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We study gauge theories and quantum gravity diagrammatically in a finite interval of time τ, on a
compact space manifold Ω. The initial, final, and boundary conditions are formulated in gauge invariant
and general covariant ways by means of purely virtual extensions of the theories, which allow us to
“trivialize” the local symmetries and switch to invariant fields (the invariant metric tensor, invariant quark,
and gluon fields, etc.). The evolution operator Uðtf ; tiÞ is worked out for arbitrary initial and final states, as
well as general boundary conditions on ∂Ω. We show that Uðtf ; tiÞ is well defined and diagrammatically
unitary for every τ ¼ tf − ti < ∞. The formulation is extended to include purely virtual particles. In
quantum gravity, where the cosmological constant ΛC challenges the definition of an S matrix, the results
allow us to prove unitarity at τ < ∞. We work out the frequencies and eigenfunctions in some explicit
examples, including Yang-Mills theory on the finite cylinder.
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I. INTRODUCTION

Perturbative quantum field theory mainly focuses on the
calculation of S matrix amplitudes, which describe scatter-
ing processes among asymptotic states, where the incoming
and outgoing particles are separated by an infinite amount
of time. This approximation is good for most practical
purposes, especially in collider physics. However, it is just
an approximation. From a theoretical point of view, it does
not provide a completely satisfactory understanding. A
more powerful and general approach is required, where the
key issues (such as locality, renormalizability, and unitarity,
among the main ones, and then symmetries, anomalies, the
anomaly cancellation, etc.) are understood without making
this simplification.
It is possible [1] to formulate perturbative quantum

field theory diagrammatically in a finite interval of time
τ ¼ tf − ti, and on a compact space manifold Ω, so as to
move all the details about the restrictions to finite τ and
compact Ω away from the internal sectors of the diagrams
(apart from the discretizations of the loop momenta), and
code them into external sources. The usual diagrammatic
properties apply, or can be generalized with little effort.
This way, the evolution operator Uðtf ; tiÞ can be calculated

perturbatively between arbitrary initial and final states, with
arbitrary boundary conditions on ∂Ω. Unitarity, that is to say,
the equality U†ðtf ;tiÞUðtf ;tiÞ¼1, can be studied diagram-
matically by means of the spectral optical identities [2].
The theory is renormalizable whenever it is so at τ ¼ ∞,
Ω ¼ RD−1, where D denotes the spacetime dimension.
Purely virtual particles are introduced by removing the
on-shell contributions of some physical particles, and all
the ghosts, from the core diagrams, as explained in [2], and
trivializing their initial and final conditions.
In this paper we consider the cases of gauge theories and

gravity in detail, because certain issues that are specific to
local symmetries deserve attention, when τ is finite and the
space manifoldΩ is compact. For example, we must specify
the initial, final, and boundary conditions without breaking
the local symmetries. We cannot just use the gauge potential
Aa
μ and themetric tensor gμν, for this purpose. Nor canwe use

the field strengthFa
μν, and the curvature tensorsR,Rμν,Rμνρσ,

because they are not invariant.
What comes to the rescue is the purely virtual extension

of gauge theories and gravity formulated in ref.s [3,4],
which is based on the introduction of extra bosonic fields,
together with their anticommuting partners. The extra fields
can be used to perturbatively “dress” the noninvariant fields
and make them invariant: we can build invariant gauge
fields Aμ

d, invariant quark fields ψd, and an invariant metric
tensor gμνd. The ordinary physical quantities, such as the S
matrix amplitudes and the correlation functions of the usual
(nonlinear) invariant composite fields (like Fa

μνFμνa, ψ̄ψ ,
etc.) are unaffected. In addition, new, physical correlation
functions can be defined, and calculated perturbatively,
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such as those of the invariant fields Aμ
d, ψd, and gμνd. The

reason why the extra fields must be purely virtual is to
preserve unitarity: if they were not purely virtual, the
extended theory would propagate ghosts.
These tools are also useful to provide invariant initial,

final, and boundary conditions in gauge theories and
gravity in a finite interval of time τ, on a compact space
manifold Ω. A crucial simplification comes from the
possibility of “trivializing” the local symmetries, that is
to say, reduce them to simple shifts of fields. This is
achieved by switching to the invariant variables ψd, A

μ
d, and

gμνd, by means of a field redefinition. Then, it is relatively
straightforward to organize the action efficiently, work out
the eigenfunctions and the frequencies for the expansions
of the fields, and introduce coherent states [5], which are
crucial to study the Uðtf ; tiÞ diagrammatics and make
perturbative calculations without introducing unnecessary
burdens [1]. The functional integral is defined as the
integral on the coefficients of the expansions. The local
symmetries are under control in all the operations we make,
so Uðtf ; tiÞ is gauge invariant and invariant under general
coordinate transformations.
We illustrate the basic properties of our formalism in

Yang-Mills theory on two relatively simple space mani-
folds: the semi-infinite cylinder and the finite cylinder.
The coherent states are the eigenstates of the annihilation

operator. In the Lagrangian approach, which we adopt here,
the switch to coherent states is just a change of variables in
the functional integral, combined with a wise way of setting
the initial and final conditions. In quantum mechanics, we
switch from coordinates q and momenta p to z ∼ qþ ip,
z̄ ∼ q − ip, and set the initial conditions on z, the final
conditions on z̄. In quantum field theory analogous
operations are made on the fields. Uncovering the specifics
of these operations in gauge theories and gravity is part of
the problem we need to face, and its solution is given in the
paper. For convenience, we keep referring to the new
variables by means the Hamiltonian terminology “coherent
states”.1

Purely virtual particles are a key ingredient of the whole
formulation, so we discuss this concept in some detail. A
theory that contains purely virtual particles is built from an
extended (possibly unphysical) theory,2 which is quantized
as usual (that is to say, by means of the common
diagrammatics, defined by the Feynman iϵ prescription),
and performing a certain set of operations on it, like
rearranging the diagrammatics, and making a projection
on the space of states, to define the physical space. The
projection defines the final, physical theory.

The new diagrammatics is built by removing the on-shell
contributions of all the ghosts χgh, and possibly some
physical particles χph, from the diagrams of the extended
theory, at every order of the perturbative expansion. This is
done in one of the following equivalent ways: (i) a certain
nonanalytic Wick rotation [7,8], (ii) dropping the spectral
optical identities associated with the unwanted on-shell
contributions [2] from the Cutkosky-Veltman identities
[9,10] (which are the diagrammatic versions of the unitarity
equation S†S ¼ 1), or (iii) replacing the standard diagrams
with suitable combinations of non-time-ordered diagrams,
as shown in Ref. [11].
In addition, one has to make the projection mentioned

above. At τ ¼ ∞, the projection amounts to ignore the
diagrams that have χgh and χph on the external legs. When
τ < ∞, it amounts to choose trivial initial and final
conditions for the coherent states of χgh and χph. The final
theory is unitary, provided all the ghosts of the extended
theory are rendered purely virtual.
Certain aspects of the construction of theories with

purely virtual particles resemble what we normally do to
gauge-fix a gauge theory, where we extend the theory by
including unphysical excitations, such as the Faddeev-
Popov ghosts, and project the extension away at the end.
The crucial difference is that, in the case of purely virtual
particles, no symmetry is there to help us. This is why we
need to switch to a different diagrammatics, before making
the projection.
It is worth to stress that, before the projection, the

extended theory is just a mathematical tool to get to the
correct, final theory. It is not possible to solve the problem
of ghosts by just changing the viewpoint on a theory, or
focusing on different quantities (e.g., “in-in” correlation
functions, instead of “in-out” ones, or different prescrip-
tions for the propagators, such as the retarded potentials,
instead of the Feynman one, and so on), or moving back
and forth among negative norms, unbounded Hamiltonians,
non-Hermitian Hamiltonians, negative probabilities, etc.
None of these operations really changes the theory: they
just change the reference frame, so to speak, within the
same theory. Even the Lee-Wick idea of making “abnormal
particles” decay [12] cannot solve the problem,3 because a
theory with unstable ghosts is still a theory with ghosts.
Necessarily, it must be abandoned at some point, in favor of
a different theory, and the switch from one to the other must
be a radical operation that cuts out the sick portion, like a
guillotine: this is the projection we are talking about.
The main application of the idea of purely virtual particle

is the formulation of a theory of quantum gravity [8], which
provides testable predictions [14] in inflationary cosmol-
ogy [15]. In phenomenology, purely virtual particles open
new possibilities, by evading many constraints that are

1Details on the correspondence between the operatorial ap-
proach to coherent states and the functional integral can be found
in the paragraph 9-1-2 of [6].

2The extended theory is unphysical if it contains ghosts (fields
with kinetic terms multiplied by the wrong signs). 3For Lee-Wick ghosts in quantum gravity, see [13].
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typical of normal particles (see [16] and references therein).
The diagrammatic calculations are not more difficult than
those based on physical particles. It is possible to imple-
ment them in softwares like FeynCalc, FormCalc, LoopTools

and Package-X [17].
Purely virtual particles can also be used as mere

mathematical tools, to study uncommon aspects of com-
mon theories, as shown in [3,4] and here. In this paper, we
are using them to deal with the local symmetries at finite τ
and on a compact Ω, to express the initial, final, and
boundary conditions in invariant ways.
In common textbooks, the diagrammatic formulation of

quantum field theory focuses on the S matrix (τ ¼ ∞),
while the τ < ∞ case is mostly treated formally, from the
operatorial definition Uðtf ; tiÞ ¼ e−iHτ. Not only, but when
a compact space manifold is considered, it is typically the
torus, which does not pose particular difficulties. Beyond
the textbook approaches, and besides our previous paper
[1], we point out the results of Nomoto and Fukuda, who
studied QED at finite τ in ref. [18], still on the torus. Yet,
the challenges of non-Abelian Yang-Mills theories and
quantum gravity at τ < ∞ on an arbitrary (especially,
compact) space manifold Ω require the general formalism
developed here.
The results of this paper and [1]make us less dependent on

the paradigms that have dominated the scene in quantum
field theory since its birth. For example, we can study
unitarity without being tied to the Smatrix. This is important
in quantum gravity, where it makes no sense to talk about the
unitarity of the S matrix (if the cosmological constant ΛC is
nonvanishing), since proper definitions of asymptotic states
and S matrix amplitudes are unavailable at ΛC ≠ 0. Yet,
unitarity is an essential requirement for a theory to be
physically acceptable. Other concerns revolve around the
definition of energy and the treatment of the Hamiltonian.
Here we bypass these problems. We show that the evolution
operator Uðtf ; tiÞ of quantum gravity with purely virtual
particles, defined by the functional integral, is diagrammati-
cally unitary for arbitrary τ < ∞. This means that the
problems of the S matrix at ΛC ≠ 0 are not inherent to the
issue of unitarity per se.
The paper is organized as follows. In Sec. II we consider

a simple warm-up toy model to illustrate some of the issues
we need to face when we want to find the right eigen-
functions for the expansions of the gauge fields. In Sec. III
we work out the general formalism for coherent states in
gauge theories. In Sec. IV we rearrange the Lagrangian in
Yang-Mills theories to make it ready for the restriction to
finite τ and compact Ω. In Sec. V we introduce coherent
states in Yang-Mills theories at the quadratic level. In
Sec. VI we include the interactions. In Secs. VII and VIII
we illustrate the formalism in two relatively simple cases:
Yang-Mills theory on the semi-infinite cylinder, and on the
finite cylinder. In Sec. IX we formulate Einstein gravity at
finite τ and compactΩ. In Sec. X we extend the formulation
to quantum gravity with purely virtual particles, and

discuss the problems that occur in the limit τ → ∞,
Ω → RD−1, in the presence of a cosmological constant.
Section XI contains the conclusions.

II. A WARM-UP TOY MODEL

The first difficulty we meet when we want to formulate
gauge theories and gravity on a compact manifoldΩ, is that
we do not know the eigenfunctions we should use for the
expansions of the fields. In a generic setting, the eigen-
functions of the Laplacian are not the right ones. In this
section we study a toy model that illustrates the main issue,
as well as its solution.
Specifically, we consider the simple quadratic Lagrangian

L ¼ ϕ̇2

2
þ αϕ̇ϕ0 −

ν2

2
ϕ02 ð2:1Þ

for a scalar fieldϕ on a segmentΩ ¼ ½0;l� in a finite interval
of time ðti; tfÞ, tf ¼ ti þ τ, with Dirichlet boundary con-
ditions ϕ ¼ 0 on ∂Ω. The dot denotes the time derivative,
while the prime denotes the space derivative.
What is not clear is how to deal with the term ϕ̇ϕ0. We

could eliminate it by means of a redefinition of space and
time, but this would complicate the investigation in another
way, by mixing the boundary conditions with the initial and
final conditions. Moreover, we can apply the redefinition
only once (i.e., for a single field), which makes it useless in
the presence of more fields with kinetic Lagrangians of the
same type. It is necessary to work out a general approach
that can be easily exported to the cases treated in the next
sections.
We begin by working out the momentum πϕ and the

Hamiltonian H, which are

πϕ ¼ ϕ̇þ αϕ0; Hðπϕ;ϕÞ ¼
1

2
ðπϕ − αϕ0Þ2 þ ν2

2
ϕ02:

Note that H is positive definite for every real α. Then we
extend the Lagrangian to

L0ðϕ; ϕ̇; πϕ; π̇ϕÞ ¼
1

2
ðπϕϕ̇ − π̇ϕϕÞ −Hðπϕ;ϕÞ; ð2:2Þ

which is convenient because it contains both ϕ and πϕ as
independent variables.
The equations of motion must be solved with the

Dirichlet boundary conditions ϕ ¼ 0 on ∂Ω. There is no
boundary condition on πϕ, because, as we are going to see,
the coherent states are not built with ϕ and πϕ, but with ϕ

and ϕ̇. Note that ϕ ¼ 0 on ∂Ω implies ϕ̇ ¼ 0 on ∂Ω. This
way, the coherent states automatically vanish on ∂Ω as well.
For these reasons, it is convenient to introduce the shifted
momenta

π̄ϕ ¼ πϕ − αϕ0; ð2:3Þ
and add π̄ϕj∂Ω ¼ 0 to the boundary conditions.
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The integrated Lagrangian (2.2) can be written as

L0 ¼
Z

l

0

L0dx ¼ 1

2

Z
l

0

ð π̄ϕ ϕ Þ
� −1 ∂t

−∂t ν2∂2x − 2α∂t∂x

�

×

�
π̄ϕ

ϕ

�
dx: ð2:4Þ

The boundary conditions allow us to freely integrate
by parts.
The field equations can be read from (2.4). The eigen-

functions with energy ω (∂t ¼ −iω) are

ϕnðxÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν2

lðν2 þ α2Þ

s
exp

�
−
iαωnx
ν2

�
sin

�
nπx
l

�
;

π̄ϕn
¼ −iωnϕn; ωn ¼

nπν2

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ α2

p ; ð2:5Þ

having normalized them as explained below. We have
ϕ�
nðxÞ ¼ ϕ−nðxÞ, ω−n ¼ −ωn.
The expansions of the fields in terms of these eigen-

functions read

ϕðt; xÞ ¼
X
n≠0

anðtÞϕnðxÞ; π̄ϕðt; xÞ ¼ −i
X
n≠0

anðtÞωnϕnðxÞ;

a−nðtÞ ¼ a�nðtÞ: ð2:6Þ

The functional integral is the integral on the variables an
(or, equivalently, the coherent states, see below). It is
important to stress that the expansions (2.6) define the
space of functions on which the functional integral is
calculated. In this spirit, we do not need to prove, or
require, that the expansions converge.
The orthogonality relations obeyed by the eigenfunc-

tions can be worked out as follows. From (2.4), we find

� −1 −iωn

iωn ν2∂2x þ 2iαωn∂x

��
π̄ϕn

ϕn

�
¼ 0.

