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We make an attempt to describe Carroll particles with a nonvanishing value of energy (i.e. the Carroll
particles which always stay in rest) in the framework of two time physics, developed in the series of papers
by I. Bars and his coauthors. In the spacetime with one additional time dimension and one additional space
dimension one can localize the symmetry which exists between generalized coordinate and their conjugate
momenta. Such a localization implies the introduction of the gauge fields, which in turn implies the
appearance of some first-class constraints. Choosing different gauge-fixing conditions and solving
the constraints one obtain different time parameters, Hamiltonians, and generally, physical systems in
the standard one time spacetime. In this way such systems as nonrelativistic particle, relativistic particles,
hydrogen atoms, and harmonic oscillators were described as dual systems in the framework of two time
physics. Here, we find a set of gauge fixing conditions which provides as with such a parametrization of the
phase-space variables in the two time world which gives the description of Carroll particle in the one time
world. Besides, we construct the quantum theory of such a particle using an unexpected correspondence
between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
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I. INTRODUCTION

The theories with extra spatial dimensions have become
quite traditional since the times when they were put forward
in the famous works by Kaluza and Klein [1,2]. The
theories with more than one time (1T) dimensions look
much less intuitive and plausible. However, an impressive
series of papers devoted to the so called two time (2T)
physics was produced by I. Bars and his coauthors [3–24].
The 2T-physics was born in the area of the cutting-edge

research of the modern theoretical physics including
supersymmetry, strings, branes, unified theories and all
that [3–8]. A little bit later it was understood, that the
classical and quantum physics of very simple systems such
as nonrelativistic particle, massive, and massless relativistic
particles, harmonic oscillator, hydrogenlike atoms can be
described in the framework of 2T-physics from a unifying

point of view [9–12]. As was described in the book [24]
different one time physical systems arise as some “shad-
ows” in the Plato’s cave, which is nothing but the world
with one additional temporal dimension and one additional
spatial dimension. Thus, some kind of duality between
different physical theories arises. The language of the two
time physics is quite adapted also for the description of
field theories [13,14] and of the gravity [15,16]. A new
approach to cosmology, inspired by two time physics has
opened the way to an interesting treatment of the problem
of passing through the cosmological singularities [17–21].
An attractive feature of two time physics is the fact that it

permits unification of the systems and phenomena which
before looked quite unconnected. How does it work? The
approach is based on the duality between generalized
coordinates and their conjugate momenta in any theory
defined in the phase space. Indeed, if one makes a linear
transformation between the coordinates and momenta, one
can require that this transformation leave the Poisson
brackets (or the commutators in quantum theory) intact.
It is easy to check that the special linear transformations
(i.e., transformations with the determinant equal to 1)
satisfy this condition, which is both necessary and suffi-
cient. Thus, there is the symmetry with respect to the group
SLð2;RÞ. We shall call here this group Spð2;RÞ. It can be
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called also SOð1; 2Þ and in the Bianchi classification it has
the name of the Bianchi-VIII group [25]. We can try to
localize this group so that its parameters become time-
dependent or spacetime dependent. Then the symmetry
disappears and we have to introduce gauge fields. The
appearance of the gauge fields is equivalent to the intro-
duction of the first-class constraints and, as a consequence,
one has to make a choice of the gauge-fixing relations (see
e.g., [26]). It was shown (see Ref. [24] and references
therein) that to supply the theory with some physical
degrees of freedom and at the same time avoid the arising
of ghosts, it is necessary to add to the standard spacetime
one additional time dimension and one additional space
dimension. Different choices of the gauge-fixing conditions
in this (dþ 2)-dimensional spacetime correspond to differ-
ent choices of the time parameter, of the Hamiltonian
and, generally, of the physical system in the standard
½ðd − 1Þ þ 1�-dimensional spacetimes. In this way 2T
physics arises.
As was already mentioned above in this framework

some particular choices of the gauge fixing produce the
Hamiltonians of the nonrelativistic particle, relativistic
massive, and massless particles and so on. In the present
paper we shall make an attempt to explore the opportunity
to describe Carroll particles in the framework of two time
physics. Carroll particles are particles living in the space-
time, where the geometry is invariant with respect to the
Carroll group. This group was introduced in 1965 by Lévy-
Leblond [27], who noticed that applying the Wigner-Inönu
contraction [28] to the Poincaré group one can obtain not
only the Galilei group, corresponding to the infinite
velocity of light, but also another group, arising in the
limit when the velocity of light is equal to zero. He has this
group the “Carroll group” as a tribute to Lewis Carroll
books about Alice. Independently the Carroll group was
discovered by Sen Gupta [29] in 1966. The properties of the
large set of kinematic Lie algebras, including the Carroll
Lie algebra were studied in [30]. For decades the Carroll
group was considered as some bizzare mathematical
curiosity, but now the interest in it is growing and a lot
of, quite unexpected, applications have been discovered
[31–44](for the history of the Carroll group see the recent
paper by J.-M. Lévy-Leblond [45]).
Let us note that first of all the Carroll group and the

