more difficult to deposit energy at the detector’s
location.

XI. DISCUSSION AND OUTLOOK

In the present section we provide further comment on
results, on methods used, and on directions for future
research. The first and foremost result of the present work
is that evanescent particles behave in many ways just like
ordinary propagating particles. In particular, they can be
emitted and absorbed by a detector. Crucially, this process is
accompanied by an exchange of energy. For propagating
particles of a massive field, this energy is necessarily larger
than themass of the field. In contrast, for evanescent particles
this energy is necessarily less than the mass of the field, but
still positive and quantized. This result is embedded in a
broader study of the interaction of a stationaryUDWdetector
with the particle content of a surrounding massive quantum
field. We study in some detail the emission spectrum
(Sec. VIII), spontaneous emission probability (Sec. IX)
and absorption probability (Sec. X) of a UDW detector. In
all cases evanescent particles play an important role and are
part of our predictions.
The occurrence of evanescent particles has not been

predicted in any previous work on the interaction of a UDW
detector with a massive Klein-Gordon field. Before going
into more details on our study, it is thus important to
explain very clearly in which sense our predictions should
or should not agree with the previous literature and why. As
recalled in the introduction, evanescent particles do not
form part of the Hilbert space of a quantum field theory of
massive particles on a spacelike hypersurface, but they do
on a timelike hypersurface. This is a crucial ingredient
when we discuss the description of the interaction of a

UDW detector with the quantum field through two different
pictures; the temporal vs. the radial picture. In the temporal
picture we prepare an initial state of detector and field, let
them interact for a certain time, and then measure their
states. In the asymptotic case of infinite time this is the
S-matrix description of the interaction. In contrast, in the
radial picture preparation and measurement take place at a
fixed distance from the detector, i.e., on a sphere of fixed
radius with the detector at the center, at all times. As
recalled in Sec. V, both pictures become strictly equivalent
when this distance is taken to infinity [11,12]. However,
when the distance is kept finite, additional degrees of
freedom of the field become accessible, that are not present
in the temporal picture. These manifest as evanescent
particles. Formalisms aside, the crucial point is that the
radial picture (at finite radius) corresponds to a different
experimental regime from the temporal (S-matrix) picture.
The key difference is the assumption in the temporal picture
that there is nothing in the universe except for the detector
and the field, during the whole time of interaction.12 In the
(finite) radial picture on the other hand there might well be
other sources or sinks for the field present, at distance from
the detector larger than the fixed radius. Crucially, our
results do not depend directly on the presence or not of such
sources or sinks. Instead, we condition on the presence or
not of particles at the fixed finite radial distance from the
detector. Now, say, the presence of an outgoing evanescent
particle there might well be physically possible only if there
is a device present further out, acting as a sink. Indeed, the
absence of evanescent particles in the temporal picture tells
us essentially that this must be the case. Broadly speaking,
the radial picture is applicable when we allow to perform

FIG. 11. The absorption probability of an incoming particle with energy E ¼ Ω is represented as a function of the energy spread Δ for
the propagating sector (left-hand side) and the evanescent sector (right-hand side). Here, λ ¼ 0.01 and T ¼ 10000.

12Strictly speaking, we know that some other sufficiently far
away particles may not matter, due to cluster decomposition.
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control or measurement tasks at finite distance from the
detector during the experiment. If we imagine the UDW
detector replaced by some generic interaction region, this
scenario is in fact a more accurate modeling of how particle
physics experiments are actually performed (think of the
LHC) as compared to the temporal S-matrix picture. In any
case, it is clear that we should expect our results (for the
finite radial picture) to be different from those of the
previous literature (for the temporal picture).
On the other hand, recall from Sec. V that when we

exclude the evanescent sector in the radial picture (by fixing
the state on the evanescent sector of the Hilbert space to be
the vacuum), we recover equivalence to the temporal
picture, even at finite radius. That is, of course, as long
as we assume that there is no source or sink (or interaction
term) outside of the sphere of fixed radius. This means that
all our results of Secs. VIII, IX, and X are valid for the
temporal picture, as long as we cut out the parts pertaining
to the evanescent sector. There are some interesting caveats
to this statement that we discuss further along.
If the detector energy gap is larger than the mass of the

