
Nonequilibrium Schwinger-Keldysh formalism for density matrix states:
Analytic properties and implications in cosmology

Andrei O. Barvinsky 1,2,* and Nikita Kolganov 3,2,1,†

1Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, Moscow 119991, Russia
2Institute for Theoretical and Mathematical Physics, Moscow State University,

119991, Leninskie Gory, GSP-1, Moscow, Russia
3Moscow Institute of Physics and Technology, 141700, Institutskiy pereulok, 9, Dolgoprudny, Russia

(Received 11 September 2023; accepted 11 December 2023; published 5 January 2024)

Motivated by cosmological Hartle-Hawking and microcanonical density matrix prescriptions for the
quantum state of the Universe we develop a Schwinger-Keldysh in-in formalism for generic non-
equilibrium dynamical systems with the initial density matrix. We build the generating functional of in-in
Green’s functions and expectation values for a generic density matrix of the Gaussian type and show that
the requirement of particle interpretation selects a distinguished set of positive/negative frequency basis
functions of the wave operator of the theory, which is determined by the density matrix parameters. Then
we consider a special case of the density matrix determined by the Euclidean path integral of the theory,
which in the cosmological context can be considered as a generalization of the no-boundary pure state to
the case of the microcanonical ensemble, and show that in view of a special reflection symmetry its
Wightman Green’s functions satisfy Kubo-Martin-Schwinger periodicity conditions which hold despite the
nonequilibrium and nonstationary nature of the physical setup. Rich analyticity structure in the complex
plane of the time variable reveals the combined Euclidean-Lorentzian evolution of the theory, which
depending on the properties of the initial density matrix can be interpreted as a decay of a classically
forbidden quantum state.
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I. INTRODUCTION

The purpose of this paper is to construct the Schwinger-
Keldysh in-in formalism [1,2] for expectation values and
correlation functions in a rather generic nonequilibrium
system with the initial state in the form of a special density
matrix. This density matrix is itself assumed to be deter-
mined by the dynamical content of the system. The
motivation for this construction comes from the scope of
ideas of quantum cosmology suggesting that the initial state
of the Universe should be prescribed not from some ad hoc
and freely variable initial conditions like in a generic
Cauchy problem, but rather intrinsically fixed by the field
theory model of the Universe. The pioneering implemen-
tation of these ideas was the prescription of the Harle-
Hawking no-boundary cosmological wave function [3,4],
no-boundary connotation indicating the absence of the
notion of the initial Cauchy (boundary) surface of

spacetime. Such a prescription replaces the existence of
this surface by the requirement of regularity of all fields at
all spacetime points treated in the past as regular internal
points of spacetime manifold.
Applied to a wide class of spatially closed cosmological

models this prescription qualitatively leads to the picture of
expanding Friedmann universe with the Lorentzian signa-
ture spacetime nucleating from the domain of a Euclidean
space with the topology of a 4-dimensional hemisphere, the
Euclidean and Lorentzian metrics being smoothly matched
by analytical continuation in the complex plane of time
coordinate. This picture allows one to avoid initial singu-
larity in the cosmological evolution and, in particular,
serves as initial conditions for inflationary scenarios.
This is because it implies a pure vacuum state of quantum
matter perturbations on top of a quasiexponentially expand-
ing metric background, both the background and this
vacuum state being generated by tunneling from the
classically forbidden (underbarrier) state of the Universe,
described by the Euclidean spacetime with the imaginary
time. Correlation functions of quantum cosmological per-
turbations in this vacuum state have a good fit to nearly flat
red-tilted primordial spectrum of the cosmic microwave
background radiation (CMBR) [5,6] and other features of
the observable large scale structure of the Universe [7].
Limitation of this no-boundary concept consists in the

fact that it covers only the realm of pure quantum states.
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Moreover, it prescribes a particular quantum state which in
the lowest order of the perturbation theory yields a special
vacuum state. In fact, the idea of Hartle-Hawking no-
boundary initial conditions came from the understanding
that the vacuum state wave function Ψ½φðxÞ� of a generic
free fields model in flat spacetime can be built by the path
integral over the field histories ϕðτ;xÞ on a half-space
interpolating between a given 3-dimensional configuration
φðxÞ on the boundary plane of τ ¼ 0 and the vanishing
value of these fields at the Euclidean time τ → −∞.
Beyond perturbation theory, in the models with a bounded
from below spectrum of their Hamiltonian this procedure
yields the lowest energy eigenstate. Thus, the Hartle-
Hawking no-boundary wavefunction is the generalization
of this distinguished state to a special case of curved
spatially closed spacetime, which can be formulated even
though the notion of nontrivially conserved energy does not
exist for such a situation.
A natural question arises how to generalize this picture to

the physical setup with the density matrix replacing this
distinguished pure state. The attempt to do this encounters
the problem of constructing the set of physical states jψi
along with the set of their weights wψ participating in the
construction of the density matrix ρ̂ ¼ P

ψ wψ jψihψ j. This
problem looks unmanageable without additional assump-
tions, but the simplest possible assumption—universal
microcanonical equipartition of all physical states—allows
one to write down the density matrix in a closed form
provided one has a complete set of equations which
determine a full set of jψi. These are the Wheeler-DeWitt
equations Ĥμjψi ¼ 0which are quantumDirac constraints in
gravity theory selecting the physical states [8], μ being the
label enumerating the full set of Hamiltonian and diffeo-
morphism constraints, which includes also a continuous
range of spatial coordinates. The density matrix becomes a
formal operator projector on the subspace of these states,
which can be written down as an operator delta functions

ρ̂ ¼ 1

Z

Y
μ

δðĤμÞ; ð1:1Þ

the factor Z being a partition function which provides the
normalization trρ̂ ¼ 1 [9]. Important feature of this formal
projector is that a detailed construction of the delta function
of noncommuting operators Ĥμ (which form an open algebra
of first class constraints) leads to the representation of this
projector in terms of the Batalin-Fradkin-Vilkovisky or
Faddeev-Popov path integral of quantum gravity [9,10]
and makes it tractable within perturbation theory.
In contrast to the Hartle-Hawking prescription formu-

lated exclusively in Euclidean spacetime this density matrix
expression is built within unitary Lorentzian quantum
gravity formalism [11]. Euclidean quantum gravity, how-
ever, arises in this picture at the semiclassical level as a

mathematical tool of perturbative loop expansion. The
partition function Z of the density matrix (its normalization
coefficient) should be determined by the above path
integral over closed periodic histories, and the dominant
semiclassical contribution comes from the saddle points—
periodic solutions of classical equations of motion. The
practice of applications to concrete cosmological models
shows, however, that such solutions do not exist in
spacetime with the Lorentzian signature, but can be
constructed in Euclidean spacetime. The deformation of
the integration contour in the complex plane of both
dynamical variables and their time argument suggests that
these Euclidean configurations can be taken as a ground for
a dominant contribution of semiclassical expansion. This
gives rise to the following definition of the Euclidean path
integral density matrix.
Let the classical background have at least two turning

points and describe the periodic (classically forbidden or
underbarrier) motion between them in imaginary
Lorentzian time (or real Euclidean time τ). Then the
two-point kernel ρEðφþ;φ−Þ ¼ hφþjρ̂Ejφ−i of the density
matrix in question is defined by

ρEðφþ;φ−Þ ¼
1

Z

Z
Dϕe−SE½ϕ�

����
ϕðτ�Þ¼φ�

; ð1:2Þ

where SE½ϕ� is the Euclidean action of the field perturba-
tions ϕðτÞ on top of the given background, defined on the
period of the Euclidean time, τ− ≤ τ ≤ τþ, the functional
integration runs over field histories interpolating between
their values φ�—the arguments of the density matrix
kernel. Z is the partition function given by the path integral
over the periodic histories with the period β ¼ τþ − τ−,

Z ¼
Z

Dϕe−SE½ϕ�
����
ϕðτþÞ¼ϕðτ−Þ

; ð1:3Þ

providing the normalization trρ̂E ¼ 1. Hermiticity of this
density matrix, which in view of its reality reduces to its
symmetry ρEðφþ;φ−Þ ¼ ρEðφ−;φþÞ, implies that the back-
ground solution is a bounce that has a reflection symmetry
with respect to the middle turning point at τþþτ−

2
, and the

turning points τ� are in fact identified.
Up to a normalization the expression (1.2) is the

evolution operator of the Schroedinger equation in imagi-
nary time, t ¼ −iτ, with the quantum Hamiltonian ĤSðτÞ
calculated on top of the nonstationary background. The
Hamiltonian operator here is written down in the
Schroedinger picture (which is indicated by the subscript
S) and explicitly depends on the Euclidean time because of
this nonstationarity, so that the evolution operator is the
Dyson chronological τ-ordered exponent
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ρEðφþ;φ−Þ ¼ const ×
D
φþjTe−

R
τþ
τ−

dτ ĤSðτÞjφ−

E
: ð1:4Þ

Because of the properties of the turning points (zero
derivatives of the background field) the Euclidean back-
ground can be smoothly matched at τ� with the classically
allowed and real background solution of equations of
motion parameterized by real Lorentzian time t. The
evolution of quantum perturbations on this Lorentzian
branch of the background is then driven by the unitary
version of the t-ordered exponent (1.4)

Ûðtþ; t−Þ ¼ Te
−i
R

tþ
t−

dt ĤSðtÞ ð1:5Þ

with the Hermitian time-dependent Hamiltonian which is
evaluated on this Lorentzian background. In the cosmo-
logical context, when the spatial sections of spacetime of
S3-topology are represented by circles of a variable scale
factor, the graphical image of the combined Euclidean-
Lorentzian evolution operator ÛðT; 0Þρ̂EÛ†ðT; 0Þ is
depicted on Fig. 1. It shows the Euclidean spacetime
instanton with the topology R1 × S3, R1 ¼ ½τ−; τþ�,
bounded at the turning points τ� by two minimal surfaces
Σ� with a vanishing extrinsic curvature. This instanton
represents the density matrix ρ̂E and connects the Lorenzian
spacetime branches. These branches correspond to the
unitary and antiunitary evolution from Σ� in some finite
interval of the Lorentzian time 0 ≤ t ≤ T.1

The pictorial representation of the cosmological partition
function Z in view of cancellation of unitary evolution
factors, trðÛðT; 0Þρ̂EÛ†ðT; 0ÞÞ ¼ trρ̂E ¼ 1, contains only
the Euclidean part of Fig. 1. It is represented by the closed
cosmological instanton with the identified surfaces Σþ ¼
Σ− and their 3-dimensional field configurations φþ ¼ φ−
(following from the identification of the arguments in
trρ̂E ¼ R

dφρEðφ;φÞ). The origin of this instanton having
a donut topology S1 × S3 is shown on Fig. 2.

The Euclidean space bridge incorporates the density
matrix correlations between the fields on opposite
Lorentzian branches, which only vanish for the density
matrix of the pure state factorizable in the product of the
wave function ΨðφþÞ and its complex conjugated counter-
part Ψ�ðφ−Þ, ρEðφþ;φ−Þ ¼ ΨðφþÞΨ�ðφ−Þ. In the cosmo-
logical context this situation is depicted on Fig. 3 with two
disconnected Euclidean-Lorentzian manifolds correspond-
ing to these factors. Each of them corresponds to the Hartle-
Hawking state, and the partition function is based on the
instanton with S4-topology of Fig. 4. The latter originates
by gluing together two 4-dimensional hemispheres (discs
D4

�) along their common equatorial boundary.
So the goal of this paper is to construct the generating

functional of expectation values and correlation functions
of Heisenberg operators defined with respect to such a
density matrix. Motivated by applications of quantum
cosmology, this is essentially nonequilibrium physical
setup, because the cosmological inflationary background
is very nonstationary. Because of this it raises many

FIG. 1. Picture of instanton representing the density matrix.
Gray lines depict the Lorentzian universe nucleating from the
instanton at the minimal surfaces Σ− and Σþ.

FIG. 2. Origin of the partition function instanton from the
density matrix instanton by the procedure of gluing the bounda-
ries Σþ and Σ−—tracing the density matrix.

FIG. 3. Density matrix of the pure Hartle-Hawking state
represented by the union of two no-boundary instantons.

FIG. 4. Origin of the partition function instanton from the
density matrix instanton by the procedure of gluing the bounda-
ries Σþ and Σ−—tracing the density matrix.

1Of course, the second Lorentzian branch could have been
attached to the middle turning point τþþτ−

2
of the total period, but

this reflection asymmetric setup would correspond to the calcu-
lation of the in-out amplitude of underbarrier tunneling through
the Euclidean domain, which is not the goal of this paper.
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questions which for the impure density matrix case go
essentially beyond what is known about the Hartle-
Hawking state. In particular, despite nonequilibrium nature
this pure state selects a distinguished set of positive/
negative frequency basis functions of the so-called
Euclidean vacuum which for the de Sitter metric back-
ground turns out to be a special case of the de Sitter
invariant vacuum [12–14]. But for a density matrix case this
distinguished choice is unknown and, moreover, its rea-
sonable particle interpretation is not granted at all to be
possible.
The notion of the Euclidean quantum gravity density

matrix was pioneered in [15]. Then, within the concept of
the above type, it was built in a concrete inflationary model
driven by the trace anomaly of Weyl invariant fields [16].
Interpreted as a microcanonical density matrix of spatially
closed cosmology [9]2 it was later shown to be a very
promising candidate for the initial quantum state of the
Universe. In particular, it includes the existence of the
quasithermal stage preceding the inflation [16], provides
the origin of the Higgs-type or R2-type inflationary
scenario [17] with sub-Planckian Hubble scale [18] and
suppresses the contribution of Hartle-Hawking instantons
to zero. Thus, this model allows one to circumvent the main
difficulty of the Hartle-Hawking prescription—insufficient
amount of inflation in the Hartle-Hawking ensemble of
universes dominated by vanishingly small values of the
effective cosmological constant. Elimination of this infra-
red catastrophe is, on the one hand, the quantum effect of
the trace anomaly which flips the sign of the Euclidean
effective action and sends it to þ∞ [16,19]. On the other
hand, this is the hilltop nature of inflation starting from the
maximum of inflaton potential rather than from its mini-
mum [20]. Finally, this model suggests that quantum origin
of the Universe is the sub-Planckian phenomenon subject to
semiclassical 1=N-perturbation theory in the number of
numerous higher-spin conformal fields [21]. Thus, it
sounds reliable even in the absence of currently unavailable
nonperturbative methods of quantum gravity.
All these conclusions have been recently reviewed in

[22] including certain preliminary results on the primordial
CMBR spectra, which might even bear potentially observ-
able thermal imprint of the preinflation stage of this model
[23]. However, detailed calculation of this spectrum and of
higher order correlation functions requires the construction
of the in-in Schwinger-Keldysh formalism extended to the
setup with the initial density matrix of the above type.

Schwinger-Keldysh formalism [1,2] was intensively
applied in quantum gravity and cosmology, and the number
of publications on this subject is overwhelmingly high, so
that we briefly mention only their minor part. Together with
early applications [24–26] and the pioneering calculation of
non-Gaussianities in cosmological perturbation spectra
[27] these works include the calculation of cosmological
correlation functions [28,29], the results on cosmological
singularity avoidance due to nonlocal effects [30], equiv-
alence of the Euclidean and in-in formalisms in de Sitter
QFT [31,32] and even the analysis of initial conditions
within Schwinger-Keldysh formalism [33]. Among recent
results one should mention the development of a special
effective field theory method based on analyticity and
unitarity features of in-in formalism [34], its applications to
four-point correlators in inflationary cosmology [35] and
numerous conformal field theory and holography ramifi-
cations of Schwinger-Keldysh technique (see, for example
[34,36] and references therein). However, the success of
these works essentially relies on working with the model of
spatially flat Universe—extension to spatially closed cos-
mology with S3-sections is likely to invalidate many of
these exact analytical results. At the same time, despite a
general belief that inflation completely washes out details
of initial quantum state, learning its imprint on the Universe
requires to go beyond K ¼ 0 FRW model. Moreover,
recent analysis of the large scale Planck 2018 data,
associated with the Hubble tension problem in modern
precision cosmology [37], testifies at more that 99% con-
fidence level in favor of the closed Universe preferring a
positive curvature with K ¼ þ1 [38–40] (see, however,
alternative opinion in [41]). Remarkably, the model of
microcanonical initial conditions in early quantum cosmol-
ogy of [9,16] exists only for K ¼ 1. Therefore, robust
observational evidence in favor of a positive spatial
curvature serves as an additional motivation for this model
and justifies our goals.
Having said enough about the motivation coming from

cosmology for the density matrix modification of the in-in
formalism, let us emphasize that the usefulness of this
modification extends to a much wider area. Note that the
expression (1.4) for the case of a static background is
nothing but a well-known density matrix of the equilibrium
canonical ensemble at the inverse temperature β ¼ τþ − τ−,

ρ̂ ¼ 1

Z
e−βĤ: ð1:6Þ

Its evolution in time gives rise to Matsubara technique of
thermal Green’s functions [42] and thermofield dynamics
[43] which satisfies nontrivial analyticity properties in the
complex plane of time including periodicity in the direction
of an imaginary axis—the Kubo-Martin-Schwinger (KMS)
condition [44,45]. Many of these properties depend on
the condition of equilibrium and associated with the

2This interpretation follows from the analogy with the micro-
canonical ensemble whose density matrix is a projector on the
subspace of fixed conserved energy. As mentioned above, in the
absence of the notion of conserved energy the role of this
projection in closed cosmology is played by the delta function
of Hamiltonian and momentum constraints—the projector on
their conserved zero value.
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conservation of energy. What we suggest here is the
generalization of this technique to nonequilibrium situation
with the Hamiltonian explicitly depending on time, which
would be important in many areas of quantum field theory,
high energy and condensed matter physics. To cover as
wide scope of models and problems as possible we will try
being maximally generic and use condensed notations
applicable in generic dynamical systems.
In this paper we will basically consider the elements of

the diagrammatic technique for the density matrix in-in
formalism. Therefore we restrict ourselves with the systems
having a quadratic action on top of the nonstationary
background subject to reflection symmetry discussed
above. The one-loop preexponential factors of this formal-
ism will be considered elsewhere.
The paper is organized as follows. Section II contains the

summary of notations and main results. It includes the
formulation of in-in generating functional in the generic
nonequilibrium system with a Gaussian type initial density
matrix, the selection of distinguished set of positive/
negative frequency basis functions of the wave operator,
determined by the density matrix parameters, and appli-
cation of this formalism to a special density matrix based on
the Euclidean path integral, this case demonstrating special
reflection symmetry, analyticity and KMS periodicity
properties. Section III presents preliminary material of
canonical quantization and the technique of boundary
value problems and relevant Green’s functions in a generic
dynamical system. Section IV contains detailed derivation
of all the results. Section V is devoted to the demonstration
of the formalism on concrete examples, while Sec. VI
contains a concluding discussion along with the prospects
of future research. Several appendices give technical details
of derivations and present certain nontrivial properties of
Green’s functions and Gaussian type density matrices.