Multiplying by the row ðπ̄ϕm
ϕmÞ and integrating on Ω, we

obtain

0 ¼
Z

l

0

ð π̄ϕm
ϕm Þ

� −1 −iωn

iωn ν2∂2x þ 2iαωn∂x

��
π̄ϕn

ϕn

�
dx:

ð2:7Þ

Transposing this expression, exchanging n with m, inte-
grating by parts where necessary, and subtracting the result
to (2.7), we find

0 ¼ ðωn þ ωmÞ
Z

l

0

ð π̄ϕm
ϕm Þ

�
0 −1
1 2α∂x

��
π̄ϕn

ϕn

�
dx:

Dividing by ωn þ ωm, we obtain the orthogonality relations
for m ≠ −n. Choosing the normalization as in (2.5), the
orthonormality relations read

Z
l

0

ð π̄ϕ−m
ϕ−m Þ

�
0 1

−1 −2α∂x

��
π̄ϕn

ϕn

�
dx ¼ 2iωnδmn:

ð2:8Þ

Now we work out the expansion of the integrated
Lagrangian (2.4). Consider the right-hand side of the
identity (2.7). Multiplying it by aman=2, summing on m
and n, and adding the result to (2.4), we get

L0 ¼ 1

2

X
n≠0;m≠0

amðȧn þ iωnanÞ
Z

l

0

ð π̄ϕm
ϕm Þ

×

�
0 1

−1 −2α∂x

��
π̄ϕn

ϕn

�
dx:

Formula (2.8) ensures that all the terms with m ≠ −n drop
out, and we remain with

L0 ¼
X
n>0

iωnða�nȧn − ȧ�nanÞ − 2
X
n>0

ω2
na�nan;

having halved the sum by using a−n ¼ a�n.
At this point, we define the coherent states zn ¼ an and

z̄n ¼ a�n, and proceed as usual (see [1] for a derivation in the
notation we are using here). Once we include the right
endpoint corrections, to have the correct variational prob-
lem, the complete action is

S ¼ −i
X
n>0

ωnðz̄nfznðtfÞ þ z̄nðtiÞzniÞ

þ
X
n>0

Z
tf

ti

dt½iωnðz̄nżn − ˙̄znznÞ − 2ω2
nz̄nzn�; ð2:9Þ

where zni ¼ znðtiÞ, z̄nf ¼ z̄nðtfÞ are the initial and final
conditions.

III. COHERENT STATES IN GAUGE THEORIES
AND GRAVITY

A nontrivial issue is to introduce coherent states in gauge
theories and gravity, and set invariant initial, final, and
boundary conditions. The goal is to work in a general
setting, which means without shortcuts (like choosing
particular gauge-fixings), because we want to have gauge
independence under control, and be able to make compu-
tations with arbitrary gauge-fixing parameters, as we
normally do at τ ¼ ∞, in Ω ¼ RD−1.
The properties we lay out in this section are useful for

both gauge theories and gravity, because they do not rely of
the particular form of the local symmetry. This is possible
because, by means of the formalisms of Refs. [3,4], which
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we review in the next sections, we can rephrase the local
symmetries in a universal form, which amounts to arbitrary
shifts δΛφ ¼ Λ of certain (purely virtual) extra fields φ.
This is precisely the trick we need to specify invariant
conditions on the fields.
We start from a Lagrangian Lðϕ; ϕ̇Þ that depends on a

certain number of fields ϕI and their first derivatives. We
assume that it can be decomposed as

Lðϕ; ϕ̇Þ ¼ Lfreeðϕ; ϕ̇Þ þ Lintðϕ; ϕ̇Þ; ð3:1Þ

where Lfree is quadratic, and Lint is the part to be treated
perturbatively (which may also include certain linear
and quadratic terms), to which we refer as “interaction
Lagrangian.” For the moment, we assume that the
boundary conditions on the fields ϕI are ϕIj

∂Ω ¼ 0.
Nontrivial boundary conditions are studied at the end
of this section.
We assume that no Lagrangian term contains more

than two derivatives. Higher-derivative theories must be
first turned into two-derivative theories (by introducing
extra fields, for example). Moreover, at finite τ, on a
compact space manifold Ω, we assume that terms like
ϕ1 � � �ϕn−1∂∂ϕn have been eliminated in favor of terms like
ϕ1 � � �ϕn−2∂ϕn−1∂ϕn, by adding total derivatives. In the
next sections we show how to do these and other operations
while preserving gauge invariance and general covariance.
Next, we assume that L it is “orthodoxically symmetric”

with respect to certain infinitesimal transformations δΛϕI .
By this we mean that

(i) the functions δΛϕI depend only on the fields ϕI, but
not on their derivatives,

(ii) the Lagrangian satisfies

0 ¼ δΛϕ
I ∂L
∂ϕI þ δΛϕ̇

I ∂L

∂ϕ̇I ; ð3:2Þ

where

δΛϕ̇
I ¼ ∂tðδΛϕIÞ ¼ ∂ðδΛϕIÞ

∂ϕJ ϕ̇J: ð3:3Þ

What is important, in point (ii), is that not only the action
is symmetric, but also the Lagrangian is, i.e., the right-hand
side of (3.2) is exactly zero, not just a total derivative.
Next, we introduce the momenta and the Hamiltonian as

usual4:

πIϕðϕ; ϕ̇Þ ¼
∂L

∂ϕ̇I ⇒ ϕ̇I ¼ ϕ̇Iðπϕ;ϕÞ≡ ˙̃ϕ
I
;

Hðπϕ;ϕÞ ¼ πIϕ
˙̃ϕ
I − Lðϕ; ˙̃ϕÞ:

We can work out the symmetry transformations of the
momenta πIϕ by means of the identities (3.2) and (3.3).
We find

δΛπ
I
ϕ ¼ −

∂ðδΛϕ̇JÞ
∂ϕ̇I πJϕ ¼ −

∂ðδΛϕJÞ
∂ϕI πJϕ: ð3:4Þ

Since δΛϕ̇
J is linear in ϕ̇I , δΛπIϕ depends only on ϕ and πϕ,

but not on ϕ̇.
We want to prove that the equivalent, extended

Lagrangian

L00ðϕ; ϕ̇;πϕÞ ¼ πIϕϕ̇
I −Hðπϕ;ϕÞ ¼ πIϕðϕ̇I − ˙̃ϕ

IÞ þLðϕ; ˙̃ϕÞ

is orthodoxically symmetric, the transformations being
δΛϕ

I and (3.4).
Since the transformations δΛϕI and δΛπ

I
ϕ do not depend

on the derivatives of the fields, point (i) is satisfied. It
remains to prove the equation

0 ¼ δΛϕ
I ∂L

00

∂ϕI þ δΛϕ̇
I ∂L

00

∂ϕ̇I þ δΛπ
I
ϕ

∂L00

∂πIϕ
: ð3:5Þ

For this purpose, note that formula (3.2) with the replace-

ment ϕ̇I → ˙̃ϕ
I
gives

0 ¼ δΛϕ
I∂Lðϕ; ˙̃ϕ

IÞ
∂ϕI

���� ˙̃ϕ þ πIϕ
∂ðδΛϕIÞ
∂ϕJ

˙̃ϕ
J
;

using (3.3). Then it is easy to check that the right-hand side
of the identity (3.5) is equal to

ðϕ̇I − ˙̃ϕ
IÞ
�
δΛπ

I
ϕ þ

∂ðδΛϕJÞ
∂ϕI πJϕ

�
;

which vanishes by (3.4).
We need to make a further step, because the extended

Lagrangian we must start from, in the coherent-state
approach, is not L00, but

L0ðϕ; ϕ̇; πϕ; π̇ϕÞ ¼
1

2
ðπIϕϕ̇I − π̇Iϕϕ

IÞ −Hðπϕ;ϕÞ

¼ L00 −
1

2

d
dt
ðπIϕϕIÞ: ð3:6Þ

We will also need to add certain endpoint corrections to the
action, in order to have the right variational problem. This
part can be ignored for the moment, because it will be easy
to deal with it at the very end.

4In order to keep the notation simple, we adopt the following
conventions for fields with fermionic statistics. Once their kinetic
terms are diagonalized, we have pairs ψ̄ , ψ . The quadratic terms
we write must be understood as follows: ψ̄ is placed to the left,
and ψ is placed to the right; πψ is defined as the left derivative
with respect to ˙̄ψ , and is placed to the right; πψ̄ is defined as the
right derivative with respect to ψ̇ , and is placed to the left.
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It is not obvious that the total derivative L0 − L00 is
invariant under the transformation δΛ. Actually, in general
it is not, since (3.4) gives

δΛðπIϕϕIÞ ¼ πIϕ

�
δΛϕ

I −
∂ðδΛϕIÞ
∂ϕJ ϕJ

�
; ð3:7Þ

which vanishes only if the transformations are linear:

δΛϕ
I ¼ ∂ðδΛϕIÞ

∂ϕJ ϕJ: ð3:8Þ

Summarizing, if the symmetry is linear, the Lagrangian
(3.6) is orthodoxically invariant.
It may seem that the requirement of having linear

symmetry transformations is very restrictive. Actually, it
is not, if we take advantage of the formalism developed
in Refs. [3,4]. Indeed, it is always possible to convert
Abelian and non-Abelian gauge symmetries, as well as
general covariance, into a universal linear form, by intro-
ducing purely virtual fields that do not change the S matrix
amplitudes.
It is easy to check that the momenta πIϕ are not

guaranteed to vanish on ∂Ω. The structure of the
Lagrangian ensures that πIϕðϕ; ϕ̇Þ has the form

πIϕðϕ; ϕ̇Þ ¼ AIJðϕÞϕ̇J þ BIJiðϕÞ∂iϕJ þ CIðϕÞ;

for certain functions AIJðϕÞ, BIJiðϕÞ, and CIðϕÞ. Thus,
ϕIj

∂Ω ¼ 0 implies

πIϕðϕ; ϕ̇Þj∂Ω ¼ BIJið0Þ∂iϕJj
∂Ω þ CIð0Þ: ð3:9Þ

We can assume CIð0Þ ¼ 0. First, note that a nonvanishing
CIð0Þ means that the Lagrangian includes a term CIð0Þϕ̇I .
This is not going to happen in the cases of Yang-Mills
theories and gravity. Besides, a term like CIð0Þϕ̇I can be
removed at no cost. Since we are assuming that the
symmetry transformations are linear and do not involve
derivatives, CIð0Þϕ̇I must be gauge invariant by itself.
Besides, it is a total derivative. Thus, we can always switch
to an alternative Lagrangian with the same properties, but
no such term. Instead, the matrix BIJið0Þ is in general
nontrivial and cannot be removed, so the right-hand side of
(3.9) may be nonzero.
As in (2.3), it is useful to define new “momenta”

π̄Iϕ ¼ πIϕ − BIJið0Þ∂iϕJ; ð3:10Þ

because then it makes sense to add the boundary conditions

ϕIj
∂Ω ¼ π̄Iϕj∂Ω ¼ 0: ð3:11Þ

As we show below, these conditions turn straightforwardly
into the right boundary conditions for the coherent states.
The gauge transformations of π̄Iϕ follow from those of πIϕ

and ϕI. This is enough, for the moment, but in Sec. III B we
prove πIϕ and π̄Iϕ transform in exactly the same way.
By assumption (3.1) and the absence of higher deriva-

tives, the general form of the Lagrangian L0 is

L0 ¼ L0
freeðϕ; ϕ̇; π̄ϕ; ˙̄πϕÞ þ L0

intðπ̄ϕ;ϕÞ; ð3:12Þ

where L0
free is quadratic, and the interaction part L0

int is
independent of the time derivatives. Note that the redefi-
nitions (3.10) do not generate time derivatives in the
interaction sector. The quadratic Lagrangian, integrated
on Ω, has the form

L0
free ≡

Z
Ω
L0
freed

D−1x≡ 1

2

Z
Ω
ð π̄ϕ ϕ Þ

�
M K þ ∂t

K̃ − ∂t N

�

×

�
π̄ϕ

ϕ

�
dD−1x; ð3:13Þ

whereM is a constant, symmetric matrix, whileK ¼ Ki
1∂iþ

K2, K̃¼−KiT
1 ∂iþKT

2 (K
i
1 andK2 beingmatrices,T denoting

the transpose), N¼Nij
1 ∂i∂jþNi

2∂i∂tþNi
3∂iþN4, with N

ij
1 ,

Ni
2, N4 symmetric matrices and Ni

3 antisymmetric. Observe
that, by (3.11), we can freely integrate the space derivatives
by parts.

A. Frequencies and eigenfunctions

The eigenfunctions π̄InðxÞ, ϕI
nðxÞ are the solutions of the

problem

� M Ki
1∂i þ K2 − iωn

iωn − KiT
1 ∂i þ KT

2 Nij
1 ∂i∂j − iωnNi

2∂i þ Ni
3∂i þ N4

�

×

�
π̄n

ϕn

�
¼ 0; ð3:14Þ

with the boundary conditions π̄Inj∂Ω ¼ ϕI
nj∂Ω ¼ 0, where n

is some label.
We assume that the frequencies are real, because they are

so in the applications we have in mind. A quick proof is as
follows. The frequencies are real for τ ¼ ∞, Ω ¼ RD−1, in
both Yang-Mills theory and gravity. Let us denote them by
ω∞. We can work out the frequencies ωn and the eigen-
functions at finite τ, compact Ω, by considering linear
combinations of the τ ¼ ∞,Ω ¼ RD−1 eigenfunctions with
identical frequencies ω∞, and fixing the coefficients by
means of the boundary conditions. Eventually, the frequen-
cies become discrete, to have solutions, but remain real.
In case of need, it is not difficult to generalize the

formulas of this paper to complex frequencies. We just
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remark that they must appear in complex conjugate pairs,
since the Lagrangian is assumed to be Hermitian.
Taking the complex conjugate of (3.14), we find that

π̄I�n ðxÞ and ϕI�
n ðxÞ are also eigenfunctions, and their

frequency is −ωn. We use n� to label them, and write

π̄In� ðxÞ ¼ π̄I�n ðxÞ; ϕI
n� ðxÞ ¼ ϕI�

n ðxÞ; ωn� ¼ −ωn:

ð3:15Þ
If V denotes the range of the label n, we write V ¼ U ∪ U�,
by splitting each pair n; n� between U and U�.
The orthogonality relations can be worked out as in

Sec. II: (i) we multiply (3.14) by ðπ̄m;ϕmÞ and integrate the
product on Ω; (ii) we transpose the result of (i), exchange n
with m, and integrate by parts where necessary; finally,
(iii) we subtract the results of (i) and (ii).
Normalizing the eigenfunctions appropriately, we have

the orthonormality relations

Z
Ω
dD−1xð π̄m ϕm Þ

�
0 1

−1 Ni
2∂i

��
π̄n

ϕn

�
¼ 2iτnωnδm;n� ;

ð3:16Þ

where τn ¼ �1 ¼ τn� . The value τn ¼ −1 signals the
presence of ghosts (fields with kinetic terms multiplied
by the wrong signs). Indeed, going through the toy model
of the previous section, it is easy to check that, if we change
the overall sign of the starting Lagrangian (2.1), the right-
hand side of (2.8) turns out to be equal to −2iωnδmn.
We then expand π̄n and ϕn in the basis we have just

worked out:

�
π̄ϕ

ϕ

�
¼

X
n∈V

an

�
π̄n

ϕn

�
; ð3:17Þ

with an� ¼ a�n. By means of (3.16), we can invert the
expansion and find the coefficients:

−2iτmωma�mðtÞ ¼
Z
Ω
dD−1xð π̄mðxÞ ϕmðxÞ Þ

×

�
0 1

−1 Ni
2∂i

��
π̄ϕðt;xÞ
ϕðt;xÞ

�
: ð3:18Þ

We insert (3.17) into (3.13), and then subtract (3.14),
multiplied by ðπ̄m;ϕmÞam=2, summed on m; n∈V and
integrated on Ω. Then, we use (3.16), and mirror the sum
on U� into a sum on U. The result is the integrated free
Lagrangian

L0
free ¼

X
n∈U

iτnωnða�nȧn − ȧ�nanÞ − 2
X
n∈U

τnω
2
na�nan: ð3:19Þ

If the fields ϕI have, say, r independent components,
I ¼ 1;…; r, the solutions of the eigenvalue problem

can be arranged into r independent, complete sets of
eigenfunctions, each of which can be assigned to a specific
component ϕI . We can split the set U into a union ∪r

I¼1 U
I ,

where UI refers to the Ith complete set. For convenience,
we relabel the indices n so that their range is the same for
each I, to be denoted by Û.
Let π̄IJn and ϕIJ

n denote the Ith components of the nth
eigenfunction of the Jth set. Let znðtÞ ¼ anðtÞ denote
the column made by zInðtÞ ¼ aInðtÞ, I ¼ 1;…; r. We have,
from (3.17),

�
π̄ϕ

ϕ

�
¼

X
n∈ Û

�
π̄�n π̄n

ϕ�
n ϕn

��
z̄n
zn

�
; ð3:20Þ

where π̄n, ϕn, denote the block matrices made by π̄IJn and
ϕIJ
n , while π̄�n and ϕ�

n are the conjugate matrices. The
coefficients z̄In, zIn of the expansion are the variables we call
coherent “states.” The inverse formula reads, from (3.18),

−2iτnωn

�
z̄n
zn

�
¼

Z
Ω
dD−1x

�
π̄n ϕn

−π̄�n −ϕ�
n

��
0 1

−1 Ni
2∂i

�

×

�
π̄ϕ

ϕ

�
: ð3:21Þ

We can rearrange (3.19) as

L0
free ¼

Xr
I¼1

X
n∈ Û

τIn½iωI
nðz̄InżIn − ˙̄zInzInÞ − 2ωI2

n z̄InzIn�: ð3:22Þ

Typically, the τIn factor we see here does not depend on n,
but just on I.
At this point, it is straightforward to add the interacting

Lagrangian L0
intðπ̄ϕ;ϕÞ. We recall that L0

int does not contain
time derivatives of π̄ϕ and ϕ, by construction, although it
can contain space derivatives. Expanding the fields and
the momenta in the basis (3.20) of coherent states, and
integrating by parts when needed, we obtain an integrated
interacting Lagrangian

L0
int ¼

Z
Ω
L0
intd

D−1x

that just depends z̄In, zIn (no time derivatives).
Finally, the total action is

S ¼ −i
Xr
I¼1

X
n∈ Û

τInω
I
nðz̄InfzInðtfÞ þ z̄InðtiÞzIniÞ

þ
Z

tf

ti

dtðL0
free þ L0

intÞ; ð3:23Þ

where zIni ¼ zInðtiÞ parametrize the initial conditions in the
coherent-state approach, while z̄Inf ¼ z̄InðtfÞ parametrize
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the final conditions. The sums appearing in (3.23), which
we call “endpoint corrections,” are there to have the correct
variational problem. This means that the variations δz̄In, δzIn,
subject to the initial and final conditions δz̄InðtfÞ ¼
δzInðtiÞ ¼ 0, must give the z̄In and zIn equations of motion,
and no further restrictions. Note that the time derivatives of
z̄In and zIn appear only inside L0

free. This is the reason why
the partial integrations that take care of the terms pro-
portional to δ ˙̄zIn and δżIn are compensated by endpoint
corrections as simple as those of (3.23).

B. Gauge transformations of coherent states

Now we study the gauge transformations of the coherent
states, and the conditions to have gauge invariant ampli-
tudes. As usual, the parameters Λ of the gauge trans-
formations are written as Λ ¼ θC, where θ is a constant,
anticommuting parameter and C are the Faddeev-Popov
ghosts. The fields ϕI include C and the other fields that are
necessary to gauge-fix the theory, which are the antighosts
C̄ and certain Lagrange multipliers B for the gauge-fixing
(see below).
Since we are assuming the linearity conditions (3.8), we

can write the gauge transformations as δϕI ¼ θΣIJϕJ, for
some constants ΣIJ. By means of linear field redefinitions,
we can always split the set of fields ϕI into three subsets
ϕIþ , ϕI− and ϕI0 , where: (i) the fields ϕIþ transform into
other fields; (ii) the fields ϕI− parametrize the transforma-
tions of other fields; and (iii) the fields ϕI0 are invariant and
cannot be obtained from the transformations of other fields:

δϕIþ ¼ θϕI− ; δϕI− ¼ 0; δϕI0 ¼ 0: ð3:24Þ

The transformation law can be written as

δ ¼ δϕIþ
δl

δϕIþ
¼ θΔ; Δ≡ ϕI−

δl
δϕIþ

;

where δl denotes the left functional derivative.
The operator Δ has a standard “descent” structure. A

well-known theorem (see appendix A for a direct proof)
says that the most general solution of the problem δX ¼ 0,
where X is a local function, is

X ¼ X0 þ ΔY; ð3:25Þ

where X0 is a ϕI� independent local function, and Y is a
local function.
Consider the invariant quadratic terms that we can build

with the fields ϕI� . At some point, we may need to
diagonalize them. It is easy to see that we cannot build
enough invariant terms, unless the diagonalization organ-
izes the field ϕI� in “pairs of pairs.” Consider a single pair
ϕI� , and observe that ϕIþ and ϕI− have opposite statistics.
By (3.25), the quadratic terms in question must be con-
tained in ΔY. However, the expressions ΔðϕIþϕIþÞ,

ΔðϕIþϕI−Þ and ΔðϕI−ϕI−Þ generate just one independent
quadratic term, while we need two. This means that for
each pair ϕI� there must be another pair ϕI�0, out of which
the required invariants can be built.
We can organize the fields ϕI� , ϕI�0 into doublets. Using

a notation that is ready for the applications to Yang-Mills
theories and gravity (adapting the meaning of the index a),
we write the doublets as

ϕaþ ¼
�
ϕa

C̄a

�
; ϕa

− ¼
�
Ba

Ca

�
; ð3:26Þ

where ϕa and Ba have bosonic statistics, while C̄a and Ca

have fermionic statistics. In all the applications that we
have in mind, this is the structure we need.
We can write the transformation law as

δϕaþ ¼ θσ1ϕ
a
−; δ ¼ θΔ; Δ ¼ ϕaT

− σ1
δl
δϕaþ

; ð3:27Þ

where σ1 is the first Pauli matrix and the superscript “T”
means “transpose.”
The ϕaþ expansions (3.20),

ϕaþ ¼
Xr
J¼1

X
n∈ Û

ðϕaJþnz
J
n þ ϕaJ�þn z̄

J
nÞ;

must turn into the ϕa
− expansions under (3.27):

δϕaþ ¼
Xr

J¼1

X
n∈ Û

ðϕaJþnδz
J
n þ ϕaJ�þn δz̄

J
nÞ ¼ θσ1ϕ

a
−

¼ θ
Xr

J¼1

X
n∈ Û

ðσ1ϕaJ
−nzJn þ σ1ϕ

aJ�
−n z̄JnÞ:

Since the Eq. (3.14) are invariant under the symmetry, the
eigenfunctions appearing in the ϕa

− expansions must match
eigenfunctions appearing in the ϕaþ expansions. That is to
say, we must have ϕaJþþn ¼ σ1ϕ

aJ−
−n for some pairings of

indices Jþ, J−. Then, the transformations of the coherent
states read δzJþn ¼ θzJ−n , δzJ−n ¼ 0. Moreover, the zJn
with such indices must also be organized in doublets,
for the reasons explained above. Finally, the ϕI0 expansions
identify the invariant coherent states zJ0n . We illustrate these
facts in Sec. V, formulas (5.12) and (5.13).
Summarizing, we can split the set of coherent states zIn

into three subsets wα
n, uan and van (with indices α, a spanning

appropriate ranges). Both uan and van are doublets, with
bosonic first components and fermionic second compo-
nents. Their gauge transformations are

δwα
n ¼ δw̄α

n ¼ 0; δuan ¼ θσ1van;

δūan ¼ θσ1v̄an; δvan ¼ δv̄an ¼ 0: ð3:28Þ
We can obtain results that agree with the ones just

found by repeating the analysis for the “momenta” π̄Iϕ.
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The redefinition (3.10) is due to the presence of the terms
∼ϕ̇I

∂iϕ
J in the Lagrangian. Since the symmetry is orthodox

and linear, the sum of these terms must be gauge invariant
by itself. Taking into account the conventions we adopted
for the fields ψ̄ , ψ with fermionic statistics, we can write
such a sum as

ϕ̇IB̃IJið0Þ∂iϕJ;

where B̃IJi ¼ BIJi if the indices I, J refer to bosonic fields,
or I refers to ψ̄ , while B̃IJi ¼ −BIJi if I refers to ψ . This
way, the redefinitions match (3.10) precisely. Writing the
transformations δΛϕ

I ¼ θΣIJϕJ, as above, gauge invari-
ance gives the condition

ΣKIB̃KJið0Þ þ ð−1ÞϵI B̃IKið0ÞΣKJ ¼ 0;

where ϵI is the statistics of ϕI . Analyzing all the situations
one by one, we can easily see that this condition is
equivalent to

ΣKIBKJið0Þ þ BIKið0ÞΣKJ ¼ 0;

which also gives the implication

δΛπ
I
ϕ ¼ −ΣJIπJϕ ⇒ δΛπ̄

I
ϕ ¼ −ΣJIπ̄Jϕ; ð3:29Þ

from (3.4). Thus, the old and new momenta πIϕ and π̄Iϕ
transform the same way.
The π̄Iϕ expansions and their transformations can be

studied as we did for the fields ϕI . Matching the eigen-
functions, we find agreement with (3.28). Alternatively, we
can study the expansions of ϕI and π̄Iϕ at the same time by
working directly on (3.20).
Since the Lagrangian (3.6) in gauge invariant under the

transformations δΛϕI and (3.4), and we are assuming the
linearity conditions (3.8), the Lagrangian (3.12) is invariant
under δΛϕI and (3.29). The integrated Lagrangian L0

free þ
L0
int of formula (3.23) is invariant under (3.28), once it is

written in the variables wα
n, uan and van and their conjugates.

The action (3.23) is gauge invariant if the endpoint
corrections are invariant, which occurs if they do not
contain uan and ūan. In addition, we require that they do
not contain gauge trivial modes, which are van and v̄an
(which can be obtained as transformations of uan and ūan).
Thus, the physical amplitudes are those that have

ūanf ¼ v̄anf ¼ uani ¼ vani ¼ 0; ð3:30Þ

in which case the endpoint corrections, which read

−i
X
α

X
n∈ Û

ταnω
α
nðw̄α

nfw
α
nðtfÞ þ w̄α

nðtiÞwα
niÞ;

are manifestly gauge invariant.
The restrictions (3.30) on the endpoint corrections are

analogous to the restrictions we commonly apply to the S
matrix amplitudes: we do not consider scattering processes
involving Faddeev-Popov ghosts, or the temporal and
longitudinal components of the gauge fields, among the
incoming and outgoing states. Yet, sometimes it may be
useful to relax these requirements, and consider diagrams
with all sorts of external legs, including the ones just
mentioned, to study renormalization, for example, or
the gauge independence of the physical quantities, or the
diagrammatic versions of the unitarity equations.
We conclude this subsection by writing down the

universal structure of the kinetic terms of the coherent
states, inside L0

free. The ones of the gauge invariant sector
are clearly

X
α

X
n∈ Û

ταniωα
nðw̄α

nẇα
n − ˙̄wα

nwα
nÞ; ð3:31Þ

by (3.22). Using the theorem (3.25), the universal kinetic
terms of the gauge sector can be written in the form

X
a

X
n∈ Û

τaniωa
nΔðūaTn σ1u̇an − ˙̄uaTn σ1uanÞ

¼
X
a

X
n∈ Û

τaniωa
nðv̄aTn u̇an − vaTn ˙̄uan þ v̇aTn ūan − ˙̄vaTn uanÞ;

ð3:32Þ

the right-hand side being obtained using the properties (A2)
of appendix A.

C. Nontrivial boundary conditions

So far, we have been working with trivial boundary
conditions ϕIj

∂Ω ¼ 0. Now we treat the case of general
Dirichlet boundary conditions

ϕIðt;xÞj
∂Ω ¼ fIðt;x∂ΩÞ; ð3:33Þ

where fI are given functions, and x∂Ω denotes the space
variables restricted to ∂Ω. We want to show that we can
reduce this situation to the previous one, with few minor
modifications. In particular, the eigenfunctions, the frequen-
cies and the orthonormality relations remain the same.
First, we shift the fields ϕI by some functions ϕI

0ðt;xÞ
that coincide with fIðt;x∂ΩÞ on ∂Ω:

ϕIðt;xÞ ¼ ϕI
0ðt;xÞ þ φIðt;xÞ; ϕI

0ðt;x∂ΩÞ ¼ fIðt;x∂ΩÞ;
ð3:34Þ

so that the shifted fields vanish on Ω:
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φIðt;xÞj
∂Ω ¼ 0: ð3:35Þ

After the shift, we are free to integrate the space integrals by
parts, to move the space derivatives that act on any φI

somewhere else.
By the assumptions we have made on the structure of the

Lagrangian Lðϕ; ϕ̇Þ, its expansion can be written as

Lðϕ; ϕ̇Þ ¼ L0 þ φIAIðϕ0Þ þ φ̇IBIðϕ0Þ þ∇ðφICIðϕ0ÞÞ
þ Lφðφ; φ̇Þ≡ L̃φðφ; φ̇Þ; ð3:36Þ

where L0 is φ-independent and Lφðφ; φ̇Þ ¼ Lfreeðφ; φ̇Þ þ
interactions, by (3.1). We can ignore the C-term, since it
disappears once we integrate on the space manifold Ω, by
(3.35). Were it just for Lφðφ; φ̇Þ (and L0) we could apply
the formulation developed so far with no modifications. We
want to explain how to treat the corrections proportional to
A and B (which need not be perturbative).
Let us define

∂Lφðφ; φ̇Þ
∂φ̇I ¼ πIφðφ; φ̇Þ;

∂L̃φðφ; φ̇Þ
∂φ̇I ¼ π̃Iφðφ; φ̇Þ ¼ πIφðφ; φ̇Þ þ BI; ð3:37Þ

which invert to

φ̇I ¼ FIðφ; πφÞ; φ̇I ¼ F̃Iðφ; π̃φÞ; ð3:38Þ
for certain functions FI and F̃I . We have the Hamiltonians

Hφðπφ;φÞ ¼ πIφFIðφ; πφÞ − Lφðφ; Fðφ; πφÞÞ;
H̃φðπ̃φ;φÞ ¼ π̃IφF̃Iðφ; π̃φÞ − L̃φðφ; F̃ðφ; π̃φÞÞ; ð3:39Þ

and the extended Lagrangians

L0
φ ¼ 1

2
ðπIφφ̇I − π̇Iφφ

IÞ −Hφðπφ;φÞ;

L̃0
φ ¼ 1

2
ðπ̃Iφφ̇I − ˙̃πIφφ

IÞ − H̃φðπ̃φ;φÞ: ð3:40Þ

Equating the two expressions of φ̇I in (3.38) and using the
last identity of (3.37), we get

F̃Iðφ; π̃φÞ ¼ FIðφ; π̃φ − BÞ:

Using (3.36), (3.40), and (3.39), it is easy to work out the
difference

ΔL0
φ ≡ L̃0

φ − L0
φjπφ→π̃φ

¼ L0 þ φIAI

þ π̃Iφ½FIðφ; π̃φÞ − FIðφ; π̃φ − BÞ�
þ BIFIðφ; π̃φ − BÞ þ Lφðφ; Fðφ; π̃φ − BÞÞ
− Lφðφ; Fðφ; π̃φÞÞ: ð3:41Þ

If we switch the interactions off, we have Lφðφ; φ̇Þ ¼
Lfreeðφ; φ̇Þ, and the functions FIðφ; πφÞ become linear.
Then formula (3.41) tells us that ΔL0

φ is made of linear
terms, plus interactions. In particular, the quadratic part of
L̃0
φ coincides with the quadratic part of L0

φjπφ→π̃φ
.