field, the emission spectrum of a UDW detector is essen-
tially a Gaussian, peaked at this gap energy (Sec. VIII).
This is in accordance with expectations based on the
previous literature, where mostly the case of a massless
field was considered. The same behavior is observed,
however, if the gap energy is below the field mass, see
Fig. 4. In this case the emitted particles are evanescent
rather than propagating. Of course, as explained previously,
this is only valid in the radial picture. We can also read off
the corresponding result in the temporal or S-matrix
picture. In that case the plots are identical13 to the ones
presented in the range E > m, while simply being cut off at
E < m. (Here m ¼ 1.) It is interesting to note that the
spectra (in the radial picture) look essentially symmetrical
around E ¼ m. That is, replacing Ω with m −Ω leads
essentially to a mirror image spectrum. Moreover, there is a
marked suppression of the spectra at E ¼ m arising from a
square-root dependence of the amplitude on the momentum
pðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE2 −m2j

p
that vanishes just at E ¼ m.

For the total probability of particle emission by an
excited detector, it is clear that this increases with the time
T the detector is turned on (Sec. IX). The increase is at first
approximately linear, if we exclude the regime of very low
T (because of the lack of adiabaticity of the detector
switching in that regime). Then a decay law qualitatively
similar to, but different from, an exponential decay law
takes over, with saturation at unit probability, see Fig. 5. For
fixed time T, the probability increases with the energy of
the detector gap, above the field mass. In the linear regime
the probability is simply proportional to the particle
momentum. This can be appreciated in Fig. 6. In particular,

detector decay is almost completely prohibited at Ω ¼ m,
with the probability dropping essentially to zero. This is the
behavior both in the radial and in the temporal picture. The
probability increases again when Ω drops below the field
mass m, as the left-hand side (Ω < m) of the plot in Fig. 5
shows. This part is only valid in the radial picture. In the
temporal picture, the probability is essentially zero at
Ω < m. However, this is not exactly so. What is more,
for Ω near to m the two pictures yield different results even
for Ω > m, see Fig. 7. That is, there is a spillover effect of
the evanescent sector into the propagating sector. With
increasing adiabaticity of the switching (increasing T), this
effect becomes confined to smaller and smaller neighbor-
hoods of Ω ¼ m.
The probability of particle absorption by a UDW

detector in the ground state is more complicated to
determine as in addition to the pure absorption process,
it is also possible that an absorbed particle is reemitted or
that the particle “misses” the detector outright (Sec. X). In
terms of energy, the sensitivity of the detector is peaked
around the detector gap energy, as expected; see Fig. 9.
What is new here is that this absorption is also possible at
Ω < m, with the particles absorbed in this case being
evanescent ones, only present in the radial picture, not in
the temporal one. It is then interesting to focus on the peak
absorption probability, i.e., setting the particle energy equal
to the energy gap. As expected from the previous results,
this probability increases with Ω going away from m, in
both directions, in the propagating (Ω > m) and in the
evanescent sector (Ω < m). At Ω ¼ m we again see a
strong suppression, as in the case of emission. The behavior
of the absorption probability on detector time is determined
by two competing processes, see Fig. 10. At short times the
probability rises as the dominant process is the absorption
of the particle while at long times the probability goes down
again, eventually approaching zero, as reemission domi-
nates. Another interesting trade-off can be seen in Fig. 11.
We find that a particle with a precise sharp energy (and thus
sharp momentum) cannot be absorbed by the detector. This
can be explained due to the complete delocalization
stemming from the uncertainty relation. The probability
for the particle to hit the point-localized detector drops to
zero. To deal with this, we introduce wave functions with a
Gaussian energy spread Δ around a central energy E. The
absorption probability going to zero when the spread Δ
goes to zero is the tail on the left-hand side in the plots
of Fig. 11. On the other hand, when the spread becomes
large, more and more parts of the particle wave function
correspond to energies increasingly detuned from the
detector energy gap Ω, where the detector sensitivity drops
leading to a falloff in probability. That is seen on the right-
hand side in the plots of Fig. 11. These phenomena occur
equally in the radial picture (both plots in Figs. 10 and 11)
as in the temporal picture (left-hand plots only in Figs. 10
and 11).