II. SUMMARY OF MAIN RESULTS

A. Schwinger-Keldysh technique for models with
density matrix state

We consider a generic system with the action S½ϕ�
quadratic in dynamical variables ϕ ¼ ϕIðtÞ, the index I
including both the discrete tensor labels and in field-
theoretical context also the spatial coordinates,

S½ϕ� ¼ 1

2

Z
dtðϕ̇TAϕ̇þ ϕ̇TBϕþ ϕTBTϕ̇þ ϕTCϕÞ: ð2:1Þ

Here A ¼ AT ≡ AIJ, B≡ BIJ, and C ¼ CT ≡ CIJ are the
matrices acting in the vector space of ϕJ, the superscript T

denoting the transposition, ϕ being a column and ϕT—a
row (the use of these canonical condensed notations
including also spatial integration over contracted indices
I will be discussed in much detail in Sec. III). What is most
important throughout the paper, all these matrices are

generic functions of time A ¼ AðtÞ, B ¼ BðtÞ, C ¼ CðtÞ,
reflecting nonequilibrium and nonstationary physical setup.
This action will be considered as a quadratic part of the full
nonlinear action in field perturbations ϕ on a certain back-
groundwhose possible symmetries will be inherited by these
coefficients as certain restrictions on their time dependence.
These restrictions will be very important for the results of the
paper and will be discussed below, but otherwise this time
dependence is supposed to be rather generic.
The prime object of our interest will be the Schwinger-

Keldysh generating functional of the in-in expectation
values and correlation functions of Heisenberg operators
in the physical state described by the initial density matrix
ρ̂. This is the functional of two sources

Z½J1; J2� ¼ tr½ÛJ1ðT; 0Þρ̂Û†
−J2ðT; 0Þ�: ð2:2Þ

Here the trace is taken over the Hilbert space of the
canonically quantized field ϕ̂ and ÛJðT; 0Þ is the operator
of unitary evolution from t ¼ 0 to t ¼ T with the time
dependent Hamiltonian corresponding to the action (2.1)
and modified by the source term −JTðtÞϕðtÞ≡ −JIðtÞϕIðtÞ
with the source JTðtÞ ¼ JIðtÞ. In the Schroedinger picture
(labeled by S) it reads as the chronologically ordered
operator T-exponent

ÛJðT; 0Þ ¼ Te−i
R

T

0
dtðĤSðtÞ−JðtÞϕ̂SÞ: ð2:3Þ

We will consider the class of density matrices whose
kernel in the coordinate representation hφþjρ̂jφ−i ¼
ρðφþ;φ−Þ has the following Gaussian form—exponenti-
ated quadratic and linear forms in φ�,

ρðφÞ ¼ const × exp

�
−
1

2
φTΩφþ jTφ

�
; ð2:4Þ

φ ¼
�
φþ
φ−

�
; j ¼

�
jþ
j−

�
; ð2:5Þ

where we assembled φ� into the two-component column
multiplets (denoted by boldfaced letters) φ, did the same
with the coefficients j of the linear form and introduced the
2 × 2 block-matrix Ω acting in the space of such two-
component multiplets

Ω ¼
�
R S

S� R�

�
; R ¼ RT; S ¼ S†: ð2:6Þ

The blocks of this matrix R ¼ RIJ, S ¼ SIJ and their
complex and Hermitian conjugated versions, S† ≡ ST�,
should satisfy these transposition and conjugation proper-
ties in order to provide Hermiticity of the density matrix.
The same concerns the “sources” j� in the definition of j,
jþ ¼ j�− ≡ j. Transposition operation above applies also to
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two-component objects, so that φT ¼ ½φTþφT
−�. Below we

will denote 2 × 2 block matrices and relevant 2-block
component columns and rows by boldfaced letters.
Such a choice of the density matrix is motivated by the

fact that for a block-diagonal Ω it reduces to a pure
quasivacuum state, its “source” j allows one to induce
nonzero mean value of the quantum field and by the
differentiation with respect to j one can generate a much
wider class of density matrices with “interaction” terms in
the exponential. Normalizability of the density matrix of
course implies that the real part of diagonal blocks sum of
Ω should be a positive definite matrix.
The path integral representation for the coordinate

kernels of the unitary evolution operator (2.2) allows
one to rewrite the generating functional Z½J1; J2� as the
double path integral. For this purpose it is useful to
introduce the two-component notations for the histories
ϕ1ðtÞ and ϕ2ðtÞ as well as for their sources,

ϕ1;ϕ2 ↦ ϕ ¼
�
ϕ1

ϕ2

�
; J1; J2 ↦ J ¼

�
J1
J2

�
; ð2:7Þ

In terms of these notations the generating functional reads

Z½J� ¼
Z

D½ϕ;φ� exp
�
iS½ϕ� þ i

Z
T

0

dtJTϕ

−
1

2
φTΩφþ jTφ

�
; ð2:8Þ

where the total action is obviously

S½ϕ� ¼ S½ϕ1� − S½ϕ2� ð2:9Þ

with the actions S½ϕ1;2� given by (2.1) in the integration
range from t ¼ 0 to t ¼ T and the total integration measure
over ϕ and φ

D½ϕ;φ� ¼
Z

dφþdφ−

Z
ϕð0Þ¼φ

ϕ1ðTÞ¼ϕ2ðTÞ

Dϕ1Dϕ2: ð2:10Þ

Here dφ and Dϕ denote respectively the integration
measures over variables at a given moment of time and
the integration measures Dϕ ¼ Q

t dϕðtÞ over time histor-
ies subject to indicated boundary conditions.
Calculation of this Gaussian path integral leads to the

expression

Z½J� ¼ const × exp

�
−
i
2

Z
T

0

dt dt0JTðtÞGðt; t0ÞJðtÞ

−
Z

T

0

dt JTðtÞGðt; 0Þjþ i
2
jTGð0; 0Þj

�
; ð2:11Þ

where we disregard the source-independent prefactor. The
bilinear in the full set of sources exponential is the total

action in the integrand of (2.8) at its saddle point—the point
of stationarity of the action with respect to variations of
both the histories ϕðtÞ and their boundary data φ at t ¼ 0.
The condition of stationarity generates the boundary value
problem for this saddle point including the linear second
order equation of motion for ϕðtÞ and the full set of
boundary conditions at t ¼ 0 and t ¼ T. This problem is
posed and solved in Section IV in terms of its Green’s
function Gðt; t0Þ subject to homogeneous version of these
boundary conditions. The Green’s function has a block-
matrix form typical of Schwinger-Keldysh in-in formalism
composed of the FeynmanGTðt; t0Þ, anti-FeynmanGT̄ðt; t0Þ
and off-diagonal Wightman Green’s functions blocks (4.3),

Gðt; t0Þ ¼
�
GTðt; t0Þ G<ðt; t0Þ
G>ðt; t0Þ GT̄ðt; t0Þ

�
; ð2:12Þ

which are related to one another by the equalitiesGT̄ðt; t0Þ ¼
½GTðt; t0Þ�� andG>ðt; t0Þ ¼ GT

<ðt0; tÞ and satisfy respectively
inhomogeneous and homogeneous wave equations

FGT;T̄ðt; t0Þ ¼ δðt − t0Þ; FG≷ðt; t0Þ ¼ 0 ð2:13Þ

with the operator F—the Hessian of the action (2.1),
Fδðt − t0Þ ¼ δ2S½ϕ�=δϕðtÞδϕðt0Þ,

F ¼ −
d
dt

A
d
dt

−
d
dt

Bþ BT d
dt

þ C: ð2:14Þ

The block-matrix Green’s function Gðt; t0Þ, as is usually
done in boundary value problems, can be built in terms of
the full set of basis functions v� of this operator, satisfying
the boundary conditions of the variational problem for the
action in (2.8). This will explicitly be done in Sec. IV, but in
view of the complexity of these boundary conditions
intertwining the ϕ1;2-branches of the field space these
basis functions do not have a clear particle interpretation,
that is separation into positive and negative frequency parts.
This difficulty is caused by the convolution of problems
associated, on the one hand, with the nonequilibrium nature
of a generic background (rather generic dependence of the
operator coefficients AðtÞ, BðtÞ and CðtÞ on time) and, on
the other hand, with the in-in physical setup involving a
nontrivial density matrix.
Despite these difficulties, there exists a distinguished set

of basis functions for the wave operator which have a clear
particle interpretation, and this is one of the main results of
the paper. This set is related by Bogoliubov transformations
to v�ðtÞ and is uniquely prescribed by the full set of
complex conjugated positive and negative frequency basis
functions of the operator (2.14) vðtÞ and v�ðtÞwhich satisfy
the intial value problem at t ¼ 0,

FvðtÞ¼ 0;

ðiW−ωÞvðtÞjt¼0¼ 0; ðiWþω�Þv�ðtÞjt¼0 ¼ 0; ð2:15Þ
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where W is what we call the Wronskian operator

W ¼ A
d
dt

þ B; ð2:16Þ

which participates in the Wronskian relation for the
operator F, which is valid for arbitrary two complex fields
ϕ1;2ðtÞ,

ϕT
2Fϕ1 − ðFϕ2ÞTϕ1 ¼ −

d
dt

½ϕT
2Wϕ1 − ðWϕ2ÞTϕ1� ð2:17Þ

and, moreover, serves as the definition of the conserved
(not positive-definite) inner product in the space of sol-
utions of the homogeneous wave equation, Fϕ1;2 ¼ 0,

ðϕ1;ϕ2Þ ¼ iϕ†
1ðWϕ2Þ − iðWϕ1Þ†ϕ2: ð2:18Þ

We will call the boundary conditions (2.15) and associated
with them Green’s functions the Neumann ones.3

Important point of the definition (2.15) is that the
frequency matrix ω (remember that in the generic setup this
is a matrixωIJ acting in the vector space ofϕJ) is not directly
contained in the blocks of the matrix (2.6), but follows from
the requirement of the particle interpretation of the basis
functions vðtÞ. This requirement can be formulated as
follows. One defines the creation-annihilation operators â†

and â in terms of which the Heisenberg operator ϕ̂ðtÞ is
decomposed as the sum of positive-negative basis functions
vðtÞ and v�ðtÞ, ϕ̂ðtÞ ¼ vðtÞâþ v�ðtÞâ†. Then there exist
nonanomalous and anomalous particle averages with respect
to the density matrix,

ν ¼ tr½ρ̂â†â�; κ ¼ tr½ρ̂ â â�; ð2:19Þ

and the requirement of vanishing anomalous average κ ¼ 0
allows one to assign the average ν the interpretation of the set
of occupation numbers associated with ρ̂. This requirement
serves as the equation for the frequency matrixωwhich, as it
is shown in Sec. IV, can be explicitly solved for a special case
of the real matrix Ω. This solution reads

ω ¼ R1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
I − σ2

p
R1=2; σ ≡ R−1=2SR−1=2 ð2:20Þ

and gives the expression for the occupation numbermatrix in
terms of the single symmetric matrix σ after the orthogonal
rotation by the orthogonal matrix ϰ,

ν ¼ 1

2
ϰ

� ffiffiffiffiffiffiffiffiffiffiffi
I − σ

I þ σ

r
− 1

	
ϰT; ð2:21Þ

ϰ ≡ ½ω1=2R−1ω1=2�1=2ω−1=2R1=2 ¼ ðϰTÞ−1: ð2:22Þ

As shown in Appendix D, the existence of this particle
interpretation with a positive definite matrix ν fully matches
with conditions of normalizability, boundedness and pos-
itivity of the density matrix incorporating positive definite-
ness of matrices I � σ and negative definiteness of σ.
With the normalization of these distinguished basis

functions v to unity

ðvA; vBÞ ¼ −ðv�A; v�BÞ ¼ δAB; ð2:23Þ

where A is the index enumerating the full set of basis
functions, the blocks of the in-in Green’s function (2.12)
take the form

iGTðt; t0Þ ¼ vðtÞv†ðt0Þθðt − t0Þ þ v�ðtÞvTðt0Þθðt0 − tÞ
þ vðtÞνv†ðt0Þ þ v�ðtÞνvTðt0Þ; ð2:24Þ

iG>ðt; t0Þ ¼ vðtÞðνþ IÞv†ðt0Þ þ v�ðtÞνvTðt0Þ: ð2:25Þ

Here the terms of the type vðtÞv†ðt0Þ should be understood
as the matrix products

P
A v

I
AðtÞv�JA ðt0Þ (one should bear in

mind that the basis function vðtÞ ¼ vIAðtÞ represents the
square (but asymmetric) matrix whose upper indices
label the field ϕI components, whereas the subscript
indices A enumerate the basis functions in their full
linear independent set). Correspondingly, vðtÞνv†ðt0Þ ¼P

A;B v
I
AðtÞνABv�JB ðt0Þ, etc.

This form of the Green’s functions is very familiar from
thermofield dynamics for simple equilibrium condensed
matter systems, when all the matrices of the above type
become diagonal in the momentum space of field modes
labeled by A ¼ p,

P
A ¼ R

d3p=ð2πÞ3=2 and νAB ¼ νp;p0 ¼
ðexpðβωpÞ − 1Þ−1δðp − p0Þ represents expected occupation
number for Bose-Einstein statistics at inverse temperature β
(detailed consideration of this example is presented in
Sec. V). Remarkably, the occupation number picture
generalizes to nonequilibrium systems of a very general
type—the function of the single symmetric matrix in the
parentheses of Eq. (2.21) can be diagonalized by extra
orthogonal rotation (additional to that of ϰ), and its
eigenvalues would serve as occupation numbers in the
generic nonequilibrium state with the initial density matrix.

B. Euclidean density matrix

As discussed in Introduction, in quantum cosmology
context the density matrix itself can be given in terms of
the Euclidean path integral and thus dynamically deter-
mined by individual properties of the system including its
action functional. So we consider the path integral ex-
pression for the Euclidean density matrix hφþjρ̂E½JE�jφ−i≡
ρEðφþ;φ−; JE�,

3Strictly speaking, these are the analog of Robin boundary
conditions, because they contain together with the derivative
transversal to the boundary also the tangential terms composed of
the coefficient B and ω.
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ρEðφþ;φ−; JE� ¼
1

Z

Z
ϕðτ�Þ¼φ�

Dϕ exp

�
−SE½ϕ�

−
Z

τþ

τ−

dτ JEðτÞϕðτÞ
�
; ð2:26Þ

where integration runs over historiesϕðτÞ inEuclidean time τ
on the segment ½τ−; τþ�, interpolating between the arguments
of the densitymatrixφ�. Inwhat followswewill assume that
τ− ¼ 0 and τþ ¼ β. The Euclidean action, supplied by the
Euclidean source JEðτÞ probing the interior of the Euclidean
spacetime, has a structure similar to theLorentzian action and
can be obtained from (2.1) by the replacement

t; AðtÞ; BðtÞ; CðtÞ ↦ τ; AEðτÞ; BEðτÞ; CEðτÞ: ð2:27Þ

These functions of the Euclidean time are rather generic,
except that they should not contradict the basic property of
the density matrix (with the source JE switched off)—its
Hermiticity. Sufficient conditions providing this property,
ρEðφþ;φ−; 0� ¼ ρ�Eðφ−;φþ; 0�, read

AEðβ − τÞ ¼ A�
EðτÞ; BEðβ − τÞ ¼ −B�

EðτÞ;
CEðβ − τÞ ¼ C�

EðτÞ: ð2:28Þ

For real values of these coefficients these relations reduce
to the reflection symmetry of the action and the whole
formalism relative to inversions with respect to the center of
the Euclidean segment ½0; β�. Here we consider this
property as given, but it can be derived from the assumption
that the quadratic Euclidean action is built on top of the
Euclidean spacetime background—the bounce which sol-
ves full nonlinear equations of motion of the theory and
represents the periodic (underbarrier) motion of the system
between two turning points. One of these points is
associated with the center of the above Euclidean segment
τþþτ−

2
¼ β

2
, and the other one corresponds to the (identified)

points of nucleation τ� from the classically forbidden
Euclidean regime to the Lorentzian regime, the latter being
described by the two branches of the Schwinger-Keldysh
formalism (labeled above by 1 and 2). For an equilibrium
situation with constant coefficients (2.27) at the inverse
temperature β ¼ τþ − τ− this setup is even simpler and
corresponds to the density matrix of the thermal canonical
ensemble.
The Gaussian integration in (2.26) allows one to express

the result in terms of the Green’s function of the Hessian
of the Euclidean action FE, FEδðτ − τ0Þ ¼ δ2SE½ϕ�=
δϕðτÞδϕðτ0Þ, which can be obtained from (2.14) by the
replacement (2.27), subject toDirichlet boundary conditions,

FEGDðτ; τ0Þ ¼ δðτ − τ0Þ; GDðτ�; τ0Þ ¼ 0: ð2:29Þ

The resulting density matrix looks like the expression (2.4)
amended by the quadratic form in the Euclidean source,

ρEðφþ;φ−; JE� ¼ const × exp

�
−
1

2
φTΩEφþ jTEφ

þ 1

2

Z
β

0

dτ dτ0JEðτÞGDðτ; τ0ÞJEðτ0Þ
�
ð2:30Þ

with the special expressions for the matrixΩE and the source
jE. The matrix ΩE reads

ΩE ¼
"
−WEGDðβ; βÞW⃖E W⃗EGDðβ; 0ÞW⃖E

W⃗EGDð0; βÞW⃖E −W⃗EGDð0; 0ÞW⃖E

#
ð2:31Þ

where we use the arrow to indicate the direction in which
theWronskian operator is acting on the corresponding first
or second time argument of the Green’s function, so that for
the left action the following rule holds ϕTðτÞW⃖E ≡
ðWEϕðτÞÞT , and W⃗EGDðβ; 0ÞW⃖E of course implies
W⃗EGDðτ; τ0ÞW⃖Ejτ¼β;τ0¼0, etc. The column jE is given by
the following integral

jE ¼
Z

β

0

dτ0
�

WEGDðβ; τ0Þ
−WEGDð0; τ0Þ

�
JEðτ0Þ: ð2:32Þ

Using (2.11) in the generating functional with the
Euclidean density matrix (2.30)

Z½J; JE�≡ tr½ÛJ1ðT; 0Þρ̂E½JE�Û†
−J2ðT; 0Þ� ð2:33Þ

one directly finds the total Schwinger-Keldysh generating
functional with the full set of sources probing the two
Lorentzian branches and the Euclidean branch of the in-in
formalism

Z½J; JE� ¼ const × exp

�
−
i
2

Z
T

0

dt dt0JTðtÞGðt; t0ÞJðt0Þ

−
Z

T

0

dt JTðtÞGðt; 0ÞjE þ i
2
jTEGð0; 0ÞjE

þ 1

2

Z
β

0

dτ dτ0JEðτÞGDðτ; τ0ÞJEðτ0Þ
�
: ð2:34Þ

C. Reflection symmetry and analyticity properties

The obtained expression for Z½J; JE� features a nontrivial
mixup of the Neumann and Dirichlet Green’s functions of
different Lorentzian F and Euclidean FE wave operators,
but it becomes essentially unified if we assume that the
Lorentzian and Euclidean actions are related by the analytic
continuation of the form
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iS½ϕðtÞ�jt¼−iτ ¼ −SE½ϕEðτÞ�; ð2:35Þ

where the Lorentzian and Euclidean histories are also
related by the same continuation rule ϕðtÞjt¼−iτ ¼ ϕEðτÞ.
This, in particular, implies that the coefficients of the
operators FE and F are related by

AEðτÞ ¼ Að−iτÞ; BEðτÞ ¼ −iBð−iτÞ;
CEðτÞ ¼ −Cð−iτÞ; ð2:36Þ

so that Fjt¼−iτ ¼ −FE. The origin of these relations,
especially in connection with reality condition for the
coefficients of both Lorentzian and Euclidean operators
at their respective real t and τ arguments can be traced back
to the properties of the full nonlinear action which gives
rise to its quadratic part on top of a special background
solution of full equations of motion. It is assumed that the
Euclidean background solution has a turning point at τ ¼ 0
where all real field variables have zero τ-derivatives and can
be smoothly continued to the imaginary axis of τ ¼ it
where they become again real functions of real t. This leads
to the above continuation rule with real AðtÞ, BðtÞ, CðtÞ,
and AEðτÞ, BEðτÞ, CEðτÞ at real t, and τ.
With this analytic continuation rule, the expression

(2.34) for Z½J; JE� can indeed be uniformly rewritten in
terms of the Lorentzian, Euclidean and mixed Lorentzian-
Euclidean Green’s functions, all of them subject to one and
the same set of Neumann type boundary conditions which
select in the Lorentzian branch of the in-in formalism a
distinguished set of positive and negative frequency basis
functions. This expression reads

Z½J�¼const×exp

�
1

2

Z
C
dzdz0JTðzÞGðz;z0ÞJðz0Þ

�
; ð2:37Þ

where the z-integration runs respectively over t or τ in the
domain C ¼ ½0 ≤ t ≤ T� ∪ ½0 ≤ τ ≤ β� depending on
which of these Lorentzian or Euclidean time variables is
in the argument of the following block matrix Green’s
function Gðz; z0Þ and the corresponding source JðzÞ,

