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We used the Cartan formalism to construct fermionic models that are compatible with Galilean or
Carrollian symmetry and rigid scaling symmetry. The free Carrollian fermion model exhibits conformal
Carrollian symmetry which is isomorphic to the asymptotic symmetries for flat spacetime in three
dimensions, namely the BMS3 symmetry. We performed canonical quantization to this free Bondi-van
der Burg-Metzner-Sachs (BMS) fermion model, discussed both the highest weight vacuum and the
induced vacuum, calculated the correlation functions and the torus partition function. Finally, we
constructed N ¼ 2 supersymmetric theories by combining the free fermion model and the free scalar
model [Phys. Rev. D 105, 125005 (2022)].
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I. INTRODUCTION

Symmetry, if exists, always plays important roles in
modern theoretical physics. Interestingly, the study of the
symmetry of Einstein gravity on asymptotically flat space-
time [1–4] lead to two surprises: one is that the resulting
asymptotic symmetry group, the Bondi-van der Burg-
Metzner-Sachs (BMS) group, is infinite dimensional and
hence is much larger than the isometry group of Minkowski
spacetime, namely the Poincaré group; the other is that for a
long time the BMS symmetry had seemed very mysterious
and it had not been clear what useful lessons one can draw
from the symmetry, until some recent progresses. Recently,
the BMS symmetry has been related to Weinberg’s soft
theorem [5] and gravitational memory effect [6,7]. Relatedly
scattering amplitude in flat spacetime is related to a two
dimensional conformal field theory (CFT) called celestial
CFT [8–13], and moreover connections between the BMS
group and celestial CFTs have been discussed in [14,15].
Parallel to the developments related to BMS group in four

dimensions, recently the study of BMS group in three
dimensions has also been fruitful. The story is closely
related to the bottom-up approach of the AdS3=CFT2

correspondence. For three dimensional gravity with a
negative cosmological constant, the phase space of gravity
can be organized into representations of its asymptotic
symmetry group under some consistent boundary condi-
tions, which turns out to be the two dimensional conformal

group [16]. The rich results of two dimensional conformal
field theories (CFT2) enable many questions to be addressed
in a more explicit and precise way, including the micro-
scopic counting of the black hole entropy, correlation
functions, quantum entanglement, etc. Using a similar
strategy to three dimensional gravity without cosmological
constant, the asymptotic group of flat spacetime is the three
dimensional BMS group (BMS3), which is also infinite
dimensional [17–19]. The BMS3 algebra is found to be
isomorphic to two dimensional Carrollian conformal alge-
bra, which can be obtained from left and right moving
Virasoro algebras by taking an ultrarelativistic limit [20],
hence the name. In analogy to the AdS3=CFT2 correspon-
dence, one can try to set up a holographic equivalence
between asymptotically flat spacetime and BMS3-invariant
field theory (BMSFT), or equivalently Carrollian conformal
field theory (CCFT) [21–23]. Note that it happens that the
Carrollian conformal algebra in two dimensions is also
isomorphic to the Galilean conformal algebra, namely the
nonrelativisitic limit of the Virasoro algebra [24]. Due to
this, the dual theory was sometimes referred to as Galilean
conformal field theory (GCFT) [25,26], where the discus-
sion mainly relies on the algebra and its representations.
Although GCFT and CCFT share a lot of similar features,
the differences are also important, especially on higher
dimensions [27,28]. Many interesting results have been
obtained along this direction of flat holography. Using the
symmetry, correlation functions for BMSFT and GCFT
have been analyzed [29–31], and BMS bootstrap program
was initiated in [31–35]. Geodesic Witten diagrams were
considered in [36]. The phase space of Einstein gravity
contains the so-called flat cosmological solutions featuring
Cauchy horizons on which an entropy can be assigned [37].
The torus partition function of BMSFTs was found to be
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modular invariant and a Cardy-like formula can be derived,
so that it provides an interpretation of the entropy of the
Cauchy horizon [38]. As an important measure of quantum
entanglement, entanglement entropy for the BMSFTs
were calculated [39,40], and the holographic dual was
proposed [41,42]. Other interesting topics including modu-
lar Hamiltonian [43], entanglement negativity, the reflected
entropy [44], and partial differential entropy [45] have also
been discussed in the literature.
Despite these developments, not much is known about the

putative dual BMSFTs other than the properties implied by
the symmetries. Therefore it is necessary to construct explicit
models of quantum field theories with BMS symmetries. So
far a Liouville-like theory with BMS symmetries has been
constructed and discussed in [46–48], which can be obtained
from the ultrarelativistic (UR) limit of the ordinary Liouville
theory, or from the geometric action of the BMS3 group [49];
a free scalar BMSmodel was analyzed in [50], whose action
also comes from the tensionless limit of string theory [51,52],
and a

ffiffiffiffiffiffiffi
TT̄

p
deformation of a free scalar CFT2 [53–55]; and

more general models with Galilean or Carrollian symmetry
in two dimensions and higher dimensions have also been
proposed in [56–62].
In this paper, we study two dimensional free fermion

models with BMS symmetry, or equivalently Carrollian
conformal symmetry. In two dimensions, both the Carrollian
and Galilean transformations consist of two translational and
a boost transformation,

xa → xa þ δa; a ¼ 1; 2 ð1:1Þ
x2 → x2 þ vx1 ð1:2Þ

where the time direction is chosen to be x1 for Galilean
symmetry, and x2 for Carrollian symmetry, and v is a boost
parameter. By keeping the choice of time implicitly, we can
discuss both the symmetries in a uniform way. Using the
Cartan formalism, we systematically search for possible
fermionic theories invariant under Galilean or Carrollian
symmetry together with rigid scaling in two spacetime
dimensions. In order for a spinor with two Majarona
components to couple consistently with a flat Galilean or
Carrollian geometry, there are two possibilities: (i) the two
fermions are decoupled free chiral fermions, or (ii) the
kinetic term involves products of the two Majarona fermions
and hence they are not decoupled. The latter is the main
focus of this paper. After further specifying the Carrollian
case, we find that the model exhibits BMS symmetry, and
thus is referred to as the BMS fermion model. The action on
the cylinder is given by

S ¼ −
i
2π

Z
dτ dσðψ1∂σψ1 − ψ2∂τψ1Þ; ð1:3Þ

which agrees with the action of the world sheet fermion in
the tensionless limit with inhomogeneous scaling [63].

We then perform canonical quantization, and compute the
correlation functions and torus partition functions in both
the highest representation and the induced representation. In
the highest weight representation, the BMS algebra has
central charges cL ¼ 1, cM ¼ 0. The total torus partition
which includes contributions from all the R-R, NS-NS,
R-NS, and NS-R sectors is invariant under the modular S
transformation, but picks up a phase under the modular T
transformation. It is possible to restore modular T invariance
if we take 24 copies of this BMS fermion theory. In the
induced representation, the central charges of the BMS
algebra both vanish, the correlation function is ultralocal,
and the partition functions is divergent.
Finally, we construct supersymmetric theories with BMS

symmetry. Combining the BMS scalar discussed in [50]
and the aforementioned BMS fermion together, we get a
N ¼ 2 supersymmetric algebra with BMS algebra as the
bosonic part. Alternatively, combining the BMS scalar and
with two chiral fermions also lead to N ¼ 2 supersym-
metry, which contain two N ¼ 1 subalgebra. This means
that we can also build an N ¼ 1 theory using the BMS
scalar together with one chiral fermion.
The layout of this paper is as follows. In Sec. II, we review

the Galilean/Carrollian geometry and construct covariant
fermionic actions on it. In Sec. III, we solve the BMS
fermion by canonical quantization in the highest weight
vacuum. In Sec. IV, we organize the states into the BMS
staggered module. In Sec. V, we calculate the torus partition
function in the highest weight representation. In Sec. VI, we
consider another choice of the vacuum, the so-called induced
vacuum. In Sec. VII, we put the BMS scalar and the BMS
fermion together to discuss the BMS supersymmetry.

II. FERMIONS ON THE GALILEAN/CAROLLIAN
GEOMETRY

In this section we construct free fermionic models with
Galilean or Carrollian symmetry, together with rigid scaling
symmetry in the covariant formalism. The discussions in this
section apply to both the Galilean and the Carrollian
symmetry, which we will refer to as G=C for brevity. We
will review the Cartan formalism with local G=C symmetry,
write down the Clifford algebra, and finally use bispinors to
construct fermionic models with G=C symmetry.

A. Flat Newton-Carrollian geometry

In this subsection, we briefly review the Cartan formalism
with G=C symmetry, following the conventions of [64]. The
formalism was first introduced to study nonrelativistic
theories, and hence is often referred to as the Newton-
Cartan geometry in the literature. However, it can similarly
be formulated for ultrarelativistic theories as well. We start
from flat geometry compatible with G=C symmetry, and
then construct curved geometry by making the flat geometry
the tangent space at each point.
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Let us choose the two dimensional coordinates as
xa; a ¼ 1, 2. We are interested in a flat geometry with
translational, boost, and scaling symmetry

xa → xa þ δa; a ¼ 1; 2

xa → Λa
bxb;

xa → λxa; ð2:1Þ

where δa denotes translation along the direction of xa, and
Λ can be chosen as

Λ ¼
�
1 0

v 1

�
ð2:2Þ

where v is a boost parameter. In relativistic theory, a boost
transformation mixes the time and spatial direction. In
contrast, here the boost transformation (2.2) leaves the x1

direction invariant, and only changes the x2 direction. If we
choose x1 as the time direction,Λ is the nonrelativistic boost
with v being the relative velocity between the two frames,
which can be obtained from the Lorentzian boost by sending
the speed of light to infinity. In this case, x1 is the “absolute”
temporal direction. Alternatively, if x2 is chosen as the time
direction, Λ corresponds to ultrarelativistic boost which can
be obtained by sending the speed of light to zero.1 In this
case, x1 direction is the “absolute” spatial direction. In
the following, most of the discussions are independent of
the choice of time direction, and hence we will discuss both
limits collectively. To construct field theories compatible
with the symmetry (2.1), we need to find invariant tensor
and spinor representations of the boost symmetry.
Let us start with tensors with rank one. Similar to usual

differential geometry, we label vectors with upper indices,
and one-forms with lower indices. The boost invariant
vector and one-form are defined to satisfy

Λa
bqb ¼ qa; qbΛb

a ¼ qa ð2:3Þ

We will see later that they are dual to each other, the reason
why we use the same notation q. With the choice (2.2), the
explicit solution to the above eigenvalue problem is

qa ¼
�
0

1

�
; qa ¼ ð 1 0 Þ; a ¼ 1; 2: ð2:4Þ

At rank two, the boost invariant Matrix with two lower
indices should satisfy

Mab ¼ Λa0
aMa0b0Λb0

b: ð2:5Þ

Using the 1-form qa, it is straightforward to construct a
boost-invariant and symmetric 2-tensor gab ¼ qaqb. Any
boost invariant 2-tensor with lower indices can thus be
decomposed into a symmetric part gab and an antisym-
metric part ϵab,

gab ¼ qaqb; ϵab ¼
�

0 1

−1 0

�
ð2:6Þ

Similar to flat Minkowski spacetime, g is interpreted as a
flat metric with Galilean or Carrollian symmetry, which can
be used to define inner products between two arbitrary
vectors Ua and Vb,

U · V ¼ UagabVb ð2:7Þ

Unlike the Minkowski metric, however, the non-
Minkowski flat metric (2.6) is noninvertible, and hence
cannot be used to raise and lower indices. Nevertheless, we
can use the invertible antisymmetric tensor ϵab to map a
vector to a one-form. In particular, the boost-invariant one-
form qa is indeed dual to the boost-invariant vector qa,

qa ¼ ϵabqb; qa ¼ ϵabqb; ϵabϵbc ¼ δac: ð2:8Þ

Using ϵab, we can also define a metric with upper indices
from that with lower indices,

gab ≡ qaqb ¼ ϵacϵbdqcqd ¼ ϵacϵbdgcd: ð2:9Þ

Note that the inner product between two vectors can also be
written as that of two one-forms, but is not equal to the
contraction between a vector and a one-form,

U · V ¼ UagabVb ¼ UagabVb ≠ UaVa ¼ −UaVa: ð2:10Þ

where the minus sign in the last equality is due to the
antisymmetric property of ϵ. In particular, the contraction
of a vector with its dual 1-form always vanishes, namely

VaVa ¼ 0: ð2:11Þ

Note that the boost symmetry has selected a direction,
specified by the boost invariant one-form qa, or equiv-
alently, the boost invariant vector qa. Using the explicit
expression (2.4), this corresponds to selecting the “abso-
lute” direction x1. Most of our discussions do not depend
on the explicit expression (2.4), but only on its properties.
The vector qa is orthogonal to an arbitrary vector in the two
dimensional vector space under the inner product (2.7),
namely

q · V ¼ qagabVb ¼ 0 ð2:12Þ

1The warped CFT (WCFT) discussed in [64] has the same
translation and boost symmetry as in (2.1), but with an aniso-
tropic scaling x1 → λx1; x2 → x2. WCFTs have “absolute spatial
direction” as x2 is usually chosen as time.
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In the two dimensional vector space, we can choose a basis
ðqa; νaÞ by requiring νa to be linearly independent of qa, or
equivalently

N ¼ νaqa ≠ 0: ð2:13Þ

So far we have only considered the boost symmetry.
Now let us turn to the scaling symmetry (2.1). Define the
scaling structure Jab as the generator of the infinitesimal
scaling, so that the finite transformation e−λJ acts as (2.1).
Then the action of Jab on the basis ðqa; νaÞ of the vector
space has to be

Jabqb ¼ −qa; Jabνb ¼ −νa ð2:14Þ

Using the basis q, ν and the antisymmetric tensor ϵ,
the scaling structure can be expressed in a coordinate-
independent way as,

Jab ¼ −N−1ðνaqb − qaνbÞ ð2:15Þ

To summarize this subsection, flat geometry compatible
with translational invariance and boost invariance can be
specified by a boost invariant one-form qa, and a boost
invariant antisymmetric tensor ϵab. The degenerate flat
metric gab ¼ qaqb defines the inner product between
vectors (2.7), while the antisymmetric tensor ϵab and its
inverse ϵab raises and lowers indices. This is in contrast
with the usual Riemannian geometry, in which case the
metric plays both roles. The boost invariant 1-form qa
selects an “absolute” direction. Further considering an
isotropic scaling symmetry (2.1), we can express the
scaling structure as (2.15) which is coordinate independent.