corresponding geometry are very interesting from a math-
ematical point of view [35,39,42]. Indeed, one can study
the intricate relations between the Poincaré, Galilei, Carroll,
and Bargmannian [46] Lie algebras (see Ref. [42] and
references therein). There is an interesting relation with
the infinite-dimensional Kac-Moody algebras [47] (see
Ref. [39]) and there is also a connection between the
Carroll group and the Bondi-Metzner-Sachs group [48,49]
(see Ref. [35]). Amongst physical applications of the Carroll
group we can mention an opportunity to construct the
perturbative theory analogous to the post-Newton approxi-
mation in general relativity; namely, one can consider the

situations when the velocities of the objects under consid-
eration are comparable with the velocity of light [40].
Another interesting situation arises in cosmology when
the recession velocity of distant objects in the Universe is
larger than the velocity of light. Such a situation can also be
treated in Carrollian terms [38]. Moreover, in the vicinity of
the cosmological singularity where the oscillatory approach
to the singularity takes place [50] andwhere the evolutions in
different spatial points become independent [51], we again
can speak about the correspondence between the Belinsky-
Khalatnikov-Lifhshitz limit and the Carroll limit. The list of
applications is certainly much larger (see e.g. [44]).
The structure of our paper is the following The rest of the

Introduction contains two subsections which introduce
briefly some useful notions and formulas for 2T physics
and for the Carroll symmetry. The second section contains
our version of classical theory of Carroll particles in 2T
physics, while the third section is devoted to their quantiza-
tion. The last section contains some concluding remarks.

A. Two time physics

We have already mentioned that from the point of view
of 2T physics, usual physical systems living in a one time
world represent projections from the spacetime with one
additional temporal dimension and one additional spatial
dimension. These additional dimensions are introduced to
construct a new gauge theory, based on the localization
of the phase-space symmetry described by the symplectic
group Spð2;RÞ. Then, the usual physics with 1T is
obtained by means of a gauge fixing.
In order to see how it works, let us introduce the phase-

space coordinates for the two time world,

XM ¼ ðX00 ; X10 ; XμÞ PM ¼ ðP00 ; P10 ; PμÞ: ð1Þ

The indices 00 and 10 label an extra time and an extra space
dimensions. We will see that the extra space dimension is
necessary to get the right number of degrees of freedom
in the 1T theory. The index μ ¼ 0;…; d − 1 labels usual
coordinates in the one time world. We can pack the position
XM and the momentum coordinates PM as follows:

XM
i ¼ ðXM; PMÞ; ð2Þ

where i ¼ 1, 2 labels mean the position and momentum,
respectively. In this way the two types of phase variables
become indistinguishable and can be mixed through
Spð2;RÞ transformations.
Now, let us consider the worldline action for a free

particle in a flat two time spacetime

S ¼ 1

2

Z
dτ ϵijηMN∂τXM

i X
N
j ; ð3Þ

where ηMN ¼ Diagð−1; 1;−1; 1;…; 1Þ is the flat metric,
with signature ð2; dÞ, and ϵij is the antisymmetric tensor
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with ϵ12 ¼ 1. τ is a proper time parameter that parametrizes
the worldline action in the two time plane. Notice that the
action (3) is invariant under the global Spð2;RÞ trans-
formations, which infinitesimal form is given by

δωXM
i ¼ ϵijω

jkXM
k : ð4Þ

Here, the transformation parameters ωjk are symmetric
in j, k.
What happens when the Spð2;RÞ symmetry is promoted

to a local symmetry (in particular, when ωij → ωijðτÞ)? In
this case we need to introduce a connection that takes into
account the new gauge symmetry. The derivative with
respect to τ is substituted by a covariant derivative

∂τXM
i → DτXM

i ¼ ∂τXM
i − ϵijAjkðτÞXM

k ; ð5Þ

where AjkðτÞ is symmetric in the indices i, j and belongs to
the adjoint representation of the Lie algebra of Spð2;RÞ
[that we call spð2;RÞ]. It transforms as a gauge field under
the Spð2;RÞ group

δωAijðτÞ ¼ ∂τω
ij þ ωikϵklAlj þ ωjkϵklAli: ð6Þ

The worldline action invariant under these gauge trans-
formations is

S ¼ 1

2

Z
dτ ϵijηMNDτXM

i X
N
j

¼
Z

dτ ½ηMN
∂τXMPN − AijðτÞQij�; ð7Þ

where

Q11 ¼
1

2
X · X; Q22 ¼

1

2
P · P;

Q12 ¼ Q21 ¼
1

2
X · P; ð8Þ

are the spð2;RÞ conserved currents.
The gauge fields Aij are not dynamical; the kinetic terms

for them are absent. Thus, in Eq. (7) they play the role of
Lagrange multipliers. When a gauge is chosen, the follow-
ing constraints must be satisfied:

X · X ¼ 0; ð9Þ

X · P ¼ 0; ð10Þ

P · P ¼ 0: ð11Þ

It is worth noticing that these constraints lead to a nontrivial
parametrization of the 1T spacetime only when the starting
theory has more than one timelike dimension (see, for
instance, [9,24] and references therein). Moreover, the

gauge freedom allows us to choose three physical degrees
of freedom. Then, when the gauge is fixed and the con-
straints (9), (10), and (11) are satisfied, one gets the
right number of 1T variables. That means that XM

i ðτÞ ¼
XM
i ðx⃗ðτÞ; p⃗ðτÞÞ. The action now looks like

S ¼
Z

dτð˙x⃗ · p⃗ −HÞ; ð12Þ

where H is the Hamiltonian of the 1T theory.
What is the meaning of this gauge fixing? Different

gauge fixings correspond to different choices of the
Hamiltonian (and different choices of the time). This means
that different systems in the 1T physics are described by a
unique two time model. In this sense, these systems are
dual to each other under local Spð2;RÞ transformations.
In many cases it is useful to fix the gauge partially.