Gðz; z0Þ ¼
�−iGðt; t0Þ G<

LEðt; τ0Þ
G>

LEðτ; t0Þ GEðτ; τ0Þ

�
; JðzÞ ¼

�
JðtÞ
JEðτÞ

�
:

ð2:38Þ

Here the Euclidean and Lorentzian-Euclidean blocks of the
total Green’s function

GEðτ;τ0Þ ¼G>
Eðτ;τ0Þθðτ− τ0ÞþG<

Eðτ;τ0Þθðτ0− τÞ; ð2:39Þ

G<
LEðt; τÞ ¼

�
G1

LEðt; τÞ
G2

LEðt; τÞ

�
¼

�
I

I

�
G<

LEðt; τÞ; ð2:40Þ

G>
LEðτ; tÞ ¼ ½G<

LEðt; τÞ�T; ð2:41Þ

express in terms of the relevant Euclidean and Lorentzian-
Euclidean Wightman functions

G>
Eðτ; τ0Þ ¼ uþðτÞðνþ IÞuT−ðτ0Þ þ u−ðτÞνuTþðτ0Þ; ð2:42Þ

G<
Eðτ; τ0Þ ¼ ½G>

Eðτ0; τÞ�T; ð2:43Þ

G<
LEðt; τÞ ¼ vðtÞðνþ IÞuT−ðτÞ þ v�ðtÞνuTþðτÞ: ð2:44Þ

In their turn these Green’s functions, as one can see, are
built according to one and the same universal pattern out of
the full set of Lorentzian vðtÞ and v�ðtÞ and Euclidean
u�ðτÞ basis functions. All these functions are subject to
Neumann boundary conditions (2.15) and

ðWE þ ωÞuþjτ¼β ¼ 0; ðWE − ωÞu−jτ¼0 ¼ 0: ð2:45Þ

For ω fixed by the above condition of particle inter-
pretation, leading to the expressions (2.20)–(2.22), the
Euclidean basis functions u� have a remarkable property.
They satisfy at opposite ends of the Euclidean segment τ∓
the same boundary conditions4

ðWE þ ωÞuþjτ¼0 ¼ 0; ðWE − ωÞu−jτ¼β ¼ 0: ð2:46Þ

If one smoothly continues the operator FE beyond the
segment τ− ≤ τ ≤ τþ, then it becomes periodic with the
period β (which is possible because τ� are assumed to be
the turning points of the background solution on top of
which the Hessian of the nonlinear action of the theory is
built). This means that the basis functions u� of this
operator become quasiperiodic—u�ðτ þ βÞ expresses as
a linear combination of the same basis functions u�ðτÞ (no
mixing between u− and uþ occurs in their monodromy
matrix). As shown in Section IV, with the normalization
u�ð0Þ ¼ 1=

ffiffiffiffiffiffi
2ω

p
this quasiperiodicity property reads in

terms of the occupation number matrix (2.21)

u−ðτ þ βÞ ¼ u−ðτÞ
νþ I
ν

;

uþðτ þ βÞ ¼ uþðτÞ
ν

νþ I
: ð2:47Þ

Together with the reflection symmetry relative to the
middle point of the Euclidean time segment (2.28) the
periodicity of the operator FE implies its reflection sym-
metry with respect to the point τ ¼ 0

AEðτÞ ¼ AEð−τÞ; BEðτÞ ¼ −BEð−τÞ;
CEðτÞ ¼ CEð−τÞ: ð2:48Þ

4In fact, the requirement of κ ¼ 0 in (2.19) turns out to be the
necessary and sufficient condition for this property of Euclidean
basis functions, that is the coincidence of boundary condition for
u�ðτÞ at both ends of the time segment leads to κ ¼ 0.
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Therefore, similarly to quasiperiodicity the basis functions
u�ð�τÞ are also related by the analog of the antidiagonal
monodromy matrix L, uþðτÞ ¼ u−ð−τÞL, which is trivial
in view of the normalization u�ð0Þ ¼ 1=

ffiffiffiffiffiffi
2ω

p
,

uþðτÞ ¼ u−ð−τÞ: ð2:49Þ

The above relations introduce the analytic structure which
allows one to express all basis and Green’s functions on the
Euclidean-Lorentzian domain C in terms of one analytic
function VðzÞ of the complexified time variable z ¼ t − iτ.
This follows from the fact, mentioned above, that the
Lorentzian wave operator F can be regarded as the analytic
continuation of the Euclidean operator FE into the complex
plane of time at the point z ¼ 0,F≡ Fðt; d=dtÞ ¼ −FEjτ¼it.
As a consequence its basis function vðtÞ in view of its
boundary conditions and boundary conditions (2.46) for the
Euclidean function uþðτÞ also turns out to be the analytic
continuation of the latter,

vðtÞ ¼ uþðitÞ: ð2:50Þ

Therefore, the operators F and −FE as well as the full set of
their basis functions vðtÞ and u�ðτÞ can be represented
respectively as the boundary values at the real and imaginary
axes of the complex z-plane of the complex operator FC and
the solution VðzÞ of its homogeneous wave equation,

FCVðzÞ≡
�
−

d
dz

AðzÞ d
dz

−
d
dz

BðzÞ þ BTðzÞ d
dz

þ CðzÞ
�

× VðzÞ ¼ 0; z ¼ t − iτ; ð2:51Þ

ðiWC−ωÞVðzÞjz¼0¼ 0; WC≡AðzÞ d
dz

þBðzÞ: ð2:52Þ

The function VðzÞ gives rise to basis functions as

vðtÞ ¼ VðzÞjz¼t; u�ðτÞ ¼ VðzÞjz¼∓iτ; ð2:53Þ

and thus can be used in (2.38) for the construction of all
Green’s functions of the Schwinger-Keldysh in-in formal-
ism. Conversely VðzÞ can be obtained by analytic continu-
ation of the single Euclidean function uþðτÞ from the
imaginary axes z ¼ −iτ,

VðzÞ ¼ uþðizÞ ¼ uþðτ þ itÞ; ð2:54Þ

and in view of reality of uþðτÞ for real τ it has the
property ½VðzÞ�� ¼ Vð−z�Þ.
Important corollary of these analyticity properties is that

in view of the monodromy relations for Euclidean basis
functions (2.47) the Lorenzian basis functions become
quasiperiodic in the imaginary time

vðt− iβÞ¼ vðtÞνþ I
ν

; v�ðt− iβÞ¼ v�ðtÞ ν

νþ I
: ð2:55Þ

Due to inverse matrix factors of positive and negative basis
functions here the LorentzianWightman functionsG>ðt; t0Þ
[given by the expression (2.25)] and G<ðt; t0Þ ¼ GT

>ðt0; tÞ
satisfy the relation

G>ðt − iβ; t0Þ ¼ G<ðt; t0Þ; ð2:56Þ

which is nothing but Kubo-Martin-Schwinger condition
[44,45]. It is important that this condition is satisfied in the
generic nonequilibrium system with the special Euclidean
density matrix (2.26) even despite the fact that no notion of
conserved energy can be formulated in such a physical
setup.
The tubular Riemann surface of complex time z ¼ t − iτ

whose main sheet is compactified in τ to the circle of
curcumference β is shown on Fig. 5. The boundaries of the
main sheet of this surface form two shores of the cut
depicted by dashed line, along which two branches of
Lorentzian evolution are running. This rich analytic struc-
ture of Euclidean-Lorentzian evolution suggests that the
equivalence of the Euclidean and Lorentzian formalisms
proven beyond tree level for interacting QFT on top of the
de Sitter spacetime [31,32] might be extended to a generic
reflection-symmetry background underlying our definition
of the Euclidean density matrix.

III. PRELIMINARIES

To derive the aforementioned results we dwell here in
more detail on the introduced above notations and develop
a canonical formalism and quantization of the underlying
theory. In particular, we pose rather generic initial value and
boundary value problems for equations of motion and
discuss the properties of the related Green’s functions.

A. Condensed notations

The elements of the field space will be denoted as ϕIðtÞ,
where the index I is, in fact, a multi-index, and contains
both the dependence on spatial coordinates denoted as x

FIG. 5. Euclidean-Lorentzian contour C on the Riemann sur-
face of complex time z ¼ t − iτ. Wightman functions are periodic
in imaginary (Euclidean) time direction with a period β, whereas
the basis function vðzÞ suffers a jump at the cut denoted by the
horizontal dashed line, the two Lorentzian time branches running
along the shores of this cut.
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and discrete spin-tensor labels i, I ¼ ðx; iÞ. Thus, we can
equivalently write the fields in the form, emphasizing its
dependence on the spatial coordinates ϕIðtÞ ¼ ϕiðt;xÞ.
Assuming that equations of motion are of the second

order in time derivatives one has the most general quadratic
action of the theory of the form (2.1) where we explicitly
specify the initial and final moments of time range t�,

S½ϕ� ¼ 1

2

Z
tþ

t−

dtðϕ̇TAϕ̇þ ϕ̇TBϕþϕTBTϕ̇þϕTCϕÞ: ð3:1Þ

Here dots denote the derivatives with respect to time t, and
A, B and C are the time-dependent real bilinear forms in the
space of fields. Moreover, A and C are assumed to be
symmetric. The explicit action of these bilinear forms on
the fields, e.g. for A reads

ðAϕÞIðtÞ ¼ AIJðtÞϕJðtÞ≡X
j

Z
dx0Aijðt;x;x0Þϕjðt;x0Þ;

ð3:2Þ

where Aijðt;x;x0Þ is the kernel of the operator. Thus, the
first term in (3.1) has the following explicit structure

ϕ̇TAϕ̇ ¼ ϕ̇IðAϕ̇ÞI
¼

X
ij

Z
dxdx0ϕ̇iðt;xÞAijðt;x;x0Þϕ̇jðt;xÞ: ð3:3Þ

The superscript T applied to the bilinear form denotes the
functional matrix transposition operation which implies the
transposition of discrete and spatial labels of the corre-
sponding kernel, but does not touch the time variable

ðBTÞijðt;x;x0Þ ¼ Bjiðt;x0;xÞ: ð3:4Þ

Consequently, the second and the third terms in (3.1) are
the same. However, we will keep them separate for
symmetry reasons.
In local nongauge theories the kernels of the above

coefficients are represented by delta functions of spatial
coordinates and their finite order derivatives. For local
gauge theories treated within reduction to the physical
sector in certain gauges these coefficients can become
nonlocal in space, but locality in time derivatives within
canonical quantization should be strictly observed.
The equations of motion, obtained by varying the action

(3.1) with respect to ϕ have the form

FϕðtÞ ¼ 0; F≡−
d
dt
A
d
dt

−
d
dt
BþBT d

dt
þC; ð3:5Þ

where the wave operator F, or the Hessian of the action
(3.1), has already been defined above by Eq. (2.14).
Another form of this operator, obtained by integration

by parts and involving both left and right time derivatives,
the direction of their action being indicated by arrows

F
↔ ≡ d⃖

dt
A
d⃗
dt

þ d⃖
dt

Bþ BT d⃗
dt

þ C; ð3:6Þ

allows one to rewrite the quadratic action (3.1) in even more
condensed form

S½ϕ� ¼ 1

2

Z
tþ

t−

dtϕTF
↔
ϕ

¼ 1

2

Z
tþ

t−

dtϕTðFϕÞ þ 1

2
ϕTðWϕÞjtþt− : ð3:7Þ

Here theWronskian operatorW is defined by (2.16) and the
origin of the boundary term at t� is the result of integration
by parts, which is also associated with the Wronskian
relation (2.17).

B. Canonical formalism

The Hamiltonian formalism of the theory with the action
(3.1), which is the first step to the canonical quantization
begins with the determination of the momentum π canoni-
cally conjugated to the field ϕ

π ¼ ∂L

∂ϕ̇
¼ Aϕ̇þ Bϕ ¼ Wϕ; W ¼ A

d
dt

þ B; ð3:8Þ

where L is the Lagrangian of the action (3.1). The
corresponding Hamiltonian has the form

H¼ πTϕ̇−L¼ 1

2
ðπ−BϕÞTA−1ðπ−BϕÞ−1

2
ϕTCϕ: ð3:9Þ

Together with the Poisson bracket fϕI; πJg ¼ δIJ it defines
the dynamics of the system. The Hamiltonian equations of
motion read

ϕ̇ ¼ fϕ; Hg ¼ A−1ðπ − BϕÞ ð3:10aÞ

π̇ ¼ fπ; Hg ¼ BTA−1ðπ − BϕÞ þ Cϕ: ð3:10bÞ

Transition to the Lagrangian formalism by expressing π in
terms of ϕ and ϕ̇ obviously leads to equations of motion
(3.5) following from the variation of the action (3.1).
Let us denote the basis of the independent solutions to

(3.5) as v�I
AðtÞ, where the multi-index A enumerates the

number of the particular solution and has the same range as
the index I. The general solution in terms of basis functions
reads

ϕIðtÞ ¼ vþI
AðtÞαþA þ v−IAðtÞα−A ð3:11Þ

and can be rewritten in shortened notations as
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ϕðtÞ ¼ vþðtÞαþ þ v−ðtÞα−: ð3:12Þ

Here α�A constitute a set of constants, specifying particular
initial conditions. Using (3.8), we find the corresponding
solution for the momentum

πðtÞ ¼ WvþðtÞαþ þWv−ðtÞα−; ð3:13Þ

so, the evolution of phase space variables can be rewritten
in the joint form as

�
ϕðtÞ
πðtÞ

�
¼MðtÞ

�
αþ

α−

�
; MðtÞ ¼

�
vþðtÞ v−ðtÞ
WvþðtÞ Wv−ðtÞ

�
:

ð3:14Þ

Now, we can equip the space of initial conditions,
consisting of α�, with the Poisson bracket structure
inherited from the Poisson brackets of ϕ and π.
Substituting (3.14) into the left hand side of

��
ϕI

πJ

	
; ðϕI0 πJ0 Þ

�
¼

�
0 δIJ0

−δI0J 0

�
; ð3:15Þ

we have in condensed notations

MðtÞ
�fαþ;αþg fαþ;α−g
fα−;αþg fα−;α−g

�
MTðtÞ ¼

�
0 I

−I 0

�
; ð3:16Þ

where I denotes the identity matrix. The identity above
fixes the pairwise Poisson brackets of α�. Let us denote the
right hand side of this equality, playing the role of the
Poisson bivector in the Darboux coordinates, as

P ≡
�

0 I

−I 0

�
: ð3:17Þ

Introducing also the matrixD as inverse to the matrix of the
pairwise Poisson brackets

D¼
�Δþþ Δþ−

Δ−þ Δ−−

�
≡−

�fαþ;αþg fαþ;α−g
fα−;αþg fα−;α−g

�−1
ð3:18Þ

where the matrices Δ denote the corresponding block-
elements of D, we can invert the equality (3.16) as

MTðtÞPMðtÞ ¼ D: ð3:19Þ

Thus, one can express the inverse of MðtÞ in terms of its
transpose, namely

M−1ðtÞ ¼ D−1MTðtÞP: ð3:20Þ

Before proceeding further, let us show explicitly that the
right-hand side (3.19) is indeed independent of time t. To

demonstrate this, we contract l.h.s of the equation (3.5)
where field ϕ ¼ ϕ1, with another field ϕ2, and subtract the
same quantity, but with F, acting on ϕ2 (ϕ1;2 are not
necessarily solve e.o.m.). The result can be written as

ϕT
2Fϕ1 − ðFϕ2ÞTϕ1 ¼ −

d
dt
½ϕT

2Wϕ1 − ðWϕ2ÞTϕ1�: ð3:21Þ

Thus, for ϕ1;2—solutions of (3.5) left-hand side (lhs)
vanishes, so we have

ϕT
2Wϕ1 − ðWϕ2ÞTϕ1 ¼ const: ð3:22Þ

It is easy to see, that each element of (3.18) has the form
(3.22) as above, where the role of solutions ϕ1, ϕ2 is played
by the basis functions vþ, v−. Applying the matrix trans-
position operator to both sides of (3.16), we obtain that the
matrix D is skew-symmetric, since PT ¼ −P. In terms of
the block elements of D this means that

ΔTþ−¼−Δ−þ; ΔTþþ¼−Δþþ; ΔT
−−¼−Δ−−: ð3:23Þ

Moreover, using the fact that the coefficient matrices A, B,
and C in (3.1) are real, we conclude that basis functions vþ,
v− can also be chosen to be real. Thus, the matrix D is real
skew-symmetric, so there is a time-independent linear
transformation S, bringing it to the canonical form, i.e.,
STDS ¼ P. Without the loss of generality one set D ¼ P
by default.5 However, for the reasons which will become
clear soon (see Eq. (4.21) below), we will assume that D
has the following more general form

D ¼
�

0 Δþ−

Δ−þ 0

�
; ð3:24Þ

where

Δþ− ¼ −ΔT
−þ ¼ vTþWv− − ðWvþÞTv−: ð3:25Þ

In terms of the basis functions, the vanishing of the
diagonal blocks of D implies that vþ, v− are chosen such
that

Δþþ ¼ vTþWvþ − ðWvþÞTvþ ¼ 0;

Δ−− ¼ vT−Wv− − ðWv−ÞTv− ¼ 0: ð3:26Þ

This can always be done by an appropriate transformation
of the basis functions, possibly mixing vþ and v−.
Consequently, the pairwise Poisson brackets of αþ and
α− take the form

5This choice allows to give an additional interpretation for the
equation (3.19), which becomes MTðtÞPMðtÞ ¼ P. Namely,
the matrixMðtÞ performs a time-dependent symplectomorphism
of the Poisson bivector P.
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fαþ; α−g ¼ −fαþ; α−g ¼ −Δ−1
−þ; ð3:27aÞ

fαþ;αþg ¼ fα−; α−g ¼ 0: ð3:27bÞ

Asnoted above, one can go further, and setΔþ−¼−ΔT
−þ¼ I.