B. Connection on Galilean/Carrollian geometry

In this subsection we will discuss curved Galilean/
Carrollian geometry in Cartan formalism. In particular,
we will find the affine connection and spin connections
compatible with local boost symmetry and rigid scaling
symmetry (2.1).
In the Cartan formalism, the tangent space at each point

of a curved manifold is the aforementioned flat geometry
with Galilean/Carrollian symmetry. Thus the 2d Newton/
Carrollian geometry can be described by the data
ðM;qa; eaμ; ϵabÞ, where M is a 2-dimensional manifold,
qa is the boost invariant one-form in the cotangent space,
ϵab is the antisymmetric tensor that maps one-forms to the
vectors, and the vielbein eaμ maps space-time vectors to
tangent space vectors,

eaμ∶ vμ → va ð2:16Þ

and is assumed to be invertible. Similar to the discussion of
Riemannian geometry, covariant derivative is defined as

D ¼ ∂þ ω − Γ ð2:17Þ

where ω is the spin connection which acts on the tangent
space indices a; b; � � �, while Γ is the affine connection
acting on spacetime indices μ; ν � � �. The torsion and
curvature two-forms are respectively

Ta ¼ dea þ ωa
b ∧ eb; Ra

b ¼ dωa
b: ð2:18Þ

As discussed at the end of Sec. II. A, flat geometry is
specified by the boost invariant vector qa which selects an
absolute direction in flat geometry, and the antisymmetric
2-tensor ϵab which lowers indices. We would like to find a
spin connection that keeps qa and ϵab covariantly constant.
First we note that requiring

Dμϵab ¼ 0 ð2:19Þ

implies that the spin connection one form ωab is symmetric
in the two lower indices, namely

ωab ¼ ωba: ð2:20Þ

Further using

Dμqa ¼ 0 ð2:21Þ

we find that the spin connection ωa
bμ can be written as,

ωa
bμ ¼ qaqbωμ: ð2:22Þ

Note that (2.19) and (2.21) also imply that the boost-
invariant one-form is also covariantly constant, Dμqa ¼ 0.
One can verify that the torsion free condition does not
further specify the spin connection, similar to the obser-
vation for the affine connection [65]. This is in contrast
with the relativistic case, where the affine connection is
determined uniquely by the torsion free and the metric
compatibility conditions. Then the spin connection can be
determined from the vielbein postulate together with the
fact that it is antisymmetric. In the non-Lorentzian case,
however, it has been observed that the aforementioned
procedure cannot determine the spin connection uniquely,
and additional conditions are needed [66,67]. In the
following, we will just keep the general form of the spin
connection.
To end this subsection, we comment on an alternative

formulation of the G=C geometry. Using the vielbein, we
obtain a spacetime one-form Aμ ¼ qaeaμ and a symmetric
2-tensorGμν¼gcdϵacϵbde

μ
aeνb. Similar to the property (2.12)

of qa, the spacetime vector A is also orthogonal to an
arbitrary spacetime one-form, as AμGμνvμ ¼ 0. In the
Galilean case, A is called the temporal one form or
the clock one form, and Gμν is called the inverse spatial
metric [68]. In the Carrollian case, A is now the one-form
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in the spatial direction, and the metric is degenerate in the
time direction, so that Gμν is the inverse temporal metric.
The geometry can thus be described by the triplet ðM;A;GÞ.
This is the analog of describing Riemann geometry using
coordinates. In the discussion of connection, the two
formalisms are compatible. In order to discuss fermions,
however, we need to use the Cartan formalism which allows
us to couple the Fermions to curved geometry.

C. Fermions on (flat) Galilean/Carrollian geometry

In this subsection we discuss fermions which can be
coupled to flat Galilean/Carrollian (G=C) geometry, and
construct an action from fermions compatible with the local
G=C symmetry. These fermions lie in the spinor repre-
sentation of the G=C group. In order to do so, we need to
define a Clifford algebra compatible with the G=C geom-
etry (2.6), a charge conjugation operator which defines the
dual spinor space, and Γ�, the analog of Γ5, which trans-
forms under the local G=C group as a psuedoscalar. With
these definitions, we can build bispinors which transform
invariantly or covariantly under the action of G=C trans-
formation, and further construct fermionic actions from
these bispinors.
In Galilean/Carrollian geometry, we can define the

Clifford algebra by requiring the anticommutation relation

fΓa;Γbg ¼ 2gab ¼ 2qaqb ð2:23Þ

which is similar to relativistic theories with the Riemannian
metric gab. Using (2.23), we can define a boost generator
M0 which generates the boost (2.1) on spinors,

M0 ¼
1

8
ϵab½Γa;Γb� ¼ 1

4
ϵabΓaΓb ð2:24Þ

so that the Gamma matrices transform under the boost
transformation as a vector, namely

½M0;Γa� ¼ qbqaΓb: ð2:25Þ

In two spacetime dimensions, the Gamma matrices acts on
spinor field ψ ≡ ψα,

ψ ¼
�
ψ1

ψ2

�
ð2:26Þ

In order to build boost invariant bispinors, we need to first
find a dual spinor ψ̄ which has the following behavior
under the infinitesimal boost,

ðM0ψÞ ¼ −ψ̄M0: ð2:27Þ

There are two ways to define ψ̄ , either through the charge
conjugation matrix C or the Dirac conjugation matrix D,
defined respectively by

CΓa ¼ �ðΓaÞTC; DΓa ¼ �ðΓaÞ†D: ð2:28Þ

Given a solution of (2.23), one can solve the above
equations to find the charge conjugation matrix C, and
the Dirac conjugation matrix D. As we will show later,
only the minus sign of the above equation allows nontrivial
solutions. This is in contract with relativistic theories
where both signs have solutions and the choice of the
sign is a convention. Using the conjugation matrices, the
dual representation can be defined as

ψ̄C ¼ ψTC; ψ̄D ¼ ψ†D ð2:29Þ

where ψ† ¼ ðψ�ÞT is the complex conjugate of the trans-
position of ψ , and the subscript C and D to denotes charge
conjugate and Dirac conjugate. The Majorana condition is
to identify the charge conjugate with the Dirac conjugate
which reads,

ψ̄C ¼ ψ̄D: ð2:30Þ

There are two families of solutions to the defining
Eq. (2.23) of the Gamma matrices in two dimensions. If
Γ1 ≠ 0, the nonequivalent solutions can be written as

Γ1 ¼
�
0 0

2 0

�
; Γ2 ¼

�
1 0

0 −1
�
; ð2:31Þ

where we have fixed an overall coefficient in Γ1, and an
overall sign in Γ2. The later is just a convention, and the
former is chosen to make the action of the boost trans-
formation take the standard form of Jordon cell,

M0ψ ¼ 1

2
Γ1Γ2ψ ¼

�
0 0

1 0

��
ψ1

ψ2

�
ð2:32Þ

By changing the relative normalization between ψ1 and ψ2,
it is always possible to make the above choice. As we will
see in next section, the spinor actually form a primary
multiplet under the BMS algebra.
As mentioned earlier, a dual spinor can be defined by

using either the charge conjugation matrices C or the Dirac
conjugation matrix D (2.28). Due to the fact that the
Gamma matrices (2.31) are real, the two matrices C and D
as defined in (2.28) become indistinguishable. Now the
Majorana condition (2.30) becomes simply the reality
condition

ψ� ¼ ψ : ð2:33Þ

In this paper, we will focus on Majorana fermions, whose
dual is given by

ψ̄ ≡ ψ̄C ¼ ψ̄D ¼ ψTC ð2:34Þ
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To solve C, we can substitute the Gamma matrices (2.31)
into the Eq. (2.28). It turns out that only the equation with a
minus sign, namely CΓa ¼ −ðΓaÞTC, allows a nontrivial
solution. With this choice, the charge conjugation matrix is
given by,

C ¼
�

0 1

−1 0

�
ð2:35Þ

Thus, we have found the simplest bispinor ψ̄ψ invariant
under the action of M0.
To discuss bispinors systematically, it is also important to

consider how they transform under inverting the “absolute
direction,” x1 → −x1, which is the usual parity transfor-
mation in Carrollian theory, or time reversal in Galilean
theory. We will still refer to this parity transformation for
convenience. In terms of components, the bispinor ψ̄ψ ¼
2ψ1ψ2 is linear in the absolute direction, and hence is parity
odd. Under the parity transformation, the gamma matrices
transform as

Γ1 → −Γ1; Γ2 → Γ2 ð2:36Þ

Similar to the Γ5 in the usual 4d relativistic Clifford algebra,
we can also construct a matrix Γ� which is boost invariant
but parity odd,

Γ� ¼ 1

2
ϵabΓaΓb ¼ Γ1 ð2:37Þ

Γ� → −Γ� under x1 → −x1 ð2:38Þ

With the help of Γ�, we can construct the following
bispinors as listed in Table I.
Now we have enough ingredients to build the action for

fermions. Let us consider an action in the following form,

S ¼ 1

8πg

Z
ea ∧ ebϵabL ð2:39Þ

where g is an overall coefficient to be fixed later and
ea ∧ ebϵab is the boost invariant volume form, which has
weight −2 under the scaling symmetry. As the action should
be invariant under both the boost and the rigid scaling
transformation, the Lagrangian density L has to be the boost
invariant with scaling weight 2. In a fermionic model, the

Lagrangian L contains a kinetic term in the form of a
bispinor with one derivative. From the list above, we can
build kinetic terms from either the vector or pseudovector

Lv ¼−iψ̄Γ�ΓaeaμDμψ or Lpv ¼−iψ̄ΓaeaμDμψ ð2:40Þ

where Dμ is the covariant derivative acting on the
spinors (2.17), which becomes ∂μ in the flat geometry.
As Dμ has dimension one, the above action will be scaling
invariant provided that ψ has scaling weight 1=2. Note that
there is a prefactor i to ensure the action is real. One may
wonder whether it is possible to add a mass term using
the scalars or pseudoscalars. If we wish to keep scaling
invariance, mass terms cannot be added because it does
not have the desired scaling dimension. This is different
from the WCFT fermion. Thus, there are two types of
free fermions with the gamma matrices (2.31). In the flat
G=C geometry, they can be expressed in terms of the
components as

Sv ¼ −
i

4πg

Z
dxdyψ1∂yψ1 ð2:41Þ

and

Spv ¼ −
i

2πg

Z
dxdyðψ1∂xψ1 − ψ2∂yψ1Þ ð2:42Þ

The first one, constructed from the vector in Table I, is a
chiral fermion in a CFT2 which has been studied thor-
oughly in the literature. In the rest of this paper, we focus
on the fermionic model (2.42) constructed from the
pseudovector with Carrollian symmetry, which we refer
to as the BMS fermion. The name will become clearer in
the next section. By construction, the action (2.42) is
parity even, and is invariant under the G=C boost, rigid
scaling, and translational transformations. The action is
real provided that the reality condition (2.33) is satisfied,
namely ψ1 and ψ2 are both real.2

Finally, let us comment on the other choice of the gamma
matrices which satisfy (2.23),

Γ1 ¼ 0; ðΓ2Þ2 ¼ I ð2:43Þ

A convenient choice is

TABLE I. Bispinors.

Spinors Boost and parity

ψ̄Γ�ψ Scalar
ψ̄ψ Pseudoscalar
ψ̄Γ�Γaψ Vector
ψ̄Γaψ Pseudovector

2Our action (2.42) looks similar with eq. (4.4) of [63] which
was obtained from the study of tensionless limit of superstring
theory. The action looks the same up to a relative coefficient
between the two components of ψ . We note that, however, their
conjugate relation Eq. (4.8c) indicates that the two components
are complex conjugate to each other, whereas we require them to
be both real. On the other hand, [69] worked with the same action
with real fermions.
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Γ1 ¼ 0; Γ2 ¼
�
1 0

0 1

�
; C ¼

�
1 0

0 1

�
ð2:44Þ

By a similar discussion, we find that in the flat coordinates,
free fermions can only be

Schiral ¼ −
i

4πg

Z
dxdyðψ1∂yψ1 þ ψ2∂yψ2Þ ð2:45Þ

which is the action of two real chiral fermions.

1. Interacting theories

To construct interacting theories, we can consider two
spinors ψ and χ, with the choice of gamma matrices (2.31).
Table I allows us to add a four-fermion interaction to the
action, so that

S ¼
Z

ea ∧ ebϵabð−iψ̄Γaeaμ∂μψ − iχ̄Γaeaμ∂μχ þ λψ̄ψχ̄χÞ

ð2:46Þ

More generally, we can consider N1 BMS fermions and N2

chiral fermions. The general action with four-fermion
interactions can be expressed as

S ∝
Z

ea ∧ ebϵabðK − VÞ ð2:47Þ

where K represents the kinematic terms of N1 BMS
fermions and N2 chiral fermions,

K¼−i
XN1

I¼1

ψ̄ IΓaeaμ∂μψ I− i
XN1þN2

I¼N1þ1

ψ̄ IΓ�Γaeaμ∂μψ I; ð2:48Þ

and V represents the interaction term,

V ¼ λIJKL1 ψ I
1ψ

J
1ψ

K
1 ψ

L
1 þ λIJKL2 ψ I

1ψ
J
1ψ

K
1 ψ

L
2

þ λIJKL3 ψ I
1ψ

J
2ψ

K
1 ψ

L
2 : ð2:49Þ

It is interesting to study these interacting theories with
G=C and rigid scaling symmetries, which we postpone to
future work.

