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Gauge theories and quantum gravity in a finite interval
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We study gauge theories and quantum gravity diagrammatically in a finite interval of time 7, on a
compact space manifold Q. The initial, final, and boundary conditions are formulated in gauge invariant
and general covariant ways by means of purely virtual extensions of the theories, which allow us to
“trivialize” the local symmetries and switch to invariant fields (the invariant metric tensor, invariant quark,
and gluon fields, etc.). The evolution operator U(t;, t;) is worked out for arbitrary initial and final states, as
well as general boundary conditions on dQ. We show that U(#, 1;) is well defined and diagrammatically
unitary for every 7 = t; — t; < oo. The formulation is extended to include purely virtual particles. In
quantum gravity, where the cosmological constant A challenges the definition of an S matrix, the results
allow us to prove unitarity at 7 < oco. We work out the frequencies and eigenfunctions in some explicit
examples, including Yang-Mills theory on the finite cylinder.

DOI: 10.1103/PhysRevD.109.025003

I. INTRODUCTION

Perturbative quantum field theory mainly focuses on the
calculation of S matrix amplitudes, which describe scatter-
ing processes among asymptotic states, where the incoming
and outgoing particles are separated by an infinite amount
of time. This approximation is good for most practical
purposes, especially in collider physics. However, it is just
an approximation. From a theoretical point of view, it does
not provide a completely satisfactory understanding. A
more powerful and general approach is required, where the
key issues (such as locality, renormalizability, and unitarity,
among the main ones, and then symmetries, anomalies, the
anomaly cancellation, etc.) are understood without making
this simplification.

It is possible [1] to formulate perturbative quantum
field theory diagrammatically in a finite interval of time
T = t; — t;, and on a compact space manifold Q, so as to
move all the details about the restrictions to finite = and
compact Q away from the internal sectors of the diagrams
(apart from the discretizations of the loop momenta), and
code them into external sources. The usual diagrammatic
properties apply, or can be generalized with little effort.
This way, the evolution operator U(f, #;) can be calculated

* . . e e
damiano.anselmi@unipi.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(2)/025003(26)

025003-1

perturbatively between arbitrary initial and final states, with
arbitrary boundary conditions on 0Q. Unitarity, that is to say,
the equality U (¢, 1)U(t;,4;) =1, can be studied diagram-
matically by means of the spectral optical identities [2].
The theory is renormalizable whenever it is so at 7 = oo,
Q = RP-!, where D denotes the spacetime dimension.
Purely virtual particles are introduced by removing the
on-shell contributions of some physical particles, and all
the ghosts, from the core diagrams, as explained in [2], and
trivializing their initial and final conditions.

In this paper we consider the cases of gauge theories and
gravity in detail, because certain issues that are specific to
local symmetries deserve attention, when 7 is finite and the
space manifold Q is compact. For example, we must specify
the initial, final, and boundary conditions without breaking
the local symmetries. We cannot just use the gauge potential
Aj; and the metric tensor g,,,, for this purpose. Nor can we use
the field strength F, , and the curvature tensors R, R, R
because they are not invariant.

What comes to the rescue is the purely virtual extension
of gauge theories and gravity formulated in ref.s [3,4],
which is based on the introduction of extra bosonic fields,
together with their anticommuting partners. The extra fields
can be used to perturbatively “dress” the noninvariant fields
and make them invariant: we can build invariant gauge
fields A%, invariant quark fields w4, and an invariant metric
tensor g,,4. The ordinary physical quantities, such as the §
matrix amplitudes and the correlation functions of the usual
(nonlinear) invariant composite fields (like Fy, F*“, yy,
etc.) are unaffected. In addition, new, physical correlation
functions can be defined, and calculated perturbatively,
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such as those of the invariant fields A4, y,, and Guva- The
reason why the extra fields must be purely virtual is to
preserve unitarity: if they were not purely virtual, the
extended theory would propagate ghosts.

These tools are also useful to provide invariant initial,
final, and boundary conditions in gauge theories and
gravity in a finite interval of time z, on a compact space
manifold €. A crucial simplification comes from the
possibility of “trivializing” the local symmetries, that is
to say, reduce them to simple shifts of fields. This is
achieved by switching to the invariant variables w4, A4, and
Juva» by means of a field redefinition. Then, it is relatively
straightforward to organize the action efficiently, work out
the eigenfunctions and the frequencies for the expansions
of the fields, and introduce coherent states [5], which are
crucial to study the U(#;,1;) diagrammatics and make
perturbative calculations without introducing unnecessary
burdens [1]. The functional integral is defined as the
integral on the coefficients of the expansions. The local
symmetries are under control in all the operations we make,
so U(ts, t;) is gauge invariant and invariant under general
coordinate transformations.

We illustrate the basic properties of our formalism in
Yang-Mills theory on two relatively simple space mani-
folds: the semi-infinite cylinder and the finite cylinder.

The coherent states are the eigenstates of the annihilation
operator. In the Lagrangian approach, which we adopt here,
the switch to coherent states is just a change of variables in
the functional integral, combined with a wise way of setting
the initial and final conditions. In quantum mechanics, we
switch from coordinates ¢ and momenta p to z ~ ¢ + ip,
Z~q—1ip, and set the initial conditions on z, the final
conditions on Z. In quantum field theory analogous
operations are made on the fields. Uncovering the specifics
of these operations in gauge theories and gravity is part of
the problem we need to face, and its solution is given in the
paper. For convenience, we keep referring to the new
variables by means the Hamiltonian terminology “coherent
states”.!

Purely virtual particles are a key ingredient of the whole
formulation, so we discuss this concept in some detail. A
theory that contains purely virtual particles is built from an
extended (possibly unphysical) theory,” which is quantized
as usual (that is to say, by means of the common
diagrammatics, defined by the Feynman ie prescription),
and performing a certain set of operations on it, like
rearranging the diagrammatics, and making a projection
on the space of states, to define the physical space. The
projection defines the final, physical theory.

'Details on the correspondence between the operatorial ap-
proach to coherent states and the functional integral can be found
in the paragraph 9-1-2 of [6].

*The extended theory is unphysical if it contains ghosts (fields
with kinetic terms multiplied by the wrong signs).

The new diagrammatics is built by removing the on-shell
contributions of all the ghosts y,,, and possibly some
physical particles y,, from the diagrams of the extended
theory, at every order of the perturbative expansion. This is
done in one of the following equivalent ways: (i) a certain
nonanalytic Wick rotation [7,8], (ii) dropping the spectral
optical identities associated with the unwanted on-shell
contributions [2] from the Cutkosky-Veltman identities
[9,10] (which are the diagrammatic versions of the unitarity
equation STS = 1), or (iii) replacing the standard diagrams
with suitable combinations of non-time-ordered diagrams,
as shown in Ref. [11].

In addition, one has to make the projection mentioned
above. At 7 = oo, the projection amounts to ignore the
diagrams that have yo, and y,, on the external legs. When
T < 00, it amounts to choose trivial initial and final
conditions for the coherent states of y,, and y,;,. The final
theory is unitary, provided all the ghosts of the extended
theory are rendered purely virtual.

Certain aspects of the construction of theories with
purely virtual particles resemble what we normally do to
gauge-fix a gauge theory, where we extend the theory by
including unphysical excitations, such as the Faddeev-
Popov ghosts, and project the extension away at the end.
The crucial difference is that, in the case of purely virtual
particles, no symmetry is there to help us. This is why we
need to switch to a different diagrammatics, before making
the projection.

It is worth to stress that, before the projection, the
extended theory is just a mathematical tool to get to the
correct, final theory. It is not possible to solve the problem
of ghosts by just changing the viewpoint on a theory, or
focusing on different quantities (e.g., “in-in” correlation
functions, instead of “in-out” ones, or different prescrip-
tions for the propagators, such as the retarded potentials,
instead of the Feynman one, and so on), or moving back
and forth among negative norms, unbounded Hamiltonians,
non-Hermitian Hamiltonians, negative probabilities, etc.
None of these operations really changes the theory: they
just change the reference frame, so to speak, within the
same theory. Even the Lee-Wick idea of making “abnormal
particles” decay [12] cannot solve the problem,3 because a
theory with unstable ghosts is still a theory with ghosts.
Necessarily, it must be abandoned at some point, in favor of
a different theory, and the switch from one to the other must
be a radical operation that cuts out the sick portion, like a
guillotine: this is the projection we are talking about.

The main application of the idea of purely virtual particle
is the formulation of a theory of quantum gravity [8], which
provides testable predictions [14] in inflationary cosmol-
ogy [15]. In phenomenology, purely virtual particles open
new possibilities, by evading many constraints that are

For Lee-Wick ghosts in quantum gravity, see [13].
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typical of normal particles (see [16] and references therein).
The diagrammatic calculations are not more difficult than
those based on physical particles. It is possible to imple-
ment them in softwares like FeynCalc, FormCale, LoopTools
and Package-X [17].

Purely virtual particles can also be used as mere
mathematical tools, to study uncommon aspects of com-
mon theories, as shown in [3,4] and here. In this paper, we
are using them to deal with the local symmetries at finite =
and on a compact Q, to express the initial, final, and
boundary conditions in invariant ways.

In common textbooks, the diagrammatic formulation of
quantum field theory focuses on the S matrix (7 = o),
while the 7 < oo case is mostly treated formally, from the
operatorial definition U(t;, t;) = e~#*. Not only, but when
a compact space manifold is considered, it is typically the
torus, which does not pose particular difficulties. Beyond
the textbook approaches, and besides our previous paper
[1], we point out the results of Nomoto and Fukuda, who
studied QED at finite 7 in ref. [18], still on the torus. Yet,
the challenges of non-Abelian Yang-Mills theories and
quantum gravity at 7 < co on an arbitrary (especially,
compact) space manifold Q require the general formalism
developed here.

The results of this paper and [ 1] make us less dependent on
the paradigms that have dominated the scene in quantum
field theory since its birth. For example, we can study
unitarity without being tied to the S matrix. This is important
in quantum gravity, where it makes no sense to talk about the
unitarity of the S matrix (if the cosmological constant A is
nonvanishing), since proper definitions of asymptotic states
and S matrix amplitudes are unavailable at A- # 0. Yet,
unitarity is an essential requirement for a theory to be
physically acceptable. Other concerns revolve around the
definition of energy and the treatment of the Hamiltonian.
Here we bypass these problems. We show that the evolution
operator U(t;,t;) of quantum gravity with purely virtual
particles, defined by the functional integral, is diagrammati-
cally unitary for arbitrary 7 < oo. This means that the
problems of the S matrix at A- # 0 are not inherent to the
issue of unitarity per se.

The paper is organized as follows. In Sec. Il we consider
a simple warm-up toy model to illustrate some of the issues
we need to face when we want to find the right eigen-
functions for the expansions of the gauge fields. In Sec. III
we work out the general formalism for coherent states in
gauge theories. In Sec. IV we rearrange the Lagrangian in
Yang-Mills theories to make it ready for the restriction to
finite 7 and compact Q. In Sec. V we introduce coherent
states in Yang-Mills theories at the quadratic level. In
Sec. VI we include the interactions. In Secs. VII and VIII
we illustrate the formalism in two relatively simple cases:
Yang-Mills theory on the semi-infinite cylinder, and on the
finite cylinder. In Sec. IX we formulate Einstein gravity at
finite 7 and compact Q. In Sec. X we extend the formulation
to quantum gravity with purely virtual particles, and

discuss the problems that occur in the limit 7 — oo,
Q — RP-! in the presence of a cosmological constant.
Section XI contains the conclusions.

II. A WARM-UP TOY MODEL

The first difficulty we meet when we want to formulate
gauge theories and gravity on a compact manifold €, is that
we do not know the eigenfunctions we should use for the
expansions of the fields. In a generic setting, the eigen-
functions of the Laplacian are not the right ones. In this
section we study a toy model that illustrates the main issue,
as well as its solution.

Specifically, we consider the simple quadratic Lagrangian

L p Y Uz 72 2.1
=Tt -2 (2.1)
for a scalar field ¢ on a segment Q = [0, #] in a finite interval
of time (#;,1), ty = t; + 7, with Dirichlet boundary con-
ditions ¢ = 0 on 0Q. The dot denotes the time derivative,
while the prime denotes the space derivative.

What is not clear is how to deal with the term ¢¢’. We
could eliminate it by means of a redefinition of space and
time, but this would complicate the investigation in another
way, by mixing the boundary conditions with the initial and
final conditions. Moreover, we can apply the redefinition
only once (i.e., for a single field), which makes it useless in
the presence of more fields with kinetic Lagrangians of the
same type. It is necessary to work out a general approach
that can be easily exported to the cases treated in the next
sections.