Now, let us modify the Hamiltonian by introducing time-
dependent sources Jϕ, Jπ for the field and its conjugate
momentum

H ↦ H þ JTϕϕþ JTπ π: ð3:28Þ

The modified equations of motion can be written as

d
dt

�
ϕJðtÞ
πJðtÞ

�
¼ AðtÞ

�
ϕJðtÞ
πJðtÞ

�
þ P

�
JϕðtÞ
JπðtÞ

�
;

AðtÞ≡
�

−A−1B A−1

−BTA−1Bþ C BTA−1

�
; ð3:29Þ

where the subscript J of ϕ, π emphasizes the presence of the
sources in equations of motion. We will find a solution to
modified equations of motion using the constant variation
method. Namely, we start with the solution (3.14) to
equations of motion with vanishing sources, but make the
integration constants αþ, α− in its definition time-dependent

�
ϕJðtÞ
πJðtÞ

�
¼ MðtÞ

�
αþðtÞ
α−ðtÞ

�
; ð3:30Þ

Then, we substitute the result to the modified e.o.m. and
obtain

MðtÞ d
dt

�
αþðtÞ
α−ðtÞ

�
¼ P

�
JϕðtÞ
JπðtÞ

�
; ð3:31Þ

where we exploit the fact that MðtÞ satisfies the system
(3.10). Using the equality (3.20) for the inverse of the matrix
MðtÞ and integrating the equation on αþðtÞ and α−ðtÞ we
obtain

�
αþðtÞ
α−ðtÞ

�
¼

�
αþ0
α−0

�
−
Z

t

t−

dt0D−1MTðt0Þ
�
Jϕðt0Þ
Jπðt0Þ

�
; ð3:32Þ

where αþ0 and α−0 are integration constants. Substitution back
to (3.30) gives the solution to the equations (3.29)

�
ϕJðtÞ
πJðtÞ

�
¼

�
ϕ0ðtÞ
π0ðtÞ

�
−
Z

t

t−

dt0MðtÞD−1MTðt0Þ
�
Jϕðt0Þ
Jπðt0Þ

�
;

ð3:33Þ

where the initial conditions ϕ0ðtÞ, π0ðtÞ are related to
constants of integration by

�
ϕ0ðtÞ
π0ðtÞ

�
¼ MðtÞ

�
αþ0
α−0

�
; ð3:34Þ

and represent the solution to homogeneous equation, i.e., for
vanishing sources Jϕ and Jπ .
Now, let us focus on the case of vanishing momentum

source and also redefine the field source for the conven-
ience

JπðtÞ ¼ 0; JðtÞ≡ −JϕðtÞ: ð3:35Þ

The corresponding e.o.m. in the Lagrange form reads

FϕJðtÞ þ JðtÞ ¼ 0: ð3:36Þ

From (3.33), one obtains the explicit form of the solution
for ϕðtÞ, which is

ϕJðtÞ ¼ ϕ0ðtÞ −
Z

tþ

t−

dt0GRðt; t0ÞJðt0Þ; ð3:37Þ

where GRðt; t0Þ is called the retarded Green’s function and
expressed through the top-left block of the matrix
MðtÞD−1MTðt0Þ, specifically

GRðt; t0Þ ¼ −ðvþðtÞΔ−1
−þvT−ðt0Þ þ v−ðtÞΔ−1þ−v

Tþðt0ÞÞθðt − t0Þ:
ð3:38Þ

The fact that Δþþ ¼ Δ−− ¼ 0 is crucial in obtaining this
simple expression for GR. From (3.37) we find that GR
satisfies the equation

FGRðt; t0Þ ¼ Iδðt − t0Þ ð3:39Þ

and is uniquely determined by the condition

GRðt; t0Þ ¼ 0; t < t0: ð3:40Þ

The latter fact follows, in particular, from the fact that any
two Green’s functions of the same differential operator
differ by the solution of the homogeneous equation. Once
some Green’s function, satisfying the condition (3.40) is
found, a shift by a solution to homogeneous equation will
violate this condition. Alternatively, GR can be defined via
initial value problem

GRðt; tÞ ¼ 0; WGRðt; t0Þjt¼t0þ0 ¼ −I: ð3:41Þ

The fact that solution (3.37) is expressed through the
retarded Green’s function means that ϕðtÞ is subject to
the following initial (rather than boundary) value problem

ϕJðt−Þ¼ϕ0ðt−Þ; WϕJðt−Þ¼Wϕ0ðt−Þ≡π0ðt−Þ: ð3:42Þ
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C. The solution of Dirichlet and Neumann
boundary value problems

The Green’s functions, solving the boundary problems,
can be obtained from the retarded Green’s function by
shifting it by the solution of the homogeneous equa-
tion (3.5). In particular, one constructs the so-called
symmetric Green’s function as

GSðt; t0Þ ¼ GRðt; t0Þ þ vþðtÞΔ−1
−þvT−ðt0Þ

¼ −vþðtÞΔ−1
−þvT−ðt0Þθðt − t0Þ

þ v−ðtÞΔ−1þ−v
Tþðt0Þθðt0 − tÞ: ð3:43Þ

It is symmetric under the simultaneous transposition and
exchange of the time arguments, i.e. GT

Sðt; t0Þ ¼ GSðt0; tÞ.
Unlike the retarded Green’s function it is defined non-
uniquely and the concrete boundary conditions should be
specified. These are in one-to-one correspondence to the
boundary conditions, satisfied by the basis functions vþ
and v− at the higher and lower time limits t ¼ tþ and
t ¼ t−, respectively.
In particular, to solve the inhomogeneous equation (3.36)

supplemented with the vanishing Dirichlet boundary con-
ditions

ϕJðt�Þ ¼ 0; ð3:44Þ

one can use the Dirichlet Green’s function subject to the
same boundary conditions

GDðt�; t0Þ ¼ 0 ↔ v�ðt�Þ ¼ 0; ð3:45Þ

so that the solution reads

ϕJðtÞ ¼ −
Z

tþ

t−

dt0GDðt; t0ÞJðt0Þ: ð3:46Þ

Similarly, in solving Neumann boundary problem

ðiW ∓ ω�ÞϕJðt�Þ ¼ 0; ð3:47Þ

one defines the corresponding Neumann Green’s function
demanding

ðiW ∓ ω�ÞGNðt�; t0Þ ¼ 0 ↔ ðiW ∓ ω�Þv�ðt�Þ ¼ 0;

ð3:48Þ

and obtains the solution as

ϕJðtÞ ¼ −
Z

tþ

t−

dt0 GNðt; t0ÞJðt0Þ: ð3:49Þ

Notably, the Dirichlet and Neumann Green’s functions,
which are subject to homogeneous boundary conditions,
allows one to solve the modified boundary problems,

namely with inhomogeneous boundary conditions.
Namely, the solutions can be obtained as follow. First,
we exploit the equality (3.21) and perform in it the
substitutions ϕ2 ↦ ϕðt0Þ, ϕ1 ↦ Gðt0; tÞ, where ϕðt0Þ solves
(3.36) and Gðt0; tÞ is some Green’s function, solving
FGðt0; tÞ ¼ δðt − t0Þ. Next, integrating both sides of the
equality over t0 from t− to tþ, we obtain

ϕJðtÞ ¼ −
Z

tþ

t−

dt0Gðt; t0ÞJðt0Þ

þ ðWGðtþ; tÞÞTϕðtþÞ − ðWGðtþ; tÞÞTϕJðtþÞ
−GTðtþ; tÞWϕJðtþÞ þ GTðt−; tÞWϕJðt−Þ ð3:50Þ

Now, suppose we are to solve (3.36) supplemented by
inhomogeneous boundary conditions [in contrast to homo-
geneous ones (3.44)]

ϕJðt�Þ ¼ φ�; ð3:51Þ

for some constants φþ, φ−. Substituting these conditions to
(3.50) together with Dirichlet Green’s function G ↦ GD,
satisfying (3.45), we observe that the third line vanishes, so
we get

ϕJðtÞ ¼ −wTðtÞ
�
φþ
φ−

�
−
Z

tþ

t−

dt0 GDðt; t0ÞJðt0Þ; ð3:52Þ

where we introduce the notation for the two-component
row as the transposition of the newly introduced column

wTðtÞ≡ ½GDðt; tþÞW⃖ −GDðt; t−ÞW⃖ �
¼ ½wðtÞ�T; ð3:53Þ

wðtÞ≡
�
W⃗GDðtþ; tÞ
−W⃗GDðt−; tÞ

�
; ð3:54Þ

and W⃖ denotes the Wronskian operator (2.16) acting from
the right on the second argument of GDðt; t0Þ at the total
boundary of the time domain at t� (the sign taking into
account the outward pointing time derivative in W)—the
notation used above in (2.31). The transposition law here,
of course, takes into account the symmetry of Dirichlet
Green’s function,

½GDðt; tþÞW⃖�T ¼
�
AðtþÞ

d
dtþ

þ BðtþÞ
	
GT

Dðt; tþÞ

¼ W⃗GDðtþ; tÞ: ð3:55Þ

The quantity wðtÞ introduced above has the following
important property. Namely, evaluating both sides of
(3.52) at the boundary points t ¼ t�, and using (3.45)
we observe that
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wTðtþÞ ¼ ½−I 0 �; wTðt−Þ ¼ ½ 0 −I �: ð3:56Þ

Similarly, one can consider inhomogeneous Neumann
boundary conditions

ð�iW − ω�ÞϕJðt�Þ ¼ j�; ð3:57Þ

with some boundary sources jþ and j−. Substitution of this
condition and Neumann Green’s function G ↦ GN , sat-
isfying (3.48), to (3.50) gives the solution to (3.36) with the
boundary conditions above

ϕJðtÞ ¼ −igTNðtÞ
�
jþ
j−

�
−
Z

tþ

t−

dt0 GNðt; t0ÞJðt0Þ: ð3:58Þ

Here gTNðtÞ is the notation analogous to (3.53)—the row
built in terms of the Neumann Green’s function kernels
with the second argument located at the total 2-point
boundary of the time domain (points t− and tþ),

gTNðtÞ≡ ½GNðt; tþÞ GNðt; t−Þ �: ð3:59Þ

D. The relation between Dirichlet
and Neumann Green’s functions

There is important explicit connection between Dirichlet
and Neumann Green’s functions, which can be derived in
the following way. The idea is to consider the problem with
homogeneous Neumann boundary conditions (3.47) as the
Dirichlet problem with some nontrivial boundary values
φ�. Substituting the solution of this problem (3.52) into
(3.47) one obtains a linear equation on φ�, which can be
solved as

�
φþ
φ−

�
¼ ðiωþΩÞ−1

Z
tþ

t−

dtwðtÞJðtÞ; ð3:60Þ

where the matrices ω and Ω read

ω≡
�
ωþ 0

0 ω−

�
; ð3:61Þ

Ω≡
�
−W⃗GDðtþ; tþÞW⃖ W⃗GDðtþ; t−ÞW⃖
W⃗GDðt−; tþÞW⃖ −W⃗GDðt−; t−ÞW⃖

�
: ð3:62Þ

Substituting these φ� back into (3.52) gives

ϕJðtÞ ¼ −
Z

tþ

t−

dt0½GDðt; t0Þ

þ wTðtÞðiωþΩÞ−1wðt0Þ�Jðt0Þ; ð3:63Þ

which implies, after comparing with (3.49), the following
expression for the Neumann Green’s functrion

GNðt; t0Þ ¼ GDðt; t0Þ þ wTðtÞðiωþΩÞ−1wðt0Þ: ð3:64Þ

Here we use the notations (3.53) and (3.54) introduced
above. Substituting t ¼ t� to the both sides of the equality
and using (3.56), we get the equality

gTNðtÞ ¼ −wTðtÞðiωþΩÞ−1; ð3:65Þ

that allows us to express the Dirichlet Green’s function
from (3.64) via the Neumann one as

GDðt; t0Þ ¼ GNðt; t0Þ − gTNðtÞðiωþΩÞgNðt0Þ; ð3:66Þ

where we use the notation (3.59) for the row gNðtÞ ¼
½GNðt; tþÞGNðt; t−Þ� and its transpose. Using (3.56) once
again, we can write down the expression for the block
matrix of boundary values of the Neumann function gN at
both ends of the time segment (double bar denoting the
restriction of both arguments to t�)

GNk ¼
�
GNðtþ; tþÞ GNðtþ; t−Þ
GNðt−; tþÞ GNðt−; t−Þ

�
¼ ðiωþΩÞ−1: ð3:67Þ

E. Canonical quantization

Before proceeding to the canonical quantization of the
theory (3.1), whose Hamiltonian formalism was con-
structed in the previous subsection, let us make a more
specific choice of basis functions, which is more conven-
ient for the quantization purposes. We first choose the basis
functions v�ðtÞ real, and such that the matrix D defined by
(3.24) has a canonical form, D ¼ P. Together with the
reality of ϕðtÞ this implies also the reality of the corre-
sponding integration constants α�. Next, we combine these
basis functions and integration constants into the following
complex conjugated pairs

½vþ v− �↦ ½v v� � ¼ 1ffiffiffi
2

p ½vþ v− �
�

I I

−iI iI

�
; ð3:68Þ

�
αþ

α−

�
↦

�
α

α�

�
¼ 1ffiffiffi

2
p

�
I iI

I −iI

��
αþ

α−

�
: ð3:69Þ

After this change of basis, the matrix D becomes

D ↦ iP ¼
�

0 iI

−iI 0

�
: ð3:70Þ

According to (3.27a), this implies the following pairwise
Poisson brackets of α, α�

fα; α�g ¼ −fα�; αg ¼ −iI; fα; αg ¼ fα�; α�g ¼ 0:

ð3:71Þ
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In terms of the new basis functions, the evolution law (3.14)
of the field and the canonical momentum becomes

�
ϕðtÞ
πðtÞ

�
¼

�
vðtÞ v�ðtÞ
WvðtÞ Wv�ðtÞ

��
α

α�

�
: ð3:72Þ

Equation (3.20) takes the form

M−1ðtÞ ¼ iPMTðtÞP; MðtÞ ¼
�

vðtÞ v�ðtÞ
WvðtÞ Wv�ðtÞ

�

ð3:73Þ

and allows to invert the equality (3.72) as

�
α

α�

�
¼ iPMTðtÞP

�
ϕðtÞ
πðtÞ

�
: ð3:74Þ

Evaluating at t ¼ t− and substituting back to (3.72), one
obtains evolving phase space variables in terms of the basis
functions vðtÞ, v�ðtÞ and initial data,

�
ϕðtÞ
πðtÞ

�
¼ iMðtÞPMTðt−ÞP

�
ϕðt−Þ
πðt−Þ

�
: ð3:75Þ

Now, we are ready perform the canonical quantization of
the system under consideration, whose Hamiltonian form
was obtained in the previous subsection. We will quantize it
in the Heisenberg picture. Thus, we map the solutions of
the Hamiltonian equations to the corresponding Heisenberg
operators, i.e., ϕðtÞ; πðtÞ ↦ ϕ̂ðtÞ; π̂ðtÞ, whereas the Poisson
bracket is replaced by the commutator times the factor i, so
that we obtain the equal-time quantum commutation
relations ½ϕ̂ðtÞ; π̂ðtÞ� ¼ iÎ, where Î is the identity operator
in the Hilbert space. Thus, the Hamiltonian equations (3.10)
are mapped to the corresponding Heisenberg equations,
defining the evolution of the operators

d
dt

ϕ̂ðtÞ ¼ −i½ϕ̂ðtÞ; ĤðtÞ� ¼ A−1ðπ̂ðtÞ − Bϕ̂ðtÞÞ ð3:76aÞ

d
dt

π̂ðtÞ ¼ −i½π̂ðtÞ; ĤðtÞ�
¼ BTA−1ðπ̂ðtÞ − Bϕ̂ðtÞÞ þ Cϕ̂ðtÞ: ð3:76bÞ

Here ĤðtÞ is the classical Hamiltonian (3.9) where the field
and the momentum are replaced by the corresponding
Heisenberg operators.
Linearity of the system obviously implies that the classical

Hamiltonian and theHeisenberg equations formally coincide
and their solutions are in one-to-one correspondence. In
particular, the relation (3.8) between the field ϕ and its
conjugate momentum π is literally the same at classical and
quantum levels π̂ðtÞ ¼ Wϕ̂ðtÞ. Formal coincidence and
linearity of the Hamiltonian and Heisenberg equations allow

one to obtain the solution of the latter ones from classical
equations (3.75)

�
ϕ̂ðtÞ
π̂ðtÞ

�
¼ iMðtÞPMTðt−ÞP

�
ϕ̂ðt−Þ
π̂ðt−Þ

�
: ð3:77Þ

Similarly, our quantization procedure implies that the inte-
gration constants α, α� are in one-to-one correspondence to
the creation/annihilation operators â, â†. According to (3.72)
the operators ϕ̂ðtÞ, π̂ðtÞ are decomposed in the creation/
annihilation operators as

�
ϕ̂ðtÞ
π̂ðtÞ

�
¼

�
vðtÞ v�ðtÞ
WvðtÞ Wv�ðtÞ

��
â

â†

�
; ð3:78Þ

that can be inverted similar to (3.74) as

�
â

â†

�
¼ iPMTðtÞP

�
ϕ̂ðtÞ
π̂ðtÞ

�
: ð3:79Þ

The fact that â and â† are indeedHermitian conjugate to each
other immediately follows from the Hermiticity of ϕ̂ðtÞ.
Indeed, comparing ϕ̂ðtÞ to it’s conjugate

ϕ̂ðtÞ ¼ vðtÞâþ v�ðtÞâ†;
ϕ̂†ðtÞ ¼ ðvðtÞâþ v�ðtÞâ†Þ† ¼ v�ðtÞâ† þ vðtÞâ; ð3:80Þ

we find the coincidence, for which the choice (3.68) of two
complex conjugated basis functions is crucial. The commu-
tation relations of the creation/annihilation operators are
inherited from the Poisson brackets (3.71), namely

½âA; â†B� ¼ −½â†B; âB� ¼ δABÎ;

½âA; âB� ¼ ½â†A; â†B� ¼ 0: ð3:81Þ

Though the explicit solution to the Heisenberg equa-
tions (3.77) is obtained, we still have no the expression for
the evolution operator in a closed form. The latter solves the
Schroedinger equation in the form of the chronological
ordering,

i
d
dt
Ûðt; t0Þ ¼ ĤSðtÞÛðt; t0Þ; Ûðtþ; t−Þ ¼ Te

−i
R

tþ
t−

dt ĤSðtÞ;

ð3:82Þ

where ĤSðtÞ is the Hamiltonian in the Schroedinger
picture, so that its time dependence is only due to time-
dependent coefficients A, B, and C. The operators ϕ̂, π̂ in
the Schroedinger picture are identified with the Heisenberg
ones, evaluated at the initial time

ϕ̂ ¼ ϕ̂ðt−Þ; π̂ ¼ π̂ðt−Þ: ð3:83Þ
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In the presence of the source, H ↦ H − JTϕ, the solution
(3.78) to the Heisenberg equation generalizes to

ϕ̂JðtÞ ¼ ϕ̂ðtÞ −
Z

tþ

t−

dt0GRðt; t0ÞJðt0Þ; ð3:84Þ

that can be easily derived from (3.37). Here ϕ̂ðtÞ is the
solution (3.78) to the sourceless Heisenberg equation.
The Schroedinger equation for the evolution operator in
the presence of the source

i
d
dt

ÛJðt; t0Þ ¼ ðĤSðtÞ − JTðtÞϕ̂ÞÛJðt; t0Þ; ÛJðt; tÞ ¼ Î

ð3:85Þ

can be solved by the chronological Dyson t-exponent
[cf. Eq. (2.3)],

ÛJðtþ; t−Þ ¼ Te
−i
R

tþ
t−

dtðĤSðtÞ−JðtÞϕ̂SÞ: ð3:86Þ

Another representation for the evolution operator follows
from functional integral formalism. If one introduces the
coordinate representation, associated with the Schroedinger
operators (3.83),

ϕ̂jφi ¼ φjφi; π̂jφi ¼ i
∂

∂φ
jφi; Î ¼

Z
dφjφihφj;

ð3:87Þ

then the matrix elements of ÛJ in the coordinate repre-
sentation express in terms of the following functional
integral

hφþjÛJðtþ; t−Þjφ−i

¼
Z

ϕðt�Þ¼φ�

Dϕ exp

�
iS½ϕ�þ i

Z
tþ

t−

dtJTðtÞϕðtÞ
�
: ð3:88Þ

Since the action (3.1) is quadratic in the field φ, the latter
integral is Gaussian, so it can be calculated explicitly. We
will do this in the next section with the use of the saddle
point method.