III. THE FREE BMS FERMION MODEL

We have seen that there are two types of free fermion
models with G=C symmetries in the last section, one of
which is trivially a holomorphic sector of the usual 2d
Majorana fermion, well-studied in the CFT2 literatures
while the other is of great interest with novel properties.
In this section, we will focus on the model (2.42) with
Carrollian symmetry, which we refer to as the BMS fermion
model hereafter. We first consider its action and equations of
motion on cylinder and plane, and show that the symmetry

is enhanced to the infinite dimensional Carollian conformal
symmetry, or isomorphically the BMS3 symmetry, in
Sec. III A. Then we perform canonical quantization in
the highest weight NS and R vacuum in Sec. III B. We
find all the primary operators and calculate their correlation
functions in Sec. III C.

A. Symmetries

In the last section, we have found the general free fermion
action (2.42) which is invariant under the G=C symmetry,
and rigid scaling symmetry. In this section, we focus on
Carrollian theory by specifying x1 as the spatial direction,
and x2 as the temporal direction. Let us first put the free
fermion model on a cylinder parametrized by ðx1; x2Þ ¼
ðσ; τÞ subject to the identification ðσ; τÞ ∼ ðσ þ 2π; τÞ. Then
the action (2.42) becomes,

S ¼ −
i
2π

Z
dτdσðψ1∂σψ1 − ψ2∂τψ1Þ ð3:1Þ

where ψ1, ψ2 are Grassmann variables. In this model, the
conjugate momenta with respect to ψ1 and ψ2 can be
calculated by the graded Leibnitz rule

Π1 ¼
δL

δð∂τψ1Þ
¼ i

2π
ψ2; ð3:2Þ

Π2 ¼
δL

δð∂τψ2Þ
¼ i

2π
ψ1: ð3:3Þ

The equal time (i.e., equal τ) anticommutator between these
fermions is then

fψ1ðτ; σÞ;ψ2ðτ; σ0Þg ¼ 2πδðσ0 − σÞ; ð3:4Þ

fψ1ðτ; σÞ;ψ1ðτ; σ0Þg ¼ fψ2ðτ; σÞ;ψ2ðτ; σ0Þg ¼ 0: ð3:5Þ

By construction, the action (3.1) is invariant under trans-
lations, rigid boost, and rigid scaling. Now we show that the
symmetry is actually much larger, and derive it by symmetry
enhancements [70] together with the minimal input given by
the covariant arguments in the last section. Consider the
following infinitesimal translation

σ → σ þ ε; τ → τ þ ε̃ ð3:6Þ

where ε and ε̃ are constants. We can apply the Noether
theorem to obtain two conserved currents,

2πjε ¼ −εTdσ þ εMdτ; ð3:7Þ

2πjε̃ ¼ −ε̃Mdσ; ð3:8Þ

where T and M play the role of the stress tensors, and are
given by
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T ¼ i
2
ψ1∂σψ2 þ

i
2
ψ2∂σψ1; ð3:9Þ

M ¼ i
2
ψ1∂τψ2 ¼

i
2
∂τP; P≡ ψ1ψ2: ð3:10Þ

Using the equations of motion, it is not difficult to verify
that the current 1-forms (3.7) are closed on-shell, or
equivalently the stress tensor satisfies the conservation law,

∂τðεTÞ ¼ ∂σðεMÞ;
∂τðε̃MÞ ¼ 0: ð3:11Þ

The conservation law is readily generalized to more general
transformations by the replacement ε → εðσÞ and ε̃ → ε̃ðσÞ.
First we note that the second equation in (3.11) still holds
under the replacement, while the first equation in (3.11) will
no longer hold, due to the appearance of an extra term
ε0ðσÞM on the right-hand side. The aforementioned extra
term, however, can be compensated if we add a term to the
left hand side, so that we get the following conservation
relations for two arbitrary functions εðσÞ and ε̃ðσÞ,

∂τðεðσÞT þ ε0ðσÞτMÞ ¼ ∂σðεðσÞMÞ; ð3:12Þ

∂τðε̃ðσÞMÞ ¼ 0: ð3:13Þ

The above relations suggest new conservation laws. To
understand the underlying symmetry, we need to construct
the conserved currents and conserved charges, and derive the
transformation rules by acting the charges on the fields. The
conservation laws (3.12) imply that the following currents
are on-shell closed,3

2πjεðσÞ ¼ −ðεðσÞT þ ε0ðσÞτMÞdσ þ εðσÞMdτ; ð3:14Þ

2πjε̃ðσÞ ¼ −ðε̃ðσÞMÞdσ; ð3:15Þ

conserved charges on the spatial circle with constant τ are
given by

QεðσÞ ¼
Z
σ-cycle

jεðσÞ ¼ −
1

2π

Z
2π

0

dσ εðσÞðT − τ∂σMÞ;

Qε̃ðσÞ ¼
Z
σ-cycle

jε̃ðσÞ ¼ −
1

2π

Z
2π

0

dσ ε̃ðσÞM: ð3:16Þ

where we have used integration by parts in the first line. The
charges are independent of the time τ, as a consequence of
the conservation laws (3.12) and periodic boundary con-
ditions. These charges generate the following infinitesimal
transformations,

δεψ1ðσ; τÞ ¼ fQε;ψ1ðσ; τÞgPB ¼ −ε∂σψ1 −
1

2
ε0ψ1;

δεψ2ðσ; τÞ ¼ fQε;ψ2ðσ; τÞgPB ¼ −ε∂σψ2 − 2ε0τ∂σψ1

−
1

2
ε0ψ2 − τε00ψ1;

δε̃ψ1ðσ; τÞ ¼ fQε̃;ψ1ðσ; τÞgPB ¼ 0;

δε̃ψ2ðσ; τÞ ¼ fQε̃;ψ2ðσ; τÞgPB ¼ −2ε̃∂σψ1 − ε̃0ψ1: ð3:17Þ

where we have dropped the dependence on σ in εðσÞ
and ε̃ðσÞ for brevity. They are just the infinitesimal
version of the transformation law [31,50] of the rank-2
primary multiplet with weight Δ ¼ 1

2
and boost charge

ξ ¼
�
0 0

1 0

�
,

ψ̃1ðτ̃; σ̃Þ¼ jf0j−1
2ψ1ðτ;σÞ

ψ̃2ðτ̃; σ̃Þ¼ jf0j−1
2ψ2ðτ;σÞ− jf0j−3

2ðτf00 þg0Þψ1ðτ;σÞ: ð3:18Þ

under the BMS transformation

σ → fðσÞ; τ → f0ðσÞτ þ gðσÞ: ð3:19Þ

As a consistency check, one can directly verify that the
action (3.1) is indeed invariant under the BMS transforma-
tion (3.19) with the transformation rule (3.18).
By expanding the parameters εðσÞ; ε̃ðσÞ in terms of the

Fourier modes,

εn ¼ ε̃n ¼ einσ; ð3:20Þ

we obtain infinitely many symmetry generators, which are
mode expansions of the conserved charge operators

Ln ≔ Qεn Mn ≔ Qε̃n : ð3:21Þ

It is not difficult to verify that they form the BMS algebra
under the anticommutation relation (3.4). We will show in
Sec. III B that the BMS algebra has a central extension
after choosing a vacuum and considering normal ordering
explicitly.

3In general, the derivation of the Noether currents is ambigu-
ous, and in this case one can still add an exact form to (3.14). For
instance, we can define currents

2πjεðσÞ ¼ −ðεðσÞðT þ α∂σPÞ þ ð1 − 2αÞε0ðσÞτMÞdσ
þ ð1 − 2αÞεðσÞMdτ;

The above modification of the currents correspond to a modi-
fication of T, together with a rescaling of M. As we will show
later, our choices of T and M are compatible with BMS
symmetry.

HAO, SONG, XIAO, and XIE PHYS. REV. D 109, 025002 (2024)

025002-8



B. Canonical quantization

In this subsection we discuss the canonical quantization
by choosing the highest weight vacuum. Another choice of
the vacuum, the induced vacuum, will be discussed
in Sec. VI.
The action (3.1) on the cylinder should be periodic in σ,

requiring the boundary conditions on the fundamental
fields ψ1, ψ2 to be either periodic or antiperiodic, referred
to as the R and NS sector respectively. The map from
cylinder to plane

x ¼ eiσ; y ¼ ieiστ; ð3:22Þ

allows us to consider the theory on the plane, with the
action given by,

S ¼ 1

2π

Z
dxdyðψ1∂xψ1 − ψ2∂yψ1Þ: ð3:23Þ

Note that the i disappears due to the cylinder to plane map
combining with the analytical continuation. For conven-
ience, from now on we will mainly carry out the calcu-
lations on the plane, unless stated otherwise. Due to the fact
that the fermions ψ1, ψ2 have conformal weight 1

2
, the

periodic/antiperiodic boundary conditions on the cylinder
become antiperiodic/periodic on the plane under the
cylinder-to-plane map, so that on the plane we have

ψ iðe2πixÞ ¼ þψ iðxÞ; Neveu-Schwarz sector ðNSÞ;
i ¼ 1; 2 ð3:24Þ

ψ iðe2πixÞ ¼ −ψ iðxÞ; Ramond sector ðRÞ; ð3:25Þ

The equations of motion are

∂yψ1 ¼ 0; ð3:26Þ

∂yψ2 ¼ 2∂xψ1; ð3:27Þ

with the following solution in terms of the Laurent
expansion,

ψ1 ¼
X
n

βnx−n−
1
2; ψ2 ¼

X
n

γnx−n−
1
2 þ 2y∂xψ1; ð3:28Þ

where n∈Z for the R sector, n∈Zþ 1
2
for the NS sector.

The reality condition (2.33) then implies,

β†n ¼ β−n; γ†n ¼ γ−n ð3:29Þ

Now canonical quantization can be carried out on the plane
with the following anticommutation relation

fψ1ðx; yÞ;ψ2ðx0; yÞg ¼ 2πδðx0 − xÞ: ð3:30Þ

which can be equivalently written in terms of the mode
operators

fβn; γmg ¼ δnþm;0; fβn; βmg ¼ fγn; γmg ¼ 0: ð3:31Þ

The anticommutation relations (3.31) are valid on both the
cylinder and the plane.
Taking the cylinder to plane map and the analytical

continuation into account, the quantum version of the
classical Noether currents (3.9) whose corresponding
charges generate translations along x and y now become
operators,

T ¼ −
1

2
∶ψ2∂xψ1∶ −

1

2
∶ψ1∂xψ2∶; M ¼ −∶ψ1∂xψ1∶;

ð3:32Þ

where the definition of the normal ordering ∶ � � � ∶ depends
on the choice of the vacuum, to be specified momentarily.
Here we would like to keep the normal ordering implicit.
The currents can be expanded in Laurent series as

T ¼
X
n

Lnx−n−2 −
X
n

ðnþ 1ÞyMn−1x−n−2; ð3:33Þ

M ¼
X
n

Mnx−n−2; ð3:34Þ

which can be inverted to define infinitely many charges Ln
and Mn. Using the reality condition (2.33), the Hermitian
conjugates are given by

L†
n ¼ L−n; M†

n ¼ M−n: ð3:35Þ

The charges are the quantum version of the classical charges
(3.21) on the plane. Using the transformation law (3.18)
under the plane-to-cylinder map (3.22), the zero-mode
generator of the Virasoro algebra on the cylinder has a
shift, Lcyl

0 ¼ Lpl
0 − 1

12
. We focus on the plane in this paper.

1. The highest weight NS vacuum

In the NS sector, modes are labeled by half integers,
without any zero modes. This leads to a natural choice for
the vacuum,

βnj0i ¼ 0; n ≥
1

2

γnj0i ¼ 0; n ≥
1

2
ð3:36Þ

and a prescription for the normal ordering

∶βnγm ≔

(
βnγm n ≤ − 1

2

−γmβn n ≥ 1
2

ð3:37Þ
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Inverting the relations (3.33) and (3.34), and plugging in
mode expansion, we find the following expression for the
symmetry generators on the plane

Ln ¼
X
k

�
k −

n
2

�
∶βn−kγk∶

Mn ¼
X
k

�
kþ 1

2

�
∶βn−kβk∶ ð3:38Þ

where

k∈Zþ 1

2
ð3:39Þ

as we are in the NS sector. Further using the commutation
relations (3.31), we find that the charges (3.38) form a
centrally extended BMS algebra,

½Ln; Lm� ¼ ðn −mÞLmþn þ
1

12
ðn3 − nÞδnþm;0;

½Ln;Mm� ¼ ðn −mÞMmþn;

½Mn;Mm� ¼ 0 ð3:40Þ

where the central charges are given by cL ¼ 1 and cM ¼ 0.
The BMS algebra contains a sub-algebra isoð2; 1Þ with
generators fL0;�1;M0;�1g, which is often referred to as the
global BMS algebra. As we will see later, the NS vacuum is
invariant under the global BMS algebra, whereas the R
sector vacuum is not.
Now it is straightforward to check that the vacuum (3.36)

is a highest weight vacuum of the BMS algebra, namely

Lnj0i ¼ 0; n ≥ −1 ð3:41Þ

Mnj0i ¼ 0; n ≥ −1 ð3:42Þ

In particular, the generators of the global sub-algebra of the
BMS3 algebra all annihilate the vacuum.
Let ⃗i≡ ði1; i2 � � �Þ; j⃗≡ ðj1; j2 � � �Þ, then the state space in

the NS sector is spanned by

ji⃗; j⃗i≔βi1−1=2β
i2
−3=2 � � �γj1−1=2γj2−3=2 � � � j0i in;jm¼ 0;1: ð3:43Þ

2. The highest weight R vacuum

In the R sector, modes are labeled by integers which
include zero. Similar to CFTs, the zero modes should be
considered separately. The algebra of the zero modes is
given by

fβ0; β0g ¼ fγ0; γ0g ¼ 0; fβ0; γ0g ¼ 1 ð3:44Þ

This suggests that the vacuum in the R sector is degenerate.
To further characterize the vacuum, we can define a target-
space spin operator,

