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We revisit the connection between Hawking radiation and high-frequency dispersions for a Schwarzs-
child black hole following the work of [R. Brout, S. Massar, R. Parentani and P. Spindel, Phys. Rev. D 52,
4559 (1995)]. After confirming the robustness of Hawking radiation for monotonic dispersion relations, we
consider nonmonotonic dispersion relations that deviate from the standard relation only in the trans-
Planckian domain. Contrary to the common belief that Hawking radiation is insensitive to UV physics, it
turns out that Hawking radiation is subject to significant modifications after the scrambling time.
Depending on the UV physics at the singularity, the amplitude of Hawking radiation could diminish
after the scrambling time, while the Hawking temperature remains the same. Our finding is thus not
contradictory to earlier works regarding the robustness of the Hawking temperature.
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I. INTRODUCTION

It is a common folklore that Hawking radiation [1,2] is a
robust prediction about black holes, despite the fact that its
derivation based on effective theories actually involves
trans-Planckian modes [3,4]. Naively, one would expect
that different UV physics lead to different properties of
Hawking radiation. Yet, in a series of works [5–14], various
modifications to the dispersion relation of the radiation field
were considered in the trans-Planckian regime p≳Mp
(where Mp stands for the Planck mass), and approximately
the same Hawking radiation was reproduced repeatedly.
These works led some to believe that Hawking radiation is a
robust prediction. It also led to the developments of the
subject called “analog gravity” [15].
Strictly speaking, Hawking radiation is a transient

phenomenon. When the radius of the spherical collapsing
matter is still much larger than the Schwarzschild radius,

there is of course no Hawking radiation. Hawking radiation
starts to appear when the distance between the surface of
the collapsing matter and the Schwarzschild radius is much
smaller than the Schwarachild radius. After that, it is often
assumed that the evaporation of a black hole is an adiabatic
process, and Hawking radiation persists until the black
hole’s mass becomes of the order of the Planck scale.
However, it was pointed out in Ref. [16] that two-loop
corrections to the free field theory exhibit secular growth
that leads to the breakdown of the perturbation theory. It
was also found [17,18] that, if higher-derivative inter-
actions between the radiation field and the background
geometry are taken into consideration, Hawking radiation
can be significantly modified after the scrambling time.
(For a black hole with Schwarzschild radius a, the scram-
bling time is Oð2a logðaMpÞÞ [19].)
We are thus motivated to revisit the connection between

Hawking radiation and high-frequency dispersions. We
adopt the approach of Brout et al. [6] and consider both
monotonic and nonmonotonic dispersion relations. Special
attention is paid to the time dependence of the magnitude of
Hawking radiation, while previous works on this topic have
mostly focused on the Hawking temperature. Since the
magnitude can change without changing the temperature,
our study may reveal new features of Hawking radiation
that were missed in the past.
It turns out that, for certain nonmonotonic dispersion

relations, Hawking radiation can become significantly
different. For instance, the magnitude of Hawking radiation
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can decay exponentially with time, so that it is effectively
turned off after a certain critical time. Depending on the
dispersion relation, this critical time can be as short as the
scrambling time.
In Sec. II, we review the formulation of Ref. [6] to

investigate the relation between Hawking radiation and
high-frequency dispersions. In Sec. III, we consider generic
monotonic dispersion relations that are subluminal outside
the horizon, and observe how Hawking radiation is
independent of such UV modifications of monotonic
dispersion relations. In Sec. IV, we consider generic non-
monotonic dispersion relations, and find that, when the
dispersion curve gðpÞ approaches zero faster than Oð1=pÞ
in the large momentum limit p → ∞, Hawking radiation is
modified after a critical time depending on gðpÞ. The
physics behind this is explained in the same section, and we
conclude in Sec. V.

II. THE SETUP

We follow the work of Brout, Massar, Parentani and
Spindel [6] and study the evolution of Hawking quanta on a
spherically symmetric black-hole background with modi-
fied dispersion relations defined with respect to the ingoing
Vaidya metric. Due to its simplicity and convenience,
similar settings with the same coordinate system were
adopted in related works such as Refs. [20–24], in which
the leading behavior of Hawking radiation was confirmed.
For simplicity, the collapsing matter is assumed to be a

spherically-symmetric thin null shell falling along the
trajectory v ¼ vs (see Fig. 1). The Schwarzschild metric
outside the shell is connected with the interior Minkowski

geometry along the shell, and the corresponding ingoing
Vaidya metric reads

ds2 ¼ −
�
1 − Θðv − vsÞ

a
r

�
dv2 þ 2dvdrþ r2dΩ2; ð1Þ

where a is the Schwarzschild radius. Without loss of
generality, we can take

vs ¼ 0: ð2Þ

We will neglect the angular dependence from this point
onward and consider only s-waves on this background.
As for the radiation field, we consider a massless real

scalar described by the action

S ¼ −
1

2

Z
dr

Z
dv½gði∂rÞϕ�

×

�
−2i∂v þ

�
1 − ΘðvÞ a

r

�
gð−i∂rÞ

�
ϕ; ð3Þ

where the UV dispersion is introduced through the pseudo-
differential operator gð−i∂rÞ. The function gðpÞ is assumed
to be odd so that the action is Hermitian. We have gðpÞ ¼ p
for the standard dispersion relation of a massless field.
Variation of the action leads to the field equation

gð−i∂rÞ
�
−2i∂v þ

�
1−ΘðvÞa

r

�
gð−i∂rÞ

�
ϕðv; rÞ ¼ 0: ð4Þ

The junction condition for ϕ at v ¼ vs is simply its
continuity. General solutions of Eq. (4) are superpositions
of the ingoing and outgoing modes. The ingoing modes
ϕin ¼ ϕinðvÞ satisfy gð−i∂rÞϕinðv; rÞ ¼ 0, whereas the out-
going modes ϕoutðv; rÞ satisfy