F. Bogoliubov transformations

In the previous subsection we made the choice (3.68) of
basis functions which implies a simple form of the
commutation relations (3.81) for the creation/annihilation
operators. It will be useful to study the transformations,
preserving these commutation relations. For this purpose,
let us define a new set of creation/annihilation operators b̂,
b̂† as a linear combination of the initial ones,

�
b̂

b̂†

�
¼

�
U V

V� U�

��
â

â†

�
; ð3:89Þ

where U, V are referred to as the matrices of Bogoliubov
transformations. Demanding that the commutation rela-
tions of the new creation/annihilation operators coincides
with those of the initial ones (3.81), one obtains the equality

�
U V

V� U�

��
0 I

−I 0

��
UT V†

VT U†

�
¼

�
0 I

−I 0

�
ð3:90Þ

so that U and V should satisfy

UU† − VV† ¼ I; UVT − VUT ¼ 0: ð3:91Þ

Thus, the field operator ϕ̂ðtÞ has two equivalent decom-
positions

ϕ̂ðtÞ ¼ vðtÞâþ v�ðtÞâ† ¼ ṽðtÞb̂þ ṽ�ðtÞb̂†; ð3:92Þ

where the new set of the basis functions ṽðtÞ, ṽ�ðtÞ is
related to the initial one via the following relation

½ v v� � ¼ ½ ṽ ṽ� �
�

U V

V� U�

�
ð3:93Þ

or, in more explicit form

v ¼ ṽU þ ṽ�V�: ð3:94Þ

Equality (3.90) leads to the following formula for the
inverse matrix of the Bogoliubov transformation coeffi-
cients

�
U V

V� U�

�−1
¼

�
U† −VT

−V† UT

�
ð3:95Þ

so that (3.94) can be inverted as

ṽ ¼ vU† − v�V†: ð3:96Þ

Now, let us solve the inverse problem. Namely, suppose
we have two sets of the basis functions vðtÞ, v�ðtÞ and ṽðtÞ,
ṽ�ðtÞ, such that the commutation relation of the corre-
sponding creation/annihilation operators are of the canoni-
cal form (3.81). The question is what are the Bogoliubov
coefficients relating these two sets? To find the explicit
form of the coefficients, let us introduce the following inner
product in the space of solutions of the Eq. (3.5)

ðϕ1;ϕ2Þ ¼ iϕ†
1ðWϕ2Þ − iðWϕ1Þ†ϕ2: ð3:97Þ

This is constant if ϕ1, ϕ2 solve (3.5) due to the Wronskian
property (3.22), together with the fact that the operator F,
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defining equations of motion (and the Wronskian W) is
real. The inner product (3.97) is usually referred to as the
Klein-Gordon type inner product. The choice (3.68) of the
basis functions implies the following normalization with
respect to this inner product

ðv; vÞ ¼ −ðv�; v�Þ ¼ I; ðv�; vÞ ¼ 0; ð3:98Þ
and the same for ṽðtÞ, ṽ�ðtÞ. Projecting the equality (3.94)
onto ṽ, and using the property ðv1; v2Þ� ¼ −ðv�1; v�2Þ, one
obtains the explicit expressions for the Bogoliubov coef-
ficients

U ¼ ðṽ; vÞ; V ¼ ðṽ; v�Þ: ð3:99Þ

If both the old and the new sets of basis functions satisfy
the Neumann conditions with different frequency matrices
ω and ω̃ at the initial moment of time

ðiW − ωÞvðt−Þ ¼ 0; ðiW − ω̃Þṽðt−Þ ¼ 0; ð3:100Þ

one can find the explicit expressions for U, V in terms of ω
and ω̃. Let us first write down the normalization conditions
(3.98) explicitly

ðv;vÞ ¼ v†ðωþω†Þv¼ I; ðv�; vÞ ¼ vTðω−ωTÞv¼ 0;

ð3:101Þ
where all quantities are evaluated at t ¼ t−. The same
equations hold for ṽðtÞ and ṽ�ðtÞ. The second equation
implies that the matrices ω and ω̃ are symmetric (in view of
invertibility of the matrix vðtÞ at a generic moment of time),
whereas the first equation allows one to fix the initial value
of the basis functions as

vðt−Þ ¼
1ffiffiffiffiffiffiffiffiffi
2ωre

p ; ṽðt−Þ ¼
1ffiffiffiffiffiffiffiffiffi
2ω̃re

p ; ð3:102Þ

whereωre and ω̃re are the real parts ofω and ω̃, respectively.
Using (3.99) with the inner product defined in (3.97) one
finds the following expressions for Bogoliubov coefficients
relating two sets of Neumann basis functions with different
frequency matrices,

U ¼ 1ffiffiffiffiffiffiffiffiffi
2ω̃re

p ðωþ ω̃†Þ 1ffiffiffiffiffiffiffiffiffi
2ωre

p ; ð3:103aÞ

V ¼ 1ffiffiffiffiffiffiffiffiffi
2ω̃re

p ðω̃† − ω†Þ 1ffiffiffiffiffiffiffiffiffi
2ωre

p : ð3:103bÞ

G. Fock space and the coherent states

Once the basis functions vðtÞ, v�ðtÞ are chosen, we can
define the Fock space, associated to the corresponding
creation/annihilation operators. Namely, introducing the
vacuum state j0i as

âj0i ¼ 0; ð3:104Þ

one defines the Fock space as a linear space spanned by

jA1; A2;…Ani≡ â†A1 â†A2…â†An j0i: ð3:105Þ

Next, let us obtain the coordinate representation of the
Fock states. For this purpose, we rewrite (3.79) explicitly
for t ¼ t− as

�
â

â†

�
¼ 1ffiffiffiffiffiffiffiffiffi

2ωre
p

�
ω� iI

ω −iI

��
ϕ̂

π̂

�
; ð3:106Þ

where ω is given in terms of the positive frequency basis
function

ω ¼ ðiWvÞv−1jt¼t− ; ð3:107Þ

and rewrite the definition (3.104) of the vacuum state in the
coordinate representation (3.87) as

1ffiffiffiffiffiffiffiffiffi
2ωre

p
�

∂

∂φ
þ ω�φ

	
hφj0i ¼ 0: ð3:108Þ

Therefore, up to π-dependent normalization the wave
function of a vacuum reads

hφj0i ¼ ðdetωreÞ14 exp
�
−
1

2
φTω�φ

�
: ð3:109Þ

Coordinate representation of the excited states can be found
by using the definition (3.105) and the expression for â† in
the coordinate representation.
Similarly, one can define the coherent states jαi as

eigenstates of the annihilation operator

âjαi ¼ αjαi: ð3:110Þ

Projecting the definition on the coordinate representation
basis vector jφi, one obtains the equation

�
∂

∂φ
þ ω�φ

	
hφjαi ¼

ffiffiffiffiffiffiffiffiffi
2ωre

p
hφjαi; ð3:111Þ

whose integration gives the (unnormalized) solution

hφjαi¼ exp

�
−
1

2
φTω�φþαT

ffiffiffiffiffiffiffiffiffi
2ωre

p
φ−

1

2
αTα

�
: ð3:112Þ

For this normalization we have the following expression for
the Fock states in terms of coherent state

jA1; A2;…Ani ¼
∂
n

∂αA1∂αA2…∂αAn
jαi

����
α¼0

: ð3:113Þ

ANDREI O. BARVINSKY and NIKITA KOLGANOV PHYS. REV. D 109, 025004 (2024)

025004-18



Coherent states allows to perform a partition of unity as

Î ¼
Z

dα�dαe−α†αjαihαj: ð3:114Þ

IV. GENERATING FUNCTIONAL IN THE PATH
INTEGRAL FORMALISM

We begin our derivation of the in-in Green’s function
generating functional for the theory, defined in the previous
section, by the physical motivation and the definition of an
arbitrary Gaussian initial state. After that, we derive the
corresponding two-componentGreen’s functions.Aswewill
observe, there is an ambiguity in the definition of these
Green’s function, parameterized by a matrix, defining initial
conditions for the modes, employed in the mode expansion
of the field operators. There is no any a priory preferred
choice, fixing this ambiguity. However, being motivated by
the simple harmonic oscillator in a thermal state, we make a
choice of the modes such that the resulting Green’s function
has the form and the properties, very close to that of the
Green’s functions for the equilibrium system in a thermal
state. Further, we introduce the notion of the quasithermal
state, which is a very particular case of the Gaussian state, in
which the properties of the Green’s functions become even
more closer to those of the thermal ones, in particular,
satisfying the Kubo-Martin-Schwinger (KMS) condition.

A. Gaussian states

Our goal is to find the explicit and useful form of the
generating functional

Z½J1; J2� ¼ tr½ÛJ1ðT; 0Þρ̂Û†
−J2ðT; 0Þ� ð4:1Þ

of in-in correlation functions

tr½ρ̂ T̄ðϕ̂ðt01Þ…ϕðt0mÞÞ Tðϕ̂ðt1Þ…ϕðtnÞÞ�

¼ im−n

Z
δnþmZ½J1; J2�

δJ1ðt1Þ…δJ1ðtnÞδJ2ðt01Þ…δJ2ðt0mÞ
����
J1¼J2¼0

:

ð4:2Þ

where ÛJ are the evolution operators subject to equa-
tion (3.85) with different sources J1 and −J2, whereas T
and T̄ denote chronological and antichronological ordering,
respectively. The relation between (4.1) and the correlation
functions (4.2) obviously follows from (3.86). The basic
elements are the two-point correlation functions, namely

iGTðt; t0Þ≡ tr½ρ̂Tðϕ̂ðtÞϕ̂ðt0ÞÞ�; ð4:3aÞ

iGT̄ðt; t0Þ≡ tr½ρ̂ T̄ðϕ̂ðtÞϕ̂ðt0ÞÞ�; ð4:3bÞ

iG<ðt; t0Þ≡ tr½ρ̂ ϕ̂ðtÞϕ̂ðt0Þ�; ð4:3cÞ

where GT, GT̄, and G< are Feynman, anti-Feynman, and
Wightman Green’s functions, respectively.
The density matrix ρ̂ is assumed to be the Hermitian

positive-definite operator of unit trace. Inserting the par-
tition of unity in the coordinate representation to the
definition (4.1) of the generating functional three times,
and using the path integral representation (3.88) of the
evolution operator, one obtains the following expression for
the generating functional

Z½J1;J2�¼
Z

dφþdφ−ρðφþ;φ−Þ

×
Z

Dϕ1Dϕ2exp

�
iS½ϕ1�−iS½ϕ2�

þi
Z

T

0

dtðJT1ϕ1þJT2ϕ2Þ
�����

ϕ1ðTÞ¼ϕ2ðTÞ;
ϕ1ð0Þ¼φþ ;ϕ2ð0Þ¼φ−

; ð4:4Þ

where the integration over ϕ1;2ðtÞ runs with the indicated
boundary conditions and we introduce the notation for the
coordinate representation of the density matrix ρðφþ;φ−Þ ¼
hφþjρ̂jφ−i.
Now, we restrict ourselves with the Gaussian density

matrices, i.e., those whose coordinate representation has the
form of the Gaussian exponent

ρðφÞ ¼ 1

Z
exp

�
−
1

2
φTΩφþ jTφ

�
; φ¼

�
φþ
φ−

�
; ð4:5Þ

where the matrix Ω, and the vector j play the role of the
parameters of ρ̂, and normalization constant 1=Z is inde-
pendent of φ. The Hermitian property of the density matrix,
hφþjρ̂jφ−i ¼ hφ−jρ̂jφþi�, which in the coordinate repre-
sentation reads

ρðφþ;φ−Þ ¼ ρ�ðφ−;φþÞ; ð4:6Þ

implies the following conditions on Ω and j

XΩX ¼ Ω�; Xj ¼ j�; X ≡
�
0 I

I 0

�
; ð4:7Þ

or, in a more explicit block-matrix form

j¼
�
j

j�

�
; Ω¼

�
R S

S� R�

�
; R¼ RT; S¼ S†:

ð4:8Þ

Normalizability of ρ̂ implies that the real part of the sum
Rþ S is positive-definite. The case in which the matrix S is
nonvanishing corresponds to the mixed states, i.e. such that
ρ̂2 ≠ ρ̂. The role of the linear term in the exponential in
(4.5) is two-fold. Firstly, j defines nonvanishing mean value
of the field operator. Secondly, it can also be used to
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introduce nonlinearities to the density matrix, namely, by
differentiating it with respect to j. The typical example of
the (pure) Gaussian state is the vacuum state (3.104), i.e.
ρ̂ ¼ j0ih0j, associated with some choice of the annihilation
operator, for which R ¼ ω�, S ¼ 0, and j ¼ 0. Another
example of the pure Gaussian state is the coherent state
(3.110) whose density matrix reads ρ̂ ¼ jαihαj, and
R ¼ ω�, S ¼ 0 again, but j ¼ ffiffiffiffiffiffiffiffiffi

2ωre
p

α�.

B. In-in boundary value problem

Substituting the general Gaussian density matrix to (4.4),
one obtains

Z½J1; J2� ¼
Z

ϕ1ðTÞ¼ϕ2ðTÞ
ϕð0Þ¼φ

Dϕ1Dϕ2 exp

�
iS½ϕ1� − iS½ϕ2�

þ i
Z

T

0

dtðJT1ϕ1 þ JT2ϕ2Þ −
1

2
φTΩφþ jTφ

�
;

ð4:9Þ

where we put the boundary points φ�, φ0, appearing in (4.4)
to the functional integration measure, and also omit the
constant normalization factor of the density matrix.
We will compute the integral (4.9) representing the

generating functional, with the use of saddle point method.
The latter turns out to be exact since the integral has the
Gaussian form. First of all, we introduce the notations for
the block-matrix operators acting on columns of fields and
sources (2.7) introduced in Sec. II,

F ¼
�
F 0

0 −F
�
; W ¼

�
W 0

0 −W
�
; ð4:10Þ

so that the sum of the actions for ϕ1 and ϕ2 in (4.9) can be
rewritten in the joint form

S½ϕ� ¼ 1

2

Z
T

0

dtϕTF
↔
ϕ

¼ 1

2

Z
T

0

dtϕTFϕþ 1

2
ϕTWϕjT0 : ð4:11Þ

This allows us to treat the underlying equations of motion,
Green’s functions, etc. in exactly the sameway as the original
theory with the action (3.1), except that now the field content
is doubled. In terms of the new notations the expression for
the generating functional is given by Eqs. (2.8)–(2.10)
of Sec. II.
The saddle point equation obtained by varying the

exponential of this double-field action (2.8) with respect
to all fields including the boundary values at t ¼ 0 and
t ¼ T reads

δ

�
iS½ϕ� þ i

Z
T

0

dtJTϕ −
1

2
φTΩφþ jTφ

�

¼
Z

T

0

dt δϕTðFϕþ JÞ þ iδϕTWϕjt¼T

− δφT ½ðiW þΩÞϕjt¼0 − j� ¼ 0: ð4:12Þ

Independent variation of the fields δϕðtÞ in the interior of
the time interval gives equations of motion

FϕðtÞ þ JðtÞ ¼ 0; ð4:13Þ

whereas the variation of the boundary values δϕðTÞ and
δϕð0Þ ¼ δφ supply these equations with the boundary
conditions. They read as the following matrix relations

ðiW þΩÞϕjt¼0 ¼ j; ð4:14Þ

½ I I �Wϕjt¼T ¼ 0; ½ I −I �ϕjt¼T ¼ 0; ð4:15Þ

where we took into account that in view of ϕ1ðTÞ ¼ ϕ2ðTÞ
the variation δϕTðTÞ ¼ δϕT

1 ðTÞ½I I�, and the boundary
conditions at t ¼ T reduce to the equality of both the
fields and their time derivatives of both ϕ1 and ϕ2.
To solve the boundary value problem above, we first find

the Green’s function subject to the homogeneous version of
the above boundary conditions, i.e., those of vanishing j

FGðt; t0Þ ¼ Iδðt − t0Þ; ð4:16Þ

ðiW þΩÞGðt; t0Þjt¼0 ¼ 0; ð4:17Þ

½ I I �WGðt; t0Þjt¼T ¼ 0;

½ I −I �Gðt; t0Þjt¼T ¼ 0: ð4:18Þ

We can construct the Green’s function G solving the
problem above, out of the basis functions v�. These basis
function should solve the homogeneous equation, and
satisfy the same boundary conditions as those of the
Green’s function,

Fv�ðtÞ ¼ 0; ðiW þΩÞv−ðtÞjt¼0 ¼ 0; ð4:19Þ

½ I I �WvþðtÞjt¼T ¼ 0;

½ I −I �vþðtÞjt¼T ¼ 0: ð4:20Þ

Applying the generic Green’s function expression (3.43) to
the case of the doubled field content, we obtain the Green’s
function G in terms of these basis functions

Gðt; t0Þ ¼ −vþðtÞΔ−1
−þvT−ðt0Þθðt − t0Þ

þ v−ðtÞΔ−1þ−v
Tþðt0Þθðt0 − tÞ ð4:21Þ
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Δ−þ ¼ vT−Wvþ − ðWv−ÞTvþ ¼ −ΔTþ−: ð4:22Þ

C. Neumann type basis functions
and Green’s function representation

However, we do not have the explicit form of basis
functions v�. We will construct v� with the help of another
set basis functions v, v� subject to much simpler boundary
conditions

FvðtÞ ¼ 0; ðiW − ωÞvðtÞjt¼0 ¼ 0; ð4:23Þ

ω ¼
�
ω 0

0 ω�

�
: ð4:24Þ

SinceW and ω are block-diagonal, the basis functions v, v�
can be chosen block-diagonal too, namely

v ¼
�
v 0

0 v�

�
; v� ¼

�
v� 0

0 v

�
: ð4:25Þ

With a real operator F the blocks of these matrices solve the
equations FvðtÞ ¼ 0 and Fv�ðtÞ ¼ 0, subject to the com-
plex conjugated boundary conditions

ðiW −ωÞvðtÞjt¼0 ¼ 0; ðiWþω�Þv�ðtÞjt¼0 ¼ 0: ð4:26Þ

Thus, v and v� are simply the basis functions for the single
field ϕþ or ϕ− subject to the Neumann boundary conditions
introduced above. We assume that ω is the symmetric
matrix with a positive-definite real part.
The answer for the basis function vþ in terms of v and v�

can be easily constructed as

vþ ¼ vþ v�X ¼
�
v v�

v v�

�
; X ¼

�
0 I

I 0

�
; ð4:27Þ

while the calculation of v− requires more efforts. We will
obtain the answer for v− with the use of Bogoliubov
coefficients relating two sets of different Neumann basis
functions (3.103) by treating v− as the negative frequency
basis function complex conjugated to its positive frequency
counterpart v�− satisfying at t ¼ 0 the boundary condition
ðiW −Ω�Þv�−jt¼0 ¼ 0. Thus, in accordance with (3.103) the
answer for v− reads

v− ¼ v�UT − vVT: ð4:28Þ

where U, V are the corresponding Bogoliubov coefficients

U ¼ 1ffiffiffiffiffiffiffiffiffi
2Ωre

p ðΩþωÞ 1ffiffiffiffiffiffiffiffiffi
2ωre

p ; ð4:29aÞ

V ¼ 1ffiffiffiffiffiffiffiffiffi
2Ωre

p ðΩ − ω�Þ 1ffiffiffiffiffiffiffiffiffi
2ωre

p : ð4:29bÞ

Here we assume the normalization vð0Þ ¼ 1=
ffiffiffiffiffiffiffiffiffi
2ωre

p
,

v−ð0Þ ¼ 1=
ffiffiffiffiffiffiffiffiffi
2Ωre

p
, and denote the real parts of ω and Ω

respectively as ωre and Ωre.
Finally, let us consider the details of the Green’s function

Gðt; t0Þ defined by (4.21) for a particular form of v� we
have just built. Its matrix Δ−þ given by (4.22) reads

iΔ−þ ¼ 1ffiffiffiffiffiffiffiffiffi
2Ωre

p ½ðI − XÞωþΩðI þ XÞ� 1ffiffiffiffiffiffiffiffiffi
2ωre

p : ð4:30Þ

Next, let us consider separately the first term in (4.21).
After the calculation presented in Appendix B one obtains
for it the following form

vþðtÞðiΔ−þÞ−1vT−ðt0Þ ¼ vþðtÞv†ðt0Þ þ vþðtÞνvTþðt0Þ; ð4:31Þ

where we introduce the following symmetric matrix

ν¼
h
IþX −

ffiffiffiffiffiffiffiffiffi
2ωre

p
XðωþΩÞ−1X

ffiffiffiffiffiffiffiffiffi
2ωre

p i
−1

−X: ð4:32Þ

Recalling that the second term of the expression (4.21)
can be obtained from the first one by the simultaneous
transposition and exchange of time arguments, and observ-
ing that the second term in (4.31) is symmetric under this
transformation, we find that two theta functions sum up to
identity, so that the final expression for the Green’s function
reads

iGðt; t0Þ ¼ iG0ðt; t0Þ þ vþðtÞνvTþðt0Þ; ð4:33Þ

where G0 is defined as

iG0ðt; t0Þ ¼ vþðtÞv†ðt0Þθðt − t0Þ þ v�ðtÞvTþðt0Þθðt0 − tÞ
¼ vðtÞv†ðt0Þθðt − t0Þ þ v�ðtÞvTðt0Þθðt0 − tÞ
þ v�ðtÞXv†ðt0Þ; ð4:34Þ

and interpreted as the Green function, corresponding to the
vacuum state, having the density matrix ρ̂0 ¼ j0ih0j,
associated with the basis functions vðtÞ, v�ðtÞ. Indeed,
from (3.109) one observes that the matrix Ω, defining the
vacuum density matrix ρ̂0, coincides with ω�, i.e. Ω ¼ ω�.
In this case, ν vanishes due to its definition (4.32), so from
(4.33) we find that G ¼ G0.
Substituting the generating functional obtained to (4.2),

we observe that for vanishing j the block-matrix compo-
nents of G are composed of the Feynman, anti-Feynman
and Wightman Green’s functions (4.3), namely

Gðt; t0Þ ¼
�
GTðt; t0Þ G<ðt; t0Þ
G>ðt; t0Þ GT̄ðt; t0Þ

�
; ð4:35Þ

where G>ðt; t0Þ≡GT
<ðt0; tÞ, and the explicit form of the

block components can be read off form (4.33).