S≡ γ0β0 −
1

2
ð3:45Þ

whose eigenstate can be raised and lowered by β0 and γ0,
namely

½S; β0� ¼ −β0; ½S; γ0� ¼ γ0: ð3:46Þ

This suggests that the vacuum in the R sector is a doublet of
the target-space spin operator, labeled by the eigenvalue
jsiR, with

SjsiR ¼ sjsiR; s ¼ � 1

2
: ð3:47Þ

Therefore, the vacua in the R sector jsiR are related to each
other by the action of β0 or γ0, and annihilated by positive-
integer modes, namely

β0

���� 12
�

¼
���� − 1

2

�
; β0

���� − 1

2

�
¼ 0

γ0

���� − 1

2

�
¼
���� 12
�
; γ0

���� 12
�

¼ 0

βnjsiR ¼ 0; n > 0; n∈Z

γnjsiR ¼ 0; ð3:48Þ

Due to the degeneracy of the vacua in the R sector, zero
modes should be treated separately. The normal ordered
product for other modes reads

∶βnγm∶ ¼
(
βnγm n ≤ −1
−γmβn n ≥ 1

ð3:49Þ

The symmetry generators, with the exception of L0, can all
be written as (3.38), but now with

k∈Z: ð3:50Þ

The generator L0 contains zero modes, whose ordering can
be traced back to the original definition from (3.33),

L0 ¼
X

k∈Z;k≠0
k∶βkγ−k∶ þ 1

8
ðβ0γ0 þ γ0β0Þ

¼
X

k∈Z;k≠0
k∶βkγ−k∶þ

1

8
ð3:51Þ

Acting on the ground state, we thus have

L0jsiR ¼ 1

8
jsiR; M0jsiR ¼ 0 ð3:52Þ

where jsiR denotes the vacuum doublet, jsiR ¼
ðj 1

2
i; j − 1

2
iÞT . Although the vacua in the R sector is

HAO, SONG, XIAO, and XIE PHYS. REV. D 109, 025002 (2024)

025002-10



degenerate, each of the vacuum states is a singlet of the
BMS algebra with weight 1

8
, and boost charge ξ ¼ 0. In this

case, the definition indeed satisfies the highest weight
condition,

LnjsiR ¼ 0; MnjsiR ¼ 0; n ≥ 1: ð3:53Þ

In contrast to the case in the NS sector, we note that the
vacuum in the R sector is not invariant under the global part
of the BMS algebra. We have seen that they carry non-
vanishing L0 charge (3.52). In addition, the vacuum is not
translational invariant either, as

L−1jsiR ¼
1

2
ðβ−1γ0− β0γ−1ÞjsiR; M−1jsiR ¼ β−1β0jsiR:

ð3:54Þ

We can also check that the generators Ln and Mn form the
same BMS algebra with central charge cL ¼ 1 and cM ¼ 0.
Let ⃗i≡ ði1; i2 � � �Þ; j⃗≡ ðj1; j2 � � �Þ, then the state space is

spanned by

j⃗i; j⃗; si ≔ βi1−1β
i2
−2 � � � γj1−1γj2−2 � � � jsiR

in; jm ¼ 0; 1; s ¼ � 1

2
: ð3:55Þ

C. Primary operators and correlation functions

In this subsection we calculate the propagators of the
fundamental fermion field, find all the primary operators,
and compute their correlation functions.

1. General results for BMSFT

As discussed in [31,35,50], BMS field theories feature
multiplets, on which the action of L0 is diagonal while the
action ofM0 is block diagonal, consisting of Jordan blocks.
For a multipletO≡ ðO1; � � �OrÞT with rank r, letΔ denotes
the conformal weight which is the eigenvalue of L0, ξ
denotes the boost charge matrix which is a r × r Jordan cell
with diagonal element ξ. Then the defining property for a
highest weight multiplet is that the OPEs with the stress
tensors T and M take the following form,

Tðx̃; ỹÞOðx;yÞ∼ ΔO
ðx̃−xÞ2−

2ðỹ−yÞξO
ðx̃−xÞ3 þ ∂xO

x̃−x
−
ðỹ−yÞ∂yO
ðx̃−xÞ2 ;

Mðx̃; ỹÞOðx;yÞ∼ ξO
ðx̃−xÞ2þ

∂yO

x̃−x
: ð3:56Þ

This can be used to find all the primary operators in the
theory. The general form of two and three point functions
for the BMS highest weight multiplets with rank r read

hOiaðx1; y1ÞOjbðx2; y2Þi ¼
8<
:

0 for q < 0

δijdrjx12j−2Δi e−2ξi
y12
x12 1

q!

�
− 2y12

x12

�
q
; otherwise;

ð3:57Þ

hOiaðx1; y1ÞOjbðx2; y2ÞOkcðx3; y3Þi ¼ ABCijk ð3:58Þ

where q ¼ aþ bþ 1 − r; i, j, and k label the multiplets,
while a, b, and c label the components within a multiplet,
and

A ¼ exp

�
−ξ123

y12
x12

− ξ312
y31
x31

− ξ231
y23
x23

�
; ð3:59Þ

B ¼ jx12j−Δ123 jx23j−Δ231 jx31j−Δ312 ; ð3:60Þ

Cijk;abc¼
Xa−1
n1¼0

Xb−1
n2¼0

Xc−1
n3¼0

cðn1n2n3Þijk

×
ðpiÞa−1−n1ðpjÞb−1−n2ðpkÞc−1−n3

ða−1−n1Þ!ðb−1−n2Þ!ðc−1−n3Þ!
; ð3:61Þ

with

pi ¼ ∂ξi lnA: ð3:62Þ

2. Propagators and OPEs

Now let us turn to our BMS fermion model. For both
choices of the vacuum (3.36) and (3.48), the propagator can
be defined as,

hO1ðx1; y1ÞO2ðx2; y2Þi ¼ h0jXðO1ðx1; y1ÞO2ðx2; y2ÞÞj0i
− h0j∶O1ðx1; y1ÞO2ðx2; y2Þ∶j0i

ð3:63Þ

where ∶ � � � ∶ denotes the normal ordering compatible with
the specific choice of the vacuum, and Xð� � �Þ denotes the
radial ordering on the complexified x-plane, the latter of
which is further related to the time ordering on the Lorentz
cylinder, as explained in [50]. Taking into account the
fermionic nature of the fields, the radial ordering can be
defined as,

Xðψαðx1Þψβðx2ÞÞ ¼
	þψαðx1Þψβðx2Þ for jx1j > jx2j
−ψβðx2Þψαðx1Þ for jx1j < jx2j

ð3:64Þ
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where a, b ¼ 1, 2. Further using the mode expansion (3.28), we can calculate the propagators in the highest NS vacuum,

hψ1ðx1Þψ1ðx2ÞiNS ¼ 0

hψ1ðx1Þψ2ðx2; y2ÞiNS ¼ 1

x1 − x2

hψ2ðx1; y1Þψ2ðx2; y2ÞiNS ¼ −
2ðy1 − y2Þ
ðx1 − x2Þ2

; ð3:65Þ

which take the general form of (3.57) for a rank-2 multiplet with Δ ¼ 1
2
and ξ ¼ 0. In the highest weight R vacuum, the

propagators are given by

hψ1ðx1Þψ1ðx2ÞiR ¼ 0

hψ1ðx1Þψ2ðx2; y2ÞiR ¼ x1 þ x2
2
ffiffiffiffiffiffiffiffiffi
x1x2

p ðx1 − x2Þ

hψ2ðx1; y1Þψ2ðx2; y2ÞiR ¼ x2y1ð−x21 − 4x1x2 þ x22Þ þ x1y2ð−x21 þ 4x1x2 þ x22Þ
2ðx1 − x2Þ2ðx1x2Þ3=2

ð3:66Þ

which are not in the general form of (3.57). In particular, the
propagators in the R vacuum are not invariant under trans-
lations. This is due to the fact that theR vacua is not invariant
under the global part of the BMS algebra (3.54). As we will
show later, the R sector vacua can be understood as inserting
a twist operator at the origin of the NS vacuum, so that all
correlators in the R sector can be described in terms of
correlators in the NS sector. Therefore, it is enough to
discuss correlators in the NS sector.
When one operator approaches the other, the correlation

functions in the R sector agree with the ones in the NS
sector and therefore they have the same OPEs in both case,
whose leading terms reads,

ψ1ðx1Þψ1ðx2Þ ∼ 0þ � � � ;

ψ1ðx1Þψ2ðx2; y2Þ ∼
1

x1 − x2
þ � � � ;

ψ2ðx1; y1Þψ2ðx2; y2Þ ∼ −
2ðy1 − y2Þ
ðx1 − x2Þ2

þ � � � : ð3:67Þ

The OPEs of other operators can then be obtained from
(3.67) via Wick contractions. In particular, we note that the
OPEs among the stress tensors read,

Tðx0; y0ÞTðx;yÞ∼ 1

2ðx0 − xÞ4þ
2Tðx;yÞ
ðx0 − xÞ2−

4ðy0 − yÞMðx;yÞ
ðx0− xÞ3

þ ∂xTðx;yÞ
x0− x

−
ðy0 − yÞ∂yTðx;yÞ

ðx0− xÞ2 ;

Tðx0;y0ÞMðx;yÞ∼ 2Mðx;yÞ
ðx0− xÞ2 þ

∂xMðx;yÞ
x0− x

;

Mðx0;y0ÞMðx;yÞ∼ 0: ð3:68Þ

which takes the standard form of OPEs among stress
tensors and is consistent with the BMS algebra (3.40).
From the most singular terms, we again read the central
charges cL ¼ 1 and cM ¼ 0.

3. The BMS data in the NS sector

Let us now determine the BMS data of this free fermion
model by finding the primary operators and calculating the
three-point coefficients. By calculating the OPEs with the
stress tensors and comparing with the standard form (3.56),
we can find the following primary fields,

(i) The identity operator I with Δ ¼ ξ ¼ 0.
(ii) The fundamental fermions ψ ¼ ðψ1;ψ2ÞT form a

highest weight multiplet with rank r ¼ 2, with
conformal weight 1=2 and boost charge 0, or written
in terms of matrix

Δ ¼
 

1
2

0

0 1
2

!
; ξ ¼

�
0 0

1 0

�
: ð3:69Þ

The propagators (3.65) are consistent with this.
(iii) The composite operator P≡ ∶ψ1ψ2∶ is a primary

operator of rank 1, with Δ ¼ 1; ξ ¼ 0. Due to the
fermionic nature of the fields in this model, P is the
only composite operator without derivatives. Wewill
see that there are no more primary operators in the
next subsection.

To describe this model in terms of BMS data, we still
need the three-point coefficients among ψ1;ψ2; P. We
then find that the three point functions indeed take the
general form (3.58), with nonvanishing coefficients

cð010ÞψψP ¼ 1; cð100ÞψψP ¼ −1 ð3:70Þ
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D. The operator basis and state operator
correspondence

Now let us find a basis of local operators in the model,
which can be built from the fundamental fields ψ1, ψ2, and
their derivatives with respect to the coordinates x and y.
From the equations of motion (3.26), we learn that ∂yψ1

does not appear in a local operator. Moreover, the action of
∂y on ψ2 can always be replaced by acting on ∂x on ψ1. This
means that the operator basis can be chosen as

	 Y∞
k;m¼0

ð∂kxψ1Þinð∂mx ψ2Þjm


; in; jm ¼ 0; 1: ð3:71Þ

where each order of derivative on ψα can appear at most
once due to its fermionic nature. It is straightforward to see
that the only primary operators are I;ψ1;ψ2; P ¼ ∶ψ1ψ2∶ .
In the NS sector, state-operator correspondence can be

built up by inserting the local operators at the origin. Using
the mode expansion (3.28), we have

lim
x→0;y→0

∂
k
xψ1j0i ¼ k!β−k−1

2
j0i

lim
x→0;y→0

∂
k
xψ2j0i ¼ k!γ−k−1

2
j0i: ð3:72Þ

so that we have state-operator correspondence

∶∂kxψ1∂
m
x ψ2 � � � ∶ ∼ ∶β−k−1

2
γ−m−1

2
� � � ∶j0i ð3:73Þ

The right hand side is precisely the Fock states in the NS
sector (3.43).

1. Twist operators for the R vacua

Now we consider the R sector, which can be equivalently
described by interpreting the R sector vacuum as inserting a
primary operator at the origin of the NS sector vacuum,

���� 12
�
≡ σj0i;

���� − 1

2

�
≡ μj0i ð3:74Þ

where we have omitted the subscripts R and NS for
simplicity. From the properties of the vacuum states
(3.52) and (3.53), we learn that the twist operators are both
primary operators with conformal weight Δ ¼ 1

8
and ξ ¼ 0.