13There is a small correction to normalization when the gap
energy Ω is close to the mass m.
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We proceed to take a step back and look at the classical
theory of evanescent modes and its quantization.
Classically, the lack of oscillatory behavior means that
we cannot associate a direction of propagation with
evanescent modes by following the motion of maxima
and minima of wave amplitudes in space as we do for
propagating modes. This has led in [1] and [2] to an
ambiguity, not of the quantization scheme itself, but of the
interpretation of one resulting binary degree of freedom.
This issue was extensively discussed in both papers. In the
present work we show that focusing on the flow of energy
rather than the shape of the amplitude, does lead to a notion
of spatial directionality also for evanescent waves. More
precisely, measuring the flux of energy through the timelike
hypercylinder via the energy-momentum tensor does lead
to a separation of the space of evanescent modes into
complementary subspaces of modes that carry energy from
the exterior to the interior (incoming), or the other way
round (outgoing). This separation thus precisely mirrors the
separation existing in the propagating sector, see Sec. IV B.
This resolves the ambiguity and establishes a correspon-
dence to the propagating sector, at the classical level.
Working out the vertex amplitudes for the interaction of a

UDW detector with a single particle of the Klein-Gordon
field makes it clear that evanescent particles must behave in
substantially the same way as propagating ones (Sec. VII).
The formulas for the amplitudes of both types of particles
can be brought into an identical form, up to a phase factor.
What is more, this correspondence relies on the separation
of modes into incoming vs outgoing modes in both sectors
alike. In other words, the quantized incoming (outgoing)
modes in the evanescent sector behave just like the
quantized incoming (outgoing) modes in the propagating
sector, which are well understood. Since the quantization
prescription for the evanescent sector (Sec. IV D) is
substantially different from the one for the propagating
sector (Sec. IV C) this was far from obvious. In particular,
incoming and outgoing modes in the evanescent sector
conserve their classical characterization after quantization,
just like modes in the propagating sector. We emphasize
that this was not an input requirement when the twisted
Kähler quantization applied on the evanescent sector in
Sec. IV D was first designed in [2]. It is thus another
significant result of the present work.
The methods used to describe the UDW detector, the

massive Klein-Gordon field and their interaction are to a
large extend based on standard tools from quantum
mechanics and quantum field theory. This is particularly
the case of our discussion of the temporal picture. To make
sense of the radial picture on the other hand, the more
powerful methods of general boundary quantum field
theory are necessary [15,16,18], in particular for the novel
twisted Kähler quantization [3] on timelike hypersurfaces
(as applied in Sec. IV). The probability interpretation rests
ultimately on the positive formalism [19], although a partial

version adapted to scattering processes in the radial picture
is already contained in [14].
One aspect of our treatment of the UDW detector and its

interaction with the quantum field that we would like to
comment on further is our renormalization procedure
(Sec. VI C). As is well known, e.g., [20,21], proceeding
with a standard quantization of the detector-field interaction
leads to divergent amplitudes at order higher than one of the
perturbation theory. This is dealt with in the literature either
by only ever considering perturbation theory at first order,
or by smearing out the interaction in space, effectively
giving the detector a nonzero size (as in Unruh’s original
paper [4]), which makes the higher order contributions
finite. However, the latter does not guarantee convergence
of the perturbation expansion. On the other hand, from a
QFT perspective the divergences of the pointlike detector
can be ascribed to a detector self-interaction mediated by
the quantum field. This self-interaction may be described
by replacing the original bare propagator for the detector
with the complete propagator, that includes all self-inter-
action diagrams [like that of Fig. 3(a)]. Similarly, the bare
vertex (Fig. 2) is replaced by the complete vertex, that
includes all self-interaction diagrams [like that of Fig. 3(b)].
Of course, with the bare propagator and vertex as given, the
complete propagator and vertex would be infinite, precisely
due to the divergences. Our renormalization procedure now
consists in declaring that the original propagator and vertex
are to be considered not the bare ones, but already the
complete ones. This is consistent, if we exclude any further
self-interaction of these complete objects. Technically this
is implemented precisely by normal ordering of the detector
observable. An advantage of this procedure is that for a
state with particle number n, only terms of order up to n in
the perturbation expansion contribute, which allows us to
present “exact” results. Note that our procedure is different
from the more conventional normal ordering at the level of
the Hamiltonian, as applied for example for certain detector
models with higher order coupling to the field [21].
In the present work we have considered a single detector