For instance, one can make two gauge choices and solve
two of the constraints (9), (10), and (11). This way, the
remaining quantities will be written in terms of the phase-
space variables ðt; x⃗; H; p⃗Þ. The last gauge fixing will set
the physical time t in terms of τ (this corresponds to a
choice of the time) and will define the Hamiltonian H. For
example, we may fix X · X ¼ X · P ¼ 0. At this stage, the
action takes the form

S ¼
Z

dτ

�
˙x⃗ · p⃗ − ṫH −

A22

2
P · P

�
: ð13Þ

The last constraint, defined by P · P ¼ 0, generally char-
acterizes the theory we want to describe. For instance, if we
are describing a massless relativistic particle, P · P ¼ p2,
where p is the quadrimomentum, or for a nonrelativistic
particle, P · P ¼ p⃗2 − 2mH.
Let us take a closer look at the equations of motion and

the symmetries of the system.
The equations of motions for the action (7) are

ẊM ¼ A12XM þ A22PM ð14Þ

ṖM ¼ −A12PM − A22XM: ð15Þ

Thus, now we see how the choice of the gauge fields Aij

affects the equations of motion. The equations and the
action (7) are invariant under the gauge group Spð2;RÞ
and the global transformations SOð2; dÞ, where d is the
dimension of our one time spacetime. This group plays
an important role in both classical and quantum theory. The
generators of the group SOð2; dÞ are

LMN ¼ XMPN − XNPM; ð16Þ

and are invariant under Spð2;RÞ transformations. When
the gauge is fixed partially, these generators are written in
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terms of the 1T variables and a subset of them will provide
the generators of the symmetries of the 1T subsystem.
Let us finish this subsection with the note that it was

based mainly on papers [9,10,12].

B. Carroll symmetry

It is well known that the Poincaré group possesses the
contraction, obtained by sending the speed of light to
infinity, c → ∞. This limit leads to the Galilean group that
describes nonrelativistic models. Indeed, the transforma-
tions of the spacetime coordinates, given by the Poincaré
group are

(
x00 ¼ γ½x0 þ β⃗ · ðRx⃗Þ� þ a0;

x⃗0 ¼ Rx⃗þ γ2

γþ1
½β⃗ · ðRx⃗Þ�β⃗ þ γβ⃗x0 þ a⃗:

ð17Þ

Here, ðx0; x⃗Þ are the time and the space coordinates
respectively. Then, we can recognize the rotation trans-
formation R, the time and space translations ða0; a⃗Þ and the
boost parameters β⃗ ¼ v⃗=c and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv=cÞ2

p
, where

v⃗ is the boost velocity and c is the speed of light. The
nonrelativistic limit is obtained by the transition to the new
variables

t ¼ 1

c
x0 v⃗ ¼ cβ⃗ b ¼ 1

c
a0: ð18Þ

When the speed of light is sent to infinity, these quantities
remain constant. This means that the transformations (17)
reduce to

�
t0 ¼ tþ b;

x⃗0 ¼ Rx⃗þ v⃗tþ a⃗:
ð19Þ

That is exactly what we expect from the Galilean
transformations.
On the other hand, we can also wonder what does happen

when we consider the opposite limit; namely, for c → 0. To
see it, let us define the new variables

t ¼ 1

c
x0 ⃗v̂ ¼ 1

c
β⃗; b ¼ 1

c
a0; ð20Þ

requiring that they remain constant after c is sent to zero.
We get the following transformations:

�
t0 ¼ tþ ⃗v̂ · ðRx⃗Þ þ b;

x⃗0 ¼ Rx⃗þ a⃗:
ð21Þ

These transformations form the Carroll group [27,29,30].
Note that here the boosts transform only the time coor-
dinate, in contrast to what happens at the Galilean trans-
formations. In the Table I we present the nonvanishing
commutators of the generators of all three groups: Poincaré,
Gallilei, and Carrol.
Let us see what happens with the metric tensor. The

Lorentz metric is

ds2 ¼ −c2dt2 þ dx⃗2: ð22Þ

When the Galilean or Carrollian limits are considered, the
contravariant metric (in the Galilean case) or the metric (in
the Carrollian case) becomes degenerate (see e.g., [42]). It
is interesting to represent it in terms of the light cone, which
determines the causal structure of the spacetime.
In Fig. 1 the light cones for the Lorentzian, Galilean,

and Carrollian spaces are presented. The light cone
becomes a degenerate timelike line in the Carrollian case
and a spacelike hyperplane in the Galilean case. It is known

TABLE I. Lie brackets for the Galilei, Poincaré, and Carroll algebras. Here, Lij represent the generators of
rotations, Bi are the boosts and H and Pi generates the time and space translations, respectively.