We begin by working out the momentum z, and the
Hamiltonian H, which are

. 1 2
Ty =¢+ad, H(my, p) = 3 (ny—ad/)* + 3415/2-
Note that H is positive definite for every real a. Then we
extend the Lagrangian to

Ly tg) = 5 (1 = yh) — (o). (22
which is convenient because it contains both ¢ and r as
independent variables.

The equations of motion must be solved with the
Dirichlet boundary conditions ¢ = 0 on 02. There is no
boundary condition on r,, because, as we are going to see,
the coherent states are not built with ¢ and r, but with ¢
and ¢. Note that ¢ = 0 on dQ implies ¢ = 0 on Q. This
way, the coherent states automatically vanish on 0Q as well.
For these reasons, it is convenient to introduce the shifted
momenta

7_T¢ = 7Z'¢ - (X¢,, (23)

and add 74|,, = 0 to the boundary conditions.

o0
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The integrated Lagrangian (2.2) can be written as

E’—/fL’dx—l/f(iz ¢)<_1 % )
o T2 —0, 1?02 —2a0,0,
()
X .

¢

The boundary conditions allow us to freely integrate

(2.4)

by parts.
The field equations can be read from (2.4). The eigen-
functions with energy w (0, = —iw) are
o) = i 212 . iow,x i nrx
X) =iy |————<exp | — —
! £+ a?) P V2 £
2
nav
Ty = —lw,p,, 0, = ———, 2.5
oo N %)

having normalized them as explained below. We have
&n (x) =¢_, (x)v W_p = —Wp.

The expansions of the fields in terms of these eigen-
functions read

P1.0) =Y _an(pu(x),  7y(t.x) = =i)_an()wuy(x),
n#0 n#0
a_(t) = aj(1). (2.6)
The functional integral is the integral on the variables a,
(or, equivalently, the coherent states, see below). It is
important to stress that the expansions (2.6) define the
space of functions on which the functional integral is
calculated. In this spirit, we do not need to prove, or
require, that the expansions converge.
The orthogonality relations obeyed by the eigenfunc-
tions can be worked out as follows. From (2.4), we find
—iw,

( 1 > <_ )
! 0.
iw, 1*0%+2iaw,0, b,

Multiplying by the row (7, ¢,,) and integrating on Q, we

obtain
)<—1 _l(l)n ><_n>
ia)n Uza)zc —+ 2iaa),,0x ¢n

(2.7)

Transposing this expression, exchanging n with m, inte-
grating by parts where necessary, and subtracting the result
to (2.7), we find

) - 0 -1\ /7y,
0_(a),,+a)m)/o(”¢m ¢’")<1 2aax><¢n >dx'

Dividing by w,, + w,,, we obtain the orthogonality relations
for m # —n. Choosing the normalization as in (2.5), the
orthonormality relations read

/f(ﬁ' ) )(0 ! )(ﬁ‘p")dx:Ziwé
o P TN C1 2000, ) \ nOmn:
(2.8)

Now we work out the expansion of the integrated
Lagrangian (2.4). Consider the right-hand side of the
identity (2.7). Multiplying it by a,,a,/2, summing on m
and 7, and adding the result to (2.4), we get

o=t >

4
am(an + ia)nan) / (ﬁdbm ¢m )
n#0,m=0 0

0 1 Ty
X " dx.
-1 =2a0, b,
Formula (2.8) ensures that all the terms with m # —n drop
out, and we remain with

L= E iw,(asa, —aqa,)—2 g wiata,,

n>0 n>0

having halved the sum by using a_, = aj,.

At this point, we define the coherent states z,, = a, and
Z, = a;, and proceed as usual (see [1] for a derivation in the
notation we are using here). Once we include the right
endpoint corrections, to have the correct variational prob-
lem, the complete action is

S ==Y 0, (Zurza(te) + Zu(1)201)

n>0

1, .
+) / Cd[iwy (Zazn — 30zn) = 202%,2,),  (2.9)

n>0 Y1

where z,; = z,(t;), Z.r = Z,(f;) are the initial and final
conditions.

III. COHERENT STATES IN GAUGE THEORIES
AND GRAVITY

A nontrivial issue is to introduce coherent states in gauge
theories and gravity, and set invariant initial, final, and
boundary conditions. The goal is to work in a general
setting, which means without shortcuts (like choosing
particular gauge-fixings), because we want to have gauge
independence under control, and be able to make compu-
tations with arbitrary gauge-fixing parameters, as we
normally do at 7 = co, in Q = RP~1,

The properties we lay out in this section are useful for
both gauge theories and gravity, because they do not rely of
the particular form of the local symmetry. This is possible
because, by means of the formalisms of Refs. [3,4], which
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we review in the next sections, we can rephrase the local
symmetries in a universal form, which amounts to arbitrary
shifts 6,¢ = A of certain (purely virtual) extra fields ¢.
This is precisely the trick we need to specify invariant
conditions on the fields.

We start from a Lagrangian L(¢, ¢) that depends on a
certain number of fields ¢ and their first derivatives. We
assume that it can be decomposed as

L(¢.¢) = (3.1)

where Ly, is quadratic, and L;, is the part to be treated
perturbatively (which may also include certain linear
and quadratic terms), to which we refer as “interaction
Lagrangian.” For the moment, we assume that the
boundary conditions on the fields ¢’ are @], =0.
Nontrivial boundary conditions are studied at the end
of this section.

We assume that no Lagrangian term contains more
than two derivatives. Higher-derivative theories must be
first turned into two-derivative theories (by introducing
extra fields, for example). Moreover, at finite 7z, on a
compact space manifold Q, we assume that terms like
¢y - - ¢p,_100¢, have been eliminated in favor of terms like
¢y pp_20¢,_10¢,, by adding total derivatives. In the
next sections we show how to do these and other operations
while preserving gauge invariance and general covariance.

Next, we assume that L it is “orthodoxically symmetric”
with respect to certain infinitesimal transformations &,¢’.
By this we mean that

(i) the functions §,¢' depend only on the fields ¢, but

not on their derivatives,

(ii) the Lagrangian satisfies

Lfree(¢a ¢) + Linl(¢v ¢)’

0= 5,0 ;,+5A¢' ;‘,, (3.2)
where
. 26 AN
o = oon) =20 g (a3)

What is important, in point (ii), is that not only the action
is symmetric, but also the Lagrangian is, i.e., the right-hand
side of (3.2) is exactly zero, not just a total derivative.

Nei(t, we introduce the momenta and the Hamiltonian as
usual

“In order to keep the notation simple, we adopt the following
conventions for fields with fermionic statistics. Once their kinetic
terms are diagonalized, we have pairs 7, y. The quadratic terms
we write must be understood as follows: i is placed to the left,
and y is placed to the right; 7z, is defined as the left derivative
with respect to i, and is placed to the right; 7 is defined as the
right derivative with respect to yr, and is placed to the left.

<1

my(p ) =—7 = ¢ = (np.d)=¢ .

a¢’
H(ny ) = 249" — L(. ).

We can work out the symmetry transformations of the

momenta 7‘[;5 by means of the identities (3.2) and (3.3).
We find
d(5r¢”) _9(8x97)
I _ . J
Oy = — Y my = g Ty (3.4)

Since 5,¢” is linear in ¢/, 5,7, depends only on ¢ and 7,
but not on ¢.

We want to prove that the equivalent,
Lagrangian

extended

L"(p.p.1y) = 2! — H(zy ) = 7ly(§' = §') + L(p. §)

is orthodoxically symmetric, the transformations being
Sy’ and (3.4).

Since the transformations §,¢' and 6,7, do not depend
on the derivatives of the fields, point (i) is satisfied. It
remains to prove the equation

aL// aL// aL//
0=25,0'

I
a¢] +6A¢ a¢[ +5Aﬂ'¢a ] . (35)

For this purpose note that formula (3.2) with the replace-
ment ¢! — ¢’ gives

OL(¢. ¢’ )
ap’

)
oy 204

= S ¢

using (3.3). Then it is easy to check that the right-hand side
of the identity (3.5) is equal to

A(re) ﬂé)),

(d)l - J)I) <5Aﬂ;5 + 04)1

which vanishes by (3.4).

We need to make a further step, because the extended
Lagrangian we must start from, in the coherent-state
approach, is not L”, but

1 .

S (ah! = )
ld(
2dt

L'(p. ¢ 7y 7y) = — H(zy, p)

_ "

). (3.6)
We will also need to add certain endpoint corrections to the
action, in order to have the right variational problem. This
part can be ignored for the moment, because it will be easy
to deal with it at the very end.

025003-5
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It is not obvious that the total derivative L' — L" is
invariant under the transformation d,. Actually, in general
it is not, since (3.4) gives

o (300 208

which vanishes only if the transformations are linear:

n(myd') = (3.7)

I(3a¢")

g (3.8)

NS

Summarizing, if the symmetry is linear, the Lagrangian
(3.6) is orthodoxically invariant.

It may seem that the requirement of having linear
symmetry transformations is very restrictive. Actually, it
is not, if we take advantage of the formalism developed
in Refs. [3,4]. Indeed, it is always possible to convert
Abelian and non-Abelian gauge symmetries, as well as
general covariance, into a universal linear form, by intro-
ducing purely virtual fields that do not change the S matrix
amplitudes.

It is easy to check that the momenta z/, are not
guaranteed to vanish on 0Q. The structure of the

Lagrangian ensures that ﬂ{p(¢, ¢) has the form

1

(. d) = A (9)d’ + B (h)o,¢” +C' ().
for certain functions A" (¢), BY(¢), and C/(¢). Thus,
@' 50 = 0 implies

7 (), )] 1 = B(0)9;¢|sq + C'(0). (3.9)
We can assume C!(0) = 0. First, note that a nonvanishing
C'(0) means that the Lagrangian includes a term C(0)¢’.
This is not going to happen in the cases of Yang-Mills
theories and gravity. Besides, a term like C’(0)¢' can be
removed at no cost. Since we are assuming that the
symmetry transformations are linear and do not involve
derivatives, C'(0)¢p' must be gauge invariant by itself.
Besides, it is a total derivative. Thus, we can always switch
to an alternative Lagrangian with the same properties, but
no such term. Instead, the matrix B///(0) is in general
nontrivial and cannot be removed, so the right-hand side of

(3.9) may be nonzero.
As in (2.3), it is useful to define new “momenta”

7l = xl, — BI(0)9:¢, (3.10)

because then it makes sense to add the boundary conditions

#loe = 7], = 0. (3.11)

I
gl aq

As we show below, these conditions turn straightforwardly
into the right boundary conditions for the coherent states
The gauge transformations of 7 7r follow from those of n(/
and ¢’. This is enough for the moment butin Sec. I1I B we
prove 7z¢ and 77.' transform in exactly the same way.
By assumption (3.1) and the absence of higher deriva-
tives, the general form of the Lagrangian L’ is

L/ = tree(¢ ¢ ”lf”ﬂlf’) +Lmt(ﬂ¢ ¢) (312)

where Lf.. is quadratic, and the interaction part L!  1is

independent of the time derivatives. Note that the redefi-
nitions (3.10) do not generate time derivatives in the
interaction sector. The quadratic Lagrangian, integrated

on Q, has the form

1 M K + 9,
- D— 1 — 7
‘Cfree / freed = 2[}(”4’ ¢)<I~( —9, N )

X <ﬁ¢)dD_lX,
¢

where M is a constant, symmetric matrix, while K = K 0; +
Ky, K=-Ki"0; + K! (K} and K, being matrices, T deno‘nng
the transpose), N = N7 9,0, i +N50,0,+N50; + Ny, with NY,
N; 5, N4 symmetric matrices and N} % antisymmetric. Observe

that, by (3.11), we can freely integrate the space derivatives
by parts.

(3.13)

A. Frequencies and eigenfunctions

The eigenfunctions 7/,(x), ¢/,(x) are the solutions of the
problem

Kliai+K2—ia)n )

( M
iw, — K79, + K} N{0,0; — iw,N}0; + N0, + N,

(3.14)

with the boundary conditions 7/,|,, = ¢%|,q = 0, where n
is some label.

We assume that the frequencies are real, because they are
so in the applications we have in mind. A quick proof is as
follows. The frequencies are real for 7 = oo, Q = RP~!, in
both Yang-Mills theory and gravity. Let us denote them by
w.. We can work out the frequencies w,, and the eigen-
functions at finite 7, compact Q, by considering linear
combinations of the 7 = o0, Q = RP~! eigenfunctions with
identical frequencies w,,, and fixing the coefficients by
means of the boundary conditions. Eventually, the frequen-
cies become discrete, to have solutions, but remain real.