Using the general result of two point functions (3.57), we
can thus get the following correlators

hσσi ¼ hμμi ¼ 1

x
1
4

12

; hσμi ¼ 0 ð3:75Þ

Note that the twist operators cannot be built from the
fundamental field ψ1, ψ2. The relation between the two
vacuum states (3.48) corresponds to the following OPEs

ψ1ðx0; y0Þσðx; yÞ ∼
μðx; yÞ
ðx0 − xÞ12 ;

ψ2ðx0; y0Þμðx; yÞ ∼
σðx; yÞ
ðx0 − xÞ12 ð3:76Þ

Any state jOiR in the R sector can be obtained by inserting
the composite operator ∶Oσ∶ or ∶Oμ∶ to the origin of the
NS vacuum.
Together with the BMS data in the NS sector III C 3, we

have the following fusion algebra,

½ψ� × ½σ� → ½μ�; ½ψ� × ½μ� → ½σ�; ½σ� × ½μ� → ½ψ�
½P� × ½P� → ½I�; ½σ� × ½σ� → ½I�; ½μ� × ½μ� → ½I�
½ψ� × ½P� → ½ψ�; ½ψ� × ½ψ� → ½I� þ ½P� ð3:77Þ

where [O] refers to the BMS highest weight module
represented by the primary operator O, which can be either
singlet or multiplet. The first line of (3.77) is from the
defining property of the R-vacua (3.76), the second line is
from the vanishing three-point coefficients containing the
operators P, σ, μ, and the third line is from the non-
vanishing three-point coefficients (3.70).

IV. THE STAGGERED MODULE

In this section we will begin with a general definition of
the so-called staggered module, and then show that states in
the BMS fermion module can be organized into BMS
staggered modules. We have organized the state space in
terms of the modes βn, γn in the last section. Now we want
to find how it carries the representation of the BMS algebra.
To do so, we consider the action of Ln, Mm on the states in
section IVA.
CFT2s can be organized into the highest weight repre-

sentation of Virasora algebra, which means that the state
space can be decomposed into different highest weight
modules represented by the primary states. One may expect
that a BMS invariant theory can be similarly organized into
BMS modules. However, in the BMS scalar model [50],
there exists at least one state which is neither a primary state
itself nor a descendant state of the BMS algebra. To
accommodate this type of operator, the ordinary highest
weight module should be enlarged to the so-called staggered
module, which is a reducible but indecomposable repre-
sentation of the BMS algebra, defined as the semidirect sum
of ordinary highest weight representations.
In [71,72], the staggered module S for Virasoro algebra

can be defined via the following short exact sequence,

0 → HL⟶
ι
S⟶

π
HR → 0 ð4:1Þ

where HL and HR are irreducible highest weight modules,
also named as typical modules [72], ι and π are module
homomorphisms. There is also a central element Q acting
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nondiagonalizably on the highest weight vectors, possess-
ing Jordan cells of rank-2. In other words, the staggered
module S has a submodule isomorphic to a typical highest
weight module HL, and the quotient S=HL is isomorphic
to another typical highest weight module HR. As a
consistence requirement, the central charges of HL and
HR must coincide. In logarithmic CFTs [72], the central
element Q is L0. The above construction can be general-
ized by replacing the building block in (4.1), namely the
typical modules, by any given representation of any
symmetry group. For the BMS scalar, the symmetry
algebra is BMS instead of Virasoro, and we can choose
the central element as Q ¼ M0. Starting from a highest
weight representation Sð1Þ, we can build a staggered model
Sð2Þ by replacing the typical modules HL and HR in the
short sequence (4.1) by Sð1Þ and Sð2Þ=Sð1Þ, respectively.
Then we can further use Sð2Þ as building blocks to
construct another short sequence, so that we can obtain
another staggered module Sð3Þ. Similarly, we can construct
Sðnþ1Þ from an extension of SðnÞ,

0 → SðnÞ⟶
ι
Sðnþ1Þ⟶

π
Sðnþ1Þ=SðnÞ → 0 ð4:2Þ

This procedure can be carried out successively and we can
even have a staggered module with n → ∞, with a Hilbert
space

H ¼ Sð1Þ ⊕S Sð2Þ=Sð1Þ ⊕S � � � ð4:3Þ

The BMS scalar model [50] can be organized into such a
BMS staggered module Sð∞Þ with Sð1Þ chosen as irreduc-
ible highest weight modules, while as we will see later that
the BMS fermion has the same structure Sð∞Þ but Sð1Þ can
also be chosen as reducible highest weight modules.

A. Enlarged staggered module in the NS sector

Now we discuss how to organize states in the BMS
fermion model (3.23). For computational convenience, it is
useful to write down the commutation relations between
Ln, Mn and βn, γn, which read,

½Ln; βm� ¼ −
�
n
2
þm

�
βnþm;

½Ln; γm� ¼ −
�
n
2
þm

�
γnþm:

½Mn; βm� ¼ 0; ½Mn; γm� ¼ −ðnþ 2mÞβnþm: ð4:4Þ

From the above expression, we note that

½L0;βn1 � � � γm1
� � �� ¼ −ðn1 þ � � � þm1 þ � � �Þβn1 � � � γm1

� � �
ð4:5Þ

which is valid for both the NS sector and the R sector. As
discussed in the last section, states in the R sector can be
understood as states in the NS sector dressed by the twist
operator. In the following discussion, we focus on the NS
sector.

(i) At weight 0, there is the vacuum state j0i.
(ii) At weight 1

2
, there are two states,

ψ1 ∼ β−1
2
j0i; ψ2 ∼ γ−1

2
j0i; ð4:6Þ

which are primary states with Δ ¼ 1
2
and ξ ¼ 0,

consistent with the OPE result (3.69).
(iii) At weight 1, there is only one state created by

P ∼ β−1
2
γ−1

2
j0i ð4:7Þ

which is a primary singlet.
(iv) At weight 3

2
, there are two states created by

∂xψ1 ∼ β−3
2
j0i ¼ L−1β−1

2
j0i;

∂xψ2 ∼ γ−3
2
j0i ¼ L−1γ−1

2
j0i ð4:8Þ

which are descendant states.
(v) At weight 2, there are four states

M ∼ −β−1
2
β−3

2
j0i;

T ∼ −
1

2

�
β−1

2
γ−3

2
− β−3

2
γ−1

2

�
j0i;

∂xP ∼
�
β−1

2
γ−3

2
þ β−3

2
γ−1

2

�
j0i

K ∼ −
1

4
γ−1

2
γ−3

2
j0i ð4:9Þ

where a new operator K shows up. The action ofM0 on the
basis of

ðj2Mi; jTi; jKi; j∂xPi ¼ L−1jPiÞ ð4:10Þ

is given

0
BBB@

0 0 0 0

1 0 0 0

0 1 0 1
4

−1 0 0 0

1
CCCA: ð4:11Þ

which is not in the form of standard Jordan blocks, due to a
mixing between the vacuum BMS module and the
P≕ψ1ψ2∶ module. To better understand these states,
we check the action of BMS annihilation generators
Ln;Mn; n > 0. The nonvanishing terms are
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L2jTi ¼ L2L−2j0i ¼
1

2
j0i

L1j∂xPi ¼ L1ðL−1jPiÞ ¼ 2jPi

M1jKi ¼ 1

2
jPi;M2jKi ¼ 1

4
j0i; ð4:12Þ

First j∂xPi ¼ L−1jPi is a descendant state of the primary
state jPi. The states ðj2Mi; jTiÞ are invariant under the
action of L1 and M1, the annihilation operators of global
BMS generators, and thus form a quasi-primary multiplet
with Δ ¼ 2; ξ ¼ 0. The new operator K is neither a BMS
primary state nor a descendant, and thus requires an
extension of the highest weight representation. K is
mapped to the primary state jPi by the action of M1,
and thus is not a quasi-primary either. This is in contrast to
the case for the BMS scalar, where ð2M;T;KÞ form a
quasiprimary multiplet with rank 3.
As a side remark, we note that the action of M0 can be

brought to the standard Jordan block by a generalized
diagonalization procedure,

0
BBB@

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

1
CCCA ð4:13Þ

with a new basis corresponding to the operators�
j2Mi; 4

3
jTi þ 1

3
j∂xPi;

4

3
jKi; 2jTi þ 2j∂xPi

�
: ð4:14Þ

Despite this simple structure ofM0, it turns out this basis is
not convenient for organizing the states. Because of the
mixing of jTi with the descendant state j∂xPi, the first two
states does not form a quasi-primary multiplet. We will
focus on the basis (4.9) in subsequent discussions.
Finally, let us calculate the OPEs between the four

operators at level two. From the previous discussion, the
two components ð2M;TÞ in the basis form a rank-2
multiplet and the OPEs are already derived in (3.68).
The OPEs of the remaining basis operators K, D can be
calculated by Wick theorem

Tðx;yÞKð0;0Þ∼−
y
x5

−
3yP
2x4

−
2yT
x3

−
y∂xP
2x3

þ 2K
x2

þ 1

x
∂xK−

y
x2
∂yK

Mðx;yÞKð0;0Þ∼ 1

4x4
þ P
2x3

þ T
x2

þ ∂xP
4x2

þ 1

x
∂yK

Tðx;yÞ∂xPð0;0Þ∼
2P
x3

þ 4yM
x3

þ 2∂xP
x2

−
y
x2

∂y∂xPþ 1

x
∂x∂xP

Mðx;yÞ∂xPð0;0Þ∼
−2M
x2

þ 1

x
∂y∂xP: ð4:15Þ

One can check that the above OPEs can be alternatively
obtained from the operator state correspondence.

1. The combined module of I and P

Let us first consider the vacuum module. Due to the
mixing between the stress tensor and ∂xP, we have to
consider the identity module and the P module together.
Using the relations (4.12), we can draw the following
diagram for the states with integer weights up to level
Δ ¼ 2,

where we use × for null states, the black dot with Δ ¼ 0 for
the vacuum, the black dot with Δ ¼ 1 for jPi, the blue dot
for jMi, the two black dots at Δ ¼ 2 for jTi and j∂xPi
respectively, and the red dot for jKi. The blue/black arrows
represent the action of Mn=Ln, with upward/downward
arrow for positive/negative n. The action of M0 runs
horizontally, and is always toward the left. The arrow
ending in the middle of two dots represents their linear
combination.
Now let us organize these in the language of BMS

staggered model we introduced earlier in this section. The
key step is to correctly identify the building block Sð1Þ. For
the BMS scalar [50], Sð1Þ was chosen to be the irreducible
highest weight modules. For the BMS fermion, however,
this is not possible for the vacuum module, due to the
mixing between descendants of the identity I and another
primary P. Therefore, the minimal build block can be
chosen to be the reducible highest weight module HI;P,
which consists of two BMS primary states, the vacuum and
jPi, as well as their BMS descendant states. The module
HI;P contains two submoduleHI andHP, each of which is
an irreducible highest weight module. It is not a direct sum,
due to the relation M ¼ − 1

2
∂yP, or equivalently due to the

existence of the null state

N ≡ 2M−2j0i þM−1jPi ∼ 0 ð4:16Þ

Modding out the null state mixes states in the two
submodules HI and HP. As a result, the building block
for the staggered module will be

Sð1Þ ≡HI;P ¼ HI ⊕ HP

HN
ð4:17Þ
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whereHN is spanned by the null stateN . The moduleHI;P

is represented by the following diagram.
Now let us use the additional operator K to seed more

states by considering the composite operators using Ks. As
a first step, we can construct the composite operators with
the primaries, which in the case ofHI;P is K and ∶KP∶. By
acting on I, P, K, and ∶KP∶ with the BMS generators, we
can build an enlarged highest weight module Sð2Þ. After
modding out HI;P, the new states K and ∶KP∶ become
the BMS primary states, so that the quotient HKI;KP ≡
Sð2Þ=Sð1Þ is isomorphic to HI;P itself. This

means that we indeed have the short exact sequence

0 → HI;P ⟶
ι

Sð2Þ ⟶
π

HKI;KP → 0 ð4:18Þ

Equivalently, we can write Sð2Þ as a semidirect sum

Sð2Þ ¼ HI;P ⊕S HKI;KP ð4:19Þ

Similarly, we can build Sð3Þ by adding new seeds ∶KKI∶
and ∶KKP∶ to Sð2Þ, and moreover build SðnÞ by adding
new seeds ∶Kn−1I∶ and ∶Kn−1P∶ to Sðn−1Þ, namely

Sð3Þ ¼ Sð2Þ ⊕S HKKI;KKP;

SðnÞ ¼ Sðn−1Þ ⊕S HKn−1I;Kn−1P ð4:20Þ

Therefore the full staggered module that includes the
vacuum and the primary P is a semidirect sum of infinite
many highest weight modules, each of which is isomorphic
to the starting building blockHI;P, and the seed operator for
the sum is the operator K.

SI;P ¼HI;P ⊕S HKI;KP ⊕S � � �⊕S HKnI;KnP ⊕S � � � ð4:21Þ

2. The ψ module

Now let us consider the ψ ¼ ðψ1;ψ2Þ module. We list
the first a few states below according to their conformal
weights,

(i) Δ ¼ 1
2
∶jψ1i; jψ2i

(ii) Δ ¼ 3
2
∶L−1jψ1i; L−1jψ2i

(iii) Δ¼ 5
2
∶L2

−1jψ1i, L2
−1jψ2i; M−2jψ2iL−2jψ1i,

L−2jψ2i, jKψ1i.

The two states at Δ ¼ 1
2
form a primary multiplet with rank

2, acting L−n;M−n; n > 0 on which generates a BMS
highest weight module Hψ . The state jKψ1i with Δ ¼ 5

2

is neither a primary nor descendant, and hence will seed a
staggered module. Analogous to the previous discussion,
we choose Sð1Þ ¼ Hψ , and build Sð2Þ by considering the
composite operator ∶Kψ∶, the later of which contains
a null state ∶Kψ2∶ . Thus only ∶Kψ1∶ will seed the
enlarged module Sð2Þ. After modding out Hψ , we have
Sð2Þ=Sð1Þ ¼ HKψ1

, where HKψ1
is an irreducible BMS

highest module generated by Kψ1. Then we have the
following short exact sequence,

0 → Hψ ⟶
ι

Sð2Þ ⟶
π

HKψ1
→ 0 ð4:22Þ

Due to the fact that ∶Kψ2∶ is null, the quotient
Sð2Þ=Sð1Þ ¼ HKψ1

is not isomorphic to Hψ . This is differ-
ent from the vacuum module, where the quotient is also
isomorphic to the initial building block Sð1Þ. Carrying out
the above procedure successively, we get

SðnÞ ¼ Sðn−1Þ ⊕S HKn−1ψ1
; ð4:23Þ

so that the entire ψ module can be written as a semidirect
sum of different BMS highest weight modules represented
by ψ; ∶Kψ1∶ ; ∶K2ψ1∶; � � �, namely

Sψ ¼ Hψ ⊕S HKψ1
⊕S � � � ⊕S HKnψ1

⊕S � � � ð4:24Þ

V. TORUS PARTITION FUNCTION

In this section, we consider the torus partition function of
the BMS fermion (3.1). We first review the modular
invariance of the BMSFT following [41] and then calculate
the torus partition function of the BMS fermion in the
highest weight vacuum explicitly. Torus partition in the
induced vacuum is carried out in section VI.