�
−2i∂v þ

�
1 − ΘðvÞ a

r

�
gð−i∂rÞ

�
ϕoutðv; rÞ ¼ 0: ð5Þ

As the ingoing and outgoing modes are decoupled, we shall
focus solely on the outgoing sector, which is where
Hawking radiation resides, and simply denote ϕout as ϕ.
The dispersion curve gðpÞ encodes how the propagation

of outgoing modes is deformed by new physics above the
Planck scale Mp. In the IR regime p ≪ Mp, it reduces to
gðpÞ ≈ p, and the standard low-energy effective theory is
recovered. In the black hole spacetime outside the shell (for
v > 0), Eq. (5) results in the space-dependent dispersion
relation

ω ¼ 1

2

�
1 −

a
r

�
gðpÞ: ð6Þ

FIG. 1. A thin null shell with flat Minkowski interior collapses
to form a black hole, displayed in the ingoing Eddington-
Finkelstein coordinates. We trace an outgoing wave packet
backwards in time and decompose it into Minkowski modes
inside the shell.
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In the flat spacetime inside the shell (v < 0), we instead
have

Ω ¼ gðpÞ
2

; ð7Þ

where Ω is the eigenvalue of −i∂v. In the following, we
shall compute Hawking radiation for the free field theory
defined above for different types of dispersion relations.

III. MONOTONIC DISPERSION

In this section, we generalize the discussion of Ref. [6]
by considering generic monotonic dispersion curves gðpÞ
that are subluminal outside the horizon, and demonstrate
that Hawking radiation is robust against such UV
modifications.

A. Particle description

To begin with, the particle description of the Hawking
quanta is as follows. Treating the coordinate v as the time
variable, the Hamiltonian can be read off from Eq. (6) as

Hðp; rÞ≡ 1

2

�
1 −

a
r

�
gðpÞ: ð8Þ

The corresponding Hamilton equations are

dr
dv

¼ ∂H
∂p

¼ 1

2

�
1 −

a
r

�
g0ðpÞ; ð9Þ

dp
dv

¼ −
∂H
∂r

¼ −
a
2r2

gðpÞ: ð10Þ

In terms of the Vaidya line element (1), in order for a wave
packet outside the horizon to exhibit subluminal propaga-
tion, it is necessary that the group velocity satisfies
dr=dv < ð1 − a=rÞ=2, which implies the condition

g0ðpÞ < 1: ð11Þ

Figure 2 displays the types of monotonic profiles that fulfill
this requirement. We consider generic monotonic gðpÞ
satisfying Eq. (11) in this section.
We comment that requiring subluminality (11) outside

the horizon automatically gives rise to superluminal behav-
ior inside the horizon due to a sign flip coming from
ð1 − a=rÞ in Eq. (9). While this is an exclusive feature in
the ðv; rÞ coordinate system, it should not be viewed as a
pathology of the model. As Lorentz symmetry has already
been violated by modifying the dispersion relation, the
speed of light defined by ds2 ¼ 0 no longer has a universal
meaning.1 The condition ds2 < 0 for the line element (1)

should be understood as the subluminality condition only
in the low-energy limit, while the precise definition of
super/subluminality is given by the wave equation of a
massless field.
A Hawking particle detected at large distances is

originated from the Minkowski vacuum inside the null
shell. To understand the emergence of Hawking radiation,
we trace a Hawking particle backward in time, from large r
to the near-horizon region and beyond. Its wave packet
composed of purely positive-frequency modes at large r is
expected to turn into a mixture of positive and negative-
frequency Minkowski modes inside the shell. This mixture
determines the magnitude and temperature of Hawking
radiation.
Denote by u the Eddington retarded time defined by

u≡ v − 2r�; ð12Þ

where r� is the tortoise coordinate

r� ≡ rþ a logðr=a − 1Þ: ð13Þ

An outgoing particle at low energy moves along a constant-
u trajectory at large distances.
Consider an outgoing wave packet centered around the

retarded time u ¼ u0 near asymptotic infinity (r → ∞) with
a small but positive Killing frequency ω ≪ Mp. This wave
packet has a momentum centered around

pω ≡ g−1ð2ωÞ ≈ 2ω; ð14Þ

where pω is the root of the dispersion relation (6) at large r
(see Fig. 2).2 As we propagate this wave packet backwards
in time v, since its frequency ω is a constant of motion, its

FIG. 2. A schematic plot illustrating two examples of mono-
tonic dispersion curves for which the group velocity is sub-
luminal outside the horizon. These profiles deviate significantly
from standard linear dispersion gðpÞ¼p only for trans-Planckian
momenta p≳Mp.

1For instance, superluminal modes are also present in Hořava-
Lifshitz gravity [25] and Einstein-Aether theory [26,27]. 2For monotonic gðpÞ, this root is uniquely defined.
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central momentum can be inferred from its position
via Eq. (6).
As gðpÞ ≈ p is assumed to be a good approximation for

p≲Mp, the Hawking particle follows the trajectory in the
low-energy effective theory as long asp≲Mp. According to
Eq. (6), for a wave packet with the dominant frequency
ω ∼ 1=a in Hawking radiation, the momentum p increases
frompω (14) towardsMp as we trace its trajectory backward
in time. In the near-horizon region (jr − aj ≪ a), it is
convenient to define

x≡ r − a: ð15Þ

We find that p ∼Mp and x ∼ 1=Mp when v ∼ u0 −
2a logðaMpÞ. TheUVmodification to the dispersion relation
is irrelevant up to this point.
After the wave packet reaches the region x ∼M−1

p , its
evolution backwards in time is sensitive to the UV-
modification of gðpÞ. For x ≪ a, Eqs. (9) and (10) can
be approximated by

dx
dv

≈
g0ðpÞx
2a

; ð16Þ

dp
dv

≈ −
gðpÞ
2a

: ð17Þ

They lead to

x ≈
const
gðpÞ : ð18Þ

Since g0ðpÞ is non-negative for monotonic gðpÞ, p
increases continuously in the −v direction. This implies
that eventually (at sufficiently early times) the wave packets
are crammed against a point which is either the horizon
(x ¼ 0) or a finite distance from it (see Fig. 3), depending
on whether gðp → ∞Þ is infinite or not. In both cases,
Hawking quanta are originated from outgoing modes that
are exponentially compressed in the past. This is the
primary reason why Hawking radiation turns out to remain
essentially the same, as we will see below.