POINCARÉ ALGEBRA

½Lij; Lkl� ¼ δikLjl þ δjlLik − δilLjk − δjkLil

½Lij; Pk� ¼ δikPj − δjkPi

½Lij; Bk� ¼ δikBj − δjkBi

½Bi; Bj� ¼ Lij

½Bi; Pj� ¼ δijH
½Bi; H� ¼ Pi

GALILEI ALGEBRA CARROLL ALGEBRA

½Lij; Lkl� ¼ δikLjl þ δjlLik − δilLjk − δjkLil ½Lij; Lkl� ¼ δikLjl þ δjlLik − δilLjk − δjkLil

½Lij; Pk� ¼ δikPj − δjkPi ½Lij; Pk� ¼ δikPj − δjkPi

½Lij; Bk� ¼ δikBj − δjkBi ½Lij; Bk� ¼ δikBj − δjkBi

½Bi; Bj� ¼ 0 ½Bi; Bj� ¼ 0

½Bi; Pj� ¼ 0 ½Bi; Pj� ¼ δijH
½Bi;H� ¼ Pi ½Bi;H� ¼ 0
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that the latter describes nonrelativistic theories. On the
other hand, the first picture tell us that the Carroll particle
cannot move in space unless it is a tachyon. This situation is
described, for example, in [38]. In this paper our goal is to
describe the nonmoving Carroll particles in the 2T world.

II. CLASSICAL THEORY

It is known that the Carrol particle with nonzero energy
should always be in rest [32,34,38]. In Ref. [38] it was
explained that the Carroll particle with zero energy is
instead always moving. These two cases are not connected.
Indeed, the Carroll boosts do not change the value of the
energy in contrast to the Lorentzian and Galilean boosts. It
is easy to understand the reason. The Lie algebra generators
corresponding to the Lorentz boosts have the form

t
∂

∂x
þ x

∂

∂t
; ð23Þ

the Galilean boosts can be represented by the generators

t
∂

∂x
; ð24Þ

while the Carroll boosts are

x
∂

∂t
: ð25Þ

The Hamiltonian is always proportional to the operator

∂

∂t
; ð26Þ

where we put the value of the speed of light c ¼ 1. The
Carroll boost (25) commutes with the Hamiltonian (26) in
contrast to the Lorentz boost (23) and Galilei boost (24).
Thus, one cannot change the value of the energy making a
boost in the Carroll world. Hence, one should treat the
cases of the vanishing and nonvanishing energy separately.

In this paper we discuss only the case of the Carroll
particles with nonvanishing energy.
The fact that in the Carroll spacetime particles with

nonzero energy cannot move can be explained in the fol-
lowing way [38]; the conservation of the energy-momentum
tensor implies the disappearance of the flux of energy, if the
energy is different from zero. Then, following the paper [38]
one states that the Carrollian particle’s dynamics can be
described by the following action in the first-order formalism

S ¼ −
Z

dτfṫE − ẋ · p − λðE − E0Þg; ð27Þ

where τ is the proper time, t is the physical time,E represents
the classical Hamiltonian, and xi and pi are the space
coordinates and themomenta, for i ¼ 1;…; d − 1. The usual
scalar product is defined by x · p ¼ P

i;j ηijx
ipj; here

ηij ¼ δij. Besides, E0 is a real constant that represents the
rest energy of the Carroll particle and λ plays the role of a
Lagrange multiplier. The dot represents the derivative with
respect to τ. This action is invariant under the transformations
generated by

Lij ¼ xipj − xjpi; Bi ¼ Exi; pi and E; ð28Þ

which are respectively thegenerators of rotations, boosts, and
spatial and time translations. Their Poisson brackets satisfy
the Carroll algebra [27,29,30]. The equations of motion
following from the action (27) are

ṫ ¼ λ; Ė ¼ 0;

ẋi ¼ 0; ṗi ¼ 0: ð29Þ

In particular, the first equation fixes the relation between the
Lagrange multiplier, the proper time and the physical time;
from λ ¼ 1, it follows that t ¼ τ.
Let us come back to the two time physics. We can

suppose that the gauge fields Aij are all constants. In
particular, we choose A12 ¼ A11 ¼ 0. Here, it is worth
observing that if Xi ¼ xi and Pi ¼ pi, it requires

FIG. 1. Deformation of the Lorentzian light cone in Galilean and Carrollian limits.
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Ẋi ¼ 0; Ṗi ¼ 0: ð30Þ

Combined with equations (9), (10), and (11), this leads to
the condition xi ∝ pi. This is a very strong bound, which
looks too restrictive and rather unnatural. To avoid the
imposing of this condition we can choose a more involved
relation between the physical coordinates and momenta in
our one time spacetime and the coordinates and momenta in
the two time spacetime,

XM ¼ XM
0 þ tPM

0 ; PM ¼ PM
0 ; ð31Þ

where XM
0 and PM

0 are independent on t. It is important to
observe that here t has not been defined in terms of XM and
PM yet. We are going to define it later, but before let us see
the consequences of our choice (31).
The action obtained by imposing A11 ¼ A12 ¼ 0 in (7) is

S ¼
Z

dτ

�
Ẋ · P −

1

2
A22P · P

�
: ð32Þ

It is clear that if we want to reproduce the action (27), we
have to require that P · P ¼ −2ðE − E0Þ. Now the gauge
field A22 plays the role of the Lagrange multiplier λ.
When M ¼ i, we can simply define Xi