At this point, we make the analogues of the shifts (3.10),

¯̃πIφ ¼ π̃Iφ − BIJið0Þ∂iφJ: ð3:42Þ

They do not change the structure of ΔL0
φ, because they do

not involve time derivatives, and send linear terms into
linear terms, interaction terms into interaction terms. As far
as the quadratic part of L̃0

φ is concerned, it is equal to the
ones of (3.12) and (3.13) with the replacements ϕI → φI ,
π̄Iϕ → ¯̃πIφ. Hence, if we expand the pair ¯̃πIφ;φI exactly as we
expanded π̄Iϕ;ϕ

I before, we obtain the same quadratic part
we had before, (3.19) and (3.22), plus interactions, plus
linear terms (due to ΔL0

φ).
Note that ¯̃πIφ vanishes on the boundary ∂Ω by con-

struction, so to speak, since it is expanded in a basis of
functions that vanish there. Yet, we recall that no con-
vergence requirements are imposed on the expansion: the
expansion itself must be taken as the very definition of what
¯̃πIφj∂Ω ¼ 0 truly means. The same can be said of φ and
φj

∂Ω ¼ 0. As we have already noted, the functional integral
is defined by the very same expansions.
As a result, we obtain a Lagrangian that has the same

structure as before, apart from including extra terms that
are linear in the coherent states (and terms that are
independent of them). The endpoint corrections are
unmodified, because ΔL0

φ does not contain time deriv-
atives. The complete action has the form (3.23), plus the
corrections due to ΔL0

φ:

S ¼ −i
Xr
I¼1

X
n∈ Û

τInω
I
nðz̄InfzInðtfÞ þ z̄InðtiÞzIniÞ

þ
Z

tf

ti

dt

�
L0
free þ L0

int þ
Xr

I¼1

X
n∈ Û

ðhInzIn þ hI�n z̄InÞ þ k

�
;

ð3:43Þ

for some, possibly time-dependent, functions hIn and k.
As far as the local symmetries are concerned, the shift

(3.34) does change the expressions of the transformations,
unless the functions ϕI

0 are gauge invariant, which they
must be, because we cannot build physical quantities with
unphysical boundary conditions. Referring to the splitting of
ϕI into the three subsets ϕIþ , ϕI− , and ϕI0 , we must require

ϕIþ
0 ¼ ϕI−

0 ¼ 0: ð3:44Þ

Although we may sometimes relax the requirements
(3.30) on the initial and final conditions, we are definitely
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not going to relax the requirements (3.44) on the boundary
conditions, because there is no reason to do so. Having
specified this, we have proved that the situation of general
Dirichlet boundary conditions (3.33) reduces to the one of
vanishing boundary conditions, apart from some extra
terms that are linear in the coherent states, which are no
source of worry.
In the case of gravity, we also need to extend the results

to interaction Lagrangians that contain arbitrarily many
derivatives of the fields (as long as their number grows
together with the power of some coupling constant), and
show that we can rearrange the Lagrangian to have a final
action with the form and the properties of (3.43). We deal
with this aspect in appendix B.
In conclusion, we have developed the general theory of

coherent states for local symmetries. It remains to use the
results of [3,4] to arrange gauge invariance and general
covariance in the way we need. We do this in the next
sections. Once that goal is achieved, the results of this
section, combined with those of [1], allow us to build the
unitary evolution operator Uðtf ; tiÞ.

IV. GAUGE THEORIES: REARRANGING
THE LAGRANGIAN

In gauge theories, we need to face a nontrivial issue: how
can we specify gauge invariant initial, final, and boundary
conditions? Giving the field strength Fμν is a possibility,
but only in QED, because in non-Abelian theories it is not
gauge invariant. And even in QED, there remains to give
gauge invariant conditions for electrons.
These problems can be solved by introducing gauge

invariant fields as explained in Refs. [3,4]. The goal is
achieved by means of a particular purely virtual extension
of the theory. The physical particles, the S matrix
amplitudes and the correlation functions of common
(nonlinear) composite fields (such as Fa

μνFμνa, ψ̄ψ ,
ψ̄γμψ , etc.) do not change.5 Nevertheless, the extension
provides tools to define new, physical correlation func-
tions, such as the ones that contain insertions of gauge
invariant fields, and calculate them perturbatively. As we
are going to show, it also allows us to specify gauge
invariant initial, final and boundary conditions at finite τ
on a compact Ω.
The extension consists of a certain set of purely virtual

extra fields. In gauge theories [3] we have scalar fields ϕa,
together with their anticommuting partners H̄a and Ha,
where a is the Lie-algebra index. In addition, it may be
convenient to include certain Lagrange multipliers Ea.
The extension preserves renormalizability and unitarity.
Unitarity is also the reason why the extra fields must be

purely virtual: if not, the extension would propagate ghosts,
and unitarity would be lost.
The crucial property, for our purposes, is that the

extension allows us to switch to gauge invariant variables,
and trivialize the gauge symmetry, to fulfill the con-
ditions (3.8). The coherent states are then introduced as
explained in the previous section, and the rest follows
from there.
We focus on pure gauge theories, for simplicity, since

there is no difficulty to add the matter fields, when needed.
We separate the time and space components of the gauge
fields by writing Aμ ¼ ðA0;AÞ. The dot on a field denotes
its time derivative.
Instead of the common Lorenz gauge-fixing, given by

the function ∂μAμa, we use the more general function
ξȦ0a þ ∇ ·Aa, where ξ is an unspecified constant, which
allows us to interpolate between different gauge choices.
Then, the gauge-fixed Lagrangian is

L̃gf ¼
1

2
Fa · Fa −

1

4
Fa2
ij þ Ba

�
ξ∂0A0a þ ∇ ·Aa þ λ

2
Ba

�

− ξC̄aD0Ċa þ C̄a∇ ·DCa;

where Dμ ¼ ðD0;DÞ is the covariant derivative, and Fa ¼
Ȧa þ ∇A0a þ gfabcA0bAc are the 0i components of the
field strength. The so-called special gauge [19], which
we use in the examples of Secs. VII and VIII, is ξ ¼ λ. The
Feynman gauge is ξ ¼ λ ¼ 1. Like the Feynman gauge,
the special gauge allows us to simplify many formulas. In
addition, it allows us to keep a gauge-fixing parameter free,
which is useful to study the gauge independence of the
physical quantities.
First, we rearrange L̃gf , since no fields should be

differentiated twice. For reasons that will become clear
later, we also turn the derivatives contained in the gauge-
fixing function onto B. We thus obtain

Lgf ¼
1

2
Fa · Fa −

1

4
Fa2
ij − ξḂaA0a − ∇Ba ·Aa þ λ

2
BaBa

þ ξ ˙̄CaD0Ca − ð∇C̄aÞ · DCa:

Next, we introduce extra scalar fields ϕa, and their
anticommuting partners Ha, transforming as [3]

δΛϕ ¼ ig adϕ
eig adϕ − 1

Λ≡ Raðϕ;ΛÞTa;

δΛHa ¼ Hb δR
aðϕ;ΛÞ
δϕb : ð4:1Þ

where ϕ ¼ ϕaTa, Λ ¼ ΛaTa, ΛaðxÞ are the parameters of
the gauge transformation, adϕX ≡ ½ϕ; X�, and Ta are the
Lie algebra generators. We also introduce gauge invariant
antipartners H̄a and Lagrange multipliers Ea.

5In all such cases, the extension amounts to inserting “1,”
written in a complicated way (a new type of “1” with respect to
the “1” used to gauge-fix the theory).
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The gauge invariant fields Aμd ¼ Aa
μdT

a are then

Aμd ≡ e−ig adϕAμ −
1 − e−ig adϕ

ig adϕ
ð∂μϕÞ; δΛAμd ¼ 0; ð4:2Þ

where the subscript “d” stands for “dressed.”
The extension is a sort of mirror of the gauge-fixing

sector. However, it must be gauge invariant. In its most
convenient (and manifestly power counting renormaliz-
able) form, it is specified by a function ξ̃Ȧ0a

d þ ∇ ·Aa
d,

where ξ̃ is a free constant. It reads

Lext ¼ Ea

�
ξ̃Ȧ0a

d þ ∇ ·Aa
d þ

λ̃

2
Ea

�
− ξ̃ ˙̄Ha δA0a

d

δϕb Hb

− ð∇H̄aÞ · δA
a
d

δϕb H
b;

where λ̃ is another free constant. This expression of Lext is
already rearranged (with respect to the expression appear-
ing in [3]) to eliminate the double derivatives. It is easy to
check that Lext is invariant under the local transformations
(4.1) (for details on this, see [3]).
The total action is Ltot ¼ Lgf þ Lext. The parameters ξ̃

and λ̃ are part of the large arbitrariness we have, when we
want to dress the elementary fields and make them gauge
invariant. They are unique, however, in a power counting
renormalizable context (preserving invariance under space
rotations). Physically, they may parametrize different inter-
plays between the physical process and the external
environment, or the experimental apparatus.
The extension is equal to “1” on standard gauge invariant

correlation functions (where “standard” means: indepen-
dent of ϕ, H̄, H, and E), as well as on the S matrix
amplitudes, at τ ¼ ∞, Ω ¼ R3. We can prove this fact as
follows. Focus on the E-dependent terms

Ea

�
Va þ λ̃

2
Ea

�
; Va ≡ ξ̃Ȧ0a

d þ ∇ ·Aa
d:

Insert “1” in the form of the Gaussian integral with
Lagrangian −λ̃ðQa − EaÞ2=2, where Qa are extra integra-
tion variables. We have

Ea

�
Vaþ λ̃

2
Ea

�
−
λ̃

2
ðQa−EaÞ2¼EaðVaþ λ̃QaÞ− λ̃

2
QaQa:

ð4:3Þ

Next: (i) integrate on Ea, which gives a functional delta
function δ; (ii) integrate on H̄a, and Ha, which gives a
functional determinant J; (iii) integrate on ϕa, which
appears only in δ and J; this integral gives 1, because J
is there precisely for this purpose; finally, (iv) integrate on
Qa, which also gives 1, since the only Qa dependence that

survives the first three operations is the one contained in the
last term of (4.3).
This chain of operations cannot be repeated as is when

the insertions are ϕ dependent, as are those made of the
invariant fields Aμd. Thus, the gauge invariant insertions
built with ϕ provide new, physical correlation functions
and amplitudes. What we want to show is that these
properties also allow us to study amplitudes between
arbitrary gauge invariant initial and final states, with
arbitrary gauge invariant boundary conditions, in a finite
interval of time τ and on a compact space manifold Ω.
One might object that the fields ϕa become propagating,

as well as H̄a and Ha. What are these fields, physically?
They might even be ghosts, on general grounds. On top of
that, we do not want to change the theory. We just want to
study less common features of a standard theory.
These are the reasons why the whole extension has to be

purely virtual. The extra fields ϕa, H̄a, and Ha propagate
ghosts if they are treated as ordinary fields. They do not, if
they are purely virtual. If the whole extension is purely
virtual, it does not inject new degrees of freedom into the
theory, and can be used as a mere mathematical tool to
study uncommon quantities of a common theory.
Another great advantage of the extension is that it allows

us to “trivialize” the gauge symmetry, by switching to
appropriate dual variables. For example, we can abandon
the original gauge potential Aμ in favor of the gauge
invariant one Aμd. We can also abandon the parameters
Λ of the gauge transformation in favor of

Λa
d ≡ Raðϕ;ΛÞ ¼ δΛϕ

a: ð4:4Þ

If we express the gauge symmetry this way, it becomes
trivial: δϕ ¼ Λd, δAμd ¼ 0. Then, we introduce new
Faddeev-Popov ghosts Ca

d, by means of the identification
Λa
d ¼ θCa

d, where θ is a constant, anticommuting param-
eter. Since the gauge symmetry is just an arbitrary shift of
ϕa, its closure is trivial, so we can take δCa

d ¼ 0. We can
define new, gauge invariant anticommuting partners Hd by
means of the relations H ¼ Rð−ϕ; HdÞ.
Inverting (4.2), we can use the relations

Aμ ¼ eig adϕAμd −
1 − eig adϕ

ig adϕ
ð∂μϕÞ;

Rðϕ; CÞ ¼ Cd; H ¼ Rð−ϕ; HdÞ; ð4:5Þ

as a change of variables in the functional integral, to switch
from the original variables Aμ, C, ϕ, and H to the dual
variables Aμd, Cd, ϕ, and Hd. The switch has a trivial
Jacobian determinant (if we use the dimensional regulari-
zation [20]). We do not change C̄, B, H̄, and E.
It is much easier to specify gauge invariant initial, final

and boundary conditions by means of the dual variables. To
make the notation lighter, we put a tilde on Aa

μ, Ca, and Ha,
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to emphasize that they are functions of Aa
μd, C

a
d, ϕ

a, andHa
d,

now, and then drop the “d” in Aa
μd, C

a
d, H

a
d. It will be

sufficient to recall that, in the new notation, Aa
μ is inert

under the gauge transformations (δΛAa
μ ¼ 0), and so are Ca

and Ha.
After the switch (4.5), the multipliers Ea remain non-

derivative (differently from B), so we integrate them out.
At the end (check [3] for details), we obtain the total action

Ltot ¼
1

2
Fa · Fa −

1

4
Fa2
ij − ξḂaÃ0a − ∇Ba · Ãa þ λ

2
ðBaÞ2

−
1

2λ̃
ðξ̃Ȧ0a þ ∇ ·AaÞ2 þ ξ ˙̄Ca δÃ0a

δϕb Cb

þ ð∇C̄aÞ · δÃ
a

δϕb C
b þ ξ̃ ˙̄HaD0Ha − ð∇H̄aÞ · DHa:

ð4:6Þ

The trivialized local symmetry is

δϕ¼Λ¼ θC; δC̄¼ θB; δB¼ δC¼ δAμ ¼ δH̄¼ δH¼ 0:

ð4:7Þ

Note that Ltot is invariant without adding total derivatives.
Thus, we are in the conditions of Sec. III. We can define the
coherent states as explained there, and from there build the
unitary operator Uðtf ; tiÞ as explained in [1].