B. Robustness of Hawking radiation

Let us now compute the Hawking radiation for mono-
tonic dispersion relations that are subluminal outside the
horizon. We will see that the effect of modifying the
dispersion relation can be undone by a change of variables.
In general, as gð−i∂rÞ involves spatial derivatives of

infinite order, the wave equation (5) admits an infinite
number of linearly independent solutions. But since we are
only interested in solutions corresponding to Hawking
quanta, we will only consider solutions of propagating
modes. It is thus convenient to work in the momentum
space, where propagating modes can be readily extracted

by suitably deforming the integration contour around
singularities and branch cuts [6,8–11].
In the momentum space representation, the wave equa-

tion (5) for outgoing modes outside the collapsing shell
takes the form

∂pf½2i∂v − gðpÞ�ϕ̃ðv; pÞg ¼ iagðpÞϕ̃ðv; pÞ; ð19Þ

and the stationary solutions ϕ̃ωðv; pÞ ¼ e−iωvφ̃ωðpÞ can be
solved to give

φ̃ωðpÞ ¼ N ω
e−ipa

2ω − gðp − i0þÞ

× exp

�
2iaω

Z
p

0

dk
2ω − gðk − i0þÞ

�
; ð20Þ

where N ω is the normalization constant. The
i0þ-prescription is chosen such that these solutions re-
present Hawking modes at large r.
To understand this, we perform an inverse Fourier

transform of Eq. (20) to examine its properties in the
position space:

ϕωðv; rÞ ¼ N ωe−iωv
Z

∞

−∞

dp
2π

eipðr−aÞ

2ω − gðp − i0þÞ

× exp

�
2iaω

Z
p

0

dk
2ω − gðk − i0þÞ

�
: ð21Þ

The Riemann-Lebesgue lemma implies that this integral
vanishes as r → ∞ except in a small neighborhood of the
pole at pω. Therefore, in the asymptotic region, the modes
can be approximated by

FIG. 3. A sketch of the classical phase space trajectories. The
arrows indicate the direction of decreasing time v. The blue and
red curves represent the trajectories of Hawking quanta for the
dispersion profiles shown in blue and red, respectively, in Fig. 2,
and the black curve for the standard low-energy effective theory.
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ϕωðv; r → ∞Þ ≈N ωe−iωv
Z

∞

−∞

dp
2π

eipðr−aÞ

g0ωðpω − pÞ þ i0þ
exp

�
2iaω

Z
p

0

dk
g0ωðpω − kÞ þ i0þ

�

≈
N ω

2πg0ω
ðe−πaω=g0ω − e3πaω=g

0
ωÞΓð−2iaω=g0ωÞe−iωvþipωrþOðlog rÞ; ð22Þ

up to a constant phase, where

g0ω ≡ g0ðpωÞ: ð23Þ

We see that ϕωðv; r → ∞Þ ∝ e−iωvþipωr indeed reduces to
single-frequency plane waves to the leading order at large
distances, so they can be superposed to form wave
packets that represent Hawking particles. By the same
token, it can be shown that, with this i0þ-prescription,
ϕωðv; rÞ decays rapidly inside the horizon (r < a) [8–10],
which is a desired property for outgoing Hawking
particles.3

The outgoing sector of the field ϕ outside the shell can
thus be expanded in terms of these solutions ϕωðv; rÞ as

ϕðv > 0; rÞ ¼
Z

Λ

0

dω
2π

½bωϕωðv; rÞ þ b†ωϕ�
ωðv; rÞ�; ð24Þ

where Λ ¼ gð∞Þ=2 is the upper bound of the frequency ω
at large r (Λ can be infinity). The mode expansion inside
the shell can be written as

ϕðv < 0; rÞ ¼
Z

Λ

0

dΩ
2π

½aΩχΩðv; rÞ þ a†Ωχ
�
Ωðv; rÞ�; ð25Þ

where

χΩðv; rÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2Ωg0Ω

p e−iΩvþipΩr ð26Þ

is an outgoing mode in flat space obeying the wave
equation ½−2i∂v þ gð−i∂rÞ�ϕ ¼ 0.
Since the Hawking modes (22) coincide with the flat-

space basis χωðv; rÞ in the asymptotically flat region
r → ∞, the normalization constant N ω in Eq. (20) can
be fixed as

N ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πa

e4πaω=g
0
ω − 1

r
; ð27Þ

which is insensitive to the UV modification of gðpÞ for
ω ≪ Mp.

As mentioned in Sec. II, the field has to be continuous
across the null shell. Imposing this matching condition
between the mode expansions inside and outside the shell
relates the two sets of coefficients aΩ and bω via the
Bogoliubov transformation

bω ¼
Z

Λ

0

dΩ
2π

½αωΩaΩ þ βωΩa
†
Ω�; ð28Þ

where

αωΩ ¼ 2

ffiffiffiffiffiffi
2Ω
g0Ω

s
φ̃�
ωðpΩÞ; βωΩ ¼ −2

ffiffiffiffiffiffi
2Ω
g0Ω

s
φ̃�
ωð−pΩÞ ð29Þ

can be obtained through the Fourier transform of φωðrÞ.
We refer the reader to the appendix for a detailed
derivation.
To quantize the field,ϕ and its conjugate momentumΠ ¼

−2igð−i∂rÞϕ are promoted to operators satisfying the equal-
time commutation relation ½ϕðv; xÞ;Πðv; yÞ� ¼ iδðx − yÞ.
This leads to the canonical commutation relations