In case of need, it is not difficult to generalize the
formulas of this paper to complex frequencies. We just
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remark that they must appear in complex conjugate pairs,
since the Lagrangian is assumed to be Hermitian.

Taking the complex conjugate of (3.14), we find that
7l*(x) and ¢lF(x) are also eigenfunctions, and their

frequency is —w,. We use n* to label them, and write

4)2‘ (X) = ¢}11* (X)v Wy = —Wy.

(3.15)

7, (x) = 7/ (x).

If V denotes the range of the label n, we write V = U U U~
by splitting each pair n, n* between U and U/*.

The orthogonality relations can be worked out as in
Sec. II: (i) we multiply (3.14) by (7,,, ¢,,) and integrate the
product on €; (ii) we transpose the result of (i), exchange n
with m, and integrate by parts where necessary; finally,
(ii1)) we subtract the results of (i) and (ii).

Normalizing the eigenfunctions appropriately, we have
the orthonormality relations

0 1 \/%
/ dD_lX( Ty Pm ) i " = 207,00,
Q -1 N3y9; /) \ ¢, '

(3.16)

where 7, = £1 =r1,.. The value 7z, = —1 signals the
presence of ghosts (fields with kinetic terms multiplied
by the wrong signs). Indeed, going through the toy model
of the previous section, it is easy to check that, if we change
the overall sign of the starting Lagrangian (2.1), the right-
hand side of (2.8) turns out to be equal to —2i®,,d,,,.
We then expand 7, and ¢, in the basis we have just

( ) ( > '
neVy

with a,- = a;,. By means of (3.16), we can invert the
expansion and find the coefficients:

(3.17)

—2irmwmaj1(t):AdD_IX(f_Tm(X) $m(x))

0 1 (1, X
><< ‘ )( o )>. (3.18)

-1 N30/ \ ¢(1.x)
We insert (3.17) into (3.13), and then subtract (3.14),
multiplied by (7,,, $,,)a,,/2, summed on m,n€) and
integrated on Q. Then, we use (3.16), and mirror the sum

on * into a sum on U. The result is the integrated free
Lagrangian

, :
Liee = E it,w,(aa -2 g T,0iaka,

neld neld

(3.19)

If the fields ¢’ have, say, r independent components,
I=1,....,r, the solutions of the eigenvalue problem

can be arranged into r independent, complete sets of
eigenfunctions, each of which can be assigned to a specific
component ¢. We can split the set ¢ into a union U;_, U/,
where U! refers to the Ith complete set. For convenience,
we relabel the indices 7 so that their range is the same for
each /, to be denoted by U

Let 7/ and ¢!/ denote the Ith components of the nth
eigenfunction of the Jth set. Let z,(¢) = an(t) denote

the column made by 7/(¢) = al(t), = 1, ..., r. We have,
from (3.17),
Ty T, 7, Zn
, (3.20)
()20 )0

neld

where 7,, ¢, denote the block matrices made by 7/ and

17 while zzn and ¢; are the conjugate matrices. The
coefficients 7/, z, of the expansion are the variables we call
coherent “states.” The inverse formula reads, from (3.18),

z T 0 1
()= (4 )
Zn Q -7, —¢n/) \—1 N30,

¢
We can rearrange (3.19) as

=l 1 12=1 1
free Z Z _ann) 20) ann]

=l pelt

(3.21)

(3.22)

Typically, the 7/, factor we see here does not depend on n,
but just on 1.

At this point, it is straightforward to add the interacting
Lagrangian L} (7. ¢). We recall that L{ does not contain
time derivatives of 7, and ¢, by construction, although it
can contain space derivatives. Expanding the fields and
the momenta in the basis (3.20) of coherent states, and
integrating by parts when needed, we obtain an integrated

interacting Lagrangian

’C:nt_/L:nth 'x
Q

that just depends 7%, zZ (no time derivatives).
Finally, the total action is

:—1221’”6{)" on tf)+zn(1) 1)

=l nelt

T / dt(Lly, + Lly), (3.23)
4

where z!. = z! (1) parametrize the initial conditions in the
coherent-state approach, while z!/. = z!(¢;) parametrize

025003-7



DAMIANO ANSELMI

PHYS. REV. D 109, 025003 (2024)

the final conditions. The sums appearing in (3.23), which
we call “endpoint corrections,” are there to have the correct
variational problem. This means that the variations 67/, 6z7,,
subject to the initial and final conditions &7/ () =
8z (1) = 0, must give the 7 and 7/ equations of motion,
and no fur“[her restrictions. Note that the time derivatives of
z! and z} appear only inside L},.. This is the reason why
the partial integrations that take care of the terms pro-
portional to 67/, and 6z are compensated by endpoint
corrections as simple as those of (3.23).

B. Gauge transformations of coherent states

Now we study the gauge transformations of the coherent
states, and the conditions to have gauge invariant ampli-
tudes. As usual, the parameters A of the gauge trans-
formations are written as A = 6C, where 0 is a constant,
anticommuting parameter and C are the Faddeev-Popov
ghosts. The fields ¢’ include C and the other fields that are
necessary to gauge-fix the theory, which are the antighosts
C and certain Lagrange multipliers B for the gauge-fixing
(see below).

Since we are assuming the linearity conditions (3.8), we
can write the gauge transformations as 6¢' = X!/ ¢’, for
some constants /. By means of linear field redefinitions,
we can always split the set of fields ¢’ into three subsets
@'+, ¢'- and @', where: (i) the fields ¢'+ transform into
other fields; (ii) the fields ¢/~ parametrize the transforma-
tions of other fields; and (iii) the fields ¢ are invariant and
cannot be obtained from the transformations of other fields:

Sl = Og-, S~ =0, S0 = 0. (3.24)
The transformation law can be written as
s=op 0 —on,  aA=g- D
¢’+ LT s

where §; denotes the left functional derivative.

The operator A has a standard “descent” structure. A
well-known theorem (see appendix A for a direct proof)
says that the most general solution of the problem 6X = 0,
where X is a local function, is

X =X,+AY, (3.25)
where X, is a ¢'+ independent local function, and Y is a
local function.

Consider the invariant quadratic terms that we can build
with the fields ¢'+. At some point, we may need to
diagonalize them. It is easy to see that we cannot build
enough invariant terms, unless the diagonalization organ-
izes the field ¢'+ in “pairs of pairs.” Consider a single pair
@'+, and observe that ¢'+ and ¢~ have opposite statistics.
By (3.25), the quadratic terms in question must be con-
tained in AY. However, the expressions A(p'+¢'+),

A(p'+¢'-) and A(p!-¢!-) generate just one independent
quadratic term, while we need two. This means that for
each pair ¢'+ there must be another pair ¢'+', out of which
the required invariants can be built.

We can organize the fields ¢+, ¢'+' into doublets. Using
a notation that is ready for the applications to Yang-Mills
theories and gravity (adapting the meaning of the index a),

we write the doublets as
=(a) #=(o)
¢+ - (Ca ’ ¢— - Cd )

where ¢ and B* have bosonic statistics, while C* and C®
have fermionic statistics. In all the applications that we
have in mind, this is the structure we need.

We can write the transformation law as

(3.26)

%

S§=0A, A=¢o, ,
59

where o, is the first Pauli matrix and the superscript “7”

means “transpose.”
The ¢4 expansions (3.20),

Z > (92 + 9z,

J=1 nell

8¢ = 00,9, (3.27)

must turn into the ¢¢ expansions under (3.27):

Z > (9852 + 5 571) = 001

J=1 yell

GZ > (o144 +019%z).

=l el

Since the Eq. (3.14) are invariant under the symmetry, the
eigenfunctions appearing in the ¢ expansions must match
eigenfunctions appearlng in the ¢4 a expansions. That is to

say, we must have ¢ o= = 614" for some pairings of
indices J, J_. Then, the transformations of the coherent

states read 6zfﬁ = 92{[, 5z,L = 0. Moreover, the z/
with such indices must also be organized in doublets,
for the reasons explained above. Finally, the ¢'0 expansions

identify the invariant coherent states zﬁ“. We illustrate these
facts in Sec. V, formulas (5.12) and (5.13).

Summarizing, we can split the set of coherent states z,
into three subsets w4, u% and »¢ (with indices @, a spanning
appropriate ranges). Both u% and »$ are doublets, with
bosonic first components and fermionic second compo-
nents. Their gauge transformations are

ows =owg =0, ouls = 0o 04,

St = 06,09,  Sv® = 6% = 0. (3.28)

We can obtain results that agree with the ones just

found by repeating the analysis for the “momenta” ﬁfp
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The redefinition (3.10) is due to the presence of the terms
~@'0;¢p’ in the Lagrangian. Since the symmetry is orthodox
and linear, the sum of these terms must be gauge invariant
by itself. Taking into account the conventions we adopted
for the fields v, y with fermionic statistics, we can write
such a sum as

¢'B"1(0)9;¢",

where B = BIi if the indices 1, J refer to bosonic fields,
or I refers to y, while BY" = —BM! if I refers to y. This
way, the redefinitions match (3.10) precisely. Writing the
transformations 5,4’ = 60X/ ¢/, as above, gauge invari-
ance gives the condition

ZKIBKJ:’(O) 4 (—I)G‘BIKi(O)ZKJ =0,

where ¢; is the statistics of ¢/. Analyzing all the situations
one by one, we can easily see that this condition is
equivalent to

ZKIBKJi(o) + BIKi(O)ZKJ — O,

which also gives the implication

5/\77(2 —Z”ﬂ'(/) = 5A7r¢ —Z”frg), (3.29)

from (3.4). Thus, the old and new momenta zzfﬁ and ﬁf/)

transform the same way.

The 7_‘7{45 expansions and their transformations can be
studied as we did for the fields ¢’. Matching the eigen-
functions, we find agreement with (3.28). Alternatively, we
can study the expansions of ¢ and 7}, at the same time by

working directly on (3.20).

Since the Lagrangian (3.6) in gauge invariant under the
transformations 5,¢’ and (3.4), and we are assuming the
linearity conditions (3.8), the Lagrangian (3.12) is invariant
under 5,¢' and (3.29). The integrated Lagrangian L}, +
L of formula (3.23) is invariant under (3.28), once it is
written in the variables w, 14 and v4 and their conjugates.

The action (3.23) is gauge invariant if the endpoint
corrections are invariant, which occurs if they do not
contain u and #4. In addition, we require that they do
not contain gauge trivial modes, which are »§ and 79
(which can be obtained as transformations of u% and u%).

Thus, the physical amplitudes are those that have

a a
f_vf_um Uy _O

(3.30)

in which case the endpoint corrections, which read

Y Y

@ pel

nfwn(tf) + Wn( 1)WZi>’

are manifestly gauge invariant.

The restrictions (3.30) on the endpoint corrections are
analogous to the restrictions we commonly apply to the S
matrix amplitudes: we do not consider scattering processes
involving Faddeev-Popov ghosts, or the temporal and
longitudinal components of the gauge fields, among the
incoming and outgoing states. Yet, sometimes it may be
useful to relax these requirements, and consider diagrams
with all sorts of external legs, including the ones just
mentioned, to study renormalization, for example, or
the gauge independence of the physical quantities, or the
diagrammatic versions of the unitarity equations.

We conclude this subsection by writing down the
universal structure of the kinetic terms of the coherent
states, inside Lf.. The ones of the gauge invariant sector
are clearly

7 0 (0O SOy O
E E Tnla)n(Wan—Wan),

a pell

(3.31)

by (3.22). Using the theorem (3.25), the universal kinetic
terms of the gauge sector can be written in the form

E E Tnlwn un 6114" - un Glun)
a pell

= E E iof (09Tt — veTud + veTud — v u?),

a pell

(3.32)

the right-hand side being obtained using the properties (A2)
of appendix A.

C. Nontrivial boundary conditions

So far, we have been working with trivial boundary
conditions ¢'|,, = 0. Now we treat the case of general
Dirichlet boundary conditions

1 1
¢'(1.X)|oq = f1(1. Xa0), (3.33)
where f! are given functions, and x,, denotes the space
variables restricted to dQ2. We want to show that we can
reduce this situation to the previous one, with few minor
modifications. In particular, the eigenfunctions, the frequen-
cies and the orthonormality relations remain the same.

First, we shift the fields ¢’ by some functions ¢)(z, x)
that coincide with f!(z,x4q) on 0Q:

1 T
¢ (t’ X) = :f (t, X()Q)ﬂ

(3.34)

$o(t.x) + ' (£.X), Pj(t. Xo0)

so that the shifted fields vanish on €:
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@' (1.%)]sq = 0. (3.35)
After the shift, we are free to integrate the space integrals by
parts, to move the space derivatives that act on any ¢’
somewhere else.