A. Modular property of the BMSFTs

We first give a quick review on the torus partition
function in the BMSFTs here. We consider a torus which
is determined by two identifications on a two dimensional
plane,

ðcanonicalÞ spatial circle∶ ðτ; σÞ ∼ ðτ; σ þ 2πÞ ð5:1Þ

thermal circle∶ðτ; σÞ ∼ ðτ − 2πib; σ − 2πiaÞ ð5:2Þ

It is useful to embed R2 into C2 in the subsequent
discussions. The partition function on the above torus is
formally a path integral over all fields satisfying boundary
conditions specified by the two identifications. Alternatively,
the torus partition function can be written as a trace over the
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state space which is determined by the spatial circle,
weighted by the evolution along the thermal circle,

Zða; bÞ ¼ Tre−2πaðL0−
cL
24
Þ−2πbðM0−

cM
24
Þ ð5:3Þ

where the translational generators are defined on the cylinder
with the spatial circle (5.1), which we refer to as the
canonical circle. More generally, a torus can be described
by the fundamental region on the plane

ðτ; σÞ ∼ ðτ; σÞ þmβ⃗S þ nβ⃗T ð5:4Þ

where m and n are integers, so that the torus is completely
determined by a pair of vectors β⃗S; β⃗T on the plane. For
instance, the torus (5.1) has a canonical spatial circle
β⃗S ¼ ð0; 2πÞ, and a thermal circle β⃗T ¼ ð−2πib;−2πiaÞ.
The transformations acting on the plane that leave the torus
invariant form the modular group, SLð2;ZÞ=Z2. The action
of SLð2;ZÞ is given by

�
a b

c d

� 
β⃗T

β⃗S

!
¼
 
β⃗0T
β⃗0S

!
ð5:5Þ

with

ad − bc ¼ 1; a; b; c; d∈Z: ð5:6Þ

The reason to mod Z2 is because the simultaneous inversion
of all the matrix elements does not change the torus. The
modular group is generated by the T and S transformations,
with

T ¼
�
1 1

0 1

�
; S ¼

�
0 −1
1 0

�
: ð5:7Þ

The S-transformation corresponds to swapping of spatial
circle and the thermal circle, followed by a scaling which
brings the new spatial circle to have period 2π. As a result,
the partition function has to satisfy

ðτ; σÞ ∼
�
τ þ 2πib

a2
; σ −

2πi
a

�
∼ ðτ; σ − 2πÞ: ð5:8Þ

The S-invariance of the partition function is then

Zða; bÞ ¼ Z

�
1

a
;−

b
a2

�
: ð5:9Þ

The T-transformation adds the spatial circle to the thermal
circle, giving a new identification,

ðτ; σÞ ∼ ðτ; σ þ 2πÞ ∼ ðτ − 2πib; σ − 2πiaþ 2πÞ: ð5:10Þ

If the torus partition function has modular T-invariance, it
has to satisfy

Zða; bÞ ¼ Zðaþ i; bÞ: ð5:11Þ
All the other transformations in the SLð2;ZÞ can be
obtained by group multiplication of the T— and S—
transformations. The U≡ TST transformation is of particu-
lar interest, the action of which on the torus is provided here
for completeness,

ðτ;σÞ∼ ðτ;σþ 2πÞ∼
�
τ−

2πib
ð1− iaÞ2 ;σ−

2πia
1− ia

�
: ð5:12Þ

Then the U invariance of the partition function is to require

Zða; bÞ ¼ Z

�
a

1 − ia
;−

b
ð1 − iaÞ2

�
: ð5:13Þ

B. PARTITION FUNCTION FOR BMS
FREE FERMION

In this subsection we calculate the partition function for
the BMS fermion model on a torus with a spatial circle and a
thermal circle as in (5.1). Boundary conditions along the
spatial circle can be conveniently parametrized by a
parameter μ, with μ ¼ 0 for the R sector, and μ ¼ 1

2
for

the NS sector. Similarly, the thermal circle also admits either
periodic (R) or antiperiodic (NS) boundary conditions,
labeled by ν ¼ 0 or ν ¼ 1

2
respectively. Due to the fermionic

nature, imposing the R boundary conditions can be realized
by inserting ð−1ÞF into the torus partition function, where F
is the fermion number operator. Altogether there are four
combinations in the choices of boundary conditions, labeled
by the pair ðμ; νÞ,

Zμ;νða; bÞ ¼ TrðμÞð−1Þð1−2νÞFe−2πaðL0− 1
24
Þ−2πbM0 ð5:14Þ

where the trace depends on the boundary conditions along
the spatial circle, which we now specify. The state space in
the NS vacuum is spanned by (3.43)

j⃗i; j⃗i ¼ βi1−1=2β
i2
−3=2 � � � γj1−1=2γj2−3=2 � � � j0i: ð5:15Þ

Using the conjugation relation (3.29), we can construct a
dual basis

h⃗i; j⃗j ¼ h0jγj11=2γj23=2 � � � βi11=2βi23=2 � � � : ð5:16Þ

The basis is not orthonormal as can be seen from the
following inner products,

hi⃗0; j⃗0j⃗i; j⃗i ¼ N
NS;⃗i j⃗; i0

!
j0
!; N

NS;⃗i j⃗; i0
!

j0
! ¼ δ

i0
!

;j⃗
δ
j0
!

;⃗i

ð5:17Þ
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Similar to the scalar model, it is convenient to introduce the
dual orthonormal basis,

∨h⃗i; j⃗j≡ X
f i0
!

; j0
!

g

ðN−1
NSÞ⃗

i j⃗; i0
!

j0
!h i0!; j0

!j;

∨h⃗i; j⃗j i0! j0
!i ¼ δ

⃗i;j⃗; i0
!

; j0
!: ð5:18Þ

where N−1
NS denotes the matrix inverse of NNS whose matrix

elements are defined in (5.17). Now the trace over the states
in the NS sector reads,

TrNS ¼
X
⃗i;j⃗

j⃗i; j⃗i∨h⃗i; j⃗j: ð5:19Þ

Similar discussions can be carried out in the R sector with
the highest weight vacuum, with the states (3.55),

j⃗i; j⃗; si ≔ βi1−1β
i2
−2 � � � γj1−1γj2−2 � � � jsi in; jm ¼ 0; 1: ð5:20Þ

and the dual orthonormal basis can be defined accordingly.
The trace over the R sector then reads,

TrR ¼
X
⃗i;j⃗;s

j⃗i; j⃗; si ∨h⃗i; j⃗; sj: ð5:21Þ

Note that

∨h⃗i; j⃗jM0 j⃗i; j⃗i ¼ 0; ∨h⃗i; j⃗; sjM0 j⃗i; j⃗; si ¼ 0 ð5:22Þ

namely, the expectation value of M0 vanishes for both the
NS and R sector and therefore does not play any role in
the calculation of the torus partition function. As a result, the
calculation of the torus partition function (5.14) amounts to
counting the spectrum of L0, and we get

Zμ;νða; bÞ ¼
θ1=2−μ;1=2−νðiaÞ

ηðiaÞ ;

θμ;νðiaÞ ¼
X
n∈Z

q
1
2
ðnþμÞ2e2πiðnþμÞν

; ð5:23Þ

Under the T and S transformation, the modular properties
for the Jacobi theta function are

θμ;νðtþ 1Þ ¼ e−iπμðν−1Þθμ;μþν−1=2ðtÞ ð5:24Þ

θμ;ν

�
−
1

t

�
¼ ffiffiffiffiffiffiffi

−it
p

e2πiμνθν;−μðtÞ ð5:25Þ

namely, the T and S transformations exchange Zμ;ν among
themselves. It is then straight forward to check that the total
partition function is modular S invariant,

Zða; bÞ≡ X
μ;ν¼0;1

2

Zμ;νða; bÞ ¼ Z

�
1

a
;−

b
a2

�
ð5:26Þ

which indeed satisfy (5.9). For the T transformation,
however, additional phase factors show up and the total
partition function is no longer T invariant. It is still possible
to make the torus partition function modular invariant under
the full SLð2;ZÞ including both the T and the S trans-
formations by taking 24 copies of the original theory.
To end this section, we compare the partition function of

the BMS fermion model (5.26) with that of two chiral
fermions (2.45). The agreement is due to the fact that the
torus partition function of the BMS fermions is determined
only by the L0 spectrum of the theory, which is the same as
that of the chiral fermion theory. However, this does not
indicate that they are the same theory. We have seen
explicitly that the BMS fermion has a nontrivial y depend-
ence and the staggered module, while the chiral fermion has
no y dependence and the module is the Virasoro highest
weight module.

VI. THE INDUCED REPRESENTATION

In this section, we will consider the induced vacuum
of the BMS fermion (2.42). We solve the model in the
induced vacuum and compute the correlation functions in
Sec. VI. A and then consider the state space and torus
partition function in Secs. VI. B and VI. C.

A. The induced representation revisited

In this subsection we provide a general discussion on the
induced representation for the BMS group. We introduce
the notions of primary, descendants, and multiplets in the
induced presentation, which are analogous to the discus-
sions in the highest weight representation.
As a BMSFT can be obtained from the UR limit of a

CFT2, it is natural to take the UR limit of the highest weight
representation in CFT2. As was discussed in [33], this
procedure leads to an indecomposible representation of the
BMS group induced by a representation of its Abelian ideal
generated by Mns. Such a representation is called an
induced representation [73,74].
Let us first consider a primary operator in CFT2,

satisfying

½Lþ
0 ; O� ¼ hO; ½L−

0 ; O� ¼ hO;

½Lþ
n ; O� ¼ ½L−

n ; O� ¼ 0; ∀ n > 0 ð6:1Þ

where Lþ
n ; L−

n denotes the Virasoro generators in
CFT2. Under the UR limit, the two copies of Virasoro
algebras become the BMS algebra via the Wigner-Inönü
contraction [24],

Ln ¼ Lþ
n − L−

−n; Mn ¼ ϵðLþ
n þ L−

−nÞ; ð6:2Þ
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so that the primary field (6.1) satisfies the induced
condition,

½L0; O� ¼ ΔO; ½M0; O� ¼ ξO;

½Mn;O� ¼ 0; ∀ n ≠ 0; n∈Z: ð6:3Þ

In particular, the induced vacuum denoted by j0Ii should
satisfy

L0j0Ii ¼ Mnj0Ii ¼ 0; ∀ n∈Z: ð6:4Þ

Note that the condition (6.3) is not for all states in the
induced representation. By construction, the operator O
originated from a primary in the CFT2 before the UR limit,
and therefore still plays the role of a primary field in the
BMSFT. From now on, we will refer to an operator
satisfying conditions (6.3) as a primary operator, or a
primary singlet to be distinguished from the primary
multiplet to be introduced momentarily. We can construct
descendants by acting Ln; ∀ n∈Z on the primary O. The
simplest descendant is

½Ln;O�≡OðnÞ ð6:5Þ

Using Jacobi identity, one can easily verify that

½L0; OðnÞ� ¼ ΔðnÞOðnÞ; ΔðnÞ ¼ Δ − n; ð6:6Þ

½M0; OðnÞ� ¼ ξOðnÞ; ð6:7Þ

½Mm;OðnÞ� ¼ 2mξOδmþn ð6:8Þ

which means that OðnÞ is (i) an eigenstate of L0 with
eigenvalue Δ − n, (ii) an eigenstate of M0 with eigenvalue
ξ, and (iii) no longer annihilated by all the Mms with
m ≠ 0. More general descendant states can be obtained by
acting on O with multiple Lns, and one can verify that the
aforementioned three properties are still satisfied by the
descendants constructed this way. One exceptional case in
the above discussion is when ξ ¼ 0, where the action of Ln
will bring a primary singlet to another primary singlet with
ξ ¼ 0. They form a representation of one copy of Virasoro
algebra only, with the eigenvalue of L0 unbounded.
Similar to the highest weight representation, the primary

field in the induced representation may also be a multiplet,
satisfying

½L0;O� ¼ ΔO

½M0;O� ¼ ξO;

½Mn;O� ¼ 0; ∀ n ≠ 0; n∈Z; ð6:9Þ

where now ξ is a Jordan cell with diagonal element ξ. Similar
to the previous discussion on the singlet, descendants can

also be generated by acting on the primary multiplet O by
Lns with n ≠ 0; n∈Z.
To summarize, in the induced representation, a BMS

module contains a primary operator satisfying (6.3) or a
primary multiplet satisfying (6.9), and descendants obtained
from the primary singlet or multiplet by acting with Lns.
The descendants do not satisfy the conditions in the last line
of (6.3) and (6.9). We will see in section VI. B that this is the
case in the free BMS fermion model.