½aΩ; a†Ω0 � ¼ 2πδðΩ − Ω0Þ; ½bω; b†ω0 � ¼ 2πδðω − ω0Þ

for the creation and annihilation operators associatedwith the
modes inside and outside the shell, respectively. The initial
state of the field is assumed to be the vacuum state j0i inside
the shell defined by

aΩj0i ¼ 0 ∀Ω∈ ð0;ΛÞ: ð30Þ

The quantity relevant to Hawking radiation is the number
of Hawking particles in the state j0i at large r. From
Eqs. (28) and (29), we find

h0jb†ωbω0 j0i ¼
Z

Λ

0

dΩ
2π

β�ωΩβω0Ω

¼
Z

Λ

0

dΩ
2π

8Ω
g0Ω

φ̃ωð−pΩÞφ̃�
ω0 ð−pΩÞ: ð31Þ

Plugging in the solution (20) with the change of variable
q ¼ −pΩ, we arrive at

3The solutions (20) with the i0−-prescription correspond to the
Hawking partners inside the horizon.
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h0jb†ωbω0 j0i ¼ N ωN ω0

Z
−∞

0

dq
π

gðqÞ
ð2ω − gðqÞÞð2ω0 − gðqÞÞ exp

�
−2iaðω − ω0Þ

Z
q

0

dk
gðkÞ

ð2ω − gðkÞÞð2ω0 − gðkÞÞ
�
: ð32Þ

By introducing a new variable

FðqÞ≡
Z

q

0

dk
gðkÞ

ð2ω − gðkÞÞð2ω0 − gðkÞÞ ; ð33Þ

with Fð−∞Þ ¼ ∞ due to the fact that gðpÞ is odd,
monotonic, and that jgðpÞj ≤ jpj, Eq. (32) simplifies to

h0jb†ωbω0 j0i ¼ N ωN ω0

Z
∞

0

dF
π

e−2iaðω−ω0ÞF ð34Þ

¼ N ωN ω0
1

2πiaðω − ω0 − i0Þ : ð35Þ

Interestingly, we observe that the modifications encoded
in gðpÞ are entirely hidden within the new variable F. In
other words, from the viewpoint of Hawking radiation, the
effect of modifying the dispersion relation amounts to a
mere relabeling of trans-Planckian modes. This explains
why Hawking radiation remains intact despite such mod-
ifications. Hawking radiation is thus insensitive to mono-
tonic UV modifications to the dispersion relation, a result
consistent with the findings of Ref. [6].
For a more physical description of Hawking radiation as

a transient phenomenon, one should replace the single-
frequency modes by wave packets [2]. This enables us to
discuss the detection of a localized Hawking particle.
Consequently, we will be able to examine the magnitude
of radiation at different times.
An outgoing Hawking wave packet with central Killing

frequency ω0 ∼Oð1=aÞ can be constructed as

Ψðω0;u0Þðv; rÞ ¼
Z

dω
2π

fω0
ðωÞeiωu0ϕωðv; rÞ; ð36Þ

where fω0
ðωÞ represents a narrow profile with its peak at

ω0 and a width of Δω ≪ ω0. This profile function fω0
ðωÞ

specifies the relative amplitudes of the frequency eigenm-
odes ϕω in the linear superposition.4 According to
the spatial asymptotic behavior ϕωðv; r → ∞Þ ∝ e−iωu,
the wave packet (36) is approximately a function of the
light cone retarded time u ¼ v − 2r� at large distances.
The factor eiωu0 shifts the center of the wave packet to
u ¼ u0.
The creation operator corresponding to the Hawking

quanta (36) is

b†Ψ ¼
Z

dω
2π

fω0
ðωÞeiωu0b†ω; ð37Þ

where fω0
ðωÞ has been suitably normalized so that

½bΨ; b†Ψ� ¼
Z

dω
2π

jfω0
ðωÞj2 ¼ 1: ð38Þ

The number of Hawking particles with approximate fre-
quency ω0 detected around the retarded time u ¼ u0 by an
asymptotic observer is then given by the vacuum expect-
ation value

h0jb†ΨbΨj0i

¼
Z

dω
2π

Z
dω0

2π
fω0

ðωÞf�ω0
ðω0Þeiðω−ω0Þu0h0jb†ωbω0 j0i:

ð39Þ

Inserting Eq. (35) into the above and then pulling out the
slowly-varying factor in the integrand, which can be
approximated by its value at ω0, we find

h0jb†ΨbΨj0i ≈
1

e4πaω0=g0ω0 − 1

Z
dω
2π

Z
dω0

2π
fω0

ðωÞf�ω0
ðω0Þeiðω−ω0Þu0 1

iðω − ω0 − i0þÞ
¼ 1

e4πaω0=g0ω0 − 1

Z
dω
2π

Z
dω0

2π
fω0

ðωÞf�ω0
ðω0Þ

Z
u0

−∞
du eiðω−ω0Þu

¼ 1

e4πaω0=g0ω0 − 1

Z
u0

−∞
dujFffω0

gðuÞj2; ð40Þ

4Commonly used profiles include the Gaussian profile as well as the step-function profile fω0
ðωÞ ¼ ½Θðω − ω0 þ Δω=2Þ − Θðω−

ω0 − Δω=2Þ�= ffiffiffiffiffiffiffi
Δω

p
, which was originally adopted by Hawking in his seminal work [2].
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where Fffω0
g is the Fourier transform of fω0

, and the
integration variable u can be identified with the retarded
time. The width of Fffω0

g in the u-space is the inverse of
the width of fω0

in the ω-space (e.g. Δu ∼ 100a for
Δω ∼ 0.01a−1). Therefore, the integral in Eq. (40) is
approximately 0 for u0 ≪ −Δu, and approximately 1 for
u0 ≫ Δu. Hence, there is a steady flux of Hawking quanta
once u0 ≫ 1=Δω (at least before the black hole becomes
microscopic).
Note that, since g0ω ≈ 1 so long as ω ≪ Mp, the factor