By the assumptions we have made on the structure of the
Lagrangian L(¢, ¢), its expansion can be written as

= Lo+ ¢'A(¢o) + @' B (o) + V(' C' ()
+Ly(9.9) =L, (0.0), (3.36)

L(¢.¢)

where L is ¢-independent and L, (¢, ¢) = Ly (@, @) +
interactions, by (3.1). We can ignore the C-term, since it
disappears once we integrate on the space manifold Q, by
(3.35). Were it just for L, (¢, ¢) (and L,) we could apply
the formulation developed so far with no modifications. We
want to explain how to treat the corrections proportional to
A and B (which need not be perturbative).
Let us define

%{j{éﬂ) = 7 (9. @),
00 shig) = mbig.i) < B 37
which invert to
@' =Flp.z,), @' =Flpz,), (3.38)

for certain functions F! and F!. We have the Hamiltonians

(3.40)

Equating the two expressions of ¢’ in (3.38) and using the
last identity of (3.37), we get

Fl(g.#,)

Using (3.36), (3.40), and (3.39), it is easy to work out the
difference

= F’((p,frlp - B).

AL, =L, -L!

(/'|7t -7, LO +(p1AI
+ ﬁ-(Iﬂ[FI((pv 7[(/)) - FI((p7 ﬁ-q) - B)]
+B'Fl(p., - B) + L,(¢.F(¢.7, - B))

—L,(¢p.F(p.7,)). (3.41)

If we switch the interactions off, we have L,(¢.¢) =
Liwee(@. ), and the functions F/(p,x,) become linear.
Then formula (3.41) tells us that AL, is made of linear
terms, plus interactions. In particular, the quadratic part of
I:;, coincides with the quadratic part of L§p|ﬂ¢_%.
At this point, we make the analogues of the shifts (3.10),

7:1(’/, = 777’,/, - BYi(0)0,¢’. (3.42)
They do not change the structure of AL,/,, because they do
not involve time derivatives, and send linear terms into
linear terms, interaction terms into interaction terms. As far
as the quadratic part of Z;, is concerned, it is equal to the
Ones Of (3 12) and (3.13) with the replacements P = o,

7z¢ — 7r . Hence, if we expand the pair 7r , ¢! exactly as we
expanded 7l > @' before, we obtain the same quadratic part
we had before, (3.19) and (3.22), plus interactions, plus
linear terms (due to AL/ )

Note that JT(p Vanlshes on the boundary 0Q by con-
struction, so to speak, since it is expanded in a basis of
functions that vanish there. Yet, we recall that no con-
vergence requirements are imposed on the expansion: the
expansion itself must be taken as the very definition of what
|,o = 0 truly means. The same can be said of ¢ and
®|s0 = 0. As we have already noted, the functional integral
is defined by the very same expansions.

As a result, we obtain a Lagrangian that has the same
structure as before, apart from including extra terms that
are linear in the coherent states (and terms that are
independent of them). The endpoint corrections are
unmodified, because AL;, does not contain time deriv-
atives. The complete action has the form (3.23), plus the
corrections due to ALj,:

=i Z Z ann ann tf + Z"( I)ZI )

I=1 pely

+/ dr {z:;m + L+ Z > (Hhh + hEEh) + k|
5

I=1 nelt

(3.43)

for some, possibly time-dependent, functions A/ and k.
As far as the local symmetries are concerned, the shift
(3.34) does change the expressions of the transformations,
unless the functions ¢} are gauge invariant, which they
must be, because we cannot build physical quantities with
unphysical boundary conditions. Referring to the splitting of
¢" into the three subsets ¢'+, ¢'-, and ¢'0, we must require
1y

L— gl =0, (3.44)

Although we may sometimes relax the requirements
(3.30) on the initial and final conditions, we are definitely
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not going to relax the requirements (3.44) on the boundary
conditions, because there is no reason to do so. Having
specified this, we have proved that the situation of general
Dirichlet boundary conditions (3.33) reduces to the one of
vanishing boundary conditions, apart from some extra
terms that are linear in the coherent states, which are no
source of worry.

In the case of gravity, we also need to extend the results
to interaction Lagrangians that contain arbitrarily many
derivatives of the fields (as long as their number grows
together with the power of some coupling constant), and
show that we can rearrange the Lagrangian to have a final
action with the form and the properties of (3.43). We deal
with this aspect in appendix B.

In conclusion, we have developed the general theory of
coherent states for local symmetries. It remains to use the
results of [3,4] to arrange gauge invariance and general
covariance in the way we need. We do this in the next
sections. Once that goal is achieved, the results of this
section, combined with those of [1], allow us to build the
unitary evolution operator U(t;, t;).

IV. GAUGE THEORIES: REARRANGING
THE LAGRANGIAN

In gauge theories, we need to face a nontrivial issue: how
can we specify gauge invariant initial, final, and boundary
conditions? Giving the field strength F,, is a possibility,
but only in QED, because in non-Abelian theories it is not
gauge invariant. And even in QED, there remains to give
gauge invariant conditions for electrons.

These problems can be solved by introducing gauge
invariant fields as explained in Refs. [3,4]. The goal is
achieved by means of a particular purely virtual extension
of the theory. The physical particles, the S matrix
amplitudes and the correlation functions of common
(nonlinear) composite fields (such as Fj, F*¢, yy,
wyty, etc.) do not change.5 Nevertheless, the extension
provides tools to define new, physical correlation func-
tions, such as the ones that contain insertions of gauge
invariant fields, and calculate them perturbatively. As we
are going to show, it also allows us to specify gauge
invariant initial, final and boundary conditions at finite 7
on a compact €.

The extension consists of a certain set of purely virtual
extra fields. In gauge theories [3] we have scalar fields ¢,
together with their anticommuting partners H¢ and H¢,
where a is the Lie-algebra index. In addition, it may be
convenient to include certain Lagrange multipliers E“.
The extension preserves renormalizability and unitarity.
Unitarity is also the reason why the extra fields must be

°In all such cases, the extension amounts to inserting “1,”
written in a complicated way (a new type of “1” with respect to
the “1” used to gauge-fix the theory).

purely virtual: if not, the extension would propagate ghosts,
and unitarity would be lost.

The crucial property, for our purposes, is that the
extension allows us to switch to gauge invariant variables,
and trivialize the gauge symmetry, to fulfill the con-
ditions (3.8). The coherent states are then introduced as
explained in the previous section, and the rest follows
from there.

We focus on pure gauge theories, for simplicity, since
there is no difficulty to add the matter fields, when needed.
We separate the time and space components of the gauge
fields by writing A* = (A%, A). The dot on a field denotes
its time derivative.

Instead of the common Lorenz gauge-fixing, given by
the function d,A*, we use the more general function
EA% 1 V. A% where £ is an unspecified constant, which
allows us to interpolate between different gauge choices.
Then, the gauge-fixed Lagrangian is

5 1 1 A
Lgf:EF -F —ZFiJ~2+B <§00A0 +V-A +§B>

—EC*DyC* + C*V - DC?,

where D, = (Dy, D) is the covariant derivative, and F* =

A + VA% 4 gfrabc A0 A¢ are the 0i components of the
field strength. The so-called special gauge [19], which
we use in the examples of Secs. VII and VIII, is £ = A. The
Feynman gauge is £ =1 = 1. Like the Feynman gauge,
the special gauge allows us to simplify many formulas. In
addition, it allows us to keep a gauge-fixing parameter free,
which is useful to study the gauge independence of the
physical quantities.

First, we rearrange I:gf, since no fields should be
differentiated twice. For reasons that will become clear
later, we also turn the derivatives contained in the gauge-
fixing function onto B. We thus obtain

1 1 . A
_ a 2 a A0
Lyt = BB = 7 — EBA™ — VB A® + B B"

+ EC*DyC* — (VC9) - DC.

Next, we introduce extra scalar fields ¢“, and their
anticommuting partners H¢, transforming as [3]

_ dgady o o, o
b = g, _ A= RN
SR (¢, N)
Sy H = gt 0 4.1
A 5¢b ( )

where ¢ = 9T, A = AT, A%(x) are the parameters of
the gauge transformation, ad,X = [, X], and T* are the
Lie algebra generators. We also introduce gauge invariant
antipartners H“ and Lagrange multipliers E“.
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The gauge invariant fields Ay = Al T are then

) 1= e—igad¢
= _lgad —
Ag=e vA,

(0,0), A =0, (4.2)

igad,

where the subscript “d” stands for “dressed.”

The extension is a sort of mirror of the gauge-fixing
sector. However, it must be gauge invariant. In its most
convenient (and manifestly power counting renormaliz-
able) form, it is specified by a function .;EAg“ +V.-Af,
where & is a free constant. It reads

a | EA0a a ;1 a ~;a5Aga b
Low = B(BAY + V- AQ+ 5B ) Bl
_ OAY
— (VH*) - — 2 HY,
o

where 1 is another free constant. This expression of Ly, is
already rearranged (with respect to the expression appear-
ing in [3]) to eliminate the double derivatives. It is easy to
check that L., is invariant under the local transformations
(4.1) (for details on this, see [3]).

The total action is Ly = Lgr + Ley. The parameters &
and 1 are part of the large arbitrariness we have, when we
want to dress the elementary fields and make them gauge
invariant. They are unique, however, in a power counting
renormalizable context (preserving invariance under space
rotations). Physically, they may parametrize different inter-
plays between the physical process and the external
environment, or the experimental apparatus.

The extension is equal to “1”” on standard gauge invariant
correlation functions (where “standard” means: indepen-
dent of ¢, H, H, and E), as well as on the S matrix
amplitudes, at 7 = o0, Q = R3. We can prove this fact as
follows. Focus on the E-dependent terms

i -
E“(V“+§E“>, Ve =AY + V. AL

Insert “1” in the form of the Gaussian integral with
Lagrangian —A(Q¢ — E%)?/2, where Q¢ are extra integra-
tion variables. We have

a a%a_% a_a2_aa~a_%aa
E(V+2E> 2(Q EY)? =E*(V4+20%) 500
(4.3)

Next: (i) integrate on E“, which gives a functional delta
function 4; (ii) integrate on H¢, and H¢, which gives a
functional determinant J; (iii) integrate on ¢“, which
appears only in é and J; this integral gives 1, because J
is there precisely for this purpose; finally, (iv) integrate on
Q¢, which also gives 1, since the only Q¢ dependence that

survives the first three operations is the one contained in the
last term of (4.3).

This chain of operations cannot be repeated as is when
the insertions are ¢ dependent, as are those made of the
invariant fields A, 4. Thus, the gauge invariant insertions
built with ¢ provide new, physical correlation functions
and amplitudes. What we want to show is that these
properties also allow us to study amplitudes between
arbitrary gauge invariant initial and final states, with
arbitrary gauge invariant boundary conditions, in a finite
interval of time 7 and on a compact space manifold €.

One might object that the fields ¢“ become propagating,
as well as H¢ and H*. What are these fields, physically?
They might even be ghosts, on general grounds. On top of
that, we do not want to change the theory. We just want to
study less common features of a standard theory.

These are the reasons why the whole extension has to be
purely virtual. The extra fields ¢¢, H%, and H* propagate
ghosts if they are treated as ordinary fields. They do not, if
they are purely virtual. If the whole extension is purely
virtual, it does not inject new degrees of freedom into the
theory, and can be used as a mere mathematical tool to
study uncommon quantities of a common theory.

Another great advantage of the extension is that it allows
us to “trivialize” the gauge symmetry, by switching to
appropriate dual variables. For example, we can abandon
the original gauge potential A, in favor of the gauge
invariant one A,q. We can also abandon the parameters
A of the gauge transformation in favor of

A = RY(p.A) = 600" (4.4)
If we express the gauge symmetry this way, it becomes
trivial: 6¢p = Aq, 6A,q =0. Then, we introduce new
Faddeev-Popov ghosts C4, by means of the identification
A§ = 0C¢, where 0 is a constant, anticommuting param-
eter. Since the gauge symmetry is just an arbitrary shift of
¢“, its closure is trivial, so we can take 6C§ = 0. We can
define new, gauge invariant anticommuting partners Hy by
means of the relations H = R(—¢, Hy).

Inverting (4.2), we can use the relations

) 1= eigad(,,
A, = e A, ~ Tigad, (0.),
R(¢.C)=Cq.  H=R(—¢.Hy). (4.5)

as a change of variables in the functional integral, to switch
from the original variables A,, C, ¢, and H to the dual
variables A4, Cq, ¢, and Hy. The switch has a trivial
Jacobian determinant (if we use the dimensional regulari-
zation [20]). We do not change C, B, H, and E.