and shown that it can absorb and emit evanescent particles,
very much in the same way as propagating particles. A next
step would be to study multiple detectors. Using general
boundary quantum field theory we can insert a timelike
hypersurface between detectors to “intercept” both propa-
gating and evanescent particles between the detectors. This
should shed further light on their similarities and differences.
In particular, we expect to see an exponential decline in the
interaction with increasing distance in the evanescent case.
The scalar Klein-Gordon field used in the present work is

a convenient theoretical vehicle due to its simplicity.
However, if we want to get closer to experimental pre-
dictions and statements about the real world, we should
study the electromagnetic field. Crucially, although mass-
less, this also admits evanescent modes, and thus provides
an important motivation for the study of evanescent
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particles. Versions of the UDW detector interacting with
an electromagnetic field have been known for quite some
time [20]. Ultimately this goes back to descriptions of
the interaction of the electromagnetic field with matter in
quantum optics [22]. A next step is thus to repeat a study
like the present one, but with the massive Klein-Gordon
field replaced by the massless electromagnetic field.
In the present paper we have only considered a detector

at rest. However, essentially all of the machinery we have
developed to describe the UDW detector and its interaction
with the quantum field (Secs. II–VI) is applicable to a
detector with a quite arbitrary trajectory. We thus hope our
work to prove useful for studies with a moving detec-
tor also.
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APPENDIX A: REGULARITY OF THE
SWITCHING FUNCTION

An obvious first requirement for the well-definedness of
probabilities is the finiteness of the vertex amplitudes (67)
and (68). This is equivalent to the integrability of the
switching function χ. For later use we point out that
integrability implies,

lim
E→∞

Z
∞

−∞
dτ χðτÞeiEτ ¼ 0: ðA1Þ

This is an elementary property of the Fourier transform.
Alternatively, this is easy to derive by approximating the
switching function with characteristic functions of finite
intervals.
A further requirement in order to obtain well-defined

probabilities or probability densities for emission and
absorption processes is normalizability. In the present
context this means that the energy integrals in the denom-
inators of expressions (76), (80), and (84) have to be finite.
It is sufficient to consider the case of emission. That is, we
consider the integral over all energies of the modulus
square of the amplitude (69) for the emission of a particle of
energy E. For convergence only the high-energy contribu-
tion of the integrand is relevant, so we can set pðEÞ ≈ E,
and E − Ω ≈ E, and reduce this to the question of con-
vergence of the following integral:

Z
∞

m
dEE






Z

∞

−∞
dτ χðτÞeiEτ





2: ðA2Þ

Again, it is convenient to characterize the convergence of
this integral in terms of properties of the Fourier transform
of χ, as there is a relation between the decay properties of
the latter and differentiability of χ. It is easy to see that a
necessary condition for convergence is the following:

lim
E→∞

E
Z

∞

−∞
dτ χðτÞeiEτ ¼ 0: ðA3Þ

This is satisfied if χ is in addition differentiable and χ0 is
integrable, since,

E
Z

∞

−∞
dτ χðτÞeiEτ ¼−i

Z
∞

−∞
dτ χðτÞ d

dτ
eiEτ

¼−iχðτÞeiEτ




∞
−∞

þ i
Z

∞

−∞
dτ χ0ðτÞeiEτ:

ðA4Þ
Then, (A3) follows with (A1). On the other hand, a
sufficient condition for the convergence of (A2) is

lim
E→∞

E2

Z
∞

−∞
dτ χðτÞeiEτ ¼ 0: ðA5Þ

Multiplying (A4) with E we find that we require

lim
E→∞

E
Z

∞

−∞
dτ χ0ðτÞeiEτ ¼ 0: ðA6Þ

Repeating the previous argument for χ0 in place of χ we see
that χ needs to be twice differentiable and χ00 needs to be
integrable.