0 ¼ xi and
Pi
0 ¼ pi, where xi and pi are the position and momentum

in the 1T theory. Supposing that the equations ẋi ¼ ṗi ¼ 0

are satisfied, Eqs. (14) and (15) for Xi ¼ xi þ tpi and
Pi ¼ pi become

Ẋi ¼ ṫpi ¼ A22pi; Ṗi ¼ 0; ð33Þ

which are satisfied when ṫ ¼ A22, as expected.
Let us introduce the light cone coordinates

Xþ ¼ 1

2
ðX10 þ X00 Þ; X− ¼ 1

2
ðX10 − X00 Þ; ð34Þ

where the indices 00 and 10 have been defined in (1). Now
using our choice (31) and the constraints (9) and (10) we
find that

X · X ¼ −2Xþ
0 X

−
0 − ðX0

0Þ2 þ xixi

þ 2tð−Xþ
0 P

−
0 − X−

0P
þ
0 − X0

0P
0
0 þ pixiÞ

þ t2½−2Pþ
0 P

−
0 − ðP0

0Þ2 þ pipi�; ð35Þ

X · P ¼ −Xþ
0 P

−
0 − X−

0P
þ
0 − X0

0P
0
0 þ xipi

þ t½−2Pþ
0 P

−
0 − ðP0

0Þ2 þ pipi�: ð36Þ

Let us partially solve the constraint equations (9), (10), and
(11) imposing

−2Xþ
0 X

−
0 − ðX0

0Þ2 þ xixi ¼ 0; ð37Þ

−Xþ
0 P

−
0 − X−

0P
þ
0 − X0

0P
0
0 þ pixi ¼ 0: ð38Þ

This is equivalent to solving equations

X · X ¼ tX · P ¼ t2P · P; ð39Þ

as will be shown below. Now, it is time to remember that we
need

P · P ¼ −2Pþ
0 P

−
0 − ðP0

0Þ2 þ pipi ¼ −2ðE − E0Þ: ð40Þ

This last condition is treated not as a constraint, but as the
definition of the function

E ¼ 1

2
ð2Pþ

0 P
−
0 þ ðP0

0Þ2 − pipiÞ þ E0; ð41Þ

where E0 is a constant. When these equations are solved,
we are left with

P · P ¼ −2ðE − E0Þ; ð42Þ
X · P ¼ −2tðE − E0Þ; ð43Þ
X · X ¼ −2t2ðE − E0Þ; ð44Þ

which solve Eq. (39). This means that all the constraints
(9), (10), and (11) are satisfied if the same equality is valid.
Namely,

X · X ¼ tX · P ¼ t2P · P ¼ 0; ð45Þ

which are solved if and only if E − E0 ¼ 0.
After this preliminary analysis we can represent the

procedure of the reduction of the two time spacetime to
the one time spacetime in a consistent way following the
algorithm presented in papers [9,10,12]. Using our coor-
dinate (gauge-fixing) choice we can calculate the kinetic
term of the action (27) which now looks like

Ẋ · P ¼ Ẋ0 · P0 þ ṫP0 · P0 þ tṖ0 · P

¼ Ẋ0 · P0 þ
1

2
ṫP0 · P0 þ ∂τðtP0 · PÞ: ð46Þ

Using the definition (40), we can write

Ẋ · P ¼ Ẋ0 · P0 − ṫEþ ða total derivativeÞ: ð47Þ

Now the action can be written as

S ¼
Z

dτf−Ẋþ
0 P

−
0 − Ẋ−

0P
þ
0 − Ẋ0

0P
0
0

þ ẋipi − ṫEþ A22ðE − E0Þg: ð48Þ

In order to obtain the action (27), it is necessary to combine
the first three terms in the integral above into a total
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derivative. We can use our gauge freedom in order to reach
this goal. Moreover, it is important to remember that the
function t has not been defined in terms of XM and PM yet,
but it is always an additional degree of freedom; we need to
set the XM

0 and PM
0 in order to define t. Therefore, we are

free to fix three coordinates in the two time space, paying
attention not to spoil the constraints (37), (38), and (40).
Our choice is summarized in Table II, where the physical
time is defined as t ¼ Xþ

E0
. In this way, the action (48)

becomes

S ¼ −
Z

dτfṫE − ẋipi − A22ðE − E0Þ; g; ð49Þ

which coincides with the Carroll action (27).
We can now compute the SOð2; dÞ generators in terms of

the variables defined by our gauge choice. Its general form

was given in Eq. (16). Using the gauge choices defined
above, we obtain the following expressions:

Lij ¼ xipj − xjpi; ð50Þ

L0i ¼
ffiffiffiffiffiffiffiffi
xjxj

q
pi; ð51Þ

Lþi ¼ −E0xi ð52Þ

L−i ¼ −
E − E0

E0

xi −
pjpj

2E0

xi þ pjxj
E0

pi; ð53Þ

Lþ− ¼ −pixi; ð54Þ

L−0 ¼ −
ffiffiffiffiffiffiffiffi
xixi

q �
E − E0

E0

þ pipi

2E0

�
; ð55Þ

Lþ0 ¼ −E0

ffiffiffiffiffiffiffiffi
xixi

q
: ð56Þ

Using the definition of the canonical Poisson brackets

fxi; pjg ¼ ηij; ð57Þ

one can determine the infinitesimal transformation of the
phase-space coordinates under the group generated by
(50)–(56):