1=ðe4πaω=g0ω − 1Þ of Planck distribution in Eq. (40) indicates
a robust Hawking temperature ð4πaÞ−1 regardless of the
time-dependent magnitude of Hawking radiation.
For the standard dispersion relation, a wave packet with a

well-defined frequency ω ∼Oð1=aÞ (and a small uncer-
tainty Δω) has a large Δu≳OðaÞ. Due to the exponential
relation U ≈ −2ae−u=2a between the retarded time u for
distant observers and the Minkowski retarded timeU inside
the shell, this wave packet is highly blue-shifted in the past
and is confined within a tiny region ΔU. This implies a
large uncertainty ΔΩ in its frequency Ω, resulting in a
mixture of positive and negative-frequency modes, and thus
the appearance of Hawking radiation.
As explained earlier, the robustness of Hawking radia-

tion demonstrated in Eq. (40) stems from the fact that the
UV-modification of monotonic dispersion relations can be
interpreted as a mere relabeling of states, without altering
the composition of positive and negative-Ω modes within
the wave packet.
On the other hand, we also note the possibility that, if

the range of the F-integration is finite, Hawking radiation
can still be modified, although the Planck distribution at
Hawking temperature remains the same. The range of the
F-integration in Eq. (34) is in general ð0; Fð−∞ÞÞ, and
Fð−∞Þ can be finite if either gðpÞ → ∞ or gðpÞ → 0
sufficiently fast in the limit p → ∞. The former possibility
corresponds to a superluminal dispersion relation outside the
horizon, whereas the latter corresponds to a nonmonotonic
dispersion relation. We shall study the latter case in the next
section, and leave the first possibility for future study.

IV. NONMONOTONIC DISPERSION

In this section, we study Hawking radiation for non-
monotonic dispersion relations with a single maximum
Λ≡maxfgðpÞ=2g and gðpÞ → 0 in the limit p → ∞ (see
Fig. 4). Such UV dispersions add complexity to the
analysis by introduction of an additional ingoing mode.
As depicted in Fig. 4, for any given 0 < ω < Λ, there are
two solutions piðωÞ (i ¼ 1, 2) to the dispersion relation:

2ω ¼ gðp1Þ ¼ gðp2Þ; ð41Þ

where p1ðωÞ < pΛ < p2ðωÞ, with pΛ being the momen-
tum at the maximum frequency, i.e.

2Λ ¼ gðpΛÞ: ð42Þ

Realistic dispersion relations can be even more compli-
cated, possibly involving more than two solutions. For
instance, in analog black-hole systems, the dispersion
relation for excitations may feature a roton minimum [4],
which was recently shown [28] to have a significant impact
on the radiation spectrum.
If we trace a wave packet back in time, the negative

group velocity in the UV regime of Fig. 4 means that the
wave packet bounces back from the horizon to great
distances (in the infinite past). At first sight, this would
seem to lead to the suppression of Hawking radiation, as
the relation between the affine parameter u in the infinite
future and the affine parameter in the infinite past is not of
an exponential form. However, it turns out that the non-
monotonic dispersion relation also allows for tunneling
across the horizon. Taking the tunneling effect into account,
we find that Hawking radiation is either unchanged or
significantly modified, depending on whether the
dispersion curve decays faster than Oð1=pÞ in the large
momentum limit (p → ∞).

A. Time dependence of Hawking radiation

The following calculation of Hawking radiation is a
slight modification of Sec. III B, except that the dispersion
relation is nonmonotonic here.
Outside the shell, the decomposition (24) and the quan-

tization of the field ϕðv > 0; rÞ remain valid.5 Inside the
shell, since there are two solutions of p (41) with the same
frequencyΩ [denoted byp1ðΩÞ andp2ðΩÞ], the basis modes
and the creation-annihilation operators are divided into two
sets as fχ1Ωðv; rÞ; χ2Ωðv; rÞg and fa1Ω; a1†Ω ; a2Ω; a

2†
Ω g, respec-

tively. The field inside the shell can then be expanded as

FIG. 4. An illustration of the nonmonotonic dispersion curve
under consideration. There exists a maximum Λ ¼ maxfgðpÞ=2g
in energy but not necessarily in momentum. For 0 < ω < Λ, the
dispersion relation 2ω ¼ gðpÞ admits two solutions p1ðωÞ and
p2ðωÞ. The trans-Planckian mode p2ðωÞ has negative group
velocity since g0ðp≳MpÞ < 0.

5To adopt the results of Sec. III B, we also need to replace pω
by p1ðωÞ. For instance, g0ω in Eq. (23) should be replaced by
g01ðωÞ≡ g0ðp1ðωÞÞ.
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ϕðv < 0; rÞ ¼
Z

Λ

0

dΩ
2π

X2
i¼1

½aiΩχiΩðv; rÞ þ ai†Ωχ
i�
Ωðv; rÞ�;

where

χiΩðv; rÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ωjg0iðΩÞj
p e−iΩvþipiðΩÞr: ð43Þ

Here, we have used the shorthand notation

g0iðΩÞ≡ dgðpÞ
dp

����
p¼piðΩÞ

: ð44Þ

The creation and annihilation operators obey the commuta-
tion relation ½aiΩ; aj†Ω0 � ¼ 2πδijδðΩ−Ω0Þ, and theMinkowski
vacuum is defined by

aiΩj0i ¼ 0 ∀ Ω∈ ð0;ΛÞ and i∈ f1; 2g: ð45Þ

The continuity of ϕðv; rÞ across the null shell located at
v ¼ 0 implies the linear relation

bω ¼
Z

Λ

0

dΩ
2π

X2
i¼1

½αiωΩaiΩ þ βiωΩa
i†
Ω �; ð46Þ

where the Bogoliubov coefficients are found to be

αiωΩ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω

jg0iðΩÞj

s
φ̃�
ωðpiðΩÞÞ; ð47aÞ

βiωΩ ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω

jg0iðΩÞj

s
φ̃�
ωð−piðΩÞÞ: ð47bÞ

This is a straightforward generalization of Eq. (29).
With the change of variable q ¼ −piðΩÞ, we find

