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In a recent paper [Phys. Rev. D 102, 016020 (2020)], pseudo quantum electrodynamics was used to
simulate the Coulomb interaction between electrons and determine the mass renormalization in a two-
dimensional Dirac-like system. In the present paper, we expand upon these findings by examining this
system in a certain distance from a planar interface separating two dielectrics. Using the random-phase
approximation, we calculate the renormalization group functions and show how the behaviors of the mass,
Fermi velocity, and the anomalous dimension of the fermion field are affected by the presence of this
interface. To exemplify an application of our formulas, we calculate the influence of this interface on the
renormalized energy band gap in a two-dimensional material. In the appropriate limits, our results recover
the corresponding ones reported in the aforementioned publication, as well as in others.
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I. INTRODUCTION

Quantum field theory in 2þ 1 dimensions has been
employed to describe various aspects of high-energy
physics, including quark confinement and chiral symmetry
breaking [1], as well as condensed matter physics phenom-
ena like the quantum Hall effect and superconductivity [2].
Since the discovery of graphene [3], a two-dimensional
material with the thickness of a carbon atom and a massless
relativisticlike dispersion relation, numerous attempts
have been made to develop theoretical models capable
of accurately describing its remarkable properties. Other
materials with a honeycomblike lattice, similar to graphene,
have gained attention due to their potential technological
applications [4]. Silicene, phosphorene, and transitional
metal dichalcogenides (TMDs) are examples of such
materials that primarily differ from graphene in that their
low-energy excitations are, approximately, described by the
massive Dirac equation [5].

It is well known that electromagnetic interaction plays an
important role in the transport properties of these materials.
Studies on graphene reveal that measurement of the renorm-
alization of the Fermi velocity [6], the direct measurement of
the dc conductivity [7], and the experimental observation of
the fractional quantum Hall effect in ultraclean samples [8]
clearly demonstrate that electromagnetic interaction is, in
fact, important, at least for a certain temperature scale.
A theoretical model that accurately describes the elec-

tronic properties of these materials must account for the fact
that electrons andphotons exist in different spacetimedimen-
sions. In thesematerials, electrons exist in 2þ 1 dimensions,
while photons exist in 3þ 1 dimensions. Therefore, con-
structing a quantum field theory model requires incorporat-
ing mixed dimensions. In 1993, Marino proposed a model
with these characteristics, which represents QED in 3þ 1
projected onto a two-dimensional plane. This theory is
known as pseudo quantum electrodynamics (PQED) [9],
and it is sometimes referred to as reduced quantum electro-
dynamics [10].
The PQED model has been demonstrated to exhibit

unitarity [11] and causality [12], as well as being scale
invariant for a massless theory [13,14]. In addition, it
reproduces the static Coulomb potential instead of the
peculiar logarithmic one from QED in 2þ 1 dimensions.
As a result, it has been widely employed with significant
success in numerous scenarios involving the aforemen-
tioned two-dimensional Dirac-like systems [15–20].
Recently, a branch of PQED that includes effects

of boundary conditions imposed by interfaces to the
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electromagnetic field, called cavity PQED, has established
that the renormalization of the Fermi velocity and the
transport properties of graphene are significantly altered
by the presence of a groundedmetal plate or a cavity in close
proximity to a graphene sheet [18,21,22]. The PQED has
also been employed in the random-phase approximation
(RPA) to calculate the renormalized mass m (energy band
gap) as a function of the carrier concentration n in TMD
materials, embedded in a dielectric medium with dielectric
constant ϵ1 [23] [see Fig. 1(a)].
In the present paper, we investigate, in the context of the

cavity PQED, the effect of a planar interface, separating two
nondispersive semi-infinite dielectrics (ϵ1 and ϵ2), on the
renormalization of the mass, Fermi velocity, and the anoma-
lous dimension of the fermion field in a planar system located
at a distance z0 from the interface [Fig. 1(b)]. To exemplify an
application of our formulas, we calculate the influence of
such an interface on the renormalized energy band gap in a
two-dimensional material [a monolayer of tungsten disele-
nide (WSe2)].When ϵ1 ¼ ϵ2 [Fig. 1(a)] or z0 ¼ 0 [Fig. 1(c)],
the formulas obtained here recover the correspondent ones
found in Ref. [23].
This paper is organized as follows. In Sec. II, we present