B. Correlators

In the NS sector, the induced vacuum can be chosen as
the state invariant under the global BMS group, similarly
to the highest weight vacuum discussed in Sec. III. In
terms of the modes, the induced vacuum condition in the
NS sector reads

βnj0IiNS ¼ 0; ∀ n∈Zþ 1

2
ð6:10Þ

which means that all the βn modes are annihilation
operators. One can directly verify that

Lnj0IiNS ¼ Mnj0IiNS ¼ 0; ∀ n∈Z: ð6:11Þ

Namely, the vacuum is invariant under all the BMS
generators. Such a state can only exist when all the central
charges in the algebra vanish, which is indeed the case as
we will show later.
Similarly, the induced R vacuum can be defined as

βnj0IiR ¼ 0; ∀ n∈Z ð6:12Þ

which is also BMS invariant, satisfying (6.11). As β0
annihilates the vacuum, γ0 should be regarded as a creation
operator, and thus the induced R vacuum is not degenerate.
As a consequence, in the induced representation the R
sector differs from the NS sector only in the mode
expansion. These features are in contrast with the highest
weight R vacua, which are degenerate and not invariant
under the global BMS algebra.
The normal ordering can be defined as follows,

∶βnγm ≔ −γmβn ð6:13Þ

∶γnβm ≔ γnβm: ð6:14Þ

where n is an integer in the R sector and half integer in the
NS sector. Using the above normal ordering prescription
we learn that the central charges

cIL ¼ cIM ¼ 0 ð6:15Þ

for BMS algebra in the induced representation.
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Define the propagators on the cylinder as

hO1ðτ1;σ1ÞO2ðτ2;σ2Þi≔ TðO1ðτ1;σ1ÞO2ðτ2;σ2ÞÞ−∶O1ðτ1;σ1ÞO2ðτ2;σ2Þ∶ ð6:16Þ

where the T-ordering is the time ordering on the cylinder

TðO1ðτ1; σ1ÞO2ðτ2; σ2ÞÞ ¼
	þO1ðτ1; σ1ÞO2ðτ2; σ2Þ for τ1 > τ2

−O2ðτ2; σ2ÞO1ðτ1; σ1Þ for τ1 < τ2:
ð6:17Þ

The additional minus sign in the second line is due to the fermionic nature of the operators. Under the definition (6.16), the
propagators for the fundamental fields ðψ1;ψ2Þ can be calculated from the mode sum

hψ1ðτ1; σ1Þψ1ðτ2; σ2Þi ¼ 0

hψ1ðτ1; σ1Þψ2ðτ2; σ2Þi ¼ 2πiδðσ1 − σ2Þðθðτ1 − τ2Þ − θðτ2 − τ1ÞÞ
hψ2ðτ1; σ1Þψ2ðτ2; σ2Þi ¼ 4πiδ0ðσ1 − σ2Þðθðτ1 − τ2Þτ1 þ θðτ2 − τ1Þτ2Þ: ð6:18Þ

Note that these results are valid for both the NS and R
sector. The reason is that there is no degenerate R vacua in
this case and the discrete Fourier transformation for the
delta-function admits both integer modes and half-integer
modes as the basis.
As a consistency check, now we show that the propa-

gators (6.18) can also be derived from the path integral.
Using the fact that the variation of the one-point functions
with respect to the fields should vanish, namely

δ

δψ1;2
hψ1;2i ¼ 0 ð6:19Þ

we get the following differential equations for the
propagator

∂σ1hψ1ðτ1; σ1Þψ1ðτ2; σ2Þi ¼ 0 ð6:20Þ

∂τ1hψ1ðτ1; σ1Þψ1ðτ2; σ2Þi ¼ 0 ð6:21Þ

∂τ1hψ1ðτ1; σ1Þψ2ðτ2; σ2Þi ¼ 2πiδðσ1 − σ2Þ ð6:22Þ

2∂σ1hψ1ðτ1; σ1Þψ2ðτ2; σ2Þi ¼ ∂τ1hψ2ðτ1; σ1Þψ2ðτ2; σ2Þi:
ð6:23Þ

It is then straight forward to check that the propagators in
the induced vacuum (6.18) are indeed solutions to the
above equations for the Green’s functions. Note that the
solutions (6.18) feature delta-functions in the spatial
directions, and theta-functions in the time directions,
properties also shared by the BMS scalar in the induced
vacuum [50], and predicted by general analysis [75].
For completeness, we also compute the correlation

functions for the composite operator P ¼ ψ1ψ2. The two
point function reads

hPPi ¼ −4π2δðσ1 − σ2Þ: ð6:24Þ

The nonvanishing three point functions read

hψ1ψ2Pi ¼ −4π2δðx1 − x3Þδðx2 − x3Þf13f23
hψ2ψ2Pi ¼ −8π2δðx2 − x3Þδ0ðx1 − x3Þf23g13

þ 8π2δðx1 − x3Þδ0ðx2 − x3Þf13g23 ð6:25Þ

where

fij ¼ θðτi − τjÞ − θðτj − τiÞ;
gij ¼ τiθðτi − τjÞ þ τjðθðτj − τiÞÞ ð6:26Þ

and i, j ¼ 1, 2, 3 label positions from left to right.

C. State space

Since all the βn modes are annihilation operators, the
state space of the NS sector is spanned by

j⃗iiNS ≔ � � � γi−1−1=2γ
i1
1=2 � � � j0IiNS; in ¼ 0; 1: ð6:27Þ

Similarly, the state space of the R sector is spanned by

j⃗iiR ≔ � � � γi−1−1γ
i0
0 γ

i1
1 � � � j0IiR; in ¼ 0; 1: ð6:28Þ

As there is no essential difference between the NS and R
sectors, henceforth we use j⃗ii to denote both (6.27)
and (6.28) and treat the two sectors in the same manner
unless otherwise specified. By acting the Virasoro zero mode
L0 on the states, we learn that the conformal weight is
determined by the sum of the mode labels,

Δj⃗ii ¼ −
X
ik¼1

k: ð6:29Þ
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Let us further define the “length” jij of a state by the total
number of γk acting on the vacuum,

jij≡X
k

ik ð6:30Þ

From the commutation rules

½Ln;γm� ¼−
�
n
2
þm

�
γnþm; ½Mn;γm� ¼−ðnþ2mÞβnþm;

we learn that the action of Mn replaces one of the creation
operator γk by the annihilation operator βnþk, which
subsequently will either annihilate the vacuum and render
a null state, or eliminate the operator γ−ðnþkÞ if the latter
exists. As a result,Mn either annihilate the state, or decrease
the length by multiples of 2. This indicates that a generic
state j⃗ii is not necessarily annihilated by Mn for n ≠ 0, and
thus is not a primary state as defined in (6.9). In fact, any
state annihilated by Mn; ∀ n ≠ 0 can be obtained by a
linear combination of the following states,

γk1γ−k1γk2γ−k2 � � � � � � γinn j0i; in ¼ 0; 1 ð6:31Þ

each of which is an eigenstate of L0 with conformal weight
Δ ¼ −n. To further organize the states, we consider the
action M0. Note that M0 acting on a state (6.31) will bring
down one or more pairs of γ−kγk, until finally reaching j0i or
γnj0i, and finally

M0j0i ¼ M0γnj0i ¼ 0: ð6:32Þ

This means that the states (6.31) can be organized into
primary multiplets each satisfying (6.9),

1 ∼ ðj0i; γ−kγkj0i; γ−k1γk1γ−k2γk2 j0i; � � �Þ; ð6:33Þ

On ∼ ðγnj0i; γ−kγkγnj0i; γ−k1γk1γ−k2γk2γnj0i; � � �Þ; ð6:34Þ

where the identity multiplet 1 includes the vacuum itself and
other states created by multiple pairs of γ−kγk, and the
multiplet On includes γn with all other creation operators
paired up. Therefore, we have infinite but countable numbers
of primary multiplets and each has infinite rank.
The action of Ln on the states (6.27) and (6.28) does not

change the length jij, but will shift the conformal weight
by −n,

ΔðLn j⃗iiÞ ¼ Δðj⃗iiÞ − n ð6:35Þ

In particular, acting Ln; n ≠ 0 on the primary multiplets
will generate descendant states.
Let HI denote the module formed by the identity

multiplet I and its Virasoro descendants, and HOn
denote

the module generated from the primary multiplet On. Then

the state space can be decomposed into different induced
modules,

H ¼ HI ⊕
X
n

HOn
: ð6:36Þ

The states can be schematically described by Fig. 1,
where the round dots represent states, the black arrows
represent the action of Ln, and the blue ones represent the
action of Mn. A row represents states with the same
conformal weight which increases from top to bottom. A
column represents the states with the same length jij, the
number of creation operators γn. From left to right, the
length of adjacent columns increases by 2.

D. Torus partition function

The torus partition function for the induced vacuum
can be calculated parallel to Sec. V. In particular, the
trace should be taken over states (6.27) in the NS sector
and (6.28) in the R sector, and we should also consider
periodic and antiperiodic boundary conditions along the
thermal circle. The operator in M0 does not contribute to
the partition function, and the computation reduces to the
problem of finding the spectrum of L0. The difference
between the highest weight and induced representations is
the range of the eigenvalues of L0, which is bounded from
below in the former case, and unbounded in the later one.
In the induced representation, any state γ−k1γ−k2 � � � j0i is
paired with a partner γk1γk2 � � � j0i, and the two states have
opposite eigenvalues of L0. Besides, the BMS fermions in
the induced vacuum have vanishing central charges (6.15),
which do not contribute to the torus partition function.
Consequently, the torus partition function in the induced
vacuum can be factorized and is given by,

ZR;Rða; bÞ ¼ TrRð−1ÞFe−2πaL0 ¼ 0 ð6:37Þ

ZR;NSða; bÞ ¼ TrRe−2πaL0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ2ðiaÞ
ηðiaÞ

ϑ2ð−iaÞ
ηð−iaÞ

s
ð6:38Þ

FIG. 1. Induced module.
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ZNS;NSða; bÞ ¼ TrNSe−2πaL0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ3ðiaÞ
ηðiaÞ

ϑ3ð−iaÞ
ηð−iaÞ

s
ð6:39Þ

ZNS;Rða; bÞ ¼ TrNSð−1ÞFe−2πaL0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ4ðiaÞ
ηðiaÞ

ϑ4ð−iaÞ
ηð−iaÞ

s

ð6:40Þ

where the factor like
ffiffiffiffiffiffiffiffiffi
ϑ2ðiaÞ
ηðiaÞ

q
comes from the contribution

of states created by products of γns with n < 0, and the

factor like
ffiffiffiffiffiffiffiffiffiffiffiffi
ϑ2ð−iaÞ
ηð−iaÞ

q
from those with n > 0. Note that the

elliptic functions above are only formal, as they are only
well defined on the upper half plane. The partition function
of the induced sector is actually divergent, due to the
unbounded spectrum of L0. These properties also appear in
the BMS scalar model [50].

VII. SUPERSYMMETRY

In this section we discuss BMS invariant theories
with supersymmetry by considering the free BMS scalar
model [50] and free fermion models. As discussed in
Sec. II, both the BMS fermions (2.42) and the chiral
fermion (2.45) are compatible with Carrollian symmetry,
and hence can be used to construct symmetric models. We
will discuss the two choices separately in the following.
In the following, we will use the Greek letters α, β, λ,

δ ¼ 1, 2 as spinor indices, which is raised and lowered by
the charge conjugation matrix. Whenever it does not cause
confusion, we will omit the spinor indices when they are
contracted. In that case, the northwest-southeast summation
rule is assumed, for instance, χ̄σ ≡ χ̄ασα.

A. SUSY with BMS fermions

We first consider the free supersymmetric model built
from the BMS fermion (2.42), together with the BMS
scalar model

Sscalar ¼
1

8π

Z
ec ∧ edϵcdgab∂aϕ∂bϕ ¼ 1

4π

Z
dxdyð∂yϕÞ2:

ð7:1Þ

The fermion field in (2.42) has two real degrees of freedom,
while the scalar field has only one degree of freedom. To
match the number of degrees of freedom, we need to
introduce an auxiliary scalar field F which vanishes on-
shell. The full supersymmetric action is thus given by

S ¼ 1

8π

Z
ec ∧ edϵcdðgab∂aϕ∂bϕþ ψ̄Γa

∂aψ − F2Þ: ð7:2Þ

where the gamma matrices are given by (2.31). We will
show that this model has N ¼ 2 supersymmetry. Written

covariantly, the supersymmetric BMS theory takes a
similar form as the free N ¼ 2 supersymmetric QFT in
2 dimensions [76].
The stress tensor in the bosonic part [50] and fermionic

part are given by

Tb ¼ −∶∂xϕ∂yϕ∶; Mb ¼ −
1

2
∶∂yϕ∂yϕ∶;

Tf ¼ −
1

2
∶ψ1∂xψ2∶ −

1

2
∶ψ2∂xψ1∶;

Mf ¼ −
1

2
∶ψ1∂yψ2∶: ð7:3Þ

Then the total stress tensor read

T ¼ Tb þ Tf; M ¼ Mb þMf: ð7:4Þ

The supersymmetry transformations with an infinitesimal
spinor parameter ϵα can be written in the covariant form

δϕ ¼ iϵαψα

δψα ¼ iðΓaÞαβϵβ∂aϕ − iϵαF

δψ̄α ¼ −iϵβðΓaÞβα∂aϕ − iϵαF

δF ¼ −iϵαðΓaÞαβ∂aψβ ð7:5Þ

As suggested by the similarity between the BMS SUSY
action (7.2) and its Lorentzian cousin, the above super-
symmetric transformation also takes a similar form, except
that the gamma matrices here are different. By considering
the variation of the action (7.2) under the supersymmetry
transformations (7.5), we obtain a conserved supercurrent

jaα ¼ −
i
2π

ðΓbÞαβðΓaÞβλð∂bϕÞψλ; ð7:6Þ

where the superscript a ¼ 1, 2 is a tangent space index, and
the subscript α ¼ 1, 2 is a spinor space index. The
conserved current can be explicitly written in terms of
components as,

jx1 ¼ 0; jx2 ¼ −
1

π
H ð7:7Þ

jy1 ¼
1

2π
H; jy2 ¼

1

2π
G̃ ð7:8Þ

where

H ≡ −i∂yϕψ1; G̃≡ −2i∂xϕψ1 − i∂yϕψ2: ð7:9Þ

The conservation law ∂ajaα ¼ 0 can be expressed in
components which reads
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∂yH ¼ 0;