V. GAUGE THEORIES: QUADRATIC SECTOR

In this section we explain how to introduce coherent
states in the free-field limit of gauge theories, which is the
key part of the problem. In the next section it will be
relatively straightforward to include the interactions.
The quadratic part of the Lagrangian is practically the

same as if we were working in QED. Thus, we suppress the
index a and write, from (4.6),

Ltot ¼
1

2
ðȦþ ∇A0Þ2 −

1

4
F2
ij −

1

2λ̃
ðξ̃Ȧ0 þ ∇ ·AÞ2

− ξḂA0 − ∇B ·A − ξḂ ϕ̇þ∇B · ∇ϕþ λ

2
B2 þ ξ ˙̄C Ċ

− ∇C̄ · ∇Cþ ξ̃ ˙̄H Ḣ−∇H̄ · ∇H þOðgÞ: ð5:1Þ
With the variables we have chosen, gauge invariance

simply means invariance under the transformations δΛϕ ¼
Λ ¼ θC, δΛC̄ ¼ θB, all the other fields being inert. Note that
the first line of (5.1) is manifestly invariant, to the lowest
order, as are the first two terms of the second line and theH-
dependent terms, while the remaining terms transform into
one another. Thus, we are in the conditions of Sec. III.
The field variables are Φ̂≡ ðϕ; B; A0;A; C; C̄; H; H̄Þ.

From the moment, we ignore H and H̄, and restrict to
Φ̃≡ ðϕ; B; A0;A; C; C̄Þ, because it is straightforward to
treat H and H̄ along the lines of Ref. [1]. We discuss them
anyway in the next section, when we include the inter-
actions. For the time being, we also drop OðgÞ.
The boundary conditions read

Φ̃j∂Ω ¼ ðϕ0; B0; A0
0;A0; C0; C̄0Þ; ð5:2Þ

where the list on the right-hand side collects given
functions on ∂Ω. We can turn to vanishing boundary
conditions by means of shifts

Φ̃ → Φ̃þ Φ̃0; ð5:3Þ
where Φ̃0 are functions defined on the whole of Ω, which
coincide with the right-hand side of (5.2) on ∂Ω. This way,
the new Φ̃ vanish on ∂Ω. Since the shift does not change the
quadratic sector of the free Lagrangian, on which we are
concentrating in the present section, we take Φ̃j

∂Ω ¼ Φ̃0 ¼
0 for the moment, and leave the rest of the discussion to
the next section. Note that Φ̃j

∂Ω ¼ 0 allows us to freely
integrate the space integrals by parts.
The momenta, which are

πϕ ¼ −ξḂ; πB ¼ −ξðϕ̇þ A0Þ; πA0 ¼ −
ξ̃

λ̃
ðξ̃Ȧ0 þ ∇ ·AÞ;

πA ¼ Ȧþ ∇A0; πC̄ ¼ ξ ˙̄C; πC ¼ ξĊ; ð5:4Þ

are either gauge invariant, or transform into one another:

δΛπB ¼ −θπC; δΛπC̄ ¼ −θπϕ; δΛπϕ ¼ δΛπA0
¼ δΛπA ¼ δΛπC ¼ 0: ð5:5Þ

The Hamiltonian is H ¼ Hbos þHgh, where

Hbos ¼ −
1

ξ
πϕðπB þ ξA0Þ − 1

2ξ̃
πA0

�
λ̃

ξ̃
πA0 þ 2∇ ·A

�
þ 1

2
πAðπA − 2∇A0Þ

þ 1

4
F2
ij − ∇B · ∇ϕþ ∇B ·A −

λ

2
B2; Hgh ¼

1

ξ
πC̄πC þ ∇C̄ · ∇C;
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so the extended Lagrangian L0 of formula (3.6) is

L0 ¼ L0
bos þ L0

gh; L0
bos ¼

1

2
ðπΦΦ̇ − π̇ΦΦÞ −Hbos; L0

gh ¼
1

2
ðπC̄Ċ − π̇C̄Cþ ˙̄CπC − C̄π̇CÞ −Hgh; ð5:6Þ

where Φ ¼ ðϕ; B; A0;AÞ.
As explained in the previous two sections, it is convenient to introduce the shifted momenta (3.10), or (3.42), which are

π̄A0
¼ πA0

þ ξ̃

λ̃
∇ ·A ¼ −

ξ̃2

λ̃
Ȧ0; π̄A ¼ πA − ∇A0 ¼ Ȧ; ð5:7Þ

while the other momenta are unchanged. Defining Π̄ ¼ ðπϕ; πB; π̄A0
; π̄AÞ, the general form of the Lagrangian L0

bos is

L0
bos ¼

1

2
ð Π̄ Φ Þ

�
M K2 þ ∂t

KT
2 − ∂t N

��
Π̄
Φ

�
; M ¼

0
BBBBB@

0 1
ξ 0 0

1
ξ 0 0 0

0 0 λ̃
ξ̃2

0

0 0 0 −1

1
CCCCCA
;

where K2 is a constant matrix and KT
2 is its transpose, while

N ¼ Nij
1 ∂i∂j þ Ni

2∂i∂t þ Ni
3∂i þ N4, where Nij

1 , Ni
2, Ni

3

and N4 are other constant matrices. We do not specify
them here (and, besides, most of their entries are just zero,
as in M), since they can be read directly from (5.6). It is
sufficient to note that Nij

1 , N
i
2, and N4 are symmetric, while

Ni
3 are antisymmetric.
Ultimately, we are in the situation described in general

terms in Sec. III A. We have eigenfunctions Π̄n, Φn, with
(real) frequencies ωn, where n is some label ranging in
some set V. The complex conjugate eigenfunctions are
those with some “conjugate” label n�, i.e.,

Π̄�
nðxÞ ¼ Π̄n�ðxÞ; Φ�

nðxÞ ¼ Φn� ðxÞ; ωn� ¼ −ωn:

We then expand Π̄ and Φ in such a basis:

�
Π̄
Φ

�
¼

X
n∈V

an

�
Π̄n

Φn

�
; ð5:8Þ

with an� ¼ a�n. As before, we write V ¼ U ∪ U�, so that
each pair n; n� is split between U and U�. The orthonor-
mality relations are (3.16). Using them, we can invert (5.8)
as in (3.18), and obtain the expansion of the integrated
bosonic Lagrangian, which reads

L0
bos ≡

Z
Ω
L0
bosd

3x ¼
X
n∈U

iτnωnða�nȧn − ȧ�nanÞ

− 2
X
n∈U

τnω
2
na�nan: ð5:9Þ

Since we have six independent fields (for every value of
the Lie algebra index a), which are the components ϕ, B

and Aμ of Φ, we can distinguish six classes of frequencies
ωn. Two of them, which we denote by ωg

n and ωg0
n , may

depend on the gauge-fixing parameters ξ and λ, while the
other four may depend on the parameters ξ̃ and λ̃, but not on
ξ and λ.
Out of the four gauge independent frequencies, two

are physical, denoted by ωph
n and ωph0

n , and two must be
quantized as purely virtual, denoted by ωd

n and ωd0
n .

The distinction between the two classes of gauge
independent frequencies is somewhat flexible. In the
absence of data (which require us to make experiments
about scattering processes where the restrictions to finite τ
and compact Ω play crucial roles), the only theoretical
constraints we have are that: (a) the eigenfunctions Π̄n, Φn,
associated with each set of frequencies ωg

n, ω
g0
n , ω

ph
n , ωph0

n ,
ωd
n, and ωd0

n , make a complete set for some component of Π̄,
Φ; (b) altogether, they are a complete set for Π̄, Φ; (c) the
eigenfunctions have the right limits for Ω → R3. Such
limits are ξ̃ and λ̃ independent for ωph

n , ωph0
n , ξ̃, and λ̃

dependent for ωd
n and ωd0

n .
As an example of the flexibility we are referring to, we

can consider linear combinations of solutions whose
frequencies have the same limits for Ω → R3. As we show
in the examples of Secs. VII and VIII, if the relative
coefficients are appropriately oscillating, the mixing dis-
appears when Ω → R3. This ambiguity reflects the large
arbitrariness we have, when we formulate quantum field
theory in a finite interval of time τ, on a compact space
manifold Ω. Like the parameters ξ̃ and λ̃, different choices
of the basis (7.2) may parametrize, in a way that remains to
be clarified, different interplays between the physical
process we want to study and the external environment
where it is placed, or the apparatus we use to make the
measurements.
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In several cases, it may be helpful to first set
ξ̃ ¼ λ̃ ¼ 1, where the frequencies and eigenfunctions
simplify and can often be written explicitly, make the
choices of basis there, and then extend the choices to
ξ̃; λ̃ ≠ 1 by expanding in powers of δξ̃ ¼ ðξ̃ − 1Þ=2 and

δλ̃ ¼ ðλ̃ − 1Þ=2.
The gauge dependent frequencies ωg

n and ωg0
n can be

quantized as purely virtual or not, provided we implement
this choice consistently everywhere. The physical quan-
tities are unaffected by the choice, because they are gauge
independent.
Writing U ¼ Ug ∪ U 0

g ∪ Ud ∪ U 0
d ∪ Uph ∪ U 0

ph ≡∪6
I¼1U

I ,
the expansion (5.8) becomes

�
Π̄
Φ

�
¼

X6
I¼1

X
n∈UI

��
Π̄I

n

ΦI
n

�
zIn þ

�
Π̄I�

n

ΦI�
n

�
z̄In

�
: ð5:10Þ

The coefficients are the coherent states

ZnðtÞ ¼ ðzgn; zg0n ; zdn; zd0n ; zphn ; zph0n Þ ¼ ðzInÞ ¼ ðanÞ: ð5:11Þ

The bosonic Lagrangian L0
bos can be split accordingly.

The two gauge dependent frequencies ωg
n and ω

g0
n are easy

to calculate, since they must correspond, by the gauge sym-
metry, to those of the ghost Lagrangian L0

gh. Repeating the
procedure described above for L0

gh, we find that the eigen-
functions we are talking about solve the standard problem

ΔCnðxÞ ¼ −ξω2
nCnðxÞinΩ; Cnj∂Ω ¼ 0;

and come in two copies (ghosts and antighosts).
The gauge transformations of the coherent states can be

derived from the ones of the fields and the momenta,
combined with the expansion (5.10), as explained in
Sec. III B. Since δϕ ¼ θC, δC̄ ¼ θB, there must be ϕ
modes that transform into the ghost ones, and antighost
modes that transform into the B ones. This means that the
ϕ, B, C, and C̄ expansions have the structures

�
ϕ

B

�
¼

�
ϕn

0

�
zϕn þ

�
ϕ�
n

0

�
z̄ϕn þ

�
ψn

Bn

�
zBn þ

�
ψ�
n

B�
n

�
z̄Bn þ � � �

�
C

C̄

�
¼

�
ϕn

ψ 0
n

�
zCn þ

�
ϕ�
n

ψ 0�
n

�
z̄Cn þ

�
0

Bn

�
zC̄n þ

�
0

B�
n

�
z̄C̄n: ð5:12Þ

where the sums on n are understood, the dots collect the contributions of the A0 and A modes, and ψn and ψ 0
n are

unspecified functions. The coherent states denoted by zϕn and z̄ϕn do not contribute to the expansions of A0 andA; the A0,A
modes may contribute to the expansion of ϕ, but not to the one of B.
The only nontrivial gauge transformations of the coherent states are

δzϕn ¼ θzCn; δz̄ϕn ¼ θz̄Cn; δzC̄n ¼ θzBn; δz̄C̄n ¼ θz̄Bn; ð5:13Þ

and the ϕBCC̄ sector of the Lagrangian reads

L0
ϕBCC̄ ¼ −

X
n

iωnðz̄Bnżϕn − ˙̄zBnzϕn þ żBnz̄ϕn − zBn ˙̄zϕnÞ þ 2
X
n

ω2
nðz̄Bnzϕn þ zBnz̄ϕnÞ

þ
X
n

iωnðz̄C̄nżCn − ˙̄zC̄nzCn þ żC̄nz̄Cn − zC̄n ˙̄zCnÞ − 2
X
n

ω2
nðz̄C̄nzCn þ zC̄nz̄CnÞ: ð5:14Þ

VI. GAUGE THEORIES: INTERACTIONS

Now that we have taken care of the quadratic part, we are ready to include the interactions. Working out the momenta πΦ
from the Lagrangian (4.6), we obtain

πaB ¼ −ξÃ0a; πa
A0 ¼ −

ξ̃2

λ̃
Ȧ0 −

ξ̃

λ̃
∇ ·A; πa

A ¼ Fa;

πC̄ ¼ ξ
1 − e−ig adϕ

ig adϕ
˙̄C; πaC ¼ ξ

δÃ0a

δϕb Cb; πaH̄ ¼ ξ̃ ˙̄Ha; πaH ¼ ξ̃D0Ha;

plus πϕ, which we do not report here, because its expression can be read from the gauge transformations, which, by (3.4),
are still (4.7) and (5.5): θπϕ ¼ −δπC̄.
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Then, we make the redefinition (3.10). The only changes
are

π̄aA0
¼ πaA0

þ ξ̃

λ̃
∇ ·Aa¼ −

ξ̃2

λ̃
Ȧ0;

π̄a
A ¼ πa

A − ∇A0a ¼ Ȧa þ gfabcA0bAc: ð6:1Þ
Since the differences between πΦ̂ and π̄Φ̂ are gauge
invariant, the gauge transformations of the new variables
π̄Φ̂ and Φ̂ are simply

δϕ ¼ Λ ¼ θC; δC̄ ¼ θB;

δπ̄B ¼ −θπ̄C; δπ̄C̄ ¼ −θπ̄ϕ; ð6:2Þ

the other fields π̄Φ̂ and Φ̂ being invariant.
The case of trivial boundary conditions Φ̂j

∂Ω ¼ 0, which
are evidently gauge invariant, can be treated straightfor-
wardly. The quadratic Lagrangian, which defines the
coherent states and the expansions of the fields, is the
one of the previous section. The interacting sector L0

int of
the total action (3.23) can be easily expressed in terms of
coherent states, since it does not depend on their time
derivatives.
The most general boundary conditions are Φ̂j

∂Ω ¼ f̂,
where f̂ is a row of given functions on ∂Ω. To build
physical amplitudes, we must choose a gauge invariant and
gauge nontrivial f̂, which means set ϕ ¼ B ¼ C ¼ C̄ ¼ 0
on ∂Ω. Since there are no theoretical or practical motiva-
tions to relax these requirements, from now on we adopt the
boundary conditions

Φ̂j
∂Ω ¼ ð0; 0; A0

0;A0; 0; 0; H0; H̄0Þ: ð6:3Þ

Then we make the shifts

Φ̂ → Φ̂þ Φ̂0; ð6:4Þ

where Φ̂0 are functions defined on the whole of Ω, with the
sole requirement that they coincide with the right-hand side
of (6.3) on ∂Ω. After the shift, the boundary conditions are
Φ̂j

∂Ω ¼ 0, the gauge transformations are still (4.7), and we
can freely integrate the space integrals by parts, to move
space derivatives away from any field.
It is important to stress that the conditions (6.3) apply to

the Lagrangian (4.6), before even talking about momenta,
so we do not have to worry about the behaviors of the
momenta on ∂Ω at this stage.
Take the Lagrangian (4.6), and denote it by LtotðΦ̂Þ ¼