the model and its Feynman rules. In Sec. III, we calculate the
photon propagator considering the influence of the dielec-
trics, and, subsequently, we incorporate the effects of the
polarization tensor into this propagator. In Sec. IV, we
calculate the electron self-energy at one-loop order in the
RPA. In Sec. V, we obtain the renormalization group func-
tions based on the findings from the preceding section, and
we derive the renormalization of the mass within the frame-
work of the RPA. In Sec. VI, we discuss some limit cases of
the formulas obtained in the preceding section. In Sec. VII,
we apply our result to investigate the renormalization of the

mass for a monolayer of WSe2, when this system is situated
within a boron nitride substrate, with a distance z0 separating
it from the vacuum interface, or, conversely, when it is
located within the vacuum with a distance z0 from the
interface of a boron nitride substrate. Finally, in Sec. VIII, we
present our final remarks.

II. THE MODEL AND THE FEYNMAN RULES

The effective theory and complete description in 2þ 1
dimensions for electronic systems moving on a plane in
vacuum, but interacting as particles in 3þ 1 dimensions, is
given by [9]

LPQED ¼ 1

2

FμνFμν

ð−□Þ1=2þLDþ ejμAμ−
ξ

2
Aμ

∂
μ
∂
ν

ð−□Þ1=2Aν; ð1Þ

where □ is the d’Alembertian operator, Fμν is the usual
field intensity tensor of the gauge field Aμ, jμ ¼ ψ̄γμψ is
the matter current which is conserved, e is the coupling
constant, and we consider c ¼ ℏ ¼ 1. To emulate two-
dimensional Dirac electrons, we shall consider an aniso-
tropic version of the Dirac Lagrangian given by
LD ¼ ψ̄aðiγ0∂0 þ ivFγ ·∇−mÞψa, where vF is the Fermi
velocity, ψ̄a ¼ ψ†

aγ0, a ¼ 1;…; N is a flavor index repre-
senting a sum over valleys K and K0, γμ are rank-4 Dirac
matrices, ψ†

a ¼ ðψ⋆
A↑ψ

⋆
A↓ψ

⋆
B↑ψ

⋆
B↓Þa is a four-component

Dirac spinor representing electrons in sublattices A and
B, with different spin orientations, and m represents the
bare electron mass. The last term corresponds to the gauge-
fixing term. Since the coupling constant is dimensionless,
PQED is perturbatively renormalizable according to the
power-counting criterion, similar to QED4. Additionally, it
is a unitary [11] and causal [12] theory.
From Eq. (1), one obtains the free photon propagator in

Euclidean space:

Δð0Þ
μν ðkÞ ¼ 1

2
ffiffiffiffiffi
k2

p
�
δμν −

�
1 −

1

ξ

�
kμkν
k2

�
; ð2Þ

where kμ ¼ ðk0;kÞ and k ¼ ðk1; k2Þ. In the nonretarded
regime, characterized by the consideration of the static limit
in the photon propagator, considering the Feynman gauge
(ξ ¼ 1), it becomes

Δð0Þ
μν ðk0 ¼ 0; jkjÞ ¼ 1

2jkj δ0μδ0ν; ð3Þ

which leads to the Coulomb potential for static charges
(instead of the peculiar logarithmic one from QED in 2þ 1
dimensions) [24]:

VðjrjÞ ¼ e
Z

d2k
ð2πÞ2 e

−ik·rΔð0Þ
00 ðk0 ¼ 0; jkjÞ

¼ e
4π

1

jrj : ð4Þ

(a) (b)

(c)

FIG. 1. (a) Illustration of a two-dimensional Dirac-like system
(dashed line) embedded in a single medium with dielectric
constant ϵ1. (b) The system is at a distance z0 to the flat interface
between the two dielectrics, with the system being immersed in
the medium with dielectric constant ϵ1. (c) The system is in the
flat interface between two media with dielectric constants ϵ1
and ϵ2.
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The fermion propagator is

Sð0ÞF ðkμÞ ¼ k0γ0 þ vFk · γ þm
k20 þ v2Fjkj2 þm2

; ð5Þ

and the vertex interaction is γμ ¼ ðγ0; vFγiÞ. Feynman rules
are depicted in Fig. 2.
In this paper, we consider a planar system in a dielec-

tric medium with dielectric constant ϵ1. The system is
separated by a distance z0 from a parallel interface
with another dielectric medium with dielectric constant
ϵ2 [see Fig. 1(b)].