It is much easier to specify gauge invariant initial, final
and boundary conditions by means of the dual variables. To
make the notation lighter, we put a tilde on A4, C%, and H¢,
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to emphasize that they are functions of Aﬁd, C4, ¢“, and HY,
now, and then drop the “d” in Aﬁd, Cq, H. It will be
sufficient to recall that, in the new notation, Ay is inert
under the gauge transformations (5,Aj;, = 0), and so are C*
and H“.

After the switch (4.5), the multipliers E“ remain non-
derivative (differently from B), so we integrate them out.
At the end (check [3] for details), we obtain the total action

| S RN %0 N
5A0a

S¢p®

Ct + EH“DyH" — (VH?) - DH".

1 ~ . La
—ﬁ(fAO” +V-A)? 4 &C ct

_ . OA
HVE) S

(4.6)
The trivialized local symmetry is

Sp=A=0C, 5C=0B, 8B=686C=056A,=686H=056H=0.
(4.7)

Note that L is invariant without adding total derivatives.
Thus, we are in the conditions of Sec. III. We can define the
coherent states as explained there, and from there build the
unitary operator U(#, ;) as explained in [1].

V. GAUGE THEORIES: QUADRATIC SECTOR

In this section we explain how to introduce coherent
states in the free-field limit of gauge theories, which is the
key part of the problem. In the next section it will be
relatively straightforward to include the interactions.

The quadratic part of the Lagrangian is practically the
same as if we were working in QED. Thus, we suppress the
index a and write, from (4.6),

ﬂ'¢ = —fB,

7wy, = A + VA, ne = &C,
are either gauge invariant, or transform into one another:
5/\7[3 = —aﬂ'c, 6A7TC = —971'“,

The Hamiltonian is H = Hy,, + Hg,, where

mg = —&(p + A°),

: 1 1 -.
L = (A+VA0>2__F%j_ﬁ(on‘i‘V'A)z

4

N =

—5BA0—VB.A—§B¢+VB-V¢+%BZ+5‘cC

(5.1)

With the variables we have chosen, gauge invariance
simply means invariance under the transformations d,¢ =
A =6C, 5AC = 0B, all the other fields being inert. Note that
the first line of (5.1) is manifestly invariant, to the lowest
order, as are the first two terms of the second line and the H-
dependent terms, while the remaining terms transform into
one another. Thus, we are in the conditions of Sec. III.

The field variables are ® = (¢, B,A°, A, C,C. H, H).
From the moment, we ignore H and H, and restrict to
® = (¢,B,A% A, C,C), because it is straightforward to
treat H and H along the lines of Ref. [1]. We discuss them
anyway in the next section, when we include the inter-
actions. For the time being, we also drop O(g).

The boundary conditions read

—VC-VC+EHH-VH - VH+ O(g).

@, = (. Bo. AY. Ag. Co. Cp). (5.2)

where the list on the right-hand side collects given
functions on 0Q2. We can turn to vanishing boundary
conditions by means of shifts

®— &+ D, (5.3)
where @0 are functions defined on the whole of €, which
coincide with the right-hand side of (5.2) on dQ. This way,
the new ® vanish on 0Q. Since the shift does not change the
quadratic sector of the free Lagrangian, on which we are
concentrating in the present section, we take ®|,, = ®) =
0 for the moment, and leave the rest of the discussion to
the next section. Note that d~)| oo = 0 allows us to freely
integrate the space integrals by parts.

The momenta, which are

(A +V-A),

ﬂA():_

Do Ut

e = fC,

5Aﬂ(/) = 6A7TA0 = 5ATCA = 5A77,'C =0.

1 1 ) 1
Hbos = —Eﬂ(p(ﬂB —|— §A0) ——Nﬂ'AO <EﬂA0 + 2V . A> +§TCA(TCA —_ 2VA0)

28

4

1 A
+F;;—=VB-V$+VB-A~->B, H

1 _
2 gh :EﬂCﬂC—FVC‘VC,
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so the extended Lagrangian L’ of formula (3.6) is

1 .
L/ bos + Lgh’ Ll - (ﬂ'q)(D - ﬂ'q)(b)

bos E

where ® = (¢, B, A", A).

_Hbosv

Ly, = (nzC — 7zC + CJTC Crrc) —Hgn,  (5.6)

l\)l'—‘

As explained in the previous two sections, it is convenient to introduce the shifted momenta (3.10), or (3.42), which are

o ¢
ﬂ'AO—ﬂ'A 3

while the other momenta are unchanged. Defining IT =

Ly 21 o "
2 KT-9, N

where K, is a constant matrix and K7 is its transpose, while
N = N{0,0; + Ny0;0, + Ni9; + N4, where NY, Nj, N}
and N, are other constant matrices. We do not specify
them here (and, besides, most of their entries are just zero,
as in M), since they can be read directly from (5.6). It is
sufficient to note that NY/, N',, and N, are symmetric, while
N}, are antisymmetric.

Ultimately, we are in the situation described in general
terms in Sec. Il A. We have eigenfunctions I1,,, ®,, with
(real) frequencies w,,, where n is some label ranging in
some set V. The complex conjugate eigenfunctions are
those with some ‘“conjugate” label n*, i.e.,

I:[;kl(x) - ﬁn*(x)’ (I):;(X) = ch* (X)’ Wy = —Wy.

We then expand IT and ® in such a basis:

fi i,
O)-5(5) e

% ney Q)n
with a,- = a;;. As before, we write V = U U U*, so that

each pair n,n* is split between U/ and U/*. The orthonor-
mality relations are (3.16). Using them, we can invert (5.8)
as in (3.18), and obtain the expansion of the integrated
bosonic Lagrangian, which reads

/ — 3 . * - P
‘Cbos = / bo%d X = § lrnwn(anan - anan>
neld
-2 E T,02dka,.

nel

(5.9)

Since we have six independent fields (for every value of
the Lie algebra index a), which are the components ¢, B

72
0+:V‘A:—7AO,

(my. g, a,» s ), the general form of the Lagrangian L;

K, + 9,

7, =m, — VA" = A, (5.7)

bos

1

010 0
i 100 0
o) ¥=los: ol
o ooéizo

00 0 -1

|
and A, of @, we can distinguish six classes of frequencies

w,. Two of them, which we denote by w$ and w}, may
depend on the gauge-fixing parameters ¢ and 4, while the
other four may depend on the parameters & and /, but not on
& and 4.

Out of the four gauge 1ndependent frequencies, two
are physical, denoted by a)‘,’, and a),, , and two must be
quantized as purely virtual, denoted by w? and @?.

The distinction between the two classes of gauge
independent frequencies is somewhat flexible. In the
absence of data (which require us to make experiments
about scattering processes where the restrictions to finite =
and compact Q play crucial roles), the only theoretical
constraints we have are that: (a) the eigenfunctions I1,,, ®,,
associated with each set of frequencies wf, 0¥, o', o,
o?, and ®¥, make a complete set for some component of I1,
®; (b) altogether, they are a complete set for I1, ®; (c) the
eigenfunctions have the right limits for Q — R3. Such
limits are & and /1 independent for o, B E and ]
dependent for ¢ and ¥

As an example of the flexibility we are referring to, we
can consider linear combinations of solutions whose
frequencies have the same limits for Q — R>. As we show
in the examples of Secs. VII and VIII, if the relative
coefficients are appropriately oscillating, the mixing dis-
appears when Q — R3. This ambiguity reflects the large
arbitrariness we have, when we formulate quantum field
theory in a finite interval of time 7, on a compact space
manifold Q. Like the parameters & and /, different choices
of the basis (7.2) may parametrize, in a way that remains to
be clarified, different interplays between the physical
process we want to study and the external environment
where it is placed, or the apparatus we use to make the
measurements.
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In several cases, it may be helpful to first set
E=1=1, where the frequencies and eigenfunctions
simplify and can often be written explicitly, make the
choices of basis there, and then extend the choices to
£ 1 # 1 by expanding in powers of 0 = (-1)/2 and
8 =0@-1)/2.

The gauge dependent frequencies w$ and w§ can be
quantized as purely virtual or not, provided we implement
this choice consistently everywhere. The physical quan-
tities are unaffected by the choice, because they are gauge
independent.

Writing U =U, UU UUg UG U Uy VU = U5 U,
the expansion (5.8) becomes

() ZZ[(m) (gﬁ)zq (5.10)

L neld!
The coefficients are the coherent states
|

(zn) = (an).

The bosonic Lagrangian £ . can be split accordingly.
The two gauge dependent frequencies wf and wf are easy

to calculate, since they must correspond, by the gauge sym-

metry, to those of the ghost Lagrangian Léh. Repeating the

Z,(t) = (25,25 . 28, 2. 0. ) = (5.11)

procedure described above for Lé,h, we find that the eigen-
functions we are talking about solve the standard problem

AC,(x) = _§wﬁcn(x)ing’ Culoa =0,
and come in two copies (ghosts and antighosts).

The gauge transformations of the coherent states can be
derived from the ones of the fields and the momenta,
combined with the expansion (5.10), as explained in
Sec. I B. Since 8¢ = OC, 6C = OB, there must be ¢
modes that transform into the ghost ones, and antighost
modes that transform into the B ones. This means that the
¢, B, C, and C expansions have the structures

(5)= (0" (" o (G o (5 e

C " M
(©)- (4o (8 o

(5.12)

(s, )z ()
Bn iCn B;k, ZCn-

where the sums on 7 are understood, the dots collect the contributions of the A and A modes, and y, and y/, are
unspecified functions. The coherent states denoted by z,, and Z4, do not contribute to the expansions of A%and A; the A, A
modes may contribute to the expansion of ¢, but not to the one of B.

The only nontrivial gauge transformations of the coherent states are

5Z¢n = QZC,,, 5Z¢n = GZC,,,

and the ¢pBCC sector of the Lagrangian reads

/

+ E iw, ZCnZCn - ZC‘nZCn + ZC‘nZCn - ZC‘nZCn

n

6zgn = 0zpn,  OZgy = OZpy, (5.13)

L()BCC Zla) Zanlﬁn ZBnZ(ﬁn + ZBnZ¢n - ZBnZ(ﬁn + ZZO) ZBan}n + ZBnZ([m)

=2 @2 (Zenzen + 2eaZen)- (5.14)

n

VI. GAUGE THEORIES: INTERACTIONS

Now that we have taken care of the quadratic part, we are ready to include the interactions. Working out the momenta 74,

from the Lagrangian (4.6), we obtain

g = —fAOH, 71'1‘;0 = £
11— e—igad¢ . 5A0a
o C. a _
e =¢ igad, me=¢ S¢p?

C?, piac :Eﬁa,

£2
_—TAO—iV'A, TCX:Fa,
A A

E?-I = EDOHa’

plus 74, which we do not report here, because its expression can be read from the gauge transformations, which, by (3.4),

are still (4.7) and (5.5): Ony = —dme.
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Then, we make the redefinition (3.10). The only changes
are

_ ¢ £ 10

T, =7, TV A=A,

7§ =G — VA% = A9 4 gfabeA® A (6.1)
Since the differences between rg and 74 are gauge
invariant, the gauge transformations of the new variables
g and & are simply

sp=A=0C, &C=0B,

Org = —Onc, one = —0my, (6.2)
the other fields 7 and ® being invariant.

The case of trivial boundary conditions ®|,, = 0, which
are evidently gauge invariant, can be treated straightfor-
wardly. The quadratic Lagrangian, which defines the
coherent states and the expansions of the fields, is the
one of the previous section. The interacting sector £/, of
the total action (3.23) can be easily expressed in terms of
coherent states, since it does not depend on their time
derivatives.

The most general boundary conditions are ®|,, = f,
where f is a row of given functions on 0Q. To build
physical amplitudes, we must choose a gauge invariant and
gauge nontrivial f which means set ) =B=C=C =0
on dQ. Since there are no theoretical or practical motiva-
tions to relax these requirements, from now on we adopt the
boundary conditions

(AD|aQ = (0707A87A0’05 07 Ho, HO)- (6.3)
Then we make the shifts
b - &+ b, (6.4)

where @, are functions defined on the whole of Q, with the
sole requirement that they coincide with the right-hand side
of (6.3) on 0Q. After the shift, the boundary conditions are
®|,, = 0, the gauge transformations are still (4.7), and we
can freely integrate the space integrals by parts, to move
space derivatives away from any field.

It is important to stress that the conditions (6.3) apply to
the Lagrangian (4.6), before even talking about momenta,
so we do not have to worry about the behaviors of the
momenta on 02 at this stage.