h0jb†ωbω0 j0i ¼
Z

Λ

0

dΩ
2π

X2
i¼1

βi�ωΩβ
i
ω0Ω

¼
�Z

−pΛ

0

þ
Z

−∞

−pΛ

�
dq
π
gðqÞφ̃ωðqÞφ̃�

ω0 ðqÞ

¼ N ωN ω0

Z
Fð−∞Þ

0

dF
π

e−2iaðω−ω0ÞF; ð48Þ

where FðqÞ is the change of variable introduced in Eq. (33).
Formally, the expression (48) is identical to Eq. (32) for
monotonic dispersion relations. However, the upper bound
Fð−∞Þ of the integration over F could be different. While
Fð−∞Þ is always infinite for subluminal monotonic
dispersion relations, it can be finite for nonmonotonic
dispersion relations.
The expectation value of the number of Hawking

particles detected around u ¼ u0 can be evaluated as

h0jb†ΨbΨj0i ≈
2πa

e4πaω0=g01ðω0Þ − 1

Z
dω
2π

Z
dω0

2π
fω0

ðωÞf�ω0
ðω0Þeiðω−ω0Þu0

Z
Fð−∞Þ

0

dF
π

e−2iaðω−ω0ÞF

¼ 1

e4πaω0=g01ðω0Þ − 1

Z
dω
2π

Z
dω0

2π
fω0

ðωÞf�ω0
ðω0Þ

Z
u0

u0−2aFð−∞Þ
du eiðω−ω0Þu

≈
1

e4πaω0=g01ðω0Þ − 1

Z
u0

u0−uΔ
du jFffω0

gðuÞj2; ð49Þ

where

uΔ ¼ 2aF0ð−∞Þ≡2a
Z

−∞

0

dp
gðpÞ

½2ω0−gðpÞ�2

≈2a
Z

−Mp

0

dp
p

ð2ω0−pÞ2þ2a
Z

−∞

−Mp

dp
gðpÞ

½2ω0−gðpÞ�2

≈2a ln

�
Mp

2ω0

�
þ2a

Z
−∞

−Mp

dp
gðpÞ

½2ω0−gðpÞ�2 : ð50Þ

The first term in Eq. (50) is roughly the scrambling time of
a black hole for ω0 ∼Oð1=aÞ. The second term depends on
the dispersion relation. Its physical interpretation will be
discussed in Sec. IV C.

By assumption, the center of the function Fffω0
gðuÞ is

at the origin u ¼ 0 in the u-space [see Eq. (36)]. Therefore,
for Hawking particles at late times satisfying u0 ≫ uΔ, the
integral in Eq. (49) becomes negligibly small, indicating
that Hawking radiation is turned off for a distant observer
after a certain retarded time u ∼ uΔ.

6

6More precisely, for a given wave packet with a width Δu, the
integral in Eq. (49) becomes negligible when u0 − uΔ ≫ Δu. For
the dominant frequency ω0 ∼ 1=a, the wavelength is ∼a, and the
wave packet has a width Δu ≫ a (e.g. Δu ∼ 100a). In the sense
of the ðaMpÞ−1-expansion, Δu is of order OðaÞ, whereas
uΔ ≫ OðaÞ, as we will see shortly. It is thus not important to
keep Δu here.
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The timescale for turning off Hawking radiation is
closely linked to the rate at which gðpÞ approaches zero
in the limit p → ∞. To understand this connection, we
consider the toy model

gðpÞ ¼

8>><
>>:

Mnþ1
p p−n for p > Mp;

p for 0 ≤ p ≤ Mp;

−gðjpjÞ for p < 0;

ð51Þ

which gives

uΔ ≈ 2a ln

�
Mp

2ω0

�
þ π

n2 sinðπ=nÞ 2a
�
Mp

2ω0

�
1þ1=n

: ð52Þ

The critical value is n ¼ 1, for which the second term
becomes infinite, and Hawking radiation (49) persists,
similar to the case of subluminal monotonic dispersion
relations. However, for n > 1 and for Hawking radiation
with the dominant frequency ω0 ∼ 1=a, the second term is
of orderOðaðMpaÞ1þ1=nÞ, which is much shorter compared
to OðM2

pa3Þ for a large black hole with Mpa ≫ 1. As a
result, Hawking radiation is turned off well before the Page
time OðM2

pa3Þ [29] for n > 1.
The example above demonstrates how the duration of

Hawking radiation can be adjusted by tuning the dispersion
curve gðpÞ at large p. By considering a dispersion curve
that exhibits a much more rapid decay, such as
gðpÞ ∝ pe−p

2n
, Hawking radiation is terminated around

the scrambling time, resembling the effect of a UV cutoff
[18]. Another example is the Corley-Jacobson dispersion
relation considered in Ref. [7],

gðpÞ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðp=MpÞ2n

q
: ð53Þ

In this case, the integral in Eq. (49) takes the formZ
u0

u0−2aF0ð−MpÞ
du jFffω0

gðuÞj2; ð54Þ

where the lower bound implies that Hawking radiation
comes to a stop after u ∼ 2aF0ð−MpÞ, which is also of the
order of the scrambling time.7

B. Bouncing off horizon

In the above, we found that Hawking radiation is turned
off after u ∼ uΔ for nonmonotonic dispersion relations
with gðpÞ decaying faster than Oð1=pÞ as p → ∞.