III. THE PHOTON PROPAGATOR
IN THE PRESENCE OF AN INTERFACE

BETWEEN TWO DIELECTRICS

Consider an electric charge e in a semi-infinity dielectric
medium with dielectric constant ϵ1 separated by a distance
z0 from the interface between another semi-infinity dielec-
tric medium with dielectric constant ϵ2. By the image
method, the potential V for this configuration at an arbitrary
point P (also separated by a distance z0 from the interface)
is (see Fig. 3)

VðjrjÞ ¼ 1

4πϵ1

�
e
jrj þ

e0

jr0j
�
; ð6Þ

where jrj is the distance between the charge e and the point
P and jr0j is the distance between the image charge e0 and
the point P. The image charge e0 is given by

e0 ¼ −
ϵ2 − ϵ1
ϵ2 þ ϵ1

e; ð7Þ

and the distance between the image charge and the point P
is jr0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrj2 þ 4z20

p
. Therefore, the potential at P is

VðjrjÞ ¼ e
4πϵ1

�
1

jrj −
κ21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrj2 þ 4z20
p

�
; ð8Þ

where we defined

κ21 ¼
ϵ2 − ϵ1
ϵ2 þ ϵ1

: ð9Þ

From the static potential (8), we can obtain the photon
propagator in the static regime via the inverse Fourier
transform (see, for instance, Ref. [24])

Δð0Þ
00 ðjkjÞ ¼

1

e2

Z
d2re−ik·reVðjrjÞ; ð10Þ

where k0 ¼ 0 and k and r are restricted to the plane z ¼ z0;
thus, we can write k · r ¼ jkjjrj cosϕ and d2r ¼ jrjdϕdjrj.
After performing the integration, we obtain

Δð0Þ
00 ðjkjÞ ¼

1

2ϵ1jkj
½1 − κ21 exp ð−2z0jkjÞ�: ð11Þ

The first term represents the propagator in the absence of
the medium with ϵ2 (which corresponds to z0 → ∞ or
ϵ2 → ϵ1), and the exponential term arises due to the
presence of the interface between the two dielectrics. In
the following, we shall use this equation to obtain the new
expression for the propagator in the large N expansion.

A. Photon propagator in large N expansion

We consider the large N expansion at one-loop order
approximation, which is equivalent to the RPA [25,26].
This approximation has been used in the description of
some properties of suspended [27,28] and doped [29–31]
graphene. It can be conveniently implemented by replacing
e → e=

ffiffiffiffi
N

p
, for a fixed e.

We will consider the geometric series to calculate the full
propagator of the gauge field. Assuming that the interaction
vertex is just given by γ0 (static regime), as illustrated in
Fig. 4, we can write

ΔRPA
00 ðkÞ ¼ Δð0Þ

00 ð1 − Π00Δð0Þ
00 Þ−1; ð12Þ

where [28,32–34]

Π00 ¼ −
e2

8

� jkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk

2
p −

4jkj2m2

ðk20 þ v2Fjkj2Þ3=2
�
: ð13Þ

(a) (b) (c)

FIG. 2. (a) Electron propagator. (b) Photon propagator. (c) Ver-
tex interaction.

FIG. 3. An electric charge e and its image e0, each one
separated by a distance z0 from the interface between the two
dielectric media. The charge e is in the medium with dielectric
constant ϵ1, and its image is in the medium with dielectric
constant ϵ2. P is an arbitrary point of the plane that contains the
charge e, and it is parallel to the interface.
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Therefore, we find

ΔRPA
00 ðkÞ ¼ 1

2ϵ1jkj
�

1

1 − κ21 expð−2z0jkjÞ
þ 1

16

e2

ϵ1

×

� jkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk

2
p −

4jkjm2

ðk20 þ v2Fjkj2Þ3=2
��−1

: ð14Þ

Note that, in the particular case where ϵ1 ¼ ϵ2 (κ21 ¼ 0) in
Eq. (14), our model recovers the case of the full propagator
of the gauge field within a single medium [23].