Take the Lagrangian (4.6), and denote it by L (®) =
Liree(®) 4 Lip (®). Once we implement the shift (6.4) on
it, we obtain

A

Ltot((i) + (i)O) = Ltot(ci)o) + A(qA)O)(i) + B((i)O)(D

+ V(OC(Dy)) + L(D, D), (6.5)

where L(®, ) = Li..(®)+ interactions. We can ignore
the term V(®C(dy)), since it disappears as soon as we
integrate on the space manifold Q. The quadratic sector of
Lot (® + @) coincides with L. (®), which is the one of
Ly (®), up to interactions.

Next, we proceed as explained in Sec. III C. We define
the momenta, redefine them according to (3.42) (that is to
say, according to (6.1) with # — %, 7 — 7), and get to the
extended Lagrangian I:jp. Since the quadratic sector of (6.5)

is Lgeo(®), the eigenfunctions coincide with those we had
with trivial boundary conditions. So do the expansions in
terms of coherent states (5.11). Once we integrate the
Lagrangian and include endpoint corrections, to have the
correct variational problem, the final action is (3.43), which
just contains some linear corrections (and possibly different
interactions) with respect to the action (3.23).

Once we have the action, the theory can be phrased
diagrammatically. The diagrams are of the usual type, apart
from the presence of external sources and the discretiza-
tions of the loop momenta [1].

When we want a transition amplitude, we must choose
initial and final conditions z/,(;) = z;, Z4(;) = z!; for the
coherent states. The physical degrees of freedom are the

transverse components of A, which must be quantized as
ph/
ni ?

physical particles. Their initial and final conditions zg?, Z

—ph —ph/

Z,p> and 7, are free. )
The gauge degrees of freedom are ¢, B, C, and C. They

can be quantized as purely virtual or not, provided the

choice is implemented consistently everywhere. Their

initial and final conditions are trivial, i.e.,

g _ & _ g __ g
ni = Zpi = Zpf — nf_o’

(6.6)
and similarly for C and C.

The purely virtual fields are A°, H, H, and the longi-
tudinal components of A. They are quantized as purely
virtual particles, by removing their on-shell contributions
to the diagrams perturbatively to all orders, according to
the rules of Refs. [2,11], and setting the initial and final
conditions of the coherent states associated with them to
zero. This means

Zy = 2 = Zyp = Zyp = 0, (6.7)
and similarly for H and H.

The decomposition of A into “transverse” and “longi-
tudinal” components is defined by the arrangement (5.10),
after identifying the (physical vs purely virtual) eigenfunc-
tions (5.11) and their frequencies. We illustrate these facts
in the examples of the next two sections.

Note that we do not need to disentangle the physical and
purely virtual degrees of freedom on 0f2, because purely
virtual particles are not required to have trivial boundary

conditions [1]. The freedom associated with their boundary
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conditions may describe some sort of interaction between
the observer, or the environment, and the physical process
we are observing.

The unitarity equation U'U = 1 holds under appropriate
assumptions (such as the cancellation of the gauge anoma-
lies at one loop). An easy way to prove the statement is to
formulate the gauge sector (identified by the fields ¢, B, C,
and C‘) as purely virtual, as in [21], because then we know
that it does not contribute to the product in between U’
and U.

Normally, instead, the fields of the gauge sector are
treated as physical fields (because the gauge symmetry
ensures that they mutually compensate inside the physical
quantities). Then the product between U’ and U is a sum
over a complete set of states, which includes the gauge non
invariant ones. Those states are studied by relaxing the
initial and final conditions (6.6) on the gauge sector.

VII. GAUGE THEORIES
ON THE SEMI-INFINITE CYLINDER

In this section and the next one we illustrate the gen-
eral theory in the cases £ = semi-infinite cylinder and
Q = finite cylinder, concentrating on the frequencies and
the eigenfunctions. We have seen that, once we have those,
we can proceed stralghtforwardly We choose the special
gauges £ =1, &=/, to simplify the calculations. This
allows us to keep one free parameter (1) in the gauge sector
and one (1) in the purely virtual sector.

We denote the semi-infinite cylinder by Q = S! x
[-#,0), while r is the radius of the circle S'. Using
cylindrical coordinates 6, z, we have

A

V= Shas

=0Ay(1.0.2) +2A,(1.0.7), 0

A(1,0,2)

It is convenient to reach the semi-infinite cylinder from
the infinite cylinder (£ = o0). We recall that the Lagrangian
is (5.1) and the momenta are (5.4), while the shifted
momenta are (5.7). Defining ® = (¢, B,A, Ay, A,), we
search for eigenfunctions of the form

(1,0, 7) = Dye'Premle=io/7, (7.1)
where @, denotes a row of constants, while x = z/r, n € Z,
p is a rescaled momentum and & is a rescaled frequency.
Inserting (7.1) into the field equations derived from (5.1),
the system has solutions when the frequencies are

1 1
&)g:ﬁ\/n%faz, @d:ﬁ\/n%rﬁ, WP = /n?+ p2.

Two degeneracies are present, since the gauge-dependent
(i.e., A-dependent) frequencies @¢ and the A-dependent

frequencies @® appear twice. Instead, the physical

frequency @ appears once. The independent solutions
for the five components of @ are ten: five correspond to
the particles and five correspond to the antiparticles. We
do not write their expressions explicitly. It is sufficient to
recall that the most general solution contains 10 arbitrary
constants.

Now we move to the semi-infinite cylinder. Since the x
dependence of the solutions (7.1) is as simple as e’?*, they
cannot satisfy the boundary conditions ®(¢,0,—¢) = 0 on
Q = 8! x [-#, ), if they are taken separately. However, if
we take linear combinations of functions (7.1) with the
same @, we can impose the conditions ®(z,0, —¢) = 0 on
them. This way, the number of arbitrary coefficients gets
reduced to a half. Ultimately, we obtain five independent
solutions, or a solution with five arbitrary coefficients.

Omitting the overall factor e”?e~®/" and the arbitrary
constant in front, the physical solution reads

A— l iAG
¢ =0, B = ( ) —=———sinp, Aoz—gsinﬂ,
i n?
Ag———<i7asina—|—A—sinﬂ>, A, = cosa —cosp,
n pﬁ
where
a:(z+f)p—ra, ﬂZ(z—i—f)%,

We see that A-dependent contributions are present, but they
are just pure gauge, since the field strength F' = d,Ay —
0y(A,/r) is A independent. It would be impossible to fulfill
the boundary conditions of the semi-infinite cylinder
without a pure gauge part.

To study the limit £ — oo, we multiply the solution by
factors such as 2e¥¥7« and drop all the oscillating terms
when ¢ gets large. The results are

~

P N N
¢,B,A0 - 0, Ae —>F Faeilxpa’ AZ - eilxpa,

which coincide with the physical solutions at £ = oo. If,
instead, we multiply by 2e¥“?s and repeat the same
procedure, we obtain an £ = oo pure-gauge solution.
The other £ = oo solutions are obtained in similar ways
from the general £ < oo solution.

We can identify a solution by the integer n, a momentum
D (e.g., p, in the example above) and a dispersion relation
giving the frequency & in terms of n and p. When we
switch to coherent states, we can label them as

h
Zin = (L Zoms o> Loms L) - (7.2)
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The physical solutions correspond to zg};, and are quantized
as physical particles. We can quantize all the other com-
ponents of Z;, as purely virtual particles. This means
that we give them trivial initial and final conditions, and

|

Stree = — / E pnf®pn
neZ

where Q;,
while ©;,
of (3.16).

As we have explained in the previous sections, there is a
certain liberty in choosing the decomposition (7.2), since
the only constraints are that: (a) each set is complete for
some field @ (i.e., it can be used to expand the field, in
order to functionally integrate over it); (b) altogether, the
eigenfunctions form a complete set for the fields ® and
the momenta 74; and (c) the eigenfunctions have the right
limits for £ — oo.

Note that the solutions of the semi-infinite cylinder
contain five arbitrary real constants, while those of the
infinite cylinder contain twice as many. They are doubled
by the sign choices in the multiplying factors e*"?«, e*¢Ps,
etc., which are used for the large £ limit.

It may be puzzling that the number of integration
variables of the functional integral “doubles” in the limit
¢ — o0, so to speak. Actually, the number of variables is
infinite, so we cannot really say that it doubles. It is
convenient to explain what happens in detail, since similar
instances are met frequently. Consider the Laplacian on the
segment [0, #] with Dirichlet boundary conditions. We have
the eigenfunctions sin(znx/¢), neZ, x€l0,¢]. They
“double” in the limit £ — oo, because, after centering
the segment by means of the shift x =y + (£/2), one
has to distinguish the cases n = even and n = odd, which
give different eigenfunctions for # — oo (sines and cosines,
respectively). Similarly, sin(¢p,) = cos(¢(p, — x/(2¢))),
so the doubling comes from negligible shifts of p,, or w,
which give other eigenfunctions with the same dispersion
relation for £ — 0.

The experimental data we have today, which mainly
concern § matrix amplitudes, are not sufficient to guide us
uniquely through the wide freedom we face when 7 < oo on
a compact €. Probably, changing the basis of physical and
purely virtual frequencies in (7.2) is equivalent to twisting
the boundary conditions, or having different interplays
between the experimental setup and the physical process.
At any rate, once we make our choices of initial, final and
boundary conditions, as well as the basis (7.2), everything
else is uniquely determined.

is the diagonal matrix of the frequencies,
is the diagonal matrix of the factors 7, = £1

remove the on-shell contributions due to them, inside the
diagrams, perturbatively to all orders, with the procedures
of [2,11].

The free action is

pn(tf)+zi7n( )6 Qpnzpm>

/ dt/ i(Z5n®pnRonZpn
neZ

~ 75,05, Q50 Z ) —

on 275,005,923, 75,

pn“pnl>

(7.3)

VIII. GAUGE THEORIES ON A CYLINDER

In this section we study gauge theories on a cylinder
Q= S'x [-£/2,£/2]. We start again from the paramet-
rization (7.1) for the solutions of the field equations of the
infinite cylinder. Then we superpose solutions with the
same frequency, and impose the boundary conditions
®(1,0,-2/2) = d(t,0,£/2) = 0. We find, as expected,
that it is not sufficient to reduce the set of independent
coefficients, as it was for the semi-infinite cylinder, but we
must also discretize the frequencies.

Specifically, we insert

<I>(t, 0, Z) _ ci)(x)einee—itd)/r
into the equations, where x = z/r, n€ Z, and &)(x) are
linear combinations of

eiixv »*—n?
b

eiix\/ A —n? e:tixv A@*—n?
s .

We fix the coefficients of the linear combinations by means
of the boundary conditions, after determining the frequen-
cies @ that admit nontrivial solutions.
The B equation is independent of the other variables, and
just reads
B" = (n* - 1&*)B, (8.1)
where the prime denotes the derivative with respect to x.

Moreover, ¢ does not enter any equation apart from its
own, which reads

P = (n* - 20%)p + Ay, (8.2)
where A vanishes when all the other fields vanish. The Ay
equation depends on A, and B, while the equations of A,
and A, depend on Ay, A,, and B.

The gauge-dependent frequencies are

1 2 2

i \/» k2 7 + n?, nez,

keEN,.
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They are associated with two eigenfunctions. One is

~ 2
—sin (kx> ),
bin mn(ﬂf)

Bkn = Agn = Aﬂkn = Azkn = 0’

(8.3)
where 2 = z — (£/2), and the other one is
= b4
By, =sin | kz— |,
kn sm( ﬂf)
with nontrivial ¢y, A , Ag,, and A_,,.  (8.4)

We omit the expressions of the nontrivial fields here, since
they are not crucial for our discussion. The solutions (8.4)
are the only ones with a nontrivial B.

The solutions (8.3) and (8.4) are those which, by gauge
invariance, match the eigenfunctions of the ghosts C and C.
Let us recall that the gauge transformations are dy¢p = A =
0C and 6,C = 6B. This means that there must exist ®
eigenfunctions that are made of ¢ only, and match the C
eigenfunctions: these are (8.3). Moreover, there must exist
® eigenfunctions where B matches the C eigenfunctions:
these are (8.4). Said in different words, the coherent states
that multiply the solution (8.3) transform into the C
coherent states, while the C coherent states transform into
the coherent states that multiply the solution (8.4), as
explained in the last part of Sec. V.

The other frequencies are gauge independent, but depend
on . Among those, we have the simple frequencies

ol = 7 kZ”TS n?,  neZ  keN,, (85)
with solutions
- ilAY - 4
= "kn AV =in (kx> ),
kn kn(/l /1) kn ( ”{)

Bkn = Af)kn = Azkn =0.