δxk ¼ ϵkixi þ ϵ0krþ ϵ−i
E0

ðxipk − xkpi − gikp · xÞ þ ϵþ−xk þ ϵ−0
rpk

E0

; ð58Þ

δpk ¼ ϵkipi þ ϵ0i
pixk

r
þ ϵ−i

E0

�
pipk − gik

p2

2
− gikðE − E0Þ

�
− ϵþ−pk

−
ϵ−0
E0

�
p2

2
þ ðE − E0Þ

�
xk

r
þ E0

�
ϵ−k − ϵþ0

xk

r

�
; ð59Þ

where the ϵMN are infinitesimal transformation parameters
which correspond to the respective generators LMN . The
action (49) is invariant under these transformations, but the
Poisson brackets of these generators do not form an soð2; dÞ
algebra, unless the constraintE − E0 ¼ 0 is satisfied. Indeed,
a direct computation shows that

fL−i; L−jg ¼ −2
E − E0

E0

Lij; ð60Þ

which is a new element of the algebra. On the other hand,
when E − E0 ¼ 0 these Poisson brackets vanish and all the
generators form the soð2; dÞ algebra, described by

fLMN; LRSg ¼ ηMRLNS þ ηNSLMR − ηMSLNR − ηNRLMS:

ð61Þ

It is interesting to observe that the generatorsLþi can now be
interpreted as the Carrollian boost generators. Let usmention
also the fact that we do not need to introduce the gauge
transformation of the gauge field A22 in contrast to the
situation which was encountered, for example, for the
nonrelativistic particle [12].

III. QUANTUM THEORY

Now, we present the results of the quantization of the
model of the Carroll particle arising as the consequence of
the gauge choice in 2T spacetime described in the preced-
ing section. Firstly, we recapitulate the general ideas
following the papers [9,10]. The first step consists in the
definition of the commutation relation for the position and
momentum operators in the standard (d − 1)-dimensional
space. They are, naturally.

TABLE II. Gauge-fixing choice for the Carroll particle with
nonvanishing energy.

þ − 0 i

XM E0t pixi
E0

þ t
E0

�
E − E0 þ pipi

2

	 ffiffiffiffiffiffiffiffi
xixi

p
xi þ tpi

PM E0 E−E0þpip
i

2

E0

0 pi
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½xi; pj� ¼ iδij: ð62Þ

When we quantize some classical functions of these
operators, the problem of the choice of the ordering arises.
Firstly, all the operators should be Hermitian, but this
requirement is not sufficient. Let us consider as a simple
example (arising also in [10]) the function p2r, where
r ¼

ffiffiffiffiffiffiffiffi
xixi

p
. We can write, for example,

p2r → pirpi; ð63Þ

which is clearly Hermitian. However, this ordering is not
unique ordering providing the Hermiticity. Indeed, we can
choose another form of the operator

p2r → rpir−1pir ¼ pirpi −
d − 3

2r
; ð64Þ

where the right-hand side of the equation is computed by
means of the commutation rules (62). Surely both the
expressions (63) and (64) are admissible. In a more general
case, one obtains

p2r → rλpir1−2λpirλ ¼ pirpi þ λðλ − dþ 2Þ
2r

: ð65Þ

Thus, to make an adeguate choice of the ordering we
have to resort to the covariant quantization in the 2T
spacetime. First of all the generators LMN which become
operators should constitute the Lie algebra with respect to
the commutators. This algebra should coincide with the Lie
algebra (61) of the classical generators with respect to the
Poisson bracket. However, this requirement does not define
the ordering in the quantum generators in a unique way and
one should also use the properties of the Casimir operators
of the unitary representations of both the groups SOð2; dÞ
and Spð2;RÞ. The constraints play the role of the gen-
erators of the symmetry with respect to the Spð2;RÞ group.
Hence, in the quantum theory they should be applied to the
acceptable quantum states of the system under consider-
ation according to the prescription of the Dirac quantization
of systems with first-class constraints [52] (see also [26] for
an extensive modern review). The Dirac idea consists in
the statement that if one has a system of the first class
constraints, i.e., that the constraints formulated in the
Hamiltonian formalism are in involution amongst them-
selves with respect to the Poisson brackets, then these
constraints being quantized should be applied to the
physical states and select them for QjΨi ¼ 0. It corre-
sponds to the satisfaction of these constraints at the
classical level. The Dirac procedure should be combined
with the definition of the scalar product on the correspond-
ing Hilbert space, the separation of the physical and gauge
degrees of freedom, and the studying of the effective
Hamiltonian. All these problems were intensively studied,
for example, in the (super)string theories (see, e.g., [53])

and especially in quantum gravity and cosmology [54–58].
Here, in the context of two time physics, we have a system
of first-class constraints in the (dþ 2)-dimensional space-
time and, moreover, in the simple models which we
consider here, the Hamiltonian in the this spacetime is
equal to zero (just like in quantum cosmology [54–58]).
Thus, following the procedures, described in [9,10], we
first apply the Dirac prescription and then choosing the
gauges, we obtain different physical systems in our
½ðd − 1Þ þ 1�-dimensional spacetime.
Then, we can note that if the generators select the

physical quantum states the same should be valid also
for the Casimir operators. If we choose the basis of the
Hermitian quantum generators of the Spð2;RÞ group as
follows (see Ref. [9]):