IV. ELECTRON SELF-ENERGY

In this section, we consider the simplest static regime,
because it describes well the experimental data [6,35]. This
approach, γμ → γ0 and Δð0Þ

μν ðkÞ → ΔRPA
00 ðk0 ¼ 0; jkjÞ, has

been extensively used in the literature in different contexts
and, in particular, in the construction of effective theories
that describe two-dimensional materials such as graphene
[36] and in the context of the Schwinger-Dyson equations
[37–39]. Studies on gauge invariance [40] and Ward
identities show that it is preserved in one-loop PQED in
the static approximation [41]. In this approximation, the
electron self-energy, represented in Fig. 5, reads

ΣðpÞ ¼ e2

N

Z
d3k
ð2πÞ3 γ0S

ð0Þ
F ðpμ − kμÞγ0ΔRPA

00 ðkÞ: ð15Þ

Assuming that the Dirac matrices satisfy fγμ; γνg ¼ −2δμν,
γ0γ0 ¼ −I, and γ0γγ0 ¼ γ and performing a power series
expansion in the external momentum, we obtain

ΣðpÞ ¼ Zm þ Z0γ0p0 þ vFZ1γipi; ð16Þ

where the dominant terms are

Zm ¼ −
e2

N

Z
d3k
ð2πÞ3

m
k2 þm2

ΔRPA
00 ðkÞ; ð17Þ

Z0 ¼ −
e2

N

Z
d3k
ð2πÞ3

v2Fjkj2 − k20 þm2

ðk2 þm2Þ2 ΔRPA
00 ðkÞ; ð18Þ

and

Z1 ¼
e2

N

Z
d3k
ð2πÞ3

k20 þm2

ðk2 þm2Þ2Δ
RPA
00 ðkÞ: ð19Þ

Then, we perform a variable change vFki → k̄i in Eq. (16)
to spherical coordinates, and the lowest-order terms can be
written as

Zm ¼ −
2λ

π2N

Z
π

0

dθ
Z

ΛvF

0

kdk
m

k2 þm2
fðk; θÞ; ð20Þ

Z0 ¼ −
2λ

π2N

Z
π

0

dθ
Z

ΛvF

0

kdk
k2 cos2θþm2

ðk2 þm2Þ2 fðk;θÞ; ð21Þ

Z1 ¼
2λ

π2N

Z
π

0

dθ
Z

ΛvF

0

kdk
k2cos2θ þm2

ðk2 þm2Þ2 fðk; θÞ; ð22Þ

where

fðk; θÞ ¼ f½1 − κ21 expð−2z0k sin θ=vFÞ�−1
þ λð1 − 4m2=k2Þ sin θg−1; ð23Þ

λ ¼ e2=16ϵ1vF, and we introduced an ultraviolet cutoff
ΛvF in the integrals above (in Sec. VII, where these
formulas are applied to a two-dimensional system in
condensed matter, this cutoff will be related to the carrier
concentration).

V. RENORMALIZATION GROUP FUNCTIONS

The renormalization group equation reads [42,43]

�
Λ

∂

∂Λ
þ
X
a

βa
∂

∂a
− NFγψ − NAμ

γAμ

�
ΓðNF;NAμ ÞðpÞ ¼ 0;

ð24Þ

where, for simplicity, we denote by ΓðNF;NAμ Þ ×
ðp; e; vF;m;ΛÞ ¼ ΓðNF;NAμ ÞðpÞ the renormalized vertex
function with p being the external momenta. Here,
βa ¼ Λð∂a=∂ΛÞ, with a ¼ fe; vF; c;mg, are the beta func-
tions of the parameters e, vF, c, and m. NF and NAμ

mean
the external lines of fermions and Aμ field, respectively.
The terms γψ and γAμ

are the anomalous dimension of the
fermion and gauge field, respectively. However, since the
polarization tensor for the gauge field is finite at one loop
(using the dimensional regularization), we can conclude that
γAμ

¼ 0, and, consequently, βe ¼ βc ¼ 0. Therefore, there is

FIG. 5. Electron self-energy diagram.