LfreeðΦ̂Þ þ LintðΦ̂Þ. Once we implement the shift (6.4) on
it, we obtain

LtotðΦ̂þ Φ̂0Þ ¼ LtotðΦ̂0Þ þ AðΦ̂0ÞΦ̂þ BðΦ̂0Þ ˙̂Φ
þ∇ðΦ̂CðΦ̂0ÞÞ þ LðΦ̂; Φ̂0Þ; ð6:5Þ

where LðΦ̂; Φ̂0Þ ¼ LfreeðΦ̂Þþ interactions. We can ignore
the term ∇ðΦ̂CðΦ̂0ÞÞ, since it disappears as soon as we
integrate on the space manifold Ω. The quadratic sector of
LtotðΦ̂þ Φ̂0Þ coincides with LfreeðΦ̂Þ, which is the one of
LtotðΦ̂Þ, up to interactions.
Next, we proceed as explained in Sec. III C. We define

the momenta, redefine them according to (3.42) (that is to
say, according to (6.1) with π → π̃, π̄ → ¯̃π), and get to the
extended Lagrangian L̃0

φ. Since the quadratic sector of (6.5)
is LfreeðΦ̂Þ, the eigenfunctions coincide with those we had
with trivial boundary conditions. So do the expansions in
terms of coherent states (5.11). Once we integrate the
Lagrangian and include endpoint corrections, to have the
correct variational problem, the final action is (3.43), which
just contains some linear corrections (and possibly different
interactions) with respect to the action (3.23).
Once we have the action, the theory can be phrased

diagrammatically. The diagrams are of the usual type, apart
from the presence of external sources and the discretiza-
tions of the loop momenta [1].
When we want a transition amplitude, we must choose

initial and final conditions zInðtiÞ ¼ zIni, z̄
I
nðtfÞ ¼ z̄Inf for the

coherent states. The physical degrees of freedom are the
transverse components of A, which must be quantized as
physical particles. Their initial and final conditions zphni , z

ph0
ni ,

z̄phnf , and z̄ph0nf are free.
The gauge degrees of freedom are ϕ, B, C, and C̄. They

can be quantized as purely virtual or not, provided the
choice is implemented consistently everywhere. Their
initial and final conditions are trivial, i.e.,

zgni ¼ zg0ni ¼ z̄gnf ¼ z̄g0nf ¼ 0; ð6:6Þ

and similarly for C and C̄.
The purely virtual fields are A0, H, H̄, and the longi-

tudinal components of A. They are quantized as purely
virtual particles, by removing their on-shell contributions
to the diagrams perturbatively to all orders, according to
the rules of Refs. [2,11], and setting the initial and final
conditions of the coherent states associated with them to
zero. This means

zdni ¼ zd0ni ¼ z̄dnf ¼ z̄d0nf ¼ 0; ð6:7Þ

and similarly for H and H̄.
The decomposition of A into “transverse” and “longi-

tudinal” components is defined by the arrangement (5.10),
after identifying the (physical vs purely virtual) eigenfunc-
tions (5.11) and their frequencies. We illustrate these facts
in the examples of the next two sections.
Note that we do not need to disentangle the physical and

purely virtual degrees of freedom on ∂Ω, because purely
virtual particles are not required to have trivial boundary
conditions [1]. The freedom associated with their boundary
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conditions may describe some sort of interaction between
the observer, or the environment, and the physical process
we are observing.
The unitarity equation U†U ¼ 1 holds under appropriate

assumptions (such as the cancellation of the gauge anoma-
lies at one loop). An easy way to prove the statement is to
formulate the gauge sector (identified by the fields ϕ, B, C,
and C̄) as purely virtual, as in [21], because then we know
that it does not contribute to the product in between U†

and U.
Normally, instead, the fields of the gauge sector are

treated as physical fields (because the gauge symmetry
ensures that they mutually compensate inside the physical
quantities). Then the product between U† and U is a sum
over a complete set of states, which includes the gauge non
invariant ones. Those states are studied by relaxing the
initial and final conditions (6.6) on the gauge sector.

VII. GAUGE THEORIES
ON THE SEMI-INFINITE CYLINDER

In this section and the next one we illustrate the gen-
eral theory in the cases Ω ¼ semi-infinite cylinder and
Ω ¼ finite cylinder, concentrating on the frequencies and
the eigenfunctions. We have seen that, once we have those,
we can proceed straightforwardly. We choose the special
gauges ξ ¼ λ, ξ̃ ¼ λ̃, to simplify the calculations. This
allows us to keep one free parameter (λ) in the gauge sector
and one (λ̃) in the purely virtual sector.
We denote the semi-infinite cylinder by Ω ¼ S1 ×

½−l;∞Þ, while r is the radius of the circle S1. Using
cylindrical coordinates θ, z, we have

Aðt;θ; zÞ ¼ θ̂Aθðt;θ; zÞ þ ẑAzðt;θ; zÞ; ∇¼ θ̂
r
∂

∂θ
þ ẑ

∂

∂z
:

It is convenient to reach the semi-infinite cylinder from
the infinite cylinder (l ¼ ∞). We recall that the Lagrangian
is (5.1) and the momenta are (5.4), while the shifted
momenta are (5.7). Defining Φ ¼ ðϕ; B; A0; Aθ; AzÞ, we
search for eigenfunctions of the form

Φðt; θ; zÞ ¼ Φ̄0eip̂xeinθe−itω̂=r; ð7:1Þ

where Φ̄0 denotes a row of constants, while x ¼ z=r, n∈Z,
p̂ is a rescaled momentum and ω̂ is a rescaled frequency.
Inserting (7.1) into the field equations derived from (5.1),
the system has solutions when the frequencies are

ω̂g¼ 1ffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ p̂2

q
; ω̂d¼ 1ffiffiffĩ

λ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ p̂2

q
; ω̂ph¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ p̂2

q
:

Two degeneracies are present, since the gauge-dependent
(i.e., λ-dependent) frequencies ω̂g and the λ̃-dependent
frequencies ω̂d appear twice. Instead, the physical

frequency ω̂ph appears once. The independent solutions
for the five components of Φ are ten: five correspond to
the particles and five correspond to the antiparticles. We
do not write their expressions explicitly. It is sufficient to
recall that the most general solution contains 10 arbitrary
constants.
Now we move to the semi-infinite cylinder. Since the x

dependence of the solutions (7.1) is as simple as eip̂x, they
cannot satisfy the boundary conditions Φðt; θ;−lÞ ¼ 0 on
Ω ¼ S1 × ½−l;∞Þ, if they are taken separately. However, if
we take linear combinations of functions (7.1) with the
same ω̂, we can impose the conditions Φðt; θ;−lÞ ¼ 0 on
them. This way, the number of arbitrary coefficients gets
reduced to a half. Ultimately, we obtain five independent
solutions, or a solution with five arbitrary coefficients.
Omitting the overall factor einθe−itω̂=r and the arbitrary

constant in front, the physical solution reads

ϕ ¼ 0; B ¼ ðλ − λ̃Þω̂2

λ̃p̂β

sin β; A0 ¼ −
iλω̂

λ̃p̂β

sin β;

Aθ ¼ −
i
n

�
p̂α sin αþ n2

p̂β
sin β

�
; Az ¼ cos α − cos β;

where

α ¼ ðzþ lÞ p̂α

r
; β ¼ ðzþ lÞ p̂β

r
;

ω̂2 ¼ p̂2
α þ n2 ¼ 1

λ
ðp̂2

β þ n2Þ:

We see that λ-dependent contributions are present, but they
are just pure gauge, since the field strength F ¼ ∂zAθ −
∂θðAz=rÞ is λ independent. It would be impossible to fulfill
the boundary conditions of the semi-infinite cylinder
without a pure gauge part.
To study the limit l → ∞, we multiply the solution by

factors such as 2e∓ilp̂α , and drop all the oscillating terms
when l gets large. The results are

ϕ; B; A0 → 0; Aθ →∓ p̂α

n
e�ixp̂α ; Az → e�ixp̂α ;

which coincide with the physical solutions at l ¼ ∞. If,
instead, we multiply by 2e∓ilp̂β and repeat the same
procedure, we obtain an l ¼ ∞ pure-gauge solution.
The other l ¼ ∞ solutions are obtained in similar ways
from the general l < ∞ solution.
We can identify a solution by the integer n, a momentum

p̂ (e.g., p̂α in the example above) and a dispersion relation
giving the frequency ω̂ in terms of n and p̂. When we
switch to coherent states, we can label them as

Zp̂n ¼ ðzgp̂n; zg0p̂n; zdp̂n; zd0p̂n; zphp̂nÞ: ð7:2Þ
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The physical solutions correspond to zphp̂n, and are quantized
as physical particles. We can quantize all the other com-
ponents of Zp̂n as purely virtual particles. This means
that we give them trivial initial and final conditions, and

remove the on-shell contributions due to them, inside the
diagrams, perturbatively to all orders, with the procedures
of [2,11].
The free action is

Sfree ¼ −i
Z

dp̂
2π

X
n∈Z

ðZ̄p̂nfΘp̂nΩp̂nZp̂nðtfÞ þ Z̄p̂nðtiÞΘp̂nΩp̂nZp̂niÞ

þ
Z

tf

ti

dt
Z

dp̂
2π

X
n∈Z

½iðZ̄p̂nΘp̂nΩp̂nŻp̂n − ˙̄Zp̂nΘp̂nΩp̂nZp̂nÞ − 2Z̄p̂nΘp̂nΩ2
p̂nZp̂n�; ð7:3Þ

where Ωp̂n is the diagonal matrix of the frequencies,
while Θp̂n is the diagonal matrix of the factors τn ¼ �1

of (3.16).
As we have explained in the previous sections, there is a

certain liberty in choosing the decomposition (7.2), since
the only constraints are that: (a) each set is complete for
some field Φ (i.e., it can be used to expand the field, in
order to functionally integrate over it); (b) altogether, the
eigenfunctions form a complete set for the fields Φ and
the momenta π̄Φ; and (c) the eigenfunctions have the right
limits for l → ∞.
Note that the solutions of the semi-infinite cylinder

contain five arbitrary real constants, while those of the
infinite cylinder contain twice as many. They are doubled
by the sign choices in the multiplying factors e�ilp̂α , e�ilp̂β ,
etc., which are used for the large l limit.
It may be puzzling that the number of integration

variables of the functional integral “doubles” in the limit
l → ∞, so to speak. Actually, the number of variables is
infinite, so we cannot really say that it doubles. It is
convenient to explain what happens in detail, since similar
instances are met frequently. Consider the Laplacian on the
segment ½0;l�with Dirichlet boundary conditions. We have
the eigenfunctions sinðπnx=lÞ, n∈Z, x∈ ½0;l�. They
“double” in the limit l → ∞, because, after centering
the segment by means of the shift x ¼ yþ ðl=2Þ, one
has to distinguish the cases n ¼ even and n ¼ odd, which
give different eigenfunctions for l → ∞ (sines and cosines,
respectively). Similarly, sinðlp̂αÞ ¼ cosðlðp̂α − π=ð2lÞÞÞ,
so the doubling comes from negligible shifts of p̂α, or ω,
which give other eigenfunctions with the same dispersion
relation for l → ∞.
The experimental data we have today, which mainly

concern S matrix amplitudes, are not sufficient to guide us
uniquely through the wide freedomwe face when τ < ∞ on
a compact Ω. Probably, changing the basis of physical and
purely virtual frequencies in (7.2) is equivalent to twisting
the boundary conditions, or having different interplays
between the experimental setup and the physical process.
At any rate, once we make our choices of initial, final and
boundary conditions, as well as the basis (7.2), everything
else is uniquely determined.

VIII. GAUGE THEORIES ON A CYLINDER

In this section we study gauge theories on a cylinder
Ω ¼ S1 × ½−l=2;l=2�. We start again from the paramet-
rization (7.1) for the solutions of the field equations of the
infinite cylinder. Then we superpose solutions with the
same frequency, and impose the boundary conditions
Φðt; θ;−l=2Þ ¼ Φðt; θ;l=2Þ ¼ 0. We find, as expected,
that it is not sufficient to reduce the set of independent
coefficients, as it was for the semi-infinite cylinder, but we
must also discretize the frequencies.
Specifically, we insert

Φðt; θ; zÞ ¼ Φ̃ðxÞeinθe−itω̂=r

into the equations, where x ¼ z=r, n∈Z, and Φ̃ðxÞ are
linear combinations of

e�ix
ffiffiffiffiffiffiffiffiffiffi
ω̂2−n2

p
; e�ix

ffiffiffiffiffiffiffiffiffiffiffi
λ̃ω̂2−n2

p
; e�ix

ffiffiffiffiffiffiffiffiffiffiffi
λω̂2−n2

p
:

We fix the coefficients of the linear combinations by means
of the boundary conditions, after determining the frequen-
cies ω̂ that admit nontrivial solutions.
The B̃ equation is independent of the other variables, and

just reads

B̃00 ¼ ðn2 − λω̂2ÞB̃; ð8:1Þ

where the prime denotes the derivative with respect to x.
Moreover, ϕ̃ does not enter any equation apart from its
own, which reads

ϕ̃00 ¼ ðn2 − λω̂2Þϕ̃þ Δϕ̃; ð8:2Þ

where Δϕ̃ vanishes when all the other fields vanish. The Ã0

equation depends on Ã0 and B̃, while the equations of Ãθ

and Ãz depend on Ãθ, Ãz, and B̃.
The gauge-dependent frequencies are

ω̂g
kn ¼

1ffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

π2r2

l2
þ n2

s
; n∈Z; k∈Nþ:
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They are associated with two eigenfunctions. One is

ϕ̃kn ¼ sin

�
kπ

ẑ
l

�
; B̃kn ¼ Ã0

kn ¼ Ãθkn ¼ Ãzkn ¼ 0;

ð8:3Þ

where ẑ ¼ z − ðl=2Þ, and the other one is

B̃kn ¼ sin

�
kπ

ẑ
l

�
;

with nontrivial ϕ̃kn; Ã
0
kn; Ãθkn; and Ãzkn: ð8:4Þ

We omit the expressions of the nontrivial fields here, since
they are not crucial for our discussion. The solutions (8.4)
are the only ones with a nontrivial B̃.
The solutions (8.3) and (8.4) are those which, by gauge

invariance, match the eigenfunctions of the ghosts C and C̄.
Let us recall that the gauge transformations are δΛϕ ¼ Λ ¼
θC and δΛC̄ ¼ θB. This means that there must exist Φ
eigenfunctions that are made of ϕ only, and match the C
eigenfunctions: these are (8.3). Moreover, there must exist
Φ eigenfunctions where B matches the C̄ eigenfunctions:
these are (8.4). Said in different words, the coherent states
that multiply the solution (8.3) transform into the C
coherent states, while the C̄ coherent states transform into
the coherent states that multiply the solution (8.4), as
explained in the last part of Sec. V.
The other frequencies are gauge independent, but depend

on λ̃. Among those, we have the simple frequencies

ω̂d
kn ¼

1ffiffiffĩ
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

π2r2

l2
þ n2

s
; n∈Z; k∈Nþ; ð8:5Þ

with solutions

ϕ̃kn ¼
iλÃ0

kn

ω̂d
knðλ̃ − λÞ ; Ã0

kn ¼ sin

�
kπ

ẑ
l

�
;

B̃kn ¼ Ãθkn ¼ Ãzkn ¼ 0:

Then we have two other λ̃-dependent frequencies, which
are more involved. Their eigenfunctions have B̃kn ¼
Ã0
kn ¼ 0, and nontrivial Ãθkn, Ãzkn and ϕ̃kn. It is straightfor-

ward to work them out at λ̃ ¼ 1, where the frequencies
coincide with (8.5). We find Aθ ¼ sinðkπẑ=lÞ, Az ¼ 0, and
Aθ ¼ 0, Az ¼ sinðkπẑ=lÞ.
When λ̃ ≠ 1 it is convenient to expand in powers of

δ ¼ ðλ̃ − 1Þ=2. The frequencies are

ω̂ph
kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

π2r2

l2
þ n2

λ̃ð1þ δ2Þ

s
þOðδ3Þ;

ω̂d0
kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

π2r2

λ̃l2
þ n2

1þ δ2

s
þOðδ3Þ;

and the solutions read

Aθ ¼ sin

�
kπẑ
l

�
þOðδ2Þ;

Az ¼ i

�
cos

�
kπẑ
l

�
− cos

�
kπẑ
l

þ nzδ
r

��
þOðδ2Þ;

and

Aθ ¼ ið−1Þk
�
cos

�
kπẑ
l

�
− cos

�
kπẑ
l

þ ð−1Þk nzδ
r

��

þOðδ2Þ;

Az ¼ sin

�
kπẑ
l

�
þOðδ2Þ;

respectively. For the reasons we have explained before, the
distinction between the physical frequencies ω̂ph

kn and the
purely virtual frequencies ω̂d0

kn is to some extent arbitrary.
Once we have the frequencies and the eigenfunctions,

we can proceed as in Secs. III, IV, V, and VI, obtain the
coherent-state action (3.43), and work out the evolution
operator Uðtf ; tiÞ diagrammatically with the procedure
of Ref. [1].