Then we have two other A-dependent frequencies, which
are more involved. Their eigenfunctions have B, =
Agn = 0, and nontrivial Agy,, Azkn and ¢,,,. It is straightfor-
ward to work them out at 1 = 1, where the frequencies
coincide with (8.5). We find Ay = sin(kz2/¢), A, = 0, and
Ag =0, A, =sin(knz/?).

When 4 # 1 it is convenient to expand in powers of
8 = (A—1)/2. The frequencies are

2.2 2
ph ST n 3
@, =k 74_7 + 0(6°),
kn \/ 22 52) ( )

"d/ 0
+52+

and the solutions read

2
Ay = s1n< y > + 0(8%),

. knZ krnZ nzd
Az = l|:COS <7> — COS <7 + T):| + 0(52)’

+ 0(8%),
A, = sin (k;) + 0(8%),

respectively. For the reasons we have explained before, the
distinction between the physical frequencies &)kh and the
purely virtual frequencies a) is to some extent arbitrary.

Once we have the frequenc1es and the eigenfunctions,
we can proceed as in Secs. III, IV, V, and VI, obtain the
coherent-state action (3.43), and work out the evolution
operator U(t;,t;) diagrammatically with the procedure
of Ref. [1].

IX. EINSTEIN GRAVITY

In this section we study Einstein gravity. The Hilbert-
Einstein action

1

~ 162G (9.1)

d*x\/=gR
contains double derivatives of the metric tensor, so it cannot
be used as is to study quantum field theory in a finite
interval of time 7 on a compact manifold Q. The well-
known “TT” action does not have this problem, but differs
from (9.1) by a boundary term, which must be treated
cautiously, in order to preserve general covariance.
Moreover, in Sec. III we have emphasized that we need
an orthodox symmetry. In particular, the Lagrangian must
be invariant without adding total derivatives, which is not
true for the Hilbert Lagrangian of (9.1).

The solution of these problems is as follows. First, we
perform the purely virtual extension of ref. [4], at 7 = oo,
Q = R3. Then, we switch to the invariant metric tensor and
trivialize the symmetry by means of a field redefinition.
Third, we add (invariant) total derivatives and switch to the
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IT action (built with the invariant metric tensor). Fourth,
we restrict to finite 7 and compact Q with the procedure of
Sec. III, introduce the coherent states, and work out the
final action (3.43). Having trivialized the symmetry, these
operations are invariant.

We begin by recalling the purely virtual extension of
gravity at 7= oo, Q = R3?, from [4]. The gauge-fixed
action is

- 1
Sy =1 / d*x\/~gR + / B,(G*(g) — Ag"B,)

- [ Col69) ~ B oo

9.2)

where 4 is a gauge-fixing parameter, G#(g) is the gauge-
fixing function, §:¢" = &0,¢" — ¢*?d,&" — ¢"70,&" is the
variation of the inverse metric tensor under an infinitesimal
diffeomorphism éx* = —&“(x), C* are the Faddeev-Popov
ghosts, C’” are the antighosts, and B, are Lagrange multi-
pliers. For example, we can take G*(g) = d,¢"*, or the
special gauge of Ref. [19], which is more convenient for
various purposes, as it is in Yang-Mills theory.

Next, we introduce the extra vector (*(x), which by
definition transforms as

801 (x) = &' (x = {(x)). (9:3)

The right-hand side of (9.3) must be understood as a
perturbative expansion in powers of {#. As usual, the
Faddeev-Popov ghosts C* are introduced by writing
& = OCH(x), where @ is a constant anticommuting param-
eter. Using ¥, we can build the invariant metric tensor

Gud (%) = (8 = L (X)) (87 = £3())gpo(x = ). (94)

where ¢, = 0,

The field {* must be accompanied by anticommuting
partners H,, and H*, as well as Lagrange multipliers E,. To
preserve unitarity, we require {¥, H 4 H", and E, to be
purely virtual. As in the case of Yang-Mills theories, the
extension amounts to introducing a certain expression in
the functional integral, which is equivalent to “1” on the §
matrix scattering amplitudes, and on the correlation func-
tions of ordinary (which means {#-independent) insertions
of invariant composite fields. However, it allows us to build
new, physical correlation functions, such as those that
contain insertions of the invariant metric tensor (9.4).

Inside the functional integral, the extension is a correc-
tion to the action, which reads

®Note some changes of notation with respect to Ref. [4].

S = / & E,(V(9.C) — Ig"E,)

_ 5 _
—|—/d4xHﬂ6—Cp(V"—ﬂg’d‘ E,)H,

9.5)

where ¢ is the inverse of g,,4, V*(g.{) is an invariant

function (6;V* = 0), and A is a free parameter. For example,

we can take V¥ = 9,¢}", or a mirror of the special gauge.
At this point, we make a change of field variables’

Ch(x) = M (x + La(x)),
H' = (6 — ') HY,

Ch= (o + ),
(9.6)

on the total action S’gf + Sexr to switch from Gu» ¢, C*, HY
t0 Guua» &y Cy, HYy. We do not change the other fields. This
way, we abandon the original metric tensor g, in favor of
the invariant one, g,,4. Moreover, we trivialize the sym-
metry, since in the new variables the transformation of ¢* is
just 6 = & = 0Cy, while g,,4, C4 and H; are invariant by
construction. The trivialized symmetry thus reads

=0B

st =0Ck, sCh=0, 5C »

’ 5B, =0,

(9.7)
all the other fields being invariant.
Note that

1 1
- [ d*x/=gR(g) = ——— [ d*x/=giR
e d*x\/=gR(g) 6nG d*xy/=gaR(ga).

by construction, where g4 inside ,/=gq is the determinant of
Gua- At this point, we eliminate the double derivatives by
switching to the I'T" action, and restrict to a finite interval of
time 7 and a compact space manifold Q:

1 If
Srr = 162G [ dr A d’xy/=gq dU(Fszrfad - FZude;/ld)'

Note that the Lagrangian of this I'T" action, which is built
with the invariant metric tensor, is manifestly invariant, so it
satisfies the identity (3.2).

The gauge-fixing sector must be rewritten as well, by
adding total derivatives, in order to become invariant at the
Lagrangian level. Taking G*(g) = 9,¢** for definiteness,
we write

S =S = [0 =108, - [ 18,07,
+ / 0,Cy + AC,B,) 50" | oo (9.8)
where g, and C* must be understood as functions of % and

(!, according to the change of variables defined by (9.6),
and #* is the flat-space metric. In (9.8) and (9.9) below, the

"Note some different signs with respect to the notation of
Ref. [4].
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integral symbol stands for the drd’x integral restricted to
the interval 7 and the manifold Q.
The extension (9.5) is rearranged as

Sext = /Eu(ab.déy - ;I.d(;bEb)

+ / (0,H, + AH,E,)8:¢" | yu_, pomm (99)

for V¥ = 0,4y, after which we integrate E, away, and
proceed as in the case of gauge theories.

We have taken GF(g) =0,¢" and V¥ =09,gy, for
concreteness, but it is easy to adapt the formulas to the
special gauge and its mitror, or other choices.

The total action is

Siot = ng + Sext

and its symmetry is (9.7). At this point, we read the
Lagrangian L from S,,, and observe that it is orthodoxi-
cally symmetric, as is evident from the expression of (9.8),
while the Lagrangian of (9.9) is manifestly invariant. Yet, L
contains infinitely many time derivatives, due to the
expansion of expressions like (9.3) in powers of {*.

The expansion around flat space is defined by writing
gy =n" + 2khy’, where k = v/87G and G is Newton’s
constant. If we make the replacements

Cy—«Cy, B, —>K_lBﬂ, C, —>K'_ICM, A = A3,
{y =Ly, Hy—«Hy, E,— K'_IE/“ I:Iﬂ - K_II:I”
1 — A2,

the perturbative expansion is the expansion in powers of «.

Equations (9.6) show that {# — «x{# plus higher order
corrections. The Taylor expansions of arguments such as
x* —¢* and x* + {1 inside (9.3), (9.4) and (9.6) raise the
|

powers of k by one unit for each derivative they generate on
the fields. This means that we are in the situation described
in appendix B. Applying the construction of Sec. III, with
the rearrangement of appendix B, we build the correct
action (3.43) for gravity restricted to a finite interval of time
7, on a compact space manifold Q. Applying the procedure
of [1], we build the evolution operator U(t;,1;) between
arbitrary initial and final states, with arbitrary boundary
conditions, preserving general covariance.

X. QUANTUM GRAVITY WITH PURELY
VIRTUAL PARTICLES

The results of the previous section extend to quantum
gravity with purely virtual particles, provided we replace
the Hilbert-Einstein action with the appropriate action.

Since coherent states are “enemies” of higher derivatives,
as we have learned repeatedly, we cannot adopt the higher-
derivative formulation of Ref. [8], where the Lagrangian
density is made of the Hilbert-Einstein term R, plus the
cosmological term, plus the quadratic terms R” and R, R"™.
We must start from the two-derivative formulation of
ref. [22] at 7 = o0, Q = R3, which we briefly recall here.

Besides the metric tensor g,,, the theory contains a scalar
field ¢ of mass my (the inflaton) and a spin-2 purely virtual
particle y,, of a certain mass m,. The action is

Soc(9: .0, @) = Sue(9) + S,(9.x) + Sy(g +w. ),

(10.1)
where
S (2Ac+R 23>m ) H4Ac
ne(9) =~ Tg G/v R Py o

is the Hilbert-Einstein action with a cosmological con-
stant A,

sutot) =3 (105 [ va[Doprs - 2 1 - 5]

is the inflaton action, and

S,(9:x) = Sue(9 +w) — Sue(9) +/ [—zﬂfﬂu

is the y,, action, with

YV = 2)(/41/ +)(;w)( -

6SuE(g )

2)( ﬂp/’{/lle ’

= p _
167rG 90w —x

)
O g=g+y

X :Z;wg/w-

We gauge-fix (10.1) as in (9.2), and make the purely virtual extension as in (9.5). Then we switch from the variables g,,,,
&, X ¢, C*, H to the variables g,,q4, > Xuwas C4» Cli» Hy, by means of (9.4), (9.6) and

pa(x) = p(x — {(x)).

Kuwa(x) = (G = L(x)) (8

7 — CL () o (x = 0).
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The action (10.1) is invariant under the change of variables
> D> Xy = Guvd> Pas Xwa» Which s just a diffeomorphism.
This means that we can simply view (10.1) as a function of
Guwds Pa> and 4. Next, we add total derivatives to eliminate
the terms like ¢4 - @,_1400¢4, in favor of terms like
P1d " Pn2d0Pn_1a0Pnq, In the quadratic sector of the
Lagrangian. Moreover, we rearrange the gauge-fixing
part as in (9.8) and the purely virtual extension as in (9.9).
At that point, we can identify the eigenfunctions and the
coherent states. As far as the interaction sector is concerned,
we rearrange it as explained in appendix B. Then we use
the procedure of Sec. III to build the final action (3.43) for
the restriction to finite 7 and compact Q. From that
point onward, we can proceed as explained in Sec. III and
Ref. [1], and build the evolution operator U(t;, t;) between
arbitrary initial and final states, with arbitrary boundary
conditions.

A. Unitarity in the presence of a cosmological constant

The cosmological constant A is nonvanishing, because
renormalization turns it on anyway, even if we start from a
vanishing Ac. A nonzero A raises some issues that we
must address.

First of all, flat space is not a solution of the field
equations (with ¢ =0, y,, = 0), so it would be better to
formulate perturbation theory by expanding the metric
tensor g,, around a de Sitter or anti-de Sitter metric,
according to the sign of A, rather than the flat-space
metric. However, an expansion of that type does not allow
an easy switch to energy/momentum space by means of
Fourier transforms, and makes the calculations of loop
diagrams, and the proofs of general theorems, very hard.

Since the physical results do not depend on the expan-
sion we make, we may insist on using the expansion around
flat space, in spite of its non standard features. For example,
it generates one-leg vertices and a spurious graviton mass
term, which can even be of tachyonic type, depending on
the sign of A.

Whatever difficulties the expansion may generate, they
are of a spurious nature, which means that they must
compensate, and ultimately cancel out. In this spirit, the
expansion around flat space is preferable, because its
unusual features are simpler to deal with.

The other problem concerns the S matrix: we do not
know how to define asymptotic states and S matrix
amplitudes on nonflat spacetimes [23]. What about unitar-
ity, then?

Although we cannot claim that the S matrix is unitary in
a strict sense, when A, # 0, we can still claim that it is
unitary up to effects due to the cosmological constant [21].
Those effects are small for all practical purposes: a
scattering process should involve wavelengths as large as
the universe to be affected by A¢ in a non negligible way.