We investigate the underlying physics from the perspective
of a wave packet in this and the next subsections. We will
again trace a Hawking wave packet backward in time, and
observe the following. Initially, the wave packet approaches
the horizon, and then it branches off into two parts. A part
of it is reflected back towards large r, while the other
tunnels through the horizon and continues to propagate
towards the singularity at r ¼ 0.
We examine the branch that bounces off the horizon in

this subsection. In the regime of the phase space where the
WKB approximation holds, the trajectory ðxðvÞ; pðvÞÞ
followed by the wave packet aligns with the classical
particle trajectory, which can be determined from
Eqs. (8)–(10). In particular, making use of Eq. (6), we have

dp
dv

¼ −
1

2a
½gðpÞ − 2ω�2

gðpÞ ; ð55Þ

dx
dv

¼ ω

gðpÞ g
0ðpÞ: ð56Þ

Consider the backward evolution of a particle in the
state ðx; pÞ ≈ ð∞; p1ðωÞ > 0Þ from v ¼ ∞. According to
Eq. (55), the momentum of the particle would increase
monotonically as v decreases, resulting in a blueshift that
continues backward in time until eventually p → p2ðωÞ in
the infinite past.
In terms of the particle’s position x, when p≲Mp,

the particle follows a trajectory similar to that dictated
by the standard dispersion relation. When the momentum
becomes Planckian and the dispersion curve starts to drop
[i.e. g0ðp≳MpÞ < 0], which occurs when the particle is
approximately a Planck length outside the horizon, the
particle’s velocity is reversed according to Eq. (56). This
causes the particle to be “bounced off” from the horizon
and move away towards large distances, as shown in Fig. 5.
A straightforward calculation using Eq. (16) with a

negative g0ðp≳MpÞ reveals that the particle will bounce
back and cross the null shell at a distance x≳OðaÞ if the
retarded timeu0 atwhich the particle reaches future infinity is
greater than the scrambling time, i.e. u0 ≳Oða logðMpaÞÞ.
The continuity condition of the field is imposed on thematter
shell to determine whether this wave packet contains
negative-frequency modes in the Minkowski space inside
the shell. Since the ingoing wave packet has a finite extent
Δx ∼OðaÞ on the shell, it has a small spread Δp ∼Oð1=aÞ
in its momentum p≳Mp without any negative-p compo-
nents in the mix. Hence, for this bouncing branch, a positive-
ω outgoing wave packet is originated from an ingoing wave
packet with purely positive frequencyΩ inside the shell. The
bouncing branch of the wave packet does not contribute to
Hawking radiation.
Contrary to Ref. [6], where an analysis of Eq. (5) in the

near-horizon region x≡ r − a ≪ a is sufficient, here we
have to expand our discussion to x≳OðaÞ. Therefore, only

7This observation, that the presence of a momentum cutoff in
the dispersion relation leads to the termination of Hawking
radiation, was also pointed out in Ref. [21]. It can be viewed
as a special case in our formulation by setting gðp ≥ pcutÞ ¼ 0 for
a given cutoff momentum pcut.
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by solving the wave equation across the entire space of
r > 0 (as we did above) can we properly account for
Hawking radiation at late times.
Naively, one might expect no Hawking radiation at all

due to this bounce-off behavior for late-time Hawking
modes. However, as hinted above, there is more to the story,
on which we will elaborate in the following subsection.

C. Tunneling across horizon

When the wave packet is traced back to the turning
point of the bouncing trajectory, its spatial profile is
highly compressed. Therefore, the large uncertainty Δp

in momentum has to be taken into consideration, rendering
the particle description of the wave packet inadequate.
To analyze the situation properly, we turn to the wave

solutions in the position space:

ϕωðv; xÞ ¼ N ωe−iωv
Z

∞

−∞

dq
2π

MpeiMpxq

2ω − gðMpq − i0þÞ

× exp

�
2iaω

Z
q

0

Mpds

2ω − gðMps − i0þÞ
�
; ð57Þ

where q≡ p=Mp and s are dimensionless variables. In the
region where jMpxj ≫ 1, the integral can be effectively
approximated by the contributions from the saddle points
qs ¼ psðxÞ=Mp, which coincide with the solutions to the
dispersion relation (6). In the limit x → ∞, two positive-
momentum saddle points (see Fig. 6) give rise to the
outgoing Hawking mode p1ðωÞ at future infinity and the
ingoing wave p2ðωÞ at past infinity, respectively. This
corresponds to the portion of the wave that evolves along
the bouncing branch, which we have argued not to
contribute to Hawking radiation in Sec. IV B.
Interestingly, inside the horizon where −a < x ≪ −M−1

p ,
there exists an additional saddle point with negative momen-
tum (see Fig. 6). In the point particle description, this saddle
point corresponds to a superluminal trajectory inside the
horizon, as illustrated in Fig. 7. As a result, not all of thewave
is bounced away from the black hole for nonmonotonic
dispersion relations; instead, a portion of it “tunnels” through
the horizon. This is reminiscent of the interpretation of
Hawking radiation as the tunneling of point particles across
the horizon along a classically forbidden trajectory [30]. It
occurs through a different mechanism that involves the
backreaction of radiation, while the tunneling here arises
due to superluminal dispersive propagation.

FIG. 6. A sketch of the integration contours in the complex-q plane for Eq. (57). The saddle points in the regions jxj ≫ M−1
p are

marked, with the arrows indicating the directions of steepest descent. The original contour (dashed black curve) corresponds to the
i0þ-prescription that defines the Hawking modes satisfying the appropriate boundary conditions. It can be continuously deformed into
the green curve while preserving its topology with respect to the singularities and branch cuts. For positive x, the deformed contour
passes through both positive-momentum saddle points along their respective steepest-descent directions. Beyond x ≪ −M−1

p , the
integral receives a contribution only from the saddle point with a large negative momentum.