∂yG̃ − 2∂xH ¼ 0: ð7:10Þ

The first equation implies that H is independent of y, while
the second equation can be reorganized to define another
y— independent field G,

∂yG ¼ 0; G≡ G̃ − 2y∂xH: ð7:11Þ

From the conservation laws (7.10) (7.11), we can construct
two sets of conserved charges

Q1½ϵ� ¼
1

2πi

I
ϵðxÞHdx; Q2½ϵ� ¼

1

2πi

I
ϵðxÞGdx:

ð7:12Þ

Among them, the zero modes are the global supercharges
which generate the supersymmetry transformations,

Q1 ≡Q1½1� ¼
1

2πi

I
Hdx; Q2 ≡Q2½1� ¼

1

2πi

I
Gdx:

ð7:13Þ

The supercharges generate transformations of free fields via
the Poisson brackets,

δϕ ¼ fϵαQα;ϕgPB ¼ iϵ1ψ1 þ iϵ2ψ2

δψ1 ¼ fϵαQα;ψ1gPB ¼ iϵ1∂yϕ

δψ2 ¼ fϵαQα;ψ2gPB ¼ −iϵ2∂yϕþ 2iϵ1∂xϕ ð7:14Þ

which agrees with the supersymmetry transformations
(7.5) under the on-shell condition F ¼ 0. Furthermore,
the Poisson brackets between the two supercharges are
given by

ifQ1; Q1gPB ¼ 0;

ifQ1; Q2gPB ¼ 2

2πi

I
dxM ¼ 2Py;

ifQ2; Q2gPB ¼ 4

2πi

I
dxðT − y∂xMÞ ¼ 4Px; ð7:15Þ

where Px, Py are the conserved charges generating trans-
lations along the x and y direction respectively.
To study more general charges in (7.12), we can perform

mode expansion by taking the test function

ϵr ¼ xrþ1
2; r∈Zþ 1

2
ð7:16Þ

so that we can define infinitely many charges

Hr ≡Q1½ϵr� ¼
1

2πi

I
xrþ1

2HðxÞdx;

Gr ≡Q2½ϵr� ¼
1

2πi

I
xrþ1

2GðxÞdx: ð7:17Þ

The mode expansion in the free BMS scalar is given by

ϕðx; yÞ ¼
X
n∈Z

ðAnx−n þ yBnx−n−1Þ: ð7:18Þ

Plugging the mode expansions (7.18) and (3.28) into
(7.17), we find

Hr ¼ −i
X
m∈Z

∶βr−mBm∶

Gr ¼ 2i
X
m∈Z

m∶βr−mAm∶ − i
X
m∈Z

∶γr−mBm∶;

r∈Zþ 1

2
: ð7:19Þ

We can then calculate the commutation relations between
the supercharges and the modes,

½Hr; Am� ¼ iβrþm; ½Hr; Bm� ¼ 0;

fHr; βsg ¼ 0; fHr; γsg ¼ −iBrþs ð7:20Þ

½Gr;Am� ¼ iγrþm; ½Gr;Bm� ¼ −2imβrþm;

fGr;βsg ¼ −iBrþs; fGr; γsg ¼ 2iðrþ sÞArþs ð7:21Þ

using which we get the following complete and closed
supercharge algebra

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

nðn2 − 1Þδnþm;0

½Ln;Mm� ¼ ðn −mÞMnþm; ½Mn;Mm� ¼ 0

½Ln;Gr� ¼
�
n
2
− r

�
Gnþr; ½Ln;Hr� ¼

�
n
2
− r

�
Hnþr; ½Mn;Gr� ¼ 2

�
n
2
− r

�
Hnþr

½Mn;Hr� ¼ 0; fHr;Hsg ¼ 0; fGr;Hsg ¼ 2Mrþs

fGr;Gsg ¼ 4Lrþs þ
2cL
3

�
r2 −

1

4

�
δrþs;0 ð7:22Þ
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where cL ¼ 3 for the highest weight vacuum and the last
three Lie brackets agree with the Poisson brackets in (7.15).
The algebra (7.22) is an N ¼ 2 superalgebra containing
two supercharges, with BMS algebra as the bosonic part.
The above algebra agrees with that in [77] which was
obtained from the UR limit of relativistic SCFTs, and that
in [63] which was obtained classically from the supersym-
metry generators in the superspace formalism, up to some
coefficients related to the relative normalization between
ψ1 and ψ2.
To conclude, we find that the action (7.2) that includes

a free BMS scalar (7.1) and two real fermions with the
action (2.42) has N ¼ 2 supersymmetry.

B. SUSY with chiral fermions

In this subsection, we consider the chiral fermion
case (2.45). The supersymmetric action can still be written
in the covariant form (7.2) but the gamma matrices and
charge conjugation should be replaced by (2.44). The
fermionic action now becomes

Sf ¼ 1

8π

Z
ec ∧ edϵcdψ̄Γa

∂aψ

¼ 1

4π

Z
dxdyðψ1∂yψ1 þ ψ2∂yψ2Þ: ð7:23Þ

In this case, there are two fundamental fermion fields ψ1

and ψ2, each of which behaves as a chiral fermion in a
CFT2. The fermions are invariant under the boost sym-
metry, and furthermore is annihilated by all the Mn
generators. The symmetry algebra is thus one copy of
the Virasoro algebra only. The stress tensor for the fermion
is given by

Tf ¼ −
1

2
∶ψ1∂xψ1∶ −

1

2
∶ψ2∂xψ2∶; Mf ¼ 0; ð7:24Þ

with the following mode expansion

LðfÞ
n ¼

X
m∈Zþ1

2

1

2

�
mþ 1

2

�
ð∶βn−mβm∶þ ∶γn−mγm∶Þ;

MðfÞ
n ¼ 0; ð7:25Þ

where βm corresponds to the mode of ψ1, and γm for ψ2,
with the anticommutation relation fβm; βng ¼ fγm; γng ¼
δmþn;0; fβm; γng ¼ 0.
As the supersymmetry transformations (7.5) and super

currents (7.6) were calculated in the covariant way, they
are still valid for the chiral fermions except that the spinor
indices are raised or lowered by the identity matrix.
Plugging the gamma matrices (2.44) into the super currents
(7.6), we find the four components of the super currents are

jxα ¼ 0; jyα ¼ 1

2π

�
H

G

�
; ð7:26Þ

where

H ¼ −i∂yϕψ1; G ¼ −i∂yϕψ2: ð7:27Þ

The conservation law reads,

∂yH ¼ 0; ∂yG ¼ 0: ð7:28Þ

Then we can get the global supercharges

Q1 ¼
1

2πi

I
dxH;

Q2 ¼
1

2πi

I
dxG: ð7:29Þ

One can also check the Poisson brackets between super-
charges and free fields agree with the supersymmetry
transformations (7.5) under on-shell condition

δϕ ¼ fϵαQα;ϕgPB ¼ iϵ1ψ1 þ iϵ2ψ2

δψ1 ¼ fϵαQα;ψ1gPB ¼ iϵ1∂yϕ

δψ2 ¼ fϵαQα;ψ2gPB ¼ iϵ2∂yϕ: ð7:30Þ

The Poisson brackets of the two supercharges read

ifQ1;Q1gPB ¼ ifQ2;Q2gPB ¼ 2Py; ifQ1;Q2gPB ¼ 0

ð7:31Þ

where again Py is the conserved charge generated by the
translation on the y direction as defined in (7.15).
We can also perform the mode expansion to find

supercharge algebra,

Hr ¼ −i
X
m∈Z

∶βr−mBm∶ ;

Gr ¼ −i
X
m∈Z

∶γr−mBm∶: ð7:32Þ

In this case, the commutation relations between super-
charge modes and free field modes are

½Gr; Am� ¼ iγrþm; ½Gr; Bm� ¼ 0;

½Hr; Am� ¼ iβrþm; ½Hr; Bm� ¼ 0;

fGr; βsg ¼ 0; fGr; γsg ¼ −iBrþs;

fHr; βsg ¼ −iBrþs; fHr; γsg ¼ 0: ð7:33Þ

Then the complete and closed supercharge algebra can be
written as follows
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½Ln;Lm� ¼ ðn−mÞLnþmþcL
12

nðn2−1Þδnþm;0

½Ln;Mm� ¼ ðn−mÞMnþm; ½Mn;Mm� ¼ 0

½Ln;Gr� ¼
�
n
2
− r

�
Gnþr; ½Ln;Hr� ¼

�
n
2
− r

�
Hnþr

½Mn;Gr� ¼ 0; ½Mn;Hr� ¼ 0

fHr;Hsg¼ 2Mrþs; fGr;Hsg¼ 0; fGr;Gsg¼ 2Mrþs

ð7:34Þ

where cL ¼ 3 for the highest weight vacuum and the last
three Lie brackets agree with the Poisson brackets in (7.31).
The algebra (7.34) is anN ¼ 2 superalgebra containing two
supercharges, with BMS algebra as the bosonic part. Thus,
from the free scalar field and the two free chiral fermion
fields (2.45) we have constructed a model with N ¼ 2

supersymmetry. Although both have N ¼ 2, the structure
of the superalgebra (7.34) differs from that of (7.22), due to
different choices of the fermionic part. In fact, each of the
two supercharges in (7.34) forms a N ¼ 1 subalgebra with
the BMS generators, acting on only one copy of the chiral
fermions. This means that we can also construct an N ¼ 1
symmetric theory by combining the BMS scalar (7.1) and
one chiral fermion. This type ofN ¼ 1 super BMS algebra
has been found [78,79], where the minimal N ¼ 1 three-
dimensional supergravity in asymptotically flat spacetimes
and its two-dimensional super-BMS field theory are dis-
cussed. The truncation of our super-BMS algebra (7.34) to
N ¼ 1 agrees with that of [78,79] with cM ¼ 0.

C. Superspace method

As an elegant method to construct supersymmetric
models, superspace and superfield can also be applied to
construct supersymmetric models with G=C symmetries.
To do so, we use the two dimensional flat G=C spacetime
(2.6) as the base manifold, so that a point in the superspace
can be described by ðxa; θαÞ, with spacetime coordinates xa

and Grassmann coordinates θα. The superfields are func-
tions of the superspace coordinates which can be written as
a power expansion in θα:

Φðxa; θαÞ ¼ ϕþ iθαψα þ θαθαF; ð7:35Þ

where the bosonic field F with dimension 1 is an auxiliary
field, ϕ is the scalar field and ψα is the two components
spinor field. The supersymmetry algebra can be simply
expressed as

fQα; Qβg ¼ 2ðΓaÞαβPa; ð7:36Þ

where Pa is the conserved charge under the infinitesimal
translation. The most general group element can be written
in the superspace coordinates as

Gðεa; ζαÞ ¼ exp ð−εaPa þ ζαQαÞ ð7:37Þ

where εa ¼ ðε; ε̃Þ parametrize the amount of spacetime
translations, and ζα parametrizes translation in the super-
coordinate θα. Now let us consider the effect of Qα, whose
corresponding group element is given by Gð0; ηαÞ.
Multiplying Gð0; ηαÞ to the left of another group element
Gðεa; ζαÞ can be realized as a coordinate transformation in
the superspace,

Gð0; ηαÞGðεa; ζαÞ ¼ Gðεa þ ηαðΓaÞαβζβ; ζα þ ηαÞ: ð7:38Þ

This effect of coordinate transformation in the superspace
can be generated by a differential operator Q̂α

Q̂α ¼
∂

∂θα
þ θβðΓaÞβα∂a; ð7:39Þ

which indeed forms the supersymmetry algebra (7.36) with
Pa ¼ ∂a as the translational operator in spacetime. The
supersymmetry transformation of the superfield Φ can thus
be obtained by acting on it with the supercharge (7.39),

δΦ ¼ ϵαQ̂αΦ ¼ ϵα
�
∂Φ
∂θα

þ θβðΓaÞβα∂aΦ
�

¼ δϕþ iθαδψα þ θαθαδF; ð7:40Þ

whose components are indeed the supersymmetry trans-
formation (7.5).
To construct an action, we need to find covariant

derivatives on the superspace by requiring that the covariant
derivative transforms covariantly under coordinate trans-
formation

x0a ¼ xa þ ηαðΓaÞαβθβ;
θ0α ¼ θα þ ηα: ð7:41Þ

Note that the derivative ∂=∂θα does not transform
covariantly

∂

∂θα
¼ ∂θ0β

∂θα
∂

∂θ0β
þ ∂x0a

∂θα
∂

∂x0a
¼ ∂

∂θ0α
− ηβðΓaÞαβ

∂

∂x0a
ð7:42Þ

Hence, the consistent covariant derivatives should be

Dα ¼
∂

∂θα
− θβðΓaÞαβ∂a

D̄α ¼ ∂

∂θα
− ðΓaÞαβθβ∂a: ð7:43Þ

Now we can construct the free field supersymmetric action
with the covariant derivatives (7.43) and superfields (7.35)
as follows
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S ¼ 1

32π

Z
ea ∧ ebϵabdθαdθβϵαβðD̄αΦ̄DαΦÞθαθα

¼ 1

4π

Z
dxdyðgab∂aϕ∂bϕþ ψ̄Γa

∂aψ − F2Þ; ð7:44Þ

where the lower θαθα means that we only take the terms
proportional to θαθα. We see that the supersymmetric action
turns out to be the one we have constructed in Sec. VII A.

Note added. During the preparation of this draft, we
became aware of the paper [80] which has overlaps with
our results in Sec. III, IV, and V.
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