IX. EINSTEIN GRAVITY

In this section we study Einstein gravity. The Hilbert-
Einstein action

−
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R ð9:1Þ

contains double derivatives of the metric tensor, so it cannot
be used as is to study quantum field theory in a finite
interval of time τ on a compact manifold Ω. The well-
known “ΓΓ” action does not have this problem, but differs
from (9.1) by a boundary term, which must be treated
cautiously, in order to preserve general covariance.
Moreover, in Sec. III we have emphasized that we need
an orthodox symmetry. In particular, the Lagrangian must
be invariant without adding total derivatives, which is not
true for the Hilbert Lagrangian of (9.1).
The solution of these problems is as follows. First, we

perform the purely virtual extension of ref. [4], at τ ¼ ∞,
Ω ¼ R3. Then, we switch to the invariant metric tensor and
trivialize the symmetry by means of a field redefinition.
Third, we add (invariant) total derivatives and switch to the
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ΓΓ action (built with the invariant metric tensor). Fourth,
we restrict to finite τ and compact Ω with the procedure of
Sec. III, introduce the coherent states, and work out the
final action (3.43). Having trivialized the symmetry, these
operations are invariant.
We begin by recalling the purely virtual extension of

gravity at τ ¼ ∞, Ω ¼ R3, from [4]. The gauge-fixed
action is6

S̃gf ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
BμðGμðgÞ − λgμνBνÞ

−
Z

C̄μδξðGμðgÞ − λgμνBνÞjξμ→Cμ ; ð9:2Þ

where λ is a gauge-fixing parameter, GμðgÞ is the gauge-
fixing function, δξgμν ¼ ξρ∂ρgμν − gνρ∂ρξμ − gμρ∂ρξν is the
variation of the inverse metric tensor under an infinitesimal
diffeomorphism δxμ ¼ −ξμðxÞ, Cμ are the Faddeev-Popov
ghosts, C̄μ are the antighosts, and Bμ are Lagrange multi-
pliers. For example, we can take GμðgÞ ¼ ∂νgμν, or the
special gauge of Ref. [19], which is more convenient for
various purposes, as it is in Yang-Mills theory.
Next, we introduce the extra vector ζμðxÞ, which by

definition transforms as

δξζ
μðxÞ ¼ ξμðx − ζðxÞÞ: ð9:3Þ

The right-hand side of (9.3) must be understood as a
perturbative expansion in powers of ζμ. As usual, the
Faddeev-Popov ghosts Cμ are introduced by writing
ξμ ¼ θCμðxÞ, where θ is a constant anticommuting param-
eter. Using ζμ, we can build the invariant metric tensor

gμνdðxÞ ¼ ðδρμ − ζρ;μðxÞÞðδσν − ζσ;νðxÞÞgρσðx − ζÞ; ð9:4Þ

where ζρ;μ ≡ ∂μζ
ρ.

The field ζμ must be accompanied by anticommuting
partners H̄μ and Hμ, as well as Lagrange multipliers Eμ. To
preserve unitarity, we require ζμ, H̄μ, Hμ, and Eμ to be
purely virtual. As in the case of Yang-Mills theories, the
extension amounts to introducing a certain expression in
the functional integral, which is equivalent to “1” on the S
matrix scattering amplitudes, and on the correlation func-
tions of ordinary (which means ζμ-independent) insertions
of invariant composite fields. However, it allows us to build
new, physical correlation functions, such as those that
contain insertions of the invariant metric tensor (9.4).
Inside the functional integral, the extension is a correc-

tion to the action, which reads

S̃ext ¼
Z

d4xEμðVμðg; ζÞ − λ̃gμνd EνÞ

þ
Z

d4x H̄μ
δ

δζρ
ðVμ − λ̃gμνd EνÞHρ; ð9:5Þ

where gμνd is the inverse of gμνd, Vμðg; ζÞ is an invariant
function (δξVμ ¼ 0), and λ̃ is a free parameter. For example,
we can take Vμ ¼ ∂νg

μν
d , or a mirror of the special gauge.

At this point, we make a change of field variables7

ζμdðxÞ ¼ ζμðxþ ζdðxÞÞ; Cμ
d ¼ ðδμν þ ζμd;νÞCν;

Hμ ¼ ðδμν − ζμ;νÞHν
d; ð9:6Þ

on the total action S̃gf þ S̃ext, to switch from gμν, ζμ, Cμ,Hμ

to gμνd, ζ
μ
d, C

μ
d, H

μ
d. We do not change the other fields. This

way, we abandon the original metric tensor gμν in favor of
the invariant one, gμνd. Moreover, we trivialize the sym-
metry, since in the new variables the transformation of ζμd is
just δζμd ¼ ξμd ≡ θCμ

d, while gμνd, C
μ
d andH

μ
d are invariant by

construction. The trivialized symmetry thus reads

δζμd ¼ θCμ
d; δCμ

d ¼ 0; δC̄μ ¼ θBμ; δBμ ¼ 0; ð9:7Þ

all the other fields being invariant.
Note that

−
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ ¼ −

1

16πG

Z
d4x

ffiffiffiffiffiffiffiffi
−gd

p
RðgdÞ;

by construction, where gd inside
ffiffiffiffiffiffiffiffi−gd

p
is the determinant of

gμνd. At this point, we eliminate the double derivatives by
switching to the ΓΓ action, and restrict to a finite interval of
time τ and a compact space manifold Ω:

SΓΓ ¼−
1

16πG

Z
tf

ti

dt
Z
Ω
d3x

ffiffiffiffiffiffiffiffi
−gd

p
gμνd ðΓα

μλdΓλ
ναd −Γα

μνdΓλ
αλdÞ:

Note that the Lagrangian of this ΓΓ action, which is built
with the invariant metric tensor, is manifestly invariant, so it
satisfies the identity (3.2).
The gauge-fixing sector must be rewritten as well, by

adding total derivatives, in order to become invariant at the
Lagrangian level. Taking GμðgÞ ¼ ∂νgμν for definiteness,
we write

Sgf ¼ SΓΓ −
Z

ðgμν − ημνÞð∂νBμÞ −
Z

λBμgμνBν

þ
Z

½∂νC̄μ þ λC̄μBν�δξgμνjξμ→Cμ ; ð9:8Þ

where gμν andCμ must be understood as functions of ζμd and
Cμ
d, according to the change of variables defined by (9.6),

and ημν is the flat-space metric. In (9.8) and (9.9) below, the

6Note some changes of notation with respect to Ref. [4].

7Note some different signs with respect to the notation of
Ref. [4].
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integral symbol stands for the dtd3x integral restricted to
the interval τ and the manifold Ω.
The extension (9.5) is rearranged as

Sext ¼
Z

Eμð∂νgμνd − λ̃gμνd EνÞ

þ
Z

ð∂νH̄μ þ λ̃H̄μEνÞδξgμνjgμν→gμνd ;ξμ→Hμ
d
; ð9:9Þ

for Vμ ¼ ∂νg
μν
d , after which we integrate Eμ away, and

proceed as in the case of gauge theories.
We have taken GμðgÞ ¼ ∂νgμν and Vμ ¼ ∂νg

μν
d , for

concreteness, but it is easy to adapt the formulas to the
special gauge and its mirror, or other choices.
The total action is

Stot ¼ Sgf þ Sext

and its symmetry is (9.7). At this point, we read the
Lagrangian L from Stot, and observe that it is orthodoxi-
cally symmetric, as is evident from the expression of (9.8),
while the Lagrangian of (9.9) is manifestly invariant. Yet, L
contains infinitely many time derivatives, due to the
expansion of expressions like (9.3) in powers of ζμ.
The expansion around flat space is defined by writing

gμνd ¼ ημν þ 2κhμνd , where κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
and G is Newton’s

constant. If we make the replacements

Cμ
d → κCμ

d; Bμ → κ−1Bμ; C̄μ → κ−1C̄μ; λ → λκ2;

ζμd → κζμd; Hμ
d → κHμ

d; Eμ → κ−1Eμ; H̄μ → κ−1H̄μ

λ̃ → λ̃κ2;

the perturbative expansion is the expansion in powers of κ.
Equations (9.6) show that ζμ → κζμ plus higher order

corrections. The Taylor expansions of arguments such as
xμ − ζμ and xμ þ ζμd inside (9.3), (9.4) and (9.6) raise the

powers of κ by one unit for each derivative they generate on
the fields. This means that we are in the situation described
in appendix B. Applying the construction of Sec. III, with
the rearrangement of appendix B, we build the correct
action (3.43) for gravity restricted to a finite interval of time
τ, on a compact space manifold Ω. Applying the procedure
of [1], we build the evolution operator Uðtf ; tiÞ between
arbitrary initial and final states, with arbitrary boundary
conditions, preserving general covariance.

X. QUANTUM GRAVITY WITH PURELY
VIRTUAL PARTICLES

The results of the previous section extend to quantum
gravity with purely virtual particles, provided we replace
the Hilbert-Einstein action with the appropriate action.
Since coherent states are “enemies” of higher derivatives,

as we have learned repeatedly, we cannot adopt the higher-
derivative formulation of Ref. [8], where the Lagrangian
density is made of the Hilbert-Einstein term R, plus the
cosmological term, plus the quadratic terms R2 and RμνRμν.
We must start from the two-derivative formulation of
ref. [22] at τ ¼ ∞, Ω ¼ R3, which we briefly recall here.
Besides the metric tensor gμν, the theory contains a scalar

field ϕ of massmϕ (the inflaton) and a spin-2 purely virtual
particle χμν of a certain mass mχ . The action is

SQGðg;ϕ; χ;ΦÞ ¼ SHEðgÞ þ Sχðg; χÞ þ Sϕðgþ ψ ;ϕÞ;
ð10:1Þ

where

SHEðgÞ¼−
r

16πG

Z ffiffiffiffiffiffi
−g

p ð2ΛCþRÞ; r¼m2
χ

m2
ϕ

3m2
ϕþ4ΛC

3m2
χ −2ΛC

;

is the Hilbert-Einstein action with a cosmological con-
stant ΛC,

Sϕðg;ϕÞ ¼
3

4

�
1þ 4ΛC

3m2
ϕ

�Z ffiffiffiffiffiffi
−g

p �
DμϕDμϕ −

m2
ϕ

8πG
ð1 − eϕ

ffiffiffiffiffiffi
8πG

p
Þ2
�

is the inflaton action, and

Sχðg; χÞ ¼ SHEðgþ ψÞ − SHEðgÞ þ
Z �

−2χμν
δSHEðgÞ
δgμν

þ rm2
χ

16πG
ffiffiffiffiffiffi
−g

p ðχμνχμν − χ2Þ
�
g→gþψ

is the χμν action, with

ψμν ¼ 2χμν þ χμνχ − 2χμρχ
ρ
ν; χ ¼ χμνgμν:

We gauge-fix (10.1) as in (9.2), and make the purely virtual extension as in (9.5). Then we switch from the variables gμν,
ϕ, χμν, ζμ, Cμ, Hμ to the variables gμνd, ϕd, χμνd, ζ

μ
d, C

μ
d, H

μ
d, by means of (9.4), (9.6) and

ϕdðxÞ ¼ ϕðx − ζðxÞÞ; χμνdðxÞ ¼ ðδρμ − ζρ;μðxÞÞðδσν − ζσ;νðxÞÞχρσðx − ζÞ:
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The action (10.1) is invariant under the change of variables
gμν, ϕ, χμν → gμνd, ϕd, χμνd, which is just a diffeomorphism.
This means that we can simply view (10.1) as a function of
gμνd, ϕd, and χμνd. Next, we add total derivatives to eliminate
the terms like φ1d � � �φn−1d∂∂φdn in favor of terms like
φ1d � � �φn−2d∂φn−1d∂φnd, in the quadratic sector of the
Lagrangian. Moreover, we rearrange the gauge-fixing
part as in (9.8) and the purely virtual extension as in (9.9).
At that point, we can identify the eigenfunctions and the
coherent states. As far as the interaction sector is concerned,
we rearrange it as explained in appendix B. Then we use
the procedure of Sec. III to build the final action (3.43) for
the restriction to finite τ and compact Ω. From that
point onward, we can proceed as explained in Sec. III and
Ref. [1], and build the evolution operator Uðtf ; tiÞ between
arbitrary initial and final states, with arbitrary boundary
conditions.