FIG. 4. Gauge field propagator in dominant order in the 1=N
expansion.
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no renormalization of the speed of light or the electric charge.
This is in contrast to the findings of Isobe and Nagaosa in
anisotropic QED4, where both the charge and the speed of
light undergo renormalization [44]. Thus, for our purpose,
we just need to compute the vertex function for the fermion,
and, thus, the renormalization group equation for Γð2;0ÞðpÞ
becomes

�
Λ

∂

∂Λ
þ βvF

∂

∂vF
þ βm

∂

∂m
− 2γψ

�
Γð2;0ÞðpÞ ¼ 0: ð25Þ

On the other hand, the vertex function Γð2;0ÞðpÞ can be
written as

Γð2;0ÞðpÞ ¼ γ0p0 þ vFγipi −mþ ΣðpÞ: ð26Þ

Substituting Eq. (26) into (25) and grouping the terms order

by order in the 1=N expansion, with βa ¼ N0βð0Þa þ
ð1=NÞβð1Þa þ � � � and γψ ¼ N0γð0Þψ þ ð1=NÞγð1Þψ þ � � �, we
obtain

βvF ¼ vFϒ
N

Z
π

0

dθ
Λ2v2F sin

2 θ þ 2m2

ðΛ2v2F þm2Þ2 fðΛvF; θÞ; ð27Þ

βm ¼ 2mϒ
N

Z
π

0

dθ
Λ2v2F sin

2 θ þm2

ðΛ2v2F þm2Þ2 fðΛvF; θÞ; ð28Þ

γψ ¼ −
ϒ
2N

Z
π

0

dθ
Λ2v2F cos 2θ −m2

ðΛ2v2F þm2Þ2 fðΛvF; θÞ; ð29Þ

where we defined ϒ ¼ −2λðΛvF=πÞ2.
For simplicity, we shall consider the small-mass limit

(m2 ≪ Λ2v2F) in Eq. (23), which takes the simpler form

fðΛvF; θÞ ¼
1 − κ21 expð−2z0Λ sin θÞ

1þ λ sin θ½1 − κ21 expð−2z0Λ sin θÞ� ; ð30Þ

and we can neglect the m2 terms in the integrands of
Eqs. (27)–(29). Therefore, from the definitions of βm and
βvF , we get

m ¼ m0 exp

�Z
Λ

Λ0

dΛ
Λ

CλðΛÞ
�

ð31Þ

and

vF ¼ v0F exp

�
1

2

Z
Λ

Λ0

dΛ
Λ

CλðΛÞ
�
; ð32Þ

where m0 ¼m0ðΛ0; ϵ1; ϵ2; z0Þ and v0F ¼ v0FðΛ0; ϵ1; ϵ2; z0Þ
are reference values of the mass and the Fermi velocity
(which must be provided by experiments), respectively, and

CλðΛÞ ¼ −
4λ

π2N

Z
π

0

dθsin2θfðΛvF; θÞ: ð33Þ

Likewise, in the regime of small mass, the anomalous
dimension can be determined as

γψ ¼ λ

π2N

Z
π

0

dθ cosð2θÞfðΛvF; θÞ: ð34Þ

Next, we discuss some limit cases of the above formulas.

VI. SOME LIMIT CASES

For ϵ1 ¼ ϵ2, Eqs. (30)–(34) recover the corresponding
ones found in Ref. [23] and describe the renormalization of
the mass, Fermi velocity, and the anomalous dimension
for the two-dimensional system in the particular situation
illustrated in Fig. 1(a), whereas for z0 ¼ 0 these formulas
describe the situation illustrated in Fig. 1(c).
It is interesting to remark that, even in the limits ϵ1 ¼ ϵ2

[Fig. 1(a)] and z0 ¼ 0 [Fig. 1(c)], the renormalized mass
and Fermi velocity depend on the energy scale Λ [23]. In
this way, the role of Eqs. (31) and (32) is to reveal how this
dependence is affected by an interface [Fig. 1(b)]. On the
other hand, in the limits ϵ1 ¼ ϵ2 and z0 ¼ 0, the renor-
malized anomalous dimension does not depend explicitly
on Λ [23]. Thus, the presence of an interface, taken into
account in Eq. (34), introduces an explicit dependence onΛ
in the renormalized anomalous dimension.
Another interesting limit is to consider ϵ2 ≫ ϵ1 ¼ 1 in

Eq. (32), which recovers the corresponding result found in
Ref. [21], which showed that the renormalization of
the Fermi velocity in graphene (m0 ¼ 0) is inhibited by
the presence of a grounded perfectly conducting surface.
Adding the limit z0 → ∞, Eq. (32) recovers the corre-
sponding formula found in Ref. [25], which predicted the
renormalization of the Fermi velocity in graphene (the
experimental observation of such renormalization was
reported in Ref. [6]).