APPENDIX B: QUANTIZATION:
ADDITIONAL RELATIONS

The present appendix provides additional expressions
arising in the quantization considered in Sec. IV that are
required for some calculations. The real structure α is given
as follows:

ðαðξÞÞoutE;l;m ¼ ð−1ÞliξinE;l;m; ðαðξÞÞoutE;l;m ¼ ð−1ÞliξinE;l;m;
ðαðξÞÞinE;l;m ¼ ð−1ÞliξoutE;l;m; ðαðξÞÞinE;l;m ¼ ð−1ÞliξoutE;l;m:

ðB1Þ
The linear mapping Ie∶Le → Le;α and its complexification
is given as follows:

ðIeðϕÞÞoutE;l;m ¼ 1ffiffiffi
2

p ðϕout
E;l;m þ ð−1Þliϕin

E;l;mÞ; ðIeðϕÞÞoutE;l;m ¼ 1ffiffiffi
2

p ðϕout
E;l;m þ ð−1Þliϕin

E;l;mÞ;

ðIeðϕÞÞinE;l;m ¼ 1ffiffiffi
2

p ðϕin
E;l;m þ ð−1Þliϕout

E;l;mÞ; ðIeðϕÞÞinE;l;m ¼ 1ffiffiffi
2

p ðϕin
E;l;m þ ð−1Þliϕout

E;l;mÞ: ðB2Þ
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The polarizations in the propagating and evanescent
sectors induce complex structures on Lp and Le;α respec-
tively,

ðJpϕÞoutE;l;m ¼ iϕout
E;l;m; ðJpϕÞ ¯out

E;l;m ¼ −iϕ ¯out
E;l;m;

ðJpϕÞinE;l;m ¼ −iϕin
E;l;m; ðJpϕÞīnE;l;m ¼ iϕīn

E;l;m; ðB3Þ

ðJeϕÞoutE;l;m ¼ ð−1Þlϕin
E;l;m; ðJeϕÞ ¯out

E;l;m ¼−ð−1Þlϕīn
E;l;m;

ðJeϕÞinE;l;m ¼−ð−1Þlϕout
E;l;m; ðJeϕÞīnE;l;m ¼ ð−1Þlϕ ¯out

E;l;m:

ðB4Þ

The composition of the map Ie with the inner pro-
duct (36) in the evanescent sector recovers an expres-
sion reminiscent of the inner product of the propagating
sector (32),

fIeðϕÞ; IeðξÞge ¼
Z

m

0

dE
p
2π

×
X
l;m

ðξoutE;l;mϕ
out
E;l;mþ ξinE;l;mϕ

in
E;l;mÞ: ðB5Þ

For both, propagating and evanescent sector, we have

JLC
M ¼ fϕ∈LC∶ϕin

E;l;m ¼ −ϕout
E;l;m;ϕ

in
E;l;m ¼ −ϕout

E;l;mg:
ðB6Þ

This gives rise to a direct sum decomposition LC ¼
LC
M ⊕ JLC

M. The map u∶L → L is defined as the identity

on LC
M and minus the identity on JLC

M [2]. Here, it takes
the form,

ðuðϕÞÞoutE;l;m ¼ ϕin
E;l;m; ðuðϕÞÞoutE;l;m ¼ ϕin

E;l;m;

ðuðϕÞÞinE;l;m ¼ ϕout
E;l;m; ðuðϕÞÞinE;l;m ¼ ϕout

E;l;m: ðB7Þ

Key properties of this map are

fuðξÞ; uðηÞg ¼ fη; ξg; fξ; ηg ¼ fαðηÞ; αðξÞg: ðB8Þ

For ξ∈Lp ⊕ Le;α we have,

αðξintÞ ¼ ðuðξÞÞint: ðB9Þ

Remarkably, the map α can be expressed in terms of
complex conjugation and u, with a parity dependence on
angular momentum,

ðαðξÞÞ•E;l;m ¼ ð−1ÞlðuðξÞÞ•E;l;m: ðB10Þ

APPENDIX C: ABSORPTION PROBABILITY

In this appendix we derive the expression of the
amplitude of the processes (a) and (b) that form part of
the calculation of the absorption probability of an incoming
propagating particle.