A. Unitarity in the presence of a cosmological constant

The cosmological constant ΛC is nonvanishing, because
renormalization turns it on anyway, even if we start from a
vanishing ΛC. A nonzero ΛC raises some issues that we
must address.
First of all, flat space is not a solution of the field

equations (with ϕ ¼ 0, χμν ¼ 0), so it would be better to
formulate perturbation theory by expanding the metric
tensor gμν around a de Sitter or anti–de Sitter metric,
according to the sign of ΛC, rather than the flat-space
metric. However, an expansion of that type does not allow
an easy switch to energy/momentum space by means of
Fourier transforms, and makes the calculations of loop
diagrams, and the proofs of general theorems, very hard.
Since the physical results do not depend on the expan-

sion we make, we may insist on using the expansion around
flat space, in spite of its non standard features. For example,
it generates one-leg vertices and a spurious graviton mass
term, which can even be of tachyonic type, depending on
the sign of ΛC.
Whatever difficulties the expansion may generate, they

are of a spurious nature, which means that they must
compensate, and ultimately cancel out. In this spirit, the
expansion around flat space is preferable, because its
unusual features are simpler to deal with.
The other problem concerns the S matrix: we do not

know how to define asymptotic states and S matrix
amplitudes on nonflat spacetimes [23]. What about unitar-
ity, then?
Although we cannot claim that the S matrix is unitary in

a strict sense, when ΛC ≠ 0, we can still claim that it is
unitary up to effects due to the cosmological constant [21].
Those effects are small for all practical purposes: a
scattering process should involve wavelengths as large as
the universe to be affected by ΛC in a non negligible way.
Besides, now we have a simpler way out. Thanks to the

results of this paper and [1], we are less dependent on the

paradigms that have dominated the scene since the birth of
quantum field theory. In particular, we can study unitarity
without being tied to the S matrix, by concentrating on the
evolution operator Uðtf ; tiÞ.
We have shown that we can build a unitary Uðtf ; tiÞ

diagrammatically in a finite interval of time τ ¼ tf − ti, on a
compact space manifold Ω, with arbitrary initial and final
states, and arbitrary boundary conditions. The goal has
been achieved both in Einstein gravity (which is not
renormalizable, but this does not jeopardize its perturbative
unitarity) and in quantum gravity with purely virtual
particles (which is renormalizable and unitary). In the first
case the cosmological constant can be added with no
difficulty, and Uðtf ; tiÞ remains well-defined and unitary
for every τ < ∞. In the second case, the cosmological
constant is already present by default.
This means that the cosmological constant does not have

a problem with unitarity. It does have problems with the
very notions of S matrix and asymptotic states. Given that
the difficulties only appear in the τ → ∞ limit, the τ < ∞
formalism we have developed here might suggest new
ways to investigate asymptotic states in gravity with a
cosmological constant.

XI. CONCLUSIONS

When we study gauge theories and gravity on a compact
manifold, possibly with boundary, and on a finite interval
of time, we face the nontrivial task of formulating the
initial, final, and boundary conditions in invariant ways.
The ordinary gauge potential Aμ and the metric tensor gμν
are not straightforward to handle, in this respect. Nor are
the field strength Fμνa, in non-Abelian gauge theories, or
the curvature tensors R, Rμν, Rμνρσ, in gravity, because none
of them is invariant.
The purely virtual extensions of gauge theories and

gravity formulated in ref.s [3,4] come to the rescue, because
they allow us to define invariant matter and gauge fields
ψd and Aμ

d, and an invariant metric tensor gμνd, without
changing the ordinary physical quantities, such as the S
matrix amplitudes and the correlation functions of non-
linear invariant composite fields, like Fa

μνFμνa, ψ̄ψ , etc. Yet,
they allow us to study new correlation functions, like those
of the invariant fields ψd, A

μ
d, and gμνd. They also provide a

way of formulating invariant initial, final and boundary
conditions in gauge theories and gravity on a compact
manifold Ω, in a finite interval of time τ.
Switching to the invariant variables ψd, A

μ
d, and gμνd, it is

also possible to “trivialize” the symmetries. Then it is
relatively straightforward to organize the action properly,
and work out the eigenfunctions and the frequencies for the
expansions of the fields. The functional integral is defined
as the integral on the coefficients of those expansions.
Coherent states are introduced, and the evolution operator
Uðtf ; tiÞ is worked out between arbitrary initial and final
states. The formalism we have developed allows us to
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calculate Uðtf ; tiÞ diagrammatically, and perturbatively, for
arbitrary boundary conditions on ∂Ω. In all the operations
we make, the local symmetries are under control, so
Uðtf ; tiÞ is gauge invariant and invariant under general
coordinate transformations.
We have illustrated the basic properties of the formalism

in Yang-Mills theory on two relatively simple manifolds:
the semi-infinite cylinder and the cylinder.
The limit τ → ∞,Ω → R3 (which would give the usual S

matrix) is only regular when the cosmological constant ΛC
vanishes, due to the problems related to the definitions of
asymptotic states and S matrix amplitudes at ΛC ≠ 0. Yet,
such problems are not problems of unitarity per se, because
the evolution operator Uðtf ; tiÞ of quantum gravity is
unitary for every τ < ∞.
It might be impossible to test the Smatrix predictions for

a long time, in quantum gravity. Hopefully, working with
Uðtf ; tiÞ at finite τ on a compact Ω can allow us to explore
more options, and figure out experimental setups that could
amplify tiny effects like those of quantum gravity till they
become detectable.
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APPENDIX A: FORMAL PROPERTIES OF δ= θΔ

In this appendix we study the key formal properties of
the operator δ of the gauge transformations, and give a very
economic proof of theorem (3.25).
Adopting the notation (3.26), (3.27), (3.28) of Sec. III B,

we can write δ ¼ θΔ,

Δ ¼
X
a

X
n∈ Û

vaTn σ1
δl
δuan

þ c:c:; ðA1Þ

where “c.c.” denotes the complex conjugate. It is easy to
prove the properties

Δ2 ¼ 0; ΔuaTn ¼ vaTn σ1 þ uaTn σ3Δ; ΔvaTn ¼ vaTn σ3Δ;
δl
δuan

Δ¼ Δσ3
δl
δuan

;
δl
δvan

Δ¼ Δσ3
δl
δvan

þ σ1
δl
δuan

; ðA2Þ

where Δ is meant to act everywhere to its right.
Now we prove theorem (3.25), stating that a local

function X that solves ΔX ¼ 0 can be written as X ¼
X0 þ Y, where X0 ¼ Xju¼v¼ū¼v̄¼0 and Y is a local function.
Define the operators

Δ̂ ¼
X
a

X
n∈ Û

uaTn σ1
δl
δvan

þ c:c:;

D ¼
X
a

X
n∈ Û

�
uaTn

δl
δuan

þ vaTn
δl
δvan

�
þ c:c:

Using (A2), it is straightforward to prove the identities

½D;Δ� ¼ ½D; Δ̂� ¼ 0; fΔ; Δ̂g ¼ D: ðA3Þ

The former is a consequence of homogeneity.
Now, decompose X as X ¼ X0 þ X0. Clearly, ΔX0 ¼

ΔX0 ¼ 0. Moreover, D−1X0 is well-defined, by homo-
geneity. Using (A3), we immediately find

X0 ¼ DD−1X0 ¼ fΔ; Δ̂gD−1X0 ¼ ΔΔ̂D−1X0

þ Δ̂D−1ΔX0 ¼ ΔY; Y ¼ Δ̂D−1X0;

which proves the theorem.
Note that we never have to involve, discard, or pay

attention to total derivatives, so the theorem applies to
functions, not just functionals.

APPENDIX B: HIGHER-DERIVATIVE
INTERACTIONS

In this appendix we extend the results of Sec. III to
interaction Lagrangians that contain arbitrarily many deriv-
atives of the fields, as long as their number grows together
with the power of some coupling. This part is only needed
for gravity. We show that we can rearrange the Lagrangian
L0 so as to finally have an action with the form and the
properties of (3.43).
We assume that the Lagrangian Lðϕ; ϕ̇Þ is decomposed

as (3.1), that the symmetry is orthodox and linear, that the
quadratic sector Lfreeðϕ; ϕ̇Þ has the same structure as in
Sec. III (no more than one derivative on each field, no more
that two derivatives in each term), but we allow Lintðϕ; ϕ̇Þ
to contain arbitrary monomials ∂

m1ϕ1 � � � ∂mnϕn of the
fields, differentiated arbitrary numbers of times m1;…mn.
For definiteness, we assume that Lintðϕ; ϕ̇Þ is proportional
to some coupling λ, which we use to trace the interaction
terms. We write them as OðλÞ, or OðλnÞ, n > 1, when we
mean higher orders.
We proceed as in Sec. III up to the integrated Lagrangian

L0, expressed in terms of coherent states. This means that:
we make the shift (3.34) with the conditions (3.44); then
we work out the momenta π̃Iφ, make the redefinition (3.42),
and expand ¯̃πIφ;φI in coherent states. We obtain the same
quadratic part we had before, then the linear terms due to
ΔL0

φ, plus interactions L0
intðz; z̄Þ ¼ OðλÞ.

Before the expansion in coherent states, we have a wide
freedom. For example, we can change the interaction sector
of the Lagrangian by adding gauge invariant total space
derivatives. After the switch from ¯̃πIφ;φI to coherent states,
these corrections give legit vertices. Moreover, the expan-
sion takes care of the space sector, so we do not need to
worry about the space derivatives any longer. What we have
to do, instead, is rearrange the interaction part L0

intðz; z̄Þ, to
remove the time derivatives of z and z̄, which are still there,
and can be arbitrarily many. We achieve this goal by adding
(gauge invariant) total time derivatives to L0

int.
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We can arrange L0ðz; z̄Þ into a sum

L0ðz; z̄Þ ¼ L0
freeðz; z̄Þ þ L0

int 0ðz; z̄Þ þ L0
int derðz; z̄Þ; ðB1Þ

where L0
freeðz; z̄Þ includes the quadratic terms, as well as the

linear terms due to ΔL0
φ, L0

int 0ðz; z̄Þ ¼ OðλÞ is free of time
derivatives, while L0

int derðz; z̄Þ ¼ OðλÞ vanishes when all
the time derivatives are set to zero.
We also assume that the each term of L0

int der has a power
of λ that is equal to the number of its time derivatives,
at least. We remove L0

int der iteratively by means of field
redefinitions and dropping gauge invariant total derivatives,
without affecting the symmetry and the other properties of
the Lagrangian L0.
We proceed by induction. We assume that L0

int der has N
powers of λ more than one for each time derivative, and
write L0

int der ¼ OðλNÞOðλ∂tÞ to mean this. We give a
procedure to rearrange the Lagrangian so that the new
L0
int der is OðλNþ1ÞOðλ∂tÞ. Since we are able to do so for

arbitrary N, starting from N ¼ 0, we remove L0
int der

entirely.
Replacing the functional derivatives of (A1) with ordi-

nary derivatives, we can write the operator Δ as

Δ≡X∞
j¼0

X
a

X
n∈ Û

vaTjn σ1
∂l

∂uajn
þ c:c:; ðB2Þ

where uajn and v
a
jn denote the j-th time derivatives of uan and

van, respectively.
We know that L0

int der must be gauge invariant by itself
(ΔL0

int der ¼ 0), since Δ does not mix derivatives and orders
of the interactions. Using theorem (3.25), we can write

L0
int der ¼ X0 þ ΔY;

where X0 is a function that depends only on wα
jn and w̄α

jn

(the jth time derivatives of wα
n and w̄α

n), and Y is another
function.
Since every term L0

int der must contain time derivatives,
X0 has the form

X0 ¼
X
j>0

X
α

X
n∈ Û

wα
jnX

αj
n þ c:c:;

for certain Δ invariant functions Xαj
n , and their conjugates.

We can write

X0 ¼
X
α

X
n∈ Û

ẇα
nXα

n þ Xtder
0 þ c:c:;

where Xα
n are other Δ invariant functions, and Xtder

0 are
gauge invariant total derivatives. As part of the rearrange-
ment to get to the correct final action, we drop Xtder

0 .

Now we consider Y. Since it must contain time deriv-
atives, its form is

Y ¼
X
j>0

X
n∈ Û

�X
α

wα
jnY

αj
n þ

X
a

ðuaTjn Yaj
nþ þ vaTjn Y

aj
n−Þ

�
þ c:c:

The only thing that matters is ΔY, so we can replace Y with

Y 0 ¼
X
j>0

X
n∈ Û

�X
α

wα
jnY

αj
n þ

X
a

uaTjn Ỹ
aj
nþ

�
þ c:c:;

Ỹaj
nþ ¼ Yaj

nþ þ σ1σ3ΔY
aj
n−;

since ΔY ¼ ΔY 0, by the first and third identities of (A2).
Subtracting gauge invariant total derivatives from L0

int der,
we rearrange this expression as

Y 0 →
X
n∈ Û

�X
α

ẇα
nYα

n þ
X
a

u̇aTn Ỹa
nþ

�
þ c:c:;

for some Yα
n and Ỹa

nþ.
So far, the rearrangement gives

L0
int der → X̄ ≡ X

n∈ Û

�X
α

ẇα
nðXα

n þ ð−1ÞϵαnΔYα
nÞ

þ Δ
X
a

u̇aTn Ỹa
nþ

�
þ c:c:; ðB3Þ

where ϵαn is the statistics of wα
n. Note that Xα

n, Yα
n and Ỹa

nþ
are OðλNþ1ÞOð1Þ.
At this point, we remove X̄ by means of the field

redefinitions,

w̄α
n → w̄α

n −
ð−1ÞϵαnXα

n þ ΔYα
n

2ταniωα
n

; ūan → ūan −
σ1Ỹa

nþ
2τaniωa

n
;

v̄an → v̄an −
ΔỸa

nþ
2τaniωa

n
; ðB4Þ

and their conjugates. We show that this operation
replaces L0

int der with higher-order derivative interactions
OðλNþ1ÞOðλ∂tÞ, and preserves the key properties of L0

free
and L0

int 0.
When we apply the redefinition (B4) to L0

int der we obtain
OðλNþ1ÞOðλ∂tÞ at least, which go into the new L0

int der.
When we apply (B4) to L0

free minus the universal kinetic
terms (3.31) and (3.32), we obtain: (a) interaction terms
with no derivatives, which go into the new L0

int 0; plus
(b) OðλNþ1ÞOðλ∂tÞ, which go into the new L0

int der. The
same occurs when we apply (B4) to L0

int 0.
It remains to apply the redefinition (B4) to (3.31) and

(3.32). The second orders of the Taylor expansions give
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OðλNþ1ÞOðλ∂tÞ. So, it is sufficient to focus on the first
orders of the Taylor expansions.
From (3.31) we get the correction

−
X
α

X
n∈ Û

ẇα
nðXα

n þ ð−1ÞϵαnΔYα
nÞ

þ 1

2

d
dt

X
α

X
n∈ Û

½ð−1ÞϵαnXα
n þ ΔYα

n�wα
n þ c:c:

The first term subtracts the first one of (B3). The rest is a
gauge invariant total derivative, which we remove.
From (3.32) we get the correction

−
X
a

X
n∈ Û

Δðu̇aTn Ỹa
nþÞ þ

1

2

d
dt

X
a

X
n∈ Û

ΔðuaTn Ỹa
nþÞ þ c:c:;

which cancels the rest of (B3), plus gauge invariant total
derivatives.
In the end, we remain with a L0

int der that is OðλNþ1Þ×
Oðλ∂tÞ. That is to say, we have raised its λ power by one
unit. Iterating in N, we can make L0

int der disappear entirely.

Summarizing, the effects of the iterated redefinitions (B4),
the rearrangements and the droppings of gauge invariant total
derivatives in the interaction sector are: (1) they cancel the
term L0

int der; (2) they do not affect the symmetry trans-
formations (3.28); this is evident from (B4), using δ ¼ θΔ;
(3) they do not affect the universal kinetic terms (3.31) and
(3.32); (4) they do not affectL0

free; (5) they do not change the
structure ofL0

int0; (6) they leave theLagrangianL
0 orthodoxi-

cally symmetric. In the end, we have the correct L0:

L0ðz; z̄Þ ¼ L0
freeðz; z̄Þ þ L0

int0ðz; z̄Þ: ðB5Þ
Note that point (6) is tautologically true now: a gauge
invariant Lagrangian of the form (B5) is necessarily ortho-
doxically invariant, if the symmetry is linear, since the
universal kinetic terms are invariant by themselves, and
the rest does not contain time derivatives.
The field redefinitions (B4) are perturbative, so their

Jacobian determinant is trivial, if we use the analytic or
dimensional regularization techniques [20].
To get to the action (3.23), we integrate on time, add the

usual endpoint corrections, as in (3.23) and (3.43), and we
are done.
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