VII. APPLICATION

For a two-dimensional system in condensed matter, we
can show that the carrier concentration n ¼ Ne=A, where
Ne is the number of electrons and A is the area occupied by
each state, can be written as n ¼ Ne=A ¼ p2

F=π [45,46].
Therefore, it follows that the Fermi momentum reads
pF ¼ ðπnÞ1=2. This plays the role of our energy scale Λ;
thus, we shall use the transformation Λ=Λ0 → ðn=n0Þ1=2
for our renormalized functions.
We remark that, for ϵ2 ¼ ϵ1 [the situation illustrated in

Fig. 1(a)], Eqs. (31) and (33) recover

m ¼ m0

�
n
n0

�
Cλ=2

; ð35Þ
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where

Cλ ¼ −
1

π2

�
4þ 4 cos−1ðλÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p −
2π

λ

�
; ð36Þ

found in the literature [23]. For z0 ¼ 0 [situation illustrated
in Fig. 1(c)], Eqs. (31) and (33) give Eqs. (35) and (36),
with ϵ1 → ðϵ1 þ ϵ2Þ=2.
Theoretical results obtained in Ref. [23], by applying

Eq. (35) to tungsten diselenide (WSe2) [47] and molybde-
num disulfide (MoS2), are in excellent agreement with
experimental data [47,48], reinforcing the usefulness of
PQED in the study of the electronic properties of these
materials. On the other hand, although Eq. (35) can be
applied even when the two-dimensional system is in the
interface between two dielectrics with dielectric constants ϵ1
and ϵ2 [making ϵ1→ ðϵ1þϵ2Þ=2 in Eq. (35)], as illustrated in
Fig. 1(c), this formula is unable to address the situation
where the system is at a distance z0 from the interface [as
illustrated in Fig. 1(b)]. In this case, it is necessary to use the
formula (31), obtained in the present paper. Since Eq. (35) is
in excellent agreement with experimental data [47,48], an
experimental verification of the effects predicted here,
according to Eq. (31), seems feasible.
Here, we apply our formulas to investigate the renorm-

alization of the mass for a monolayer of WSe2, when this
system is inside a boron nitride substrate (ϵ1 ¼ 4), at a
distance z0 from an interface with the vacuum (ϵ2 ¼ 1) [see
Figs. 1(b) and 6]. We also investigate the opposite situation
when the monolayer of WSe2 is inside the vacuum
(ϵ1 ¼ 1), at a distance z0 from the interface with the boron
nitride substrate (ϵ2 ¼ 4). Taking Refs. [23,47] as basis, we
consider the reference values n0 ¼ 1.58 × 1012 cm−2, λ ¼
0.48 (when ϵ1 ¼ 4), and λ ¼ 1.92 (when ϵ1 ¼ 1). Using
Eq. (31) and putting the flavor number N ¼ 2 due to the
degeneracy of the valleys K and K0, we obtain the behavior
of m=m0 as a function of n, for several situations discussed

next, always comparing our results with those obtained if
Eq. (35) (found in Ref. [23]) were applied as if the system
were in a single medium ϵ1.
In Fig. 7(a), we show the ratio m=m0 versus n, for a

monolayer ofWSe2 inside a boron nitride substrate (ϵ1 ¼ 4),
at a distance z0 ¼ 100 nm from an interface with the
vacuum. The solid (blue) line shows the curve obtained
via Eq. (31), whereas the dashed (orange) line shows the
curve obtained via Eq. (35), this latter applied as if the WSe2

FIG. 6. Illustration of a two-dimensional Dirac-like system
parallel and near the interface between two dielectrics with
dielectric constants ϵ1 and ϵ2. The distance between the material
and the interface is z0, and the two-dimensional system is
immersed in the medium with dielectric constant ϵ1.

FIG. 7. Ratiom=m0 as a function of n, for a monolayer of WSe2
inside a boron nitride substrate (ϵ1 ¼ 4) near the interface with
the vacuum (ϵ2 ¼ 1), for different values of z0. The solid (blue)
and dashed (orange) lines show the curves obtained via Eqs. (31)
and (35), respectively.
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were immersed in an infinite boron nitride substrate, ignoring
the interface with the vacuum. It is evident that Eq. (35)
overestimates the values ofm=m0 for n > n0 in comparison
to the precise values obtained from Eq. (31), whereas it
predicts lower values for n < n0. On the other hand, this
difference decreases as z0 increases, as expected and shown
in Figs. 7(b) (for z0 ¼ 300 nm) and 7(c) (for z0 ¼ 500 nm).
In Fig. 8, we show the situation where the media are