NONEQUILIBRIUM SCHWINGER-KELDYSH FORMALISM FOR … PHYS. REV. D 109, 025004 (2024)

025004-21



Now we have to find the solution ϕðtÞ of the boundary
value problem (4.13)–(4.15) in order to substitute it into the
exponential of (2.8). The only inhomogeneous boundary
conditions in this problem are the Neumann conditions
(4.14), so that the solution is given by the double-field
version of (3.58) with the substitutions jþ ↦ 0 (remember
that there is no jþ at the point t ¼ T) and j− ↦ −j. Thus it
reads

ϕðtÞ ¼ iGðt; 0Þj −
Z

T

0

dt0Gðt; t0ÞJðt0Þ: ð4:36Þ

Substituting it to the exponential of (2.8) then gives
Eq. (2.11) advocated in Sec. II.

Z½J� ¼ const × exp

�
−
i
2

Z
dt dt0JTðtÞGðt; t0ÞJðtÞ

−
Z

dtJTðtÞGðt; 0Þjþ i
2
jTGð0; 0Þj

�
; ð4:37Þ

where all time integrations run from t ¼ 0 to t ¼ T. Here
the restriction ofGðt; t0Þ toGðt; 0Þ does not lead to essential
simplification whereas Gð0; 0Þ has, as shown in
Appendix C, the following explicit and simple form in
terms of the parameters of the density matrix

iGð0; 0Þ ¼ I þ X
2Ωre

; ð4:38Þ

where the “ratio” of matrices I þ X andΩre is unambiguous
because these matrices are commuting in view of the
special form of Ω subject to the relation XΩX ¼ Ω�.

D. Keldysh rotation

For further convenience it is useful to perform the change
of the basis in the doubled field space ϕþ, ϕ− and introduce
the so-called classical and quantum fields ϕc and ϕq

[46,47],

ϕKðtÞ ¼
"
ϕcðtÞ
ϕqðtÞ

#
¼ CϕðtÞ; C≡

� 1
2
I 1

2
I

I −I
�
: ð4:39Þ

This transformation is called Keldysh rotation. In the new
basis, the Green’s function G takes the form

GKðt; t0Þ ¼ CGðt; t0ÞCT ¼
�
GKðt; t0Þ GRðt; t0Þ
GAðt; t0Þ 0

�
: ð4:40Þ

Here GR and GA are the retarded and advanced Green’s
functions, respectively, having the following operator form

GRðt; t0Þ ¼ −itrðρ̂½ϕ̂ðtÞ; ϕ̂ðt0Þ�Þθðt − t0Þ
¼ −i½vðtÞv†ðt0Þ − v�ðtÞvTðt0Þ�θðt − t0Þ; ð4:41Þ

GAðt; t0Þ ¼ GT
Rðt0; tÞ: ð4:42Þ

They are consistent with the classical definition (3.38), in
particular, because of independence of the commutator
average of the state ρ̂. The block GK is called Keldysh
Green’s function and contains the information about the
state. In view of operator averages (4.3) it expresses as the
mean value of the anticommutator of fields and, due to
(4.40), explicitly reads in terms basis functions as

iGKðt; t0Þ ¼
1

2
trðρ̂fϕ̂ðtÞ; ϕ̂ðt0ÞgÞ

¼ ½ vðtÞ v�ðtÞ �
�
νþ 1

2
X

	�
vTðt0Þ
v†ðt0Þ

�
: ð4:43Þ

E. Special choice of basis functions
and particle interpretation

Thus far, the matrix ω, which defines the Neumann
boundary conditions for the basis functions v, v�, is not
fixed except the requirement of symmetry under trans-
position and positive definiteness of its real part. In this
section we make a convenient choice of ω which leads to
the expressions for the Green’s functions admitting particle
interpretation with well-defined notion of average occupa-
tion number.
For this purpose, it is useful to rewrite the Keldysh

Green’s function in terms of nonanomalous and anomalous
particle averages

ν ¼ tr½ρ̂â†â�; κ ¼ tr½ρ̂ â â�; ð4:44Þ

so that from (4.43) GK becomes

iGKðt; t0Þ ¼ ½ vðtÞ v�ðtÞ �

×

�
κ ν� þ 1

2
I

νþ 1
2
I κ�

��
vTðt0Þ
v†ðt0Þ

�
: ð4:45Þ

Note that the matrix κ is symmetric, whereas ν is Hermitian.
Comparing with (4.43) we find the connection between
particle averages and the matrix ν

ν ¼
�
κ ν�

ν κ�

�
: ð4:46Þ

Thus, we see that block-diagonal components of ν are
responsible for anomalous averages. To ascribe the particle
interpretation to the creation/annihilation operators, we will
try to choose the matrix ω, defining the corresponding basis
functions vðtÞ and v�ðtÞ so that the diagonal blocks of ν,
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defining the anomalous averages κ, vanish. Moreover, this
choice will simplify the expressions for the Green’s
functions, since they contain the terms, containing κ. For
example, with a nonzero κ the Wightman function reads

G>ðt; t0Þ ¼ vðtÞðν� þ IÞv†ðt0Þ þ v�ðtÞνvTðt0Þ
þ vðtÞκvTðt0Þ þ v�ðtÞκ�v†ðt0Þ: ð4:47Þ

To make the matrix ν block off-diagonal consider the
expression (4.32) and note that the only block diagonal
contribution is contained in the identity matrix I and,
possibly, in the term involving ðωþΩÞ−1. Thus, we want
to choose ω such that block-diagonal contribution of the
latter exactly cancels those of I. Using the block matrix
inversion formula6 we have the condition of the vanishing
block-diagonal part of ν,

Rþ ω − SðR� þ ω�Þ−1S� − 2ωre ¼ 0: ð4:48Þ

We will focus on the case in which R and S are real. The
formalism described below can be easily extended to the
complex R, but it seems that there is no straightforward
extension to general complex (Hermitian) S. Introducing
the dimensionless quantities

r ¼ ω−1=2Rω−1=2; s ¼ ω−1=2Sω−1=2; ð4:49Þ

the equation (4.48) can be rewritten as rþ I − sðrþ
IÞ−1s ¼ 2 and further simplified by introducing the new
variable s̃ ¼ ðrþ IÞ−1=2sðrþ IÞ−1=2 and solving for s̃, so
that it takes the following form

r2 ¼ s2 þ I: ð4:50Þ

This is implicit equation on ω, due to the above definition
of r and s. Its explicit form reads

Rω−1R ¼ Sω−1Sþ ω; ð4:51Þ

which can be solved in the form advocated in Sec. II

ω ¼ R1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
I − σ2

p
R1=2; σ ≡ R−1=2SR−1=2: ð4:52Þ

Note that the assumption of positive definiteness of ω
implies that I − σ2 ¼ ðI − σÞðI þ σÞ is positive definite.

Recalling that Rþ S ¼ R1=2ðI þ σÞR1=2 should be positive
definite for normalizability of the density matrix, it is easy
to see that I − σ ¼ R−1=2ðR − SÞR−1=2, or equivalently
R − S should be positive definite too. Then, the substitution
of the obtained expression for ω to (4.32) gives the desired
block-diagonal matrix form of ν advocated in Sec. II

ν ¼
�
0 ν

ν 0

�
; ν≡ 1

2
ϰ

� ffiffiffiffiffiffiffiffiffiffiffi
I − σ

I þ σ

r
− I

	
ϰT; ð4:53Þ

ϰ ≡ ½ω1=2R−1ω1=2�1=2ω−1=2R1=2 ¼ ðϰTÞ−1 ð4:54Þ

where the matrix ϰ introduced above is orthogonal.
Therefore, as a consequence of positive definiteness of
I þ σ and I − σ, the matrix ν is necessarily real. As shown
in Appendix D, for the density matrix to be positive definite,
the matrix σ should be negative definite, so ν is positive
definite.
Substituting it to (4.33), one immediately obtains simple

expressions for the Green’s functions. In particular, for
Wightmann and Feynman functions one has

iGTðt; t0Þ ¼ vðtÞv†ðt0Þθðt − t0Þ þ v�ðtÞvTðt0Þθðt0 − tÞ
þ vðtÞνv†ðt0Þ þ v�ðtÞνvTðt0Þ; ð4:55Þ

iG>ðt; t0Þ ¼ vðtÞðνþ IÞv†ðt0Þ þ v�ðtÞνvTðt0Þ; ð4:56Þ

while the others can be expressed through them in a
straightforward way.
It will be useful to expressΩ in terms of ν. Disentangling

Ω from (4.32), and then using the explicit form (4.53) of ν,
corresponding to the special choice of Neumann basis
functions with (4.52), we obtain the following expression

Ω ¼ ω1=2

"
2ν2þ2νþI

2νþI − 2νðνþIÞ
2νþI

− 2νðνþIÞ
2νþI

2ν2þ2νþI
2νþI

#
ω1=2: ð4:57Þ

F. Euclidean density matrix state

Now, let us focus on the particular Gaussian state, which
is obtained from the Euclidean path integral, namely

ρEðφþ;φ−;JE�

¼ 1

Z

Z
ϕðτ�Þ¼φ�

Dϕ exp

�
−SE½ϕ�−

Z
β

0

dτJEðτÞϕðτÞ
�
; ð4:58Þ

Here SE is the quadratic action of Euclidean field theory
within time limits τ� which we will chose to be τþ ¼ β
and τ− ¼ 0,

6The useful form of the block matrix inversion formula is

�
A B

C D

�−1
¼

� ðA − BD−1CÞ−1 0

0 ðD − CA−1BÞ−1
�

×

�
I −BD−1

−CA−1 I

�

with A ¼ Rþ ω, B ¼ S, C ¼ S�, D ¼ R� þ ω�.
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SE½ϕ� ¼
1

2

Z
τþ

τ−

dτ ϕTF
↔

Eϕ

¼ 1

2

Z
τþ

τ−

dτ ϕTFEϕþ 1

2
ϕTWEϕjτþτ− ; ð4:59Þ

FE ≡ −
d
dτ

AE
d
dτ

−
d
dτ

BE þ BT
E
d
dτ

þ CE;

WE ≡ AE
d
dτ

þ BE: ð4:60Þ

The partition function Z in the normalization factor is such
that trρE ¼ 1 for vanishing source JE ¼ 0. Hermiticity of
the density matrix implies the following (sufficient) con-
dition on the coefficient matrices AE, BE, and CE as the
functions of τ

AEðβ − τÞ ¼ A�
EðτÞ; BEðβ − τÞ ¼ −B�

EðτÞ;
CEðβ − τÞ ¼ C�

EðτÞ; ð4:61Þ

which are not necessary real. Nevertheless, we restrict
ourselves to the real case below. The source JE is included
in the path integral to be able to introduce nonlinear terms
of the Euclidean action, leading to the non-Gaussinities of
the resulting density matrix.
We take the path integral (4.58) over the Euclidean fields

ϕ by using the saddle point method. The boundary
conditions of the integral fix the endpoints ϕðβÞ ¼ φþ,
ϕð0Þ ¼ φ−, so we have the boundary problem with the
Dirichlet boundary conditions

FEϕþ JE ¼ 0; ð4:62aÞ

ϕðτ�Þ ¼ φ�; ð4:62bÞ

Using the Dirichlet Green’s function GD for vanishing
boundary conditions

FEGDðτ; τ0Þ ¼ δðτ − τ0Þ; GDðτ�; τ0Þ ¼ 0; ð4:63Þ

and substituting to (3.52), one expresses the solution of
(4.62) as follows

ϕðτÞ ¼ −wT
EðτÞφ −

Z
β

0

dτ0GDðτ; τ0ÞJEðτ0Þ; ð4:64Þ

where we introduce the notations, similarly to those of the
Lorentzian context (3.53)–(3.54), for the row wT

EðτÞ
obtained by the transposition of the column wEðτÞ in

wT
EðτÞ ¼ ½wEðτÞ�T ¼

�
WEGDðβ; τÞ
−WEGDð0; τ0Þ

�T
¼ ½GDðτ; βÞW⃖E −GDðτ; 0ÞW⃖E � ð4:65Þ

[the last equality implies the symmetry of the Dirichlet
Green’s function, GT

Dðτ; τ0Þ ¼ GDðτ0; τÞ]. Substitution back
to (4.58) gives

ρEðφþ;φ−; JE� ¼ const × exp

�
−
1

2
φTΩφþ jTφ

þ 1

2

Z
dτ dτ0JEðτÞGDðτ; τ0ÞJEðτ0Þ

�
;

ð4:66Þ

where we disregard the source independent prefactor, all
τ-integrations run from 0 to β, whereas the matrixΩ and the
source j, introduced in (4.5) take the following particular
form

Ω≡
�
−W⃗EGDðβ; βÞW⃖E W⃗EGDðβ; 0ÞW⃖E

W⃗EGDð0; βÞW⃖E −W⃗EGDð0; 0ÞW⃖E

�
; ð4:67Þ

jT ¼
Z

β

0

dτ JEðτÞwT
EðτÞ: ð4:68Þ

Now, one can substitute the density matrix (4.66), defined
by the parameters (4.67) to the general expression for the
generating functional (4.37). This leads to

Z½J; JE� ¼ const × exp

�
−
i
2

Z
dt dt0JTðtÞGðt; t0ÞJðt0Þ

−
Z

dt dτJTðtÞGðt; 0ÞW⃗EgDðτÞJEðτÞ

þ 1

2

Z
dτ dτ0JEðτÞGEðτ; τ0ÞJEðτ0Þ

�
: ð4:69Þ

Note that the kernel of the third integral here is the periodic
Euclidean Green’s function

GEðτ; τ0Þ ¼ GDðτ; τ0Þ þ iwT
EðτÞGð0; 0ÞwEðτ0Þ ð4:70Þ

corresponding to the fact that with the Lorentzian sources
switched off the functional Z½0; JE� represents the Euclidean
path integral over periodic fields ϕðτÞ on the time interval
with the identified boundary points τ�. The expression for
this Green’s function seemingly dependent via Gð0; 0Þ on
Lorentzian objects is in fact independent of them. This
property is based on the relation (4.38) and derived in
Appendix C.

G. Analytic continuation and KMS condition

The further transformation of the generating functional,
which allows one to reveal its new analyticity properties,
can be performed due to two assumptions. The first
assumption is that the Euclidean action (4.59) is obtained
by analytic continuation of the Lorentzian one (3.1),
namely
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iS½ϕ�jt¼−iτ ¼ −SE½ϕ� ð4:71Þ

This implies the following form of the Euclidean action
coefficient functions

AEðτÞ ¼ Að−iτÞ; BEðτÞ ¼ −iBð−iτÞ;
CEðτÞ ¼ −Cð−iτÞ: ð4:72Þ

Though this requirement sounds rather restrictive, it can be
based on the assumptions discussed in Introduction about
the properties of the Euclidean background underlying the
quadratic action and sandwiched between the two (iden-
tified) turning points at which the analytic match between
the Euclidean and Lorentzian branches can be done.
Another assumption which we use in what follows is the
possibility to make a special choice of the Neumann basis
functions, derived above.
The first step is to rewrite the second and the third terms in

the exponential of thegenerating functional (4.69) in terms of
the Euclidean Neumann Green’s function GNðτ; τ0Þ instead
of the Dirichlet one, i.e. ðWE þ ωÞGNðβ; τ0Þ ¼ ðWE −
ω�ÞGNð0; τ0Þ ¼ 0 where ω is the same as in (4.23) and
(4.24). This is doneusing the relations (3.65) and (3.66) (after
the replacement ω ↦ −iω associated with the transition to
the Euclidean version of Dirichlet and Neumann Green’s
functions) and the derivation inAppendixC. The result reads
as the expression (4.69) with the kernel of the Lorentzian-
Euclidean term −Gðt; 0ÞwEðτÞ replaced by Gðt; 0Þðωþ
ΩÞgNðτÞ and the new form of the periodic Green’s function
GEðτ; τ0Þ in the Euclidean-Euclidean block

GEðτ; τ0Þ ¼ GNðτ; τ0Þ
þ gTNðτÞ

ffiffiffiffiffiffiffiffiffi
2ωre

p
ðν� þ XÞ

ffiffiffiffiffiffiffiffiffi
2ωre

p
gNðτ0Þ; ð4:73Þ

where gNðτÞ is the Euclidean version of the definition (3.59)
for the Neumann Green’s function.
To proceed further we have to derive several important

properties of Euclidean Neumann Green’s function which
is the part of (4.73), specific to the choice (4.52) of ω. In
terms of the Euclidean basis functions it reads as

GNðτ; τ0Þ ¼ −uþðτÞðΔN
−þÞ−1u−ðτ0Þθðτ − τ0Þ

þ u−ðτÞðΔNþ−Þ−1uþðτ0Þθðτ0 − τÞ; ð4:74Þ

Here uþ, u− are the basis functions obeying Neumann
boundary conditions

ðWE þ ωÞuþjτ¼β ¼ 0; ðWE − ωÞu−jτ¼0 ¼ 0 ð4:75Þ

and, as usual,

ΔNþ− ¼ uTþWEu− − ðWEuþÞTu−; ΔN
−þ ¼ −ðΔNþ−ÞT:

ð4:76Þ

Note that the boundary conditions on u� above are exactly
the analytic continuation t ↦ −iτ of the boundary con-
ditions (4.26) on v, v�.
Now, consider in detail the matrix of boundary values of

the Euclidean Neumann Green’s function at τþ ¼ β and
τ− ¼ 0

GNk ¼
�
u−ðβÞðΔNþ−Þ−1uTþðβÞ −uþðβÞðΔN

−þÞ−1uT−ð0Þ
u−ð0ÞðΔNþ−Þ−1uTþðβÞ −uþð0ÞðΔN

−þÞ−1uT−ð0Þ

�

ð4:77Þ

(double vertical bar denotes here the restriction of the two
Green’s function arguments to two boundary surfaces thus
forming the 2 × 2 block matrix). Using the Euclidean
version of the relation (3.66), we find the alternative form
of this matrix

GNk ¼ ðωþΩÞ−1 ¼ 1ffiffiffiffiffiffi
2ω

p
� I ν

νþI
ν

νþI I

�
1ffiffiffiffiffiffi
2ω

p ; ð4:78Þ

where we use the explicit form (4.53) of ν, corresponding to
the particular choice of basis functions described in the
previous subsection.
Equating these two expressions for GNk, with due regard

to the structure of ΔNþ− in (4.76), we find the two sets of
equalities. The first set follows from the diagonal blocks

ðWE þ ωÞuþjτ¼0 ¼ 0; ðWE − ωÞu−jτ¼β ¼ 0; ð4:79Þ

and means that the basis functions uþ, u− obey the same
Neumann boundary conditions at both boundary values of
the Euclidean time [cf. Eq. (4.75)]. This also implies the
following explicit form of the matrices ΔNþ−, ΔN

−þ

ΔNþ− ¼ −ðΔN
−þÞT ¼ 2uTþωu−; ð4:80Þ

where the basis functions uþ, u− are evaluated either at
τ ¼ 0 or τ ¼ β. Similarly, from the off-diagonal blocks of
(4.78), one gets the formulas, relating the boundary values
of the basis functions

u−ðβÞ ¼
1ffiffiffiffiffiffi
2ω

p νþ I
ν

ffiffiffiffiffiffi
2ω

p
u−ð0Þ;

uþðβÞ ¼
1ffiffiffiffiffiffi
2ω

p ν

νþ I

ffiffiffiffiffiffi
2ω

p
uþð0Þ: ð4:81Þ

It is useful to continue the Euclidean equations of motion
beyond the interval 0 < τ < β with the period β (which is
again possible because τ ¼ 0 and τ ¼ β) are the turning
points),