Besides, now we have a simpler way out. Thanks to the
results of this paper and [1], we are less dependent on the

paradigms that have dominated the scene since the birth of
quantum field theory. In particular, we can study unitarity
without being tied to the S matrix, by concentrating on the
evolution operator U(t;, t;).

We have shown that we can build a unitary U(z,t;)
diagrammatically in a finite interval of time 7 = #; — #;, on a
compact space manifold Q, with arbitrary initial and final
states, and arbitrary boundary conditions. The goal has
been achieved both in Einstein gravity (which is not
renormalizable, but this does not jeopardize its perturbative
unitarity) and in quantum gravity with purely virtual
particles (which is renormalizable and unitary). In the first
case the cosmological constant can be added with no
difficulty, and U(t, ;) remains well-defined and unitary
for every 7 < oco. In the second case, the cosmological
constant is already present by default.

This means that the cosmological constant does not have
a problem with unitarity. It does have problems with the
very notions of S matrix and asymptotic states. Given that
the difficulties only appear in the 7 — oo limit, the 7 < oo
formalism we have developed here might suggest new
ways to investigate asymptotic states in gravity with a
cosmological constant.

XI. CONCLUSIONS

When we study gauge theories and gravity on a compact
manifold, possibly with boundary, and on a finite interval
of time, we face the nontrivial task of formulating the
initial, final, and boundary conditions in invariant ways.
The ordinary gauge potential A# and the metric tensor g,
are not straightforward to handle, in this respect. Nor are
the field strength F#*“, in non-Abelian gauge theories, or
the curvature tensors R, R,,,, R in gravity, because none
of them is invariant.

The purely virtual extensions of gauge theories and
gravity formulated in ref.s [3,4] come to the rescue, because
they allow us to define invariant matter and gauge fields
wy and A, and an invariant metric tensor Gud» Without
changing the ordinary physical quantities, such as the §
matrix amplitudes and the correlation functions of non-
linear invariant composite fields, like Fy, F**“, yry, etc. Yet,
they allow us to study new correlation functions, like those
of the invariant fields y 4, A4, and 9ua- They also provide a
way of formulating invariant initial, final and boundary
conditions in gauge theories and gravity on a compact
manifold €, in a finite interval of time 7.

Switching to the invariant variables 4, A%, and g4, it is
also possible to “trivialize” the symmetries. Then it is
relatively straightforward to organize the action properly,
and work out the eigenfunctions and the frequencies for the
expansions of the fields. The functional integral is defined
as the integral on the coefficients of those expansions.
Coherent states are introduced, and the evolution operator
U(t;, t;) is worked out between arbitrary initial and final
states. The formalism we have developed allows us to

pvs Nuvpos
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calculate U(t, ;) diagrammatically, and perturbatively, for
arbitrary boundary conditions on d€2. In all the operations
we make, the local symmetries are under control, so
U(t;, t;) is gauge invariant and invariant under general
coordinate transformations.

We have illustrated the basic properties of the formalism
in Yang-Mills theory on two relatively simple manifolds:
the semi-infinite cylinder and the cylinder.

The limit 7 — co, Q — R3 (which would give the usual S
matrix) is only regular when the cosmological constant A
vanishes, due to the problems related to the definitions of
asymptotic states and S matrix amplitudes at A- # 0. Yet,
such problems are not problems of unitarity per se, because
the evolution operator U(t;,t;) of quantum gravity is
unitary for every 7 < oo.

It might be impossible to test the S matrix predictions for
a long time, in quantum gravity. Hopefully, working with
U(t;, t;) at finite 7 on a compact Q can allow us to explore
more options, and figure out experimental setups that could
amplify tiny effects like those of quantum gravity till they
become detectable.
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APPENDIX A: FORMAL PROPERTIES OF §=60A

In this appendix we study the key formal properties of
the operator 6 of the gauge transformations, and give a very
economic proof of theorem (3.25).

Adopting the notation (3.26), (3.27), (3.28) of Sec. III B,
we can write 6 = OA,

A= D o

a pel

(A1)

where “c.c.” denotes the complex conjugate. It is easy to
prove the properties

=0, Audt =076, +uTosA, AV =09T65A,
i 6 o o O
A=Aos—, —A=Aoc; , A2
Sul B out sl S50a T gue (A2)

where A is meant to act everywhere to its right.

Now we prove theorem (3.25), stating that a local
function X that solves AX =0 can be written as X =
Xo + Y, where Xy = X|,_,_;_;—o and Y is a local function.

Define the operators

Z aT
a pel

D= Z Z ( vy ;2) +c.c.
a pell Un

Using (A2), it is straightforward to prove the identities

[D,A]=[D,A]=0, {A,A}=D. (A3)

The former is a consequence of homogeneity.
Now, decompose X as X = X,y + X'. Clearly, AX, =
= 0. Moreover, D'X" is well-defined, by homo-

geneity. Using (A3), we immediately find

X' =DD7'X' = {A,A}D7'X' = AAD'X’
+AD'AX' =AY, Y =AD'X,

which proves the theorem.

Note that we never have to involve, discard, or pay
attention to total derivatives, so the theorem applies to
functions, not just functionals.

APPENDIX B: HIGHER-DERIVATIVE
INTERACTIONS

In this appendix we extend the results of Sec. III to
interaction Lagrangians that contain arbitrarily many deriv-
atives of the fields, as long as their number grows together
with the power of some coupling. This part is only needed
for gravity. We show that we can rearrange the Lagrangian
L' so as to finally have an action with the form and the
properties of (3.43).

We assume that the Lagrangian L (¢, ¢) is decomposed
as (3.1), that the symmetry is orthodox and linear, that the
quadratic sector Lfree(qﬁ,(}ﬁ) has the same structure as in
Sec. III (no more than one derivative on each field, no more
that two derivatives in each term), but we allow Liy (¢, ¢)
to contain arbitrary monomials 0™ ¢, ---0"¢, of the
fields, differentiated arbitrary numbers of times m,,...m,,.
For definiteness, we assume that L, (¢, ¢) is proportional
to some coupling 4, which we use to trace the interaction
terms. We write them as O(4), or O(4"), n > 1, when we
mean higher orders.

We proceed as in Sec. III up to the integrated Lagrangian
L', expressed in terms of coherent states. This means that:
we make the shift (3.34) with the conditions (3.44); then
we work out the momenta 7”1'4,, make the redefinition (3.42),
and expand 7z , @' in coherent states. We obtain the same
quadratic part we had before, then the linear terms due to
AL, plus interactions L (z,Z) = O(4).

Before the expansion in coherent states, we have a wide
freedom. For example, we can change the interaction sector
of the Lagrangian by adding gauge invariant total space
derivatives. After the switch from 7 Jz,/,, @' to coherent states,
these corrections give legit vertices. Moreover, the expan-
sion takes care of the space sector, so we do not need to
worry about the space derivatives any longer. What we have
to do, instead, is rearrange the interaction part £/ (z,z), to
remove the time derivatives of z and z, which are still there,
and can be arbitrarily many. We achieve this goal by adding

. . I ;
(gauge invariant) total time derivatives to L] .
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We can arrange £'(z,Z) into a sum

L ( ) E;ree(z’ Z) +£{nt0(zv Z) + Egnt der(Z’z)’ (Bl)
where L{ . (z, Z) includes the quadratic terms, as well as the
linear terms due to AL, £{((z.2) = O(4) is free of time
derivatives, while L . (z,Z) = O(4) vanishes when all
the time derivatives are set to zero.

We also assume that the each term of £/ . has a power
of A that is equal to the number of its time derivatives,
at least. We remove L/ .. iteratively by means of field
redefinitions and dropping gauge invariant total derivatives,
without affecting the symmetry and the other properties of
the Lagrangian £’

We proceed by induction. We assume that £/ ;.. has N
powers of 4 more than one for each time derivative, and
write L], 4or = O(AV)O(20,) to mean this. We give a
procedure to rearrange the Lagrangian so that the new
Ll ger 18 OAYTO(29,). Since we are able to do so for
arbitrary N, starting from N =0, we remove LI ..
entirely.

Replacing the functional derivatives of (A1) with ordi-
nary derivatives, we can write the operator A as

2=Y S Y i

J=0 a nelf

(B2)

where 1§, and vj, denote the j-th time derivatives of u;; and

v, respectlvely

We know that L/ must be gauge invariant by itself

int der

(AL, 4r = 0), since A does not mix derivatives and orders
of the interactions. Using theorem (3.25), we can write
‘C{m der — XO +AY,

where X is a function that depends only on w, and w7,
(the jth time derivatives of w$ and w%), and Y is another
function.

Since every term L]
Xo has the form

= Z Z Z w;’»‘nXZ'j +c.c.,

J>0 @ ,efy

't der MUSt contain time derivatives,

for certain A invariant functions X/,
We can write

and their conjugates.

=D ) X+ X§e e,

a pell

where X¢ are other A invariant functions, and X are
gauge invariant total derivatives. As part of the rearrange-
ment to get to the correct final action, we drop X{)der.

Now we consider Y. Since it must contain time deriv-
atives, its form is

=% [Zwmymz (WY, 4 2Ty )} e

>0 pef - @

The only thing that matters is AY, so we can replace Y with

S (S St ) +ee

J>0 nely a
YZﬂ_ = YZﬂ_ + 0163AYZ£,
since AY = AY’, by the first and third identities of (A2).

Subtracting gauge invariant total derivatives from L!
we rearrange this expression as

N Z (ZW(IY(I 4 ZuaTya > +c.c.,

nell ~ @

int der?

for some Y9 and f’ﬁ+.
So far, the rearrangement gives

mt der - X= Z |:ZW Xa

nell- @

N ]

where € is the statistics of w%. Note that X4, Y% and Y a
are O(ANTHO(1). )
At this point, we remove X

e,,Aya)

(B3)

by means of the field

redefinitions,
-
_ _, (=1)"X5 + AYy _ . oY
WZ d WZ - ) MZ - uﬁ - 4
a0 a; d
27% w5 2thiwy
AY?
794 - 9 — — (B4)
" T 2%
n n

and their conjugates. We show that this operation
replaces L ., With higher-order derivative interactions
O(AN1)O(20,), and preserves the key properties of Lf,
and £mt0

When we apply the redefinition (B4) to £, ,., We obtain
O(N1)O(20,) at least, which go into the new L[, 4.
When we apply (B4) to Lf.. minus the universal kinetic
terms (3.31) and (3.32), we obtain: (a) interaction terms
with no derivatives, which go into the new L/ ,; plus
(b) O(WN*1)O(29,), which go into the new L! The
same occurs when we apply (B4) to L/ .

It remains to apply the redefinition (B4) to (3.31) and
(3.32). The second orders of the Taylor expansions give

int der”
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OGN O(19,). So, it is sufficient to focus on the first
orders of the Taylor expansions.
From (3.31) we get the correction

=)0 wa(xg 4 (1% AYE)
a npel
+§$ZZ S”X“-FAY{I]W + c.c.
2 nel

The first term subtracts the first one of (B3). The rest is a
gauge invariant total derivative, which we remove.
From (3.32) we get the correction

_Z Z A(dTye,) +§EZ Z A(ud™ye,) +c.c.,

a pel a nel

which cancels the rest of (B3), plus gauge invariant total
derivatives.

In the end, we remain with a £ .. that is O(AV"!) x
O(49,). That is to say, we have raised its A power by one

unit. Iterating in N, we can make £/, .., disappear entirely.

Summarizing, the effects of the iterated redefinitions (B4),
the rearrangements and the droppings of gauge invariant total
derivatives in the interaction sector are: (1) they cancel the
term L/ . (2) they do not affect the symmetry trans-
formations (3.28); this is evident from (B4), using § = 0A;
(3) they do not affect the universal kinetic terms (3.31) and
(3.32); (4) they do not affect Lf,.; (5) they do not change the
structure of £/ ; (6) they leave the Lagrangian £ orthodoxi-
cally symmetric. In the end, we have the correct £

L'(z,2)

= Elfree(z’ Z) + E{ntO(Z’ Z) (BS)

Note that point (6) is tautologically true now: a gauge
invariant Lagrangian of the form (BS5) is necessarily ortho-
doxically invariant, if the symmetry is linear, since the
universal kinetic terms are invariant by themselves, and
the rest does not contain time derivatives.

The field redefinitions (B4) are perturbative, so their
Jacobian determinant is trivial, if we use the analytic or
dimensional regularization techniques [20].

To get to the action (3.23), we integrate on time, add the
usual endpoint corrections, as in (3.23) and (3.43), and we
are done.
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