interchanged, i.e., the monolayer of WSe2 is inside vacuum

(ϵ1 ¼ 1), at a distance z0 from the interface with the boron
nitride substrate (ϵ2 ¼ 4). In Fig. 8(a), we show the ratio
m=m0 versus n for z0 ¼ 100 nm. The solid (blue) line
shows the curve obtained via Eq. (31), whereas the dashed
(orange) line shows the curve obtained via Eq. (35), this
latter applied as if the WSe2 were immersed in an infinite
vacuum, ignoring the interface with the boron nitride
substrate. One can see that Eq. (35) predicts lower values
form=m0 in comparison to the precise values obtained from
Eq. (31), whereas it predicts higher values for n < n0. On
the other hand, this difference decreases as z0 increases,
as expected and shown in Figs. 8(b) (for z0 ¼ 300 nm) and
8(c) (for z0 ¼ 500 nm).

VIII. FINAL REMARKS

We investigated, in the context of the cavity PQED and
within the framework of the random-phase approximation,
the effect of an interface (between two nondispersive semi-
infinite dielectrics) on the renormalization group functions
in a two-dimensional Dirac-like system located at a dis-
tance z0 from the interface [Fig. 1(b)]. Our results shown in
Eqs. (31)–(34) enable us to predict the behavior of the
renormalized mass, Fermi velocity, and the anomalous
dimension of the fermion field, under the influence of such
an interface.
In the limits ϵ1 ¼ ϵ2 and z0 ¼ 0, Eqs. (30)–(34) recover

the corresponding ones found in Ref. [23]. In these limits,
the renormalized mass and Fermi velocity continue depend-
ing on Λ, but the renormalized anomalous dimension does
not. Thus, the role of Eq. (34) is to introduce an explicit
dependence on Λ in the renormalized anomalous dimen-
sion. For a two-dimensional material, where pF ¼ ðnπÞ1=2
assumes the role of the energy scale Λ, Eq. (34) means that,
in the presence of an interface, the anomalous dimension of
electrons is dependent on the density of states. This result
differs from that obtained in Ref. [23], where the anoma-
lous dimension for a two-dimensional material placed on a
single substrate does not exhibit such dependence.
In the limit ϵ2 ≫ ϵ1 ¼ 1, Eq. (32) recovers the corre-

sponding one found in Ref. [21], which predicts the
inhibition of the renormalization of the Fermi velocity in
a graphene sheet in the presence of a grounded perfectly
conducting surface. Adding the limit z0 → ∞, Eq. (32)
recovers the corresponding formula found in Ref. [25],
which predicted the renormalization of the Fermi velocity
in graphene. Since this latter prediction was experimentally
observed [6], an experimental observation of the renorm-
alization of the Fermi velocity predicted in Eq. (32) seems
feasible.
As an application, we considered Eq. (31) to investigate

the renormalized mass (band gap) for a monolayer of
WSe2, when this system is inside a boron nitride substrate,
at a distance z0 from an interface with the vacuum (see
Fig. 7). We also investigated the opposite situation, when
the WSe2 is inside vacuum, at a distance z0 from the
interface with the boron nitride substrate (see Fig. 8).

FIG. 8. Ratio m=m0 as a function of n in the opposite situation
to that shown in Fig. 7. Here, the monolayer of WSe2 is inside
vacuum (ϵ1 ¼ 1) and near the interface with a boron nitride
substrate (ϵ2 ¼ 4). The solid (blue) and dashed (orange) lines
show the curves obtained via Eqs. (31) and (35), respectively.
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We compared our results with those obtained if Eq. (35)
(found in Ref. [23]) were applied as if the system were in a
single medium. The differences between the more precise
predictions, given by our Eq. (31), and those obtained by
Eq. (35) are larger for smaller values of z0 [see Figs. 7(b)
and 8(a)], which means that the effect of the interface,
captured by Eq. (31), is significant. On the other hand, as z0
increases, the differences decrease [see Figs. 7(c) and 8(c)],
which means that the effect of the interface on the
renormalized mass becomes small for larger distances z0,

as expected. Since experiments verifying the dependence of
the renormalized mass with the density of states have been
made [47,48], an experimental verification of the effects
predicted here, according to Eq. (31), seems feasible.
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