AEðτ þ βÞ ¼ AEðτÞ; BEðτ þ βÞ ¼ BEðτÞ;
CEðτ þ βÞ ¼ CEðτÞ: ð4:82Þ
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Together with (4.61) it also implies

AEðτÞ ¼ AEð−τÞ; BEðτÞ ¼ −BEð−τÞ;
CEðτÞ ¼ CEð−τÞ: ð4:83Þ

Once the functions u�ðτÞ satisfy the same homogeneous
boundary conditions for both τ ¼ 0 and τ ¼ β [cf. (4.75)
and (4.79)], being translated by the period they can only
differ by the multiplication with some nonsingular matrices
L�, u�ðτ þ βÞ ¼ u�ðτÞL�. From (4.81) we obtain their
explicit form

u−ðτ þ βÞ ¼ u−ðτÞu−1− ð0Þ 1ffiffiffiffiffiffi
2ω

p νþ I
ν

ffiffiffiffiffiffi
2ω

p
u−ð0Þ;

uþðτ þ βÞ ¼ uþðτÞu−1þ ð0Þ 1ffiffiffiffiffiffi
2ω

p ν

νþ I

ffiffiffiffiffiffi
2ω

p
uþð0Þ: ð4:84Þ

With the normalization

uþð0Þ ¼ u−ð0Þ ¼
1ffiffiffiffiffiffi
2ω

p ; ð4:85Þ

this monodromy simplifies to

u−ðτ þ βÞ ¼ u−ðτÞ
νþ I
ν

;

uþðτ þ βÞ ¼ uþðτÞ
ν

νþ I
: ð4:86Þ

Similarly, in view of the reflection symmetry (4.83) of the
operator FE the functions uþðτÞ and u−ð−τÞ can differ at
most by some nondegenerate matrix L, uþðτÞ ¼ u−ð−τÞL.
For the normalization (4.85) this implies

uþðτÞ ¼ u−ð−τÞ: ð4:87Þ

For the choice (4.85) we have ΔNþ− ¼ −ΔN
−þ ¼ I, so that

the blocks of the Euclidean and Lorentzian-Euclidean
Green’s function in (4.73) read

GEðτ; τ0Þ ¼ uþðτÞuT−ðτ0Þθðτ − τ0Þ
þ u−ðτÞuTþðτ0Þθðτ0 − τÞ
þ uþðτÞνuT−ðτ0Þ þ u−ðτÞνuTþðτ0Þ; ð4:88Þ

�
G1

LEðt; τÞ
G2

LEðt; τÞ

�
¼ Gðt; 0ÞðωþΩÞgNðτÞ

¼
�
I

I

�
ðvðtÞνuT−ðτÞ þ v�ðtÞðνþ IÞuTþðτÞÞ:

ð4:89Þ

This finally leads us to the expression for the generating
functional (2.37) with the total block-matrix Green’s

function given by Eqs. (2.38)–(2.44), which was advocated
in Section II.
If one introduces the Euclidean Wightmann Green’s

functions

G>
Eðτ; τ0Þ ¼ uþðτÞðνþ IÞuT−ðτ0Þ þ u−ðτÞνuTþðτ0Þ;

G<
Eðτ; τ0Þ ¼ ½G>

Eðτ0; τÞ�T; ð4:90Þ

then GEðτ; τ0Þ can be expressed as

GEðτ; τ0Þ ¼ G>
Eðτ; τ0Þθðτ− τ0Þ þG<

Eðτ; τ0Þθðτ0 − τÞ; ð4:91Þ

and the Lorenzian Wighmann Green’s function (4.56) is an
analytic continuation of G>

EðτÞ.
Now, it is time to connect the Euclidean basis functions

u� and the Lorentzian ones v, v�. Specifically, let us show
that both sets of functions can be obtained from a single
function VðzÞ of the complex time z ¼ t − iτ, obeying
complexified equations of motion (3.5)

�
−

d
dz

AðzÞ d
dz

−
d
dz

BðzÞ þ BTðzÞ d
dz

þ CðzÞ
�
VðzÞ ¼ 0:

ð4:92Þ

This equation reduces to the Lorentzian e.o.m. for z ¼ t
and to the Euclidean ones for z ¼ −iτ. Under the
assumption that coefficient functions AðtÞ, BðtÞ, and
CðtÞ are real, together with the reflection symmetry
(4.83), one can find that V�ðzÞ≡ ðVðz�ÞÞ� obeys the same
equation. Moreover, the initial conditions (4.26) for v, v�
are connected with those (4.75) for u� via analytic
continuation t ↦ −iτ. This motivates us to impose the
boundary condition on V as follows

½iWC −ω�VðzÞjz¼0 ¼ 0; WC ≡AðzÞ d
dz

þBðzÞ ð4:93Þ

which reduces to those for v or uþ after the substitution
z ¼ t or z ¼ −iτ, respectively. Supplementing the latter
condition with the normalization

Vð0Þ ¼ 1ffiffiffiffiffiffi
2ω

p ; ð4:94Þ

one finds

vðtÞ ¼ VðtÞ; uþðτÞ ¼ Vð−iτÞ; ð4:95Þ

i.e. v and uþ are analytic continuation of each other.
Similarly, complex conjugation of (4.93) and the same
assumptions of coefficient functions reality and its reflec-
tion symmetry, we find that V� obeys the following
boundary condition
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½iWC þ ω�V�ðzÞjz¼0 ¼ 0; ð4:96Þ

so that v� and uþ can be obtained from V� as

v�ðtÞ ¼ V�ðtÞ; u−ðτÞ ¼ V�ð−iτÞ: ð4:97Þ

Thus, assuming that the complexified basis functionVðzÞ,
z ¼ t − iτ is analytic on 0 ≤ t ≤ T, 0 ≤ τ < β, we have the
following transformation law of the basis functions

vðt− iβÞ¼ vðtÞ ν

νþ I
; v�ðt− iβÞ¼ v�ðtÞνþ I

ν
: ð4:98Þ

Substituting to (4.56), one has the following condition on
Wightmann Green’s function

G>ðt − iβ; t0Þ ¼ G<ðt; t0Þ; ð4:99Þ

which is nothing but KMS condition advocated in Sec. IVG.

V. SIMPLE APPLICATIONS

A. Harmonic oscillator

In this section we consider harmonic oscillator as the
simplest instructive example, which demonstrates the main
concepts and quantities, introduced above, together with
the convenience of the special choice of the basis functions
v, v�. The corresponding action reads

S½ϕ� ¼ 1

2

Z
dtðϕ̇2 − ω2

0ϕ
2Þ; ð5:1Þ

where ϕ is one-component field, defining the coordinate of
oscillator, and ω0 is its frequency.
We will consider the system in the state, defined by the

Euclidean path integral (4.58), where the Euclidean action
is an analytic continuation (4.71) of the Lorentzian one

SE½ϕE� ¼
1

2

Z
dτðϕ̇2

E þ ω2
0ϕ

2
EÞ: ð5:2Þ

Note that for JE ¼ 0 density matrix (4.58) coincides with
the thermal density matrix of the inverse temperature β. The
corresponding differential operator defining the Euclidean
equation of motion FEϕE ¼ 0 and the Wronskian read

FE ¼ −
d2

dτ2
þ ω2

0; WE ¼ d
dτ

: ð5:3Þ

To exploit the answer (4.66), one should first calculate the
Dirichlet Green’s function, which can be constructed out of
corresponding basis functions uD�ðτÞ satisfying

FEuD�ðτÞ ¼ 0; uDþðβÞ ¼ uD−ð0Þ ¼ 0: ð5:4Þ

These basis function can be chosen as

uDþðτÞ ¼ sinhω0ðτ − βÞ; uD−ðτÞ ¼ sinhω0τ ð5:5Þ

so that Dirichlet Green’s function has the following form

GDðτ; τ0Þ ¼
1

ΔDþ−
½uDþðτÞuD−ðτ0Þθðτ − τ0Þ

þ uD−ðτÞuDþðτ0Þθðτ0 − τÞ�; ð5:6Þ

ΔDþ− ¼ − sinh βω0: ð5:7Þ

Substituting the Green’s function obtained to (4.67), one
finds the explicit form of the density matrix constituents

Ω ¼ ω0

sinh βω0

�
cosh βω0 −1

−1 cosh βω0

�
ð5:8Þ

j ¼ 1

sinh βω0

Z
β

0

dτ

� − sinhω0τ

sinhω0ðτ − βÞ

�
JEðτÞ: ð5:9Þ

The basis functions, satisfying (4.26) are the linear
combinations of e�iω0t which are the solutions of e.o.m.
and read [cf. (3.96) and (3.103)]

vðtÞ ¼ 1

2
ffiffiffiffiffiffi
2ω

p
�
ω0 þ ω

ω0

e−iω0t þ ω0 − ω

ω0

eiω0t

�
; ð5:10Þ

where we assume ω to be real for the simplicity.
The remaining component of the Lorenzian Green’s

function (4.33) is the matrix ν, defined in (4.32).
Substituting Ω defined in (5.8), one obtains

ν ¼
�
κ ν

ν κ

�
; ν ¼ ω2 þ ω2

0

4ωω0

coth
βω0

2
−
1

2
;

κ ¼ ω2 − ω2
0

4ωω0

coth
βω0

2
ð5:11Þ

that makes the Green’s function (4.33) rather cumbersome
even for harmonic oscillator (see (4.47) for Wightman
function). Obviously, for the choice ω ¼ ω0 diagonal com-
ponent κ of ν vanishes, that leads to significant simplifica-
tions. Let us show that this choice follows from the
construction of Sec. IV E. Extracting R and S from (5.8) as

R ¼ ω0 cosh βω0

sinh βω0

; S ¼ −
ω0

sinh βω0

;

σ ≡ S
R
¼ −

1

cosh βω0

: ð5:12Þ

Substitution to (2.20) gives ω ¼ ω0 as expected. This
immediately leads to vanishing κ and

ν ¼
�
0 ν

ν 0

�
; ν ¼ ν0 ≡ 1

eβω0 − 1
; ð5:13Þ
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where one recognizes Bose-Einstein average occupation
number in the expression for ν obtained. Basis function
vðtÞ takes the form of positive frequency basis function

v0ðtÞ≡ vðtÞjω¼ω0
¼ 1ffiffiffiffiffiffiffiffi

2ω0

p e−iω0t: ð5:14Þ

Thus, from (4.33) we obtain well-known expression for
Wightman Green’s function

G>ðt; t0Þ ¼ ðν0 þ 1Þv0ðtÞv�0ðt0Þ þ ν0v0ðtÞv�0ðt0Þ

¼ 1

2ω0

ððν0 þ 1Þe−iω0ðt−t0Þ þ ν0eiω0ðt−t0ÞÞ; ð5:15Þ

and in terms of which the corresponding Feynman and anti-
Feynman Green’s functions can be expressed in a straight-
forward way. Note that (4.47) with (5.11)–(5.10) substituted
gives exactly the same answer, but in much more cumber-
some form.

B. General one-dimensional system

Now, let us consider a more general case in which the
field ϕ is one-component, i.e., defines a coordinate of some
nonequilibrium mechanical system, and the assumptions of
Sec. IVG are fulfilled. In this case the Euclidean basis
functions defined in (4.75) are also one-component. Thus,
from (2.47), we conclude that under a shift of the argument
by the period the basis functions u�ðτÞ simply acquire a
numerical factor. According to Floquet theory of periodic
differential equations (Euclidean equation of motion fol-
lowing from (4.59) belongs to exactly such a class of
equations) this means that the basis functions u�ðτÞ are
close to the notion of Bloch functions (eigenfunctions of
the translation-by-period operation). This fact motivates us
to apply the Floquet theory [48], which is especially
powerful in one-dimensional case.
In one-dimensional case the Euclidean equation of

motion reads�
−

d
dτ

AE
d
dτ

− ḂEðτÞ þ CEðτÞ
�
ϕEðτÞ ¼ 0: ð5:16Þ

where the AEðτÞ, BEðτÞ and CEðτÞ become simply the
functions (1 × 1 matrices). Assuming that kinetic term is
positive, i.e. AEðτÞ > 0 one can define a new variable

yðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AEðτÞ

p
ϕEðτÞ: ð5:17Þ

so that the e.o.m. acquires the canonical form

�
d2

dτ2
þQðτÞ

�
yðτÞ ¼ 0; ð5:18Þ

where

QðτÞ ¼ −
1

2

d2

dτ2
logAEðτÞ −

1

4

�
d
dτ

logAEðτÞ
	

2

þ 1

AEðτÞ
ðḂEðτÞ − CEðτÞÞ ð5:19Þ

and QðτÞ is periodic and reflection symmetric

Qðτ þ βÞ ¼ QðτÞ; QðτÞ ¼ Qð−τÞ: ð5:20Þ

The equation (5.18) with periodic QðτÞ is usually referred
as Hill’s equation [49].
Floquet theory guarantees that if the equation (5.18) has

no periodic and doubly periodic solution then there exists
the basis y�ðτÞ of solutions such that

y�ðτ þ βÞ ¼ e∓βεy�ðτÞ ð5:21Þ

where the parameter ε is either real or imaginary, and
functionally depends on QðτÞ. Without loss of generality
we set ε > 0 in the real case and ε ¼ −iq, 0 < q < π=β in
the imaginary one. The basis function has the following
important properties, depending on whether ε is imaginary
or real. Real ε leads to real y�ðτÞ, whereas imaginary ε
implies ðy�ðτÞÞ� ¼ y∓ðτÞ. Reflection symmetry QðτÞ ¼
Qð−τÞ leads to additional property y�ðτÞ ¼ y∓ð−τÞ so that
ðy�ðτÞÞ� ¼ y�ð−τÞ for imaginary ε.
Now, we can return to the original equation (5.16). Using

(5.17), one can obtain the basis of its solutions u�ðτÞ out of
y�ðτÞ as

u�ðτÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
AEðτÞ

p y�ðτÞ: ð5:22Þ

This basis inherits the properties of y�ðτÞ under translation
by period, reflection and complex conjugation. In particular

u�ðτ þ βÞ ¼ e∓βεu�ðτÞ: ð5:23Þ

Comparing with (2.47) one concludes that the parameter ε
is connected to ν as

ν ¼ 1

eβε − 1
: ð5:24Þ

The basis functions u�ðτÞ have significantly different
frequency properties depending on whether ε is real or
imaginary. Thus, real ε implies

ðWE � ωÞu�jτ¼0;β ¼ 0 ð5:25Þ
where ω is a real number, which coincides with those
defined in (2.20), as will be described below. In contrast,
imaginary ε leads to the property ðu�ðτÞÞ� ¼ u�ð−τÞ, so
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that the fraction WEu�ð0Þ=u�ð0Þ ¼ WEu�ðβÞ=u�ðβÞ is
imaginary,7 and one can write

ðiWE � ω0Þu�jτ¼0;β ¼ 0; ð5:26Þ

where the number ω0 ¼ iω is real.
Let us calculate the density matrix (4.58) and examine its

properties. To use the answer (4.66), one should first
construct the Dirichlet Green’s function. The corresponding
basis functions uD�ðτÞ obeying uD−ð0Þ ¼ uDþðβÞ ¼ 0 can be
constructed as linear combinations of u�ðτÞ. Namely, one
defines uD−ðτÞ as

uD−ðτÞ ¼
1

2
ðuþðτÞ − u−ðτÞÞ; ð5:27Þ

so that uD−ð0Þ ¼ 0 due to u−ðτÞ ¼ uþð−τÞ. Due to reflection
symmetry of (5.16) one can obtain uDþðτÞ from uD−ðτÞ as

uDþðτÞ≡ uD−ðβ − τÞ ¼ 1

2
ðe−βεu−ðτÞ − eβεuþðτÞÞ: ð5:28Þ

The corresponding Wronskian of uDþ and uD− reads

ΔDþ− ¼ uDþðWEuD−Þ − ðWEuDþÞuD−
¼ − sinh βεuþð0ÞWEuþð0Þ ð5:29Þ

where we use the relations (5.27)–(5.28) between Dirichlet
basis functions and u�ðτÞ, and its derivatives at the boundary
points

WEuD−ð0Þ ¼ −WEuDþðβÞ ¼ WEuþð0Þ;
WEuD−ðβÞ ¼ −WEuDþð0Þ ¼ cosh βεWEuþð0Þ: ð5:30Þ

Substitution of the corresponding Dirichlet Green’s function
to (4.67) gives

Ω ¼ ω

sinh βε

�
cosh βε −1
−1 cosh βε

�
; ð5:31Þ

whereω is defined in (5.25).Note that for real ε this coincides
with (4.57), with (5.24) substituted. For imaginary ε we
express it as ε ¼ iq, so Ω has the form

Ω ¼ ω0

sin βq

�
cos βq −1
−1 cos βq

�
; ð5:32Þ

where ω0 is defined in (5.26).
Following Appendix D, let us examine the properties of

the underlying density matrix, defined by the obtained Ω.
For real ε we have R ¼ ω coth βε and S ¼ −ω= sinh βε, so

that R, Rþ S and R − S have the same sign, and we
conclude that the density matrix is bounded, normalizable
and positive-definite for ω > 0. If it is the case,
σ ≡ S=R ¼ −1= cosh βε, so the definition (5.25) is con-
sistent with (2.20), and particle interpretation is allowed.
In contrast, for imaginary ε we have R ¼ ω0 cot βq,
S ¼ −ω0= sin βq, so Rþ S and R − S have different signs,
so even if the density matrix is normalizable, the particle
interpretation is not available.

C. The case of a pure state:
Vacuum no-boundary wave function

As we have shown above, the Euclidean density matrix
prescription in a rather nontrivial way suggests a distin-
guished choice of the particle interpretation. In context of
the pure Hartle-Hawking state this fact is well known and
takes place in a much simpler way. Let us briefly discuss
this here along with a general demonstration how the
transition from a mixed state to the pure one proceeds via
the change of spacetime topology of the underlying
Euclidean instanton from Figs. 1–3.
The no-boundary state defined by the path integral over

the fields on the Euclidean “hemisphere” D4þ of Fig. 3 (and
its reflection dual on D4

− considered as a factor in the
factorizable pure density matrix of Fig. 3) is the vacuum
wave function (3.109) with the real frequency (3.107),
ω ¼ ½iWvðtÞ�½vðtÞ�−1jt¼0. The relevants positive-frequency
basis function vðtÞ, similarly to (2.50), can be regarded as the
analytic continuation of a special Euclidean basis function
uðτÞ, vðtÞ ¼ uðτþ þ itÞ. This basis function is selected by
the requirement that it is regular everywhere inside D4þ,
including its pole which we label by τ ¼ 0 [12,50].
To show this one should repeat the calculation of Sec. IV

F on D4þ—the support of the Euclidean action SEðφÞ
evaluated at the regular solution of equations of motion
FEϕðτÞ ¼ 0 with the boundary value φ ¼ ϕðτþÞ at the
single boundary Σþ ¼ ∂D4þ. This regular solution is given
by the expression proportional to the regular basis function
uðτÞ of FE on D4þ,

ϕðτÞ ¼ uðτÞ½uðτþÞ�−1φ; ð5:33Þ

because the contribution of the complementary basis func-
tion dual to the regular uðτÞ should be excluded in view of its
singularity at τ ¼ 0.8 After the substitution into the expres-
sion for the action (4.59) its on-shell value reduces to the

7In deriving this property we use that ȦEð0Þ ¼ BEð0Þ ¼ 0,
following from AEðτÞ ¼ AEð−τÞ and BEðτÞ ¼ −BEð−τÞ.