J0 ¼
1

4
ðP2 þ X2Þ; J1 ¼

1

4
ðP2 − X2Þ;

J2 ¼
1

4
ðX · Pþ P · XÞ; ð66Þ

we obtain the following commutation rules:

½J0; J1� ¼ iJ2; ½J0; J2� ¼ −iJ1;

½J1; J2� ¼ −iJ0: ð67Þ

The quadratic Casimir operator is defined as

C2ðSpð2;RÞ ¼ J20 − J21 − J22: ð68Þ

Using the commutation rules

½XM; PN � ¼ iηMN; ð69Þ

we can show that

C2ðSpð2;RÞÞ ¼
1

4

�
XMP2XM − ðX · PÞðP · XÞ þ d2

4
− 1

�
.

ð70Þ

On the other hand, one defines the quadratic Casimir
operator for the SOð2; dÞ group as

C2ðSOð2; dÞÞ ¼ 1

2
LMNLMN ð71Þ

and direct calculation shows that

C2ðSOð2; dÞÞ ¼ 4C2ðSpð2;RÞÞ þ 1 −
d2

4
: ð72Þ

Thus, if the generators of the Spð2;RÞ select the physical
quantum states and their quadratic Casimir operator should
be equal to zero, the quadratic Casimir operator on the same
quantum states treated as belonging to a representation of
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the SOð2; dÞ group should be equal to 1 − d2
4
. It is this

requirement that fixes the ordering in the generators of the
SOð2; dÞ group [10].
Now, let us note that if we manage to fix the ordering in

the generators of SOð2; dÞ group at the moment when the
proper time τ is equal to zero, then the same ordering will
be conserved. We can note that our parametrization of
the variables XM, PM at the moment τ ¼ 0 coincides with
that presented in the paper [10] for the description of the
hydrogen atom provided we have already put E ¼ E0. This
fact looks amazing because the physical systems under
consideration are quite different and their actions are also
different. However, to obtain the action we should consider
time-dependent phase variables and the time evolutions of
our two sets of variables are quite different. Moreover,
introducing the variables as they are presented in the
Table 1, we consider E as an independent variable, while
E0 is some nonvanishing constant. In this way we manage
to obtain the Carroll particle action (49). Then, after writing
down the generators of the SOð2; dÞ group (50)–(56) and
their Poisson brackets we put E ¼ E0 to close the alge-
bra soð2; dÞ.
Thus, now we can use the results of the paper [10] to fix

the ordering of the operators in the quantum generators of
the group SOð2; dÞ:

Lij ¼ xipj − xjpi; ð73Þ

L0i ¼ 1

2
ðrpi þ pirÞ; ð74Þ

Lþi ¼ −E0xi ð75Þ

L−i ¼ −
1

2E0

pjxipj þ 1

2E0

ðp · xpi þ pix · pÞ þ xi

8E0r2
;

ð76Þ

Lþ− ¼ −
1

2
ðx · pþ p · xÞ; ð77Þ

L−0 ¼ −
1

2E0

pirpi −
5 − 2d
8E0r

; ð78Þ

Lþ0 ¼ −E0r: ð79Þ

The last terms in (76) and (78) arise from the ordering
choice, which guarantees the closure of the algebra of
the generators with respect to the commutators and the
disappearance of the quadratic Casimir operator of the
group Spð2;RÞ.
Now, we shall construct the representation of the

SOð2; dÞ group corresponding to our physical system using
the algorithm described in [10] and taking the advantage
from the fact that the generators of this group for the Carroll
particle and for the hydrogen atom are quite similar.

First of all, let us define the quadratic Casimir relative to
the rotations’s subgroup SOðd − 1Þ, generated by the Lij,

C2ðSOðd − 1ÞÞ ¼ 1

2
LijLij ¼ L2

¼ xip2xi − ðx · pÞðp · xÞ: ð80Þ
Following [10], we can observe that the three generators
ðLþ−; Lþ0; L−0Þ form an soð1; 2Þ subalgebra. Let us define

J0 ¼ −L−0 −
1

2
Lþ0; ð81Þ

J1 ¼ −L−0 þ 1

2
Lþ0; ð82Þ

J2 ¼ −Lþ−: ð83Þ

Their commutation rules are given by Eqs. (67). The
Casimir operator associated with the representation given
by our choice of the parameters is

C2ðSOð1; 2ÞÞ ¼ ðJ0Þ2 − ðJ1Þ2 − ðJ2Þ2

¼ L2 þ 1

4
ðd − 2Þ2 − d

2
þ 1

¼ jðjþ 1Þ: ð84Þ
It is worth observing here that when d ¼ 4 (namely, when
the Carroll system lives in 3þ 1 dimensions), the quadratic
Casimir of SOð1; 2Þ is the same as the one of the rotations
subgroup. Now, let us consider a physical states in which J0

is diagonal. Using the commutation rules (62), it can be
rewritten as

J0 ¼ r
1
2

�
p2

2E0

þ E0

2

�
r
1
2: ð85Þ

The eigenstates of this operator are labeled by j and the
integer eigenvalues of J0, m,