1. Process (a)

The substitution of expression (98) into (97) leads to

ρ½Og→e�ðΨin
E;ΔÞρ½Og→e�ðΨin

E;ΔÞ ¼ jcE;Δj2λ2T2

Z
∞

m
dE0dE00 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðE0ÞpðE00Þ
p

e−π
ðE−E0Þ2þðE−E00Þ2

Δ2 e−
ðE0−ΩÞ2þðE00−ΩÞ2

4π T2

: ðC1Þ

By noticing that

e−πðE−E
0

Δ Þ2e−
ðE0−ΩÞ2

4π T2 ¼ e−
πT2

4π2þT2Δ2
ðE−ΩÞ2e

−4π2þT2Δ2

4πΔ2

�
E0−4π2EþT2Δ2Ω

4π2þT2Δ2

�
2

ðC2Þ

the product of amplitudes can be rewritten in the following form:

ρ½Og→e�ðΨin
E;ΔÞρ½Og→e�ðΨin

E;ΔÞ ¼ jcE;Δj2λ2T2 exp

�
−

2πT2

4π2 þ T2Δ2
ðE −ΩÞ2

�Z
∞

m
dE0dE00 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðE0ÞpðE00Þ
p

× exp

�
−
4π2 þ T2Δ2

4πΔ2

��
E0 −

4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�
2

þ
�
E00 −

4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�
2
	�

: ðC3Þ

Both integrals can be evaluated by using the Laplace method assuming that 4π2þT2Δ2

4πΔ2 ≫ 1,

ρ½Og→e�ðΨin
E;ΔÞρ½Og→e�ðΨin

E;ΔÞ ≃
λ2T2Δ2

4π2 þ T2Δ2
jcE;Δj2 exp

�
−

2πT2

4π2 þ T2Δ2
ðE −ΩÞ2

�
p

�
4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�
: ðC4Þ
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2. Process (b)

The amplitude of the process (b) is given by

ρc½Og→g�ðΨin
E;Δ ⊗ Ψout

E0 Þ ¼ −λ22cE;Δ
Z

∞

m
dE0e−πðE−E

0
Δ Þ2

Z
∞

−∞
dτχðτÞðΦout;E00;0;0Þintðτ; 0⃗Þe−iΩτ

×
Z

τ

−∞
dτ0χðτ0ÞðΦin;E00;0;0Þintðτ0; 0⃗ÞeiΩτ0 ; ðC5Þ

¼ −
λ2T
8π2

cE;Δ

Z
∞

m
dE0e−πðE−E

0
Δ Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðE00ÞpðE0Þ
p

e−
ðE0−ΩÞ2

4π2
T2

×

�Z
∞

−∞
dτχðτÞe−iðΩ−E00Þτerf

�
2πτ þ iT2ðE0 − ΩÞ

2
ffiffiffi
π

p
T

�
þ Te−

ðE00−ΩÞ2
4π T2

�
: ðC6Þ

The integral over τ can be evaluated by expression 2.7.1.6 of [23], namelyZ
∞

−∞
e−az

2þβzerfða1zþ β1Þ ¼
ffiffiffi
π

a

r
eβ

2=4aerf

�
2aβ1 þ a1β

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ aa21

p �
; ðC7Þ

with the following identifications:

a ¼ π

T2
; β ¼ −iðΩ − E00Þ; a1 ¼

ffiffiffi
π

p
T

; β1 ¼ i
ðE0 −ΩÞT

2
ffiffiffi
π

p : ðC8Þ

Thus, Z
∞

−∞
dτχðτÞe−iðΩ−E00Þτerf

�
2πτ þ iT2ðE0 −ΩÞ

2
ffiffiffi
π

p
T

�
¼ Te−

ðE00−ΩÞ2T2
4π erf

�
i

T

2
ffiffiffiffiffiffi
2π

p ½E0 þ E00 − 2Ω�
�
: ðC9Þ

Expression (C6) becomes

ρc½Og→g�ðΨin
E;Δ ⊗ Ψout

E0 Þ ¼ −
λ2T2

8π2
cE;Δe−

ðE00−ΩÞ2
4π T2

Z
∞

m
dE0e−πðE−E

0
Δ Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðE00ÞpðE0Þ
p

e−
ðE0−ΩÞ2

4π2
T2

×

�
erf

�
i

T

2
ffiffiffiffiffiffi
2π

p ½E0 þ E00 − 2Ω�
�
þ 1

�
: ðC10Þ

The product of the exponentials appearing under the integration can we rewritten as in (C2). Then the Laplace method
provides an approximation of the integral over E0, valid for T ≫ 1,