8The point τ ¼ 0 is an internal regular point of a smooth
manifold D4þ, so that this point with τ treated as a radial
coordinate turns out to be a regular singularity of the equation
FEϕðτÞ ¼ 0. Its two linearly independent solutions u∓ðτÞ have
the asymptotic behavior u∓ ∝ τμ∓ with μ− > 0 > μþ, so that only
u−ðτÞ≡ uðτÞ is the regular one, while the contribution of the
singular uþðτÞ → ∞, τ → 0, should be discarded from the
solution ϕðτÞ [50].
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contribution of the single surface term at Σþ, SEðφÞ ¼
1
2
ϕTðWEϕÞjΣþ . As a result SEðφÞ ¼ 1

2
φTωφ, and the

Hartle-Hawking wave function ΨHHðφÞ ∝ e−SEðφÞ becomes
the vacuum state (3.109) with

ω ¼ −½WEuðτþÞ�½uðτþÞ�−1
¼ ½iWvðtÞ�½vðtÞ�−1jt¼0; ð5:34Þ

where the second equality follows from the analytic con-
tinuation rule vðtÞ ¼ uðτþ þ itÞ. Thus, the Hartle-Hawking
no-boundary wave function of the linearized field modes is
the vacuum of particles uniquely defined by a particular
choice of positive-frequency basis functions vðtÞ which in
their turn are the analytic continuation of the regular
Euclidean basis functions uðτÞ, vðtÞ ¼ uðτþ þ itÞ.9 This
is a well-known fact [12,50] which in the case of de Sitter
cosmology corresponds to the Euclidean de Sitter invariant
vacuum [13,14].
It is known that vacuum in-in formalism in equilibrium

models can be reached by taking the zero temperature limit
β → ∞. It is not quite clear how this limit can be obtained
in generic nonequilibrium situations, but it is likely that the
transition from mixed Euclidean density matrix to a pure
state is always associated with ripping the Euclidean
domain into two disjoint manifolds D4þ and D4

− depicted
in Fig. 3. To show this consider generic situation of the
mixed state with the Euclidean density matrix of Fig. 1.
This density matrix has a Gaussian form (2.4)–(2.6) with
the matrix Ω given by Eq. (2.31) with the Dirichlet Green’s
function which can be represented in terms of two sets of
Dirichlet basis functions uD�ðτÞ, uD�ðτ�Þ ¼ 0,

GDðτ; τ0Þ ¼ −uDþðτÞðΔD
−þÞ−1½uD−ðτ0Þ�Tθðτ − τ0Þ

þ uD−ðτÞðΔDþ−Þ−1½uDþðτ0Þ�Tθðτ0 − τÞ: ð5:35Þ

Now consider the case of a pure state, when the density
matrix factorizes into the product of two wave functions, or
the situation of Ωþ− ≡ S ¼ 0. This off-diagonal block of Ω
reads as

S ¼ W⃗EGDðτþ; τ−ÞW⃖E

¼ ½WEuDþðτþÞ�½uDþðτ−Þ�−1; ð5:36Þ

where we used the fact that

Δ−þ ¼ ½uD−ðτþÞ�TWEuDþðτþÞ ¼ −½WEuD−ðτ−Þ�TuDþðτ−Þ

in view of boundary conditions on uD�ðτÞ. Therefore, the
requirement of S ¼ 0 implies singularity of uDþðτ−Þ which
is impossible, because the Green’s function GDðτ; τ0Þ can
have a singularity only at the coincidence point of its
arguments τ ¼ τ0. This means that no Dirichlet Green’s
function on a smooth connected Euclidean manifold of the
topology ½τ−; τþ� × S3 can generate the density matrix of a
pure state. The only remaining option is ripping the bridge
between Σþ and Σ− into the union of two disjoint parts D4

�
by shrinking the middle time slice at τ̄≡ τþþτ−

2
to a point.

In context of the cosmological model driven by the set of
Weyl invariant quantum fields [9,16,22] this option also
matches with the interpretation of zero temperature limit
β → ∞, because the inverse temperature of the gas of
conformal particles in this model is given by the instanton
period in units of the conformal time β ¼ 2

R τþ
τ̄ dτ=

aðτÞ → ∞, which diverges because the cosmological scale
factor (the size of the spatial S3-section) aðτÞ → 0 at τ → τ̄.

VI. DISCUSSION AND CONCLUSIONS

Generality of the above formalism allows one to apply it
to a wide scope of problems ranging from condensed matter
physics to quantum gravity and cosmology. Our goal in
future work will be its use in the calculation of the
primordial CMB spectrum of cosmological perturbations
in the model of microcanonical initial conditions for
inflationary cosmology [9,16,20], which was briefly dis-
cussed as a motivation for this research. Quasithermal
nature of this setup was associated in these papers with the
fact that the model was based on local Weyl invariant
(conformal) matter which, on the one hand, generates the
Friedmann background providing the necessary reflection
symmetry and, on the other hand, turns out to be effectively
in equilibrium, because in the comoving frame it describes
a static situation.
Our results show, however, that thermal properties,

including particle interpretation with the distinguished
positive/negative frequency decomposition, are valid in
much more general case. Specifically, the corresponding
frequency matrix ω in the initial conditions problem for
basis functions (2.15) is shown to be determined by the
parameters of Gaussian type density matrix (2.20), and the
occupation number matrix ν reads as (2.21)–(2.22). In this
setup, the Euclidean density matrix, which incorporates the
reflection symmetry property guaranteed by (4.61), plays the
role of the particular case. If in addition the Lorentzian action
is related to theEuclidean actionvia the analytic continuation
at the turning points of the bounce background (which, of
course, respects its reflection symmetry), important analytic
properties of correlation functions, including the KMS
condition, begin to hold. These are the main results of the
paper. They allow one to derive the full set of Lorentzian
domain, Euclidean domain and mixed, Lorentzian-
Euclidean, Green’s functions of the in-in formalism and

9The set uðτÞ is of course defined only up to a linear trans-
formation with some constant matrix L, uðτÞ ↦ uðτÞL,
vðtÞ ↦ vðtÞL, but this Bogoliubov transformation does not mix
frequencies and therefore does not change particle interpretation.
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reveal its rich analytic structure. In particular, the results of
Section IV B significantly extend those of [51], where the
nonequilibrium evolution of Gaussian type density matrices
was examined. The discussion of simple application exam-
ples of Section V shows the relation of the obtained
formalism to the stability properties of dynamical systems
in Floquet theory and the theory of Bloch functions. These
properties, in their turn, are related to the eigenmode proper-
ties of the wave operator FE subject to periodic boundary
conditions on the bounce instanton within Euclidean time
½τ−; τþ�-range and deserve further studies.
Prospective nature of rich analytic structure of the

Euclidean-Lorentzian in-in formalism consists in the hope
that quantum equivalence of purely Euclidean calculations
of loop effects with those of the Lorentzian calculations can
be extended to generic bounce type backgrounds. This
equivalence was proven in [31,32] for the vacuum case of
the flat chart of the de Sitter spacetime vs its Euclidean
version—S4 instanton. A similar but much simpler equiv-
alence at the one-loop order was observed within covariant
curvature expansion in asymptotically flat spacetime for
systems with the Poincare-invariant vacuum which is
prescribed as the initial condition at asymptotic past infinity
[52]. This equivalence is realized via a special type of
analytic continuation from Euclidean to Lorentzian space-
time, which guarantees unitarity and causality of relevant
nonlocal form factors.
Further applications of the in-in formalism in quantum

cosmology require its extension to models with local gauge
and diffeomorphism invariance (see also [53] for related
problem in the context of quantum electrodynamics). What
have been built thus far is the formalism in the physical
sector of the theory for explicitly disentangled physical
degrees of freedom. In cosmological models subject to time
parametrization invariance time is hidden among the full set
of metric and matter field variables, and disentangling time
is a part of the Hamiltonian reduction to the physical sector.
This reduction shows that the cosmological background
can be devoid of physical degrees of freedom (just like
Friedmann equation in FRW-metric models does not
involve any physical degree of freedom in the metric sector
of the system). This might play a major role in handling a
zero mode of the wave operator FE, which necessarily
arises on the bounce type background [54] and comprises
in the cosmological context one of the aspects of the
problem of time in quantum gravity [11]. This and the other
problems of cosmological applications of the in-in formal-
ism go beyond the scope of this paper and will be the
subject of future research.
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APPENDIX A: INVERSION OF MATRICES

Suppose we want to invert the following even-dimen-
sional matrices of the form

M1 ¼ I − P�A; M2 ¼ I − AP�; ðA1Þ

where

P� ¼ I � X; X ¼
�
0 I

I 0

�
; ðA2Þ

and the matrix A satisfies the following property

XAX ¼ A�: ðA3Þ

In terms of the block-matrix representation of A this simply
means that A has the following form

A ¼
�

B C

C� B�

�
: ðA4Þ

Next, we formally expand (A1) in Taylor series and obtain

ðM1Þ−1 ¼
X∞
n¼0

ðP�AÞn; ðM2Þ−1 ¼
X∞
n¼0

ðAP�Þn ðA5Þ

Observing that ðP�AÞn ¼ P�ðAþ A�Þn−1A, ðAP�Þn ¼
AðAþ A�Þn−1P�, we immediately find the needed inver-
sion formulas

ðM1Þ−1 ¼ I þ
X∞
n¼0

P�ðAþ A�ÞnA

¼ I þ P�ðI − A − A�Þ−1A; ðA6Þ

ðM2Þ−1 ¼ I þ A
X∞
n¼0

ðAþ A�ÞnP�

¼ I þ AðI − A − A�Þ−1P�: ðA7Þ

APPENDIX B: DERIVATION OF EQ. (4.32)

To obtain the expression (4.33) for the Green’s function
Gðt; t0Þ it is sufficient to derive the expression (4.31) for its
part vþðtÞðiΔ−þÞ−1vT−ðt0Þ. For this purpose we first write
down the explicit form of vT−, substituting (4.29a) into
(4.28) which gives
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vT−ðt0Þ ¼ ðωþΩÞ 1ffiffiffiffiffiffiffiffiffi
2ωre

p v†ðt0Þ þ ðω� −ΩÞ 1ffiffiffiffiffiffiffiffiffi
2ωre

p vTðt0Þ:

ðB1Þ

Next, by adding and subtracting the expression ½−Xωþ
ΩX�ð2ωreÞ−1=2v†ðt0Þ we artificially disentangle the expres-
sion featuring in the square brackets of (4.30), so that we
get

vT−ðt0Þ ¼ ½ðI − XÞωþΩðI þ XÞ� 1ffiffiffiffiffiffiffiffiffi
2ωre

p v†ðt0Þ

þ ðω� −ΩÞ 1ffiffiffiffiffiffiffiffiffi
2ωre

p vTþðt0Þ; ðB2Þ

where vT was complemented to vTþ in accordance with
Eq. (4.27). Note that ωre and X commute with each other.
Further, by noting that XωX ¼ ω� let us rewrite the
difference ω� −Ω so that we again disentangle the same
expression as in square brackets above

ω� −Ω ¼ ðωþΩÞX − ½ðI − XÞωþΩðI þ XÞ�X: ðB3Þ

As a result vT− takes the form

vT−ðt0Þ ¼ ½ðI − XÞωþΩðI þ XÞ�

×
1ffiffiffiffiffiffiffiffiffi
2ωre

p ðv†ðt0Þ − XvTþðt0ÞÞ

þ ðωþΩÞ 1ffiffiffiffiffiffiffiffiffi
2ωre

p vTþðt0Þ: ðB4Þ

Substitution to vþðtÞðiΔ−þÞ−1vT−ðt0Þ gives

vþðtÞðiΔ−þÞ−1vT−ðt0Þ
¼ vþðtÞv†ðt0Þ − vþðtÞXvTþðt0Þ
þ vþðtÞ

ffiffiffiffiffiffiffiffiffi
2ωre

p
½ðI − XÞωþΩðI þ XÞ�−1

× ðωþΩÞX 1ffiffiffiffiffiffiffiffiffi
2ωre

p vTþðt0Þ; ðB5Þ

where the expression in the square brackets can be
rearranged as follows by using the fact that the matrices
ωre and X commute and X2 ¼ I

ðI−XÞωþΩðIþXÞ

¼ ðωþΩÞX 1ffiffiffiffiffiffiffiffiffi
2ωre

p

×
h
IþX−

ffiffiffiffiffiffiffiffiffi
2ωre

p
XðωþΩÞ−1X

ffiffiffiffiffiffiffiffiffi
2ωre

p i ffiffiffiffiffiffiffiffiffi
2ωre

p
: ðB6Þ

Substituting this expression to (B5) we get the desired
result (4.31) with the matrix ν given by (4.32).

APPENDIX C: DERIVATION OF EQ. (4.73)

The aim of this appendix is twofold. First of all, we
derive the simple form (4.38) of Gð0; 0Þ, showing that the
Euclidean Green’s function of Eq. (4.69)

GEðτ; τ0Þ ¼ GDðτ; τ0Þ þ igDW⃖EðτÞGð0; 0ÞW⃗EgDðτ0Þ ðC1Þ

is indeed independent of Lorentzian quantities. Next, we
express the generating functional (4.69) in terms of
Neumann Green’s function rather than Dirichlet one by
using the relations (3.65) and (3.66) and thus derive another
form of the periodic Green’s function (4.73).
Let us write down the explicit form of iGð0; 0Þ taken

from Eqs. (4.21) and (4.30)

iGð0; 0Þ ¼ ðI þ XÞ½ðI − XÞωþΩðI þ XÞ�−1: ðC2Þ

Next, we identically add and subtract Ω� inside the square
brackets and extract the factor ΩþΩ� ¼ 2Ωre out of the
brackets. So, we obtain

iGð0; 0Þ ¼ I þ X
2Ωre

½I − ðI − XÞA�−1;

A≡ ðΩ� − ωÞðΩþΩ�Þ−1; ðC3Þ

where we used the fact that XΩ�X ¼ Ω and X2 ¼ I and
also noted the fraction is unambiguous since I þ X and Ω
commute with each other. Now, the expression in the
square brackets can be inverted with the use of (A6)
derived in Appendix A. The result of this inversion is the
identity matrix I plus a second term, having I − X as a left
multiplier. Observing that ðI þ XÞðI − XÞ ¼ 0, we con-
clude that only I survives, hence the result reads

iGð0; 0Þ ¼ I þ X
2Ωre

: ðC4Þ

Thus, we see that the Euclidean Green’s function (C1) is
independent of any Lorentzian quantities, ω in particular.
Now, let us rewrite the Eucliden Green’s function (C1)

following from the generating functional (4.69) in a differ-
ent form, namely express Dirichlet Green’s function in
terms of Neumann one, satisfying ðWE þ ωÞGNðβ; τ0Þ ¼
ðWE − ω�ÞGNð0; τ0Þ ¼ 0, where ω is the same as in (4.23)
and (4.24). For this purpose, we use the relations (3.66) and
(3.65) with the substitution ω ↦ −iω reflecting the
Euclidean nature of the Neumann Green’s function.
Applying these relations together with (C4) to the
Euclidean Green’s function (C1), we obtain

GEðτ; τ0Þ ¼ GNðτ; τ0Þ þ gTNðτÞ
�
ðωþΩÞ I þ X

2Ωre
ðωþΩÞ

− ðωþΩÞ
�
gNðτ0Þ: ðC5Þ
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It turns out that this expression can be significantly sim-
plified, and directly related to the matrix ν, defined in (4.32).
To show this we rewrite ν in a different form by defining the
matrix

B−1 ≡ ffiffiffiffiffiffiffiffiffi
2ωre

p
XðωþΩÞ−1X

ffiffiffiffiffiffiffiffiffi
2ωre

p
ðC6Þ

and extracting it out of the square brackets in (4.32). So
we get

νþ X ¼ −½I − BðI þ XÞ�−1B; ðC7Þ
where we moved X for further convenience to the left-hand
side. Now, we explicitly invert the expression in the square
brackets above, using (A7) derived in Appendix A. After
straightforward rearrangements, the result reads

νþ X ¼ X
1ffiffiffiffiffiffiffiffiffi
2ωre

p
�
ðωþΩÞ I þ X

2Ωre
ðωþΩÞ

− ðωþΩÞ
�

1ffiffiffiffiffiffiffiffiffi
2ωre

p X: ðC8Þ

Thus, the comparison to (C5) gives

GEðτ; τ0Þ ¼ GNðτ; τ0Þ
þ gTNðτÞ

ffiffiffiffiffiffiffiffiffi
2ωre

p
ðν� þ XÞ

ffiffiffiffiffiffiffiffiffi
2ωre

p
gNðτ0Þ; ðC9Þ

where we use the fact that XνX ¼ ν�.

APPENDIX D: PROPERTIES OF GAUSSIAN
DENSITY MATRICES

Suppose we have the Gaussian density matrix (4.5)
which we rewrite here for the convenience

ρðφþ;φ−Þ ¼
1

Z
exp

�
−
1

2
φTΩφþ jTφ

�
; φ ¼

�
φþ
φ−

�

ðD1Þ

where

j¼
�
j

j�

�
; ω¼

�
R S

S� R�

�
; R¼RT; S¼ S†: ðD2Þ

and examine the following properties of it, namely
(1) normalizability, i.e. finiteness of trρ̂,
(2) boundedness, i.e. finiteness of kρ̂jψik for arbitrary

normalizable state jψi,
(3) positive definiteness, i.e. positivity of the eigenval-

ues of ρ̂.
Normalizability is equivalent to the existence of the

integral

tr ρ̂ ¼
Z

dφρðφ;φÞ ¼ ½detðRþ Sþ R� þ S�Þ�−1=2; ðD3Þ

which is equivalent to positive definiteness of the real
part of Rþ S. Boundedness of ρ̂ is equivalent to existence
of ρ̂2 whose coordinate form reads hφ1jρ̂2jφ2i ∝
½detðRþ R�Þ�−1=2, so that we should demand the positive
definiteness of the real part of R.
Positive definiteness requires additional attention,

namely the analysis of the eigenvalues and eigenvectors
of ρ̂. We will focus on the case in which R and S are real,
and j ¼ 0. All the results will also hold for nonvanishing j
but its derivation will be more cumbersome. We will also
assume that normalizability and boundedness of the density
matrix are enforced, i.e., both R and Rþ S are positive
definite. Let us consider a matrix element hφjρ̂jαi, where
jαi is the coherent state defined by Eq. (3.110). Inserting a
partition of unity in the coordinate representation, we have

hφjρ̂jαi ¼
Z

dφ0 ρðφ;φ0Þhφ0jαi

¼ 1

Z
exp

�
−
1

2
φTðR − SðRþ ωÞ−1SÞφ

− αT
ffiffiffiffiffiffi
2ω

p
ðRþ ωÞ−1Sφ

−
1

2
αTðI −

ffiffiffiffiffiffi
2ω

p
ðRþ SÞ−1

ffiffiffiffiffiffi
2ω

p
Þα
�
: ðD4Þ

Now, let us assume R − S is positive definite, i.e., the
choice (4.52) of ω can be made. After some calculations
one can rewrite the matrix element above as

hφjρ̂jαi ¼ 1

Z
exp

�
−
1

2
φTωφþ αT

ν

νþ I

ffiffiffiffiffiffi
2ω

p
φ

−
1

2
αT

�
ν

νþ I

	
2

α

�
; ðD5Þ

where ν defined in terms of R and S in (4.53). Comparing
the right-hand side to (3.110) one concludes that

ρ̂jαi ¼
���� ν

νþ I
α



: ðD6Þ

Taking derivatives of the both sides of this equality with
respect to α, substituting α ¼ 0 afterward, and comparing
to (3.113), one observes that eigenvalues of ρ̂ are arbitrary
products of eigenvalues of ν

νþI. Thus, the latter matrix
should be positive definite for ρ̂ to be positive definite too.
Using the expression (4.53) for ν, one finds that positive
definiteness is satisfied for a negative definite matrix σ and
consequently for a negative definite S ¼ R1=2σR1=2.
Summarizing, we found that the Gaussian density matrix

(4.5) is normalizable if the real part of the sum Rþ S is
positive definite. Density matrix is bounded if a real part ofR
is positive definite. If, in addition, the difference R − S is
positive definite, which is motivated by the necessity of
particle interpretation, presented in Sec. IV E, one concludes
that the density matrix is positive definite if S is negative
definite.
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