J0jj; mi ¼ mjj; mi: ð86Þ

Let us reabsorb a r
1
2 factor in jj; mi and define

jΨj;mi ¼ r
1
2jj; mi. In this way one can observe that

r−
1
2ðJ0 −mÞjj; mi ¼

�
p2

2E0

−
m
r
þ E0

2

�
jΨj;mi: ð87Þ

Rescaling by a factor m2 and making a suitable redefi-
nition of the variables r̃ ¼ mr and p̃i ¼ pi=m, one obtains

�
p̃2

2E0

−
1

r̃

�
jΨj;mi ¼

E0

2m2
jΨj;mi; ð88Þ

which is the equation for the hydrogen atom, in which E0

plays the role of the mass.
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We may also observe that

r−
1
2L0þjj;mi ¼ HjΨj;mi ¼ E0jΨj;mi; ð89Þ

r−
1
2L0ijj; mi ¼ pijΨj;mi: ð90Þ

In Ref. [10] a similar equation in the case when d ¼ 4
gives the standard spectrum of the energy eigenvalues of the
hydrogen atom. Does it mean that we should have similar
discrete spectrum of the energy levels for the Carrol particle?
The answer to this question is negative. The point is that the
combination of the squared momentum and of the inverse
radius which we see in Eq. (88) in our case is not connected
with the Hamiltonian of the system in contrast to the case of
the hydrogen atom. Indeed, our Hamiltonian is simply freely
chosen (but different from zero) constantE0, which does not
depend on the momentum and the position of the particle.
Thus, for us Eq. (88) simply gives some kind of the
quantization of this combination. Is it essential? We can
say that it does not limit the properties of our quantumCarroll
particle at rest, because the momentum pi is not connected
with thevelocity of the particle (which is equal to zero). Then,
what is the role of the momentum? In quantum theory it
enters into the commutation relations (62) and, hence, the
standard Heisenberg inequality of uncertainties,

Δxi � � �Δpj ≥
1

4
δij; ð91Þ

is valid. Finally, we can ask ourselves how the Heisenberg
relation (91) can be compatible with the fact that the particle
should be in rest and should be localized. We believe that
here, in contrast to the standard nonrelativistic quantum
mechanics, we can choose the quantum states with a
dispersion of the coordinateΔx as small as wewish, because
the growth of the dispersion of the momentum Δp is not
important. Thus, a particle can be localized with an arbitrary
high precision.
Concluding this section, let us remember once again that

we have found that in quantum theory there is quite an
amusing correspondence between the hydrogenlike atom
and the unmoving Carroll particle. However, it does not
mean that the spectrum of the Carroll particle is discrete,
(which would be in someway counterintuitive). As a matter
of fact due to the presence of some free parameters this
spectrum is continuous.

IV. CONCLUDING REMARKS

The Carroll group and Carroll symmetry have acquired a
great popularity during recent years. Their properties are
rather interesting from a purely mathematical point of view
and have found numerous and sometimes unexpected

physical applications. Two time physics is less known,
but its results are also very interesting because they permit
us to see quite different physical systems and phenomena
from a unified point of view. As far as we know there were
no studies devoted to a description of Carroll particles from
the point of view of two time physics. We have made such
an attempt in the present paper. Here we have limited
ourselves by investigation of a relatively simple case of
Carroll particles which have nonvanishing energy and
should stay at rest in a ðd − 1Þ þ 1 spacetime. For this
case we have found such gauge-fixing conditions in the
enlarged (dþ 2)-dimensional spacetime (which possesses
two time variables) which together with the constraints of
the theory give a parametrization of the phase space
variables in the enlarged spacetime that produces Carroll
particle in the standard one time spacetime.
Remarkably, if we treat our phase variables as the

quantum operators, then at the moment when the proper-
time parameter is equal to zero, our parametrization
coincides with that obtained in [10] for the hydrogen atom
up to some coefficients. That permits us to follow the
quantization scheme developed in [10] for this case. The
equations which we obtain are very close to those obtained
there, while their physical sense and interpretation are quite
different. The roots of this difference lie in the fact that our
Hamiltonian does not depend neither on the momenta nor
on the coordinates of the system. Moreover, the momenta
are not connected with the velocities in contrast with the
traditional formulas to which one is accustomed working
with Lorentz or Galilei symmetric systems. The role of
momenta consists in the fact that they obey the standard
commutation relations with the operators of position and,
hence, the Heisenberg indeterminacy inequality is valid.
However, the role of the dispersions of the coordinates and
of the dispersions of the momenta are different. While the
dispersion of the coordinate characterizes the localization
of the particle, the dispersion of the momenta do not have a
direct physical sense and one can choose the physical state
with an arbitrary high degree of the space localization
which is compatible with the fact that classical Carroll
particle should always stay in rest. All said above concerns
the particles with a nonzero value of energy. The case with
zero energy when the Carroll particles are always in motion
is more complicated and we hope to present an analysis of
this case in the future [59].
Another possible and interesting direction of the research

is to look for field-theoretical systems with the Carroll
symmetry in the two time world.
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