ρc½Og→g�ðΨin
E;Δ ⊗ Ψout

E0 Þ ≃ −
λ2ΔT2

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2 þ T2Δ2

p cE;Δe
− πT2

4π2þT2Δ2
ðE−ΩÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðE00Þp

�
4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�s
e−

ðE00−ΩÞ2
4π T2

×

�
erf

�
i

T

2
ffiffiffiffiffiffi
2π

p
�
4π2ðE −ΩÞ
4π2 þ T2Δ2

þ E00 −Ω
	�

þ 1

�
: ðC11Þ

3. Mixed term in the evanescent sector

The mixed term [m] in the evanescent sector is obtained from expression (91),

ρc½Og→g�ðΨΦin
E;Δ

⊗ ΨuðΦin
E;ΔÞÞ þ c:c: ¼ jcE;Δj2

Z
m

0

dE0dE00e−πðE−E
0

Δ Þ2e−πðE−E
00

Δ Þ2 ½ρc½Og→g�ðΨin
E0 ⊗ Ψout

E00 Þ þ c:c:�; ðC12Þ

where the amplitude appearing in the last parenthesis is

ρc½Og→g�ðΨin
E0 ⊗ Ψout

E00 Þ ¼ −2λ2
Z

∞

−∞
dτχðτÞe−iΩτðΦout;E0;0;0Þintðτ; 0⃗Þ

Z
τ

−∞
dτ0χðτ0ÞeiΩτ0 ðΦin;E00;0;0Þintðτ0; 0⃗Þ; ðC13Þ
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¼ −
2i

ð4πÞ2 λ
2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðE00ÞpðE0Þ

p
e−

ðE0−ΩÞ2
4π T2

�Z
∞

−∞
dτχðτÞe−iðΩ−E00Þτerf

�
2πτ þ iT2ðE0 −ΩÞ

2
ffiffiffi
π

p
T

�
þ Te−

ðE00−ΩÞ2
4π T2

�
: ðC14Þ

The integral over τ coincides with (C9), leading to

ρc½Og→g�ðΨin
E0 ⊗ Ψout

E00 Þ ¼ −
2i

ð4πÞ2 λ
2T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðE00ÞpðE0Þ

p
e−

ðE0−ΩÞ2
4π T2

e−
ðE00−ΩÞ2T2

4π

�
erf

�
i

T

2
ffiffiffiffiffiffi
2π

p ½E0 þ E00 − 2Ω�
�
þ 1

�
: ðC15Þ

Since i erfðixÞ is real, the sum of the above amplitude with its complex conjugate results to be

ρc½Og→g�ðΨin
E0 ⊗ Ψout

E00 Þ þ c:c: ¼ −
i

4π2
λ2T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðE00ÞpðE0Þ

p
e−

ðE0−ΩÞ2
4π T2

e−
ðE00−ΩÞ2T2

4π erf

�
i

T

2
ffiffiffiffiffiffi
2π

p ½E0 þ E00 − 2Ω�
�
: ðC16Þ

To evaluate the integrals over E0 and E00 we express the integrand in terms of equality (C2) and then apply the Laplace
method, obtaining

ρc½Og→g�ðΨΦin
E;Δ

⊗ ΨuðΦin
E;ΔÞÞ þ c:c: ¼ −ijcE;Δj2

λ2T2Δ2

4π2 þ T2Δ2
e−

2πT2

4π2þT2Δ2
ðE−ΩÞ2p

�
4π2Eþ T2Δ2Ω
4π2 þ T2Δ2

�
erf

�
i

Tffiffiffiffiffiffi
2π

p 4π2ðE − ΩÞ
4π2 þ T2Δ2

�
:

ðC17Þ
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