FIG. 5. A sketch of the characteristic phase space trajectories
outside the horizon backward in time. For subluminal monotonic
dispersion relations, the trajectory (black curve) converges
toward some fixed radius. For nonmonotonic dispersion relations,
the particle turns around at a Planckian distance from the horizon
and then travels towards large distances, eventually approaching
the momentum p2ðωÞ.
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This phenomenon, where a positive-ω wave packet is
partially converted into a negative-momentum wave
packet, is known as mode conversion [7]. It takes place
in the vicinity of the turning point and is the primary
mechanism responsible for the creation of Hawking radi-
ation in our case. Similar effects have been found in
previous works [6–10,31] that considered both monotonic
and nonmonotonic dispersion relations in the freely falling
frame. However, there are notable differences.
In those works, the converted wave packet with negative

free-fall frequency has a negative group velocity and is
supported outside the horizon, leading to the conclusion that
a late-time, positive-ω wave packet is originated from a pair
of ingoing wave packets with opposite signs of trans-
Planckian momenta at large r. In contrast, in our current
work, the negative-momentum component resides inside the
horizon and approaches the singularity as it propagates
backwards in time. Consequently, nonmonotonic dispersion
relations in the Eddington-Finkelstein frame present an
intriguing system in their own right, as the mode conversion
process enables the wave to tunnel between two branches of
causally disconnected characteristic curves.
Depending on whether the negative-momentum wave

packet reaches the singularity within a finite time, it could
have significant implications for the late-time behavior of
Hawking radiation. In the region jMpxj ≫ 1 inside the
horizon, this wave packet is well-localized along the
classical trajectory described by Eqs. (6), (55), and (56).

During the backward time evolution, Eq. (55) indicates that
the central momentum of the wave packet evolves from
p ≈ −Mp to p ¼ −∞ within the time interval

jΔvj ¼ 2a
Z

−∞

−Mp

dp
gðpÞ

½gðpÞ − 2ω�2

¼ 2a
Z

∞

Mp

dp
gðpÞ

½gðpÞ þ 2ω�2 : ð58Þ

In terms of how x and p are related along the characteristic
phase space curve (6), jΔvj in fact also represents the time it
takes for the peak of the wave packet to travel from the
turning point x ∼ −M−1

p inside the horizon to the singu-
larity. Notice that the expression (58) is precisely the
second term in Eq. (50) that plays a crucial role in
determining whether Hawking radiation will be largely
suppressed after a retarded time u ∼ uΔ.
The duration jΔvj (58) depends heavily on the asymp-

totic behavior of the dispersion curve gðpÞ. Suppose
that for very large values of p ≫ Mp, the nonmonotonic
dispersion curve decays as gðpÞ ∼Mnþ1

p p−n with n > 0.
Since gðpÞ ≪ 2ω in this regime, the integrand is approx-
imately linear in gðpÞ. It is then evident from power
counting that jΔvj is finite if gðpÞ decreases faster than
Oð1=pÞ as p approaches infinity (see Fig. 7). Conversely, if
gðpÞ does not decrease sufficiently fast (i.e. n ≤ 1), the
duration jΔvj becomes infinite, indicating that the negative-
momentum wave packet would ultimately reach the matter
shell, resulting in the production of Hawking radiation.

FIG. 7. A sketch of the classical trajectories inside the horizon.
The arrows indicate backward evolution. The black curve
represents the trajectory associated with the standard dispersion
relation. For nonmonotonic dispersion profiles that decay as
gðpÞ ∼Mnþ1

p p−n for large p, the corresponding trajectories are
depicted. They exhibit a turning point near x ∼ −M−1

p and a
segment of superluminal propagation towards the singularity. The
red curve reaches the singularity in a finite amount of time, while
the blue curve approaches it asymptotically.

FIG. 8. A sketch of the trajectory of a wave packet that reaches
asymptotic infinity at a sufficiently late retarded time u0 ≫ uΔ.
The shaded region represents the breakdown of the particle
description. In the case of nonmonotonic dispersion curves that
decay faster than Oð1=pÞ for large values of p, the negative-
momentum component of this wave packet, which tunnels across
the horizon, is originated from the singularity.
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In the case where jΔvj is finite, for a Hawking particle
centered at a late time u0 ≫ uΔ, a portion of its wave packet
is originated from the singularity at r ¼ 0 (see Fig. 8). In
our calculations in Sec. IVA, the negative-momentum
wave packet from the singularity is ignored, as it does
not involve any negative-frequency mode in the Minkowski
space inside the shell.
In a consistent quantum theory of gravity, the singularity

is resolved, and the quantum state at the singularity would
completely determine the expectation value h0jb†ΨbΨj0i of
the number of Hawking particles. The tunneling effect
across the horizon could potentially serve as a physical
channel for extracting information about the collapsed
matter. In any case, Hawking radiation from the Unruh
vacuum is terminated after u ∼ uΔ.

V. CONCLUSION AND DISCUSSION

In this work, with an aim to explore the relationship
between Hawking radiation and dispersive effects in the
UV regime, we followed the formulation presented in
Ref. [6] and investigated the time dependence of Hawking
radiation for a massless real scalar field.
We began by examining the case of monotonic

dispersion relations that only allow for subluminal propa-
gation outside the black hole horizon. Interestingly, we
discovered that the modifications introduced by these
dispersion relations on Hawking quanta can be understood
as a mere relabeling of the momentum q → FðqÞ (33).
Consequently, the properties of Hawking radiation, includ-
ing its temperature and strength in time, are robust against
such monotonic UV dispersions.
We then turned to nonmonotonic dispersion relations,

and observed that the mixture of positive and negative-
momentum components in a Hawking wave packet has an
origin different from the conventional Hawking radiation.
Specifically, the positive-momentum component arises
from an ingoing trans-Planckian wave that bounces off
the horizon, while the negative-momentum component is
originated from the interior of the black hole via a tunneling
process across the horizon.
Further analysis revealed that the Hawking radiation for

nonmonotonic dispersion relations can be significantly
altered if the dispersion curve gðpÞ approaches zero faster
than Oð1=pÞ as p approaches infinity. In such cases,
Hawking radiation becomes dependent on the quantum state
at the singularity r ¼ 0 after a specific retarded time u ∼ uΔ
(50). This time uΔ is the sum of the scrambling time and the
duration it takes a wave packet to propagate from the
singularity to the horizon. Its order of magnitude ranges
from the scrambling timeOða logðMpaÞÞ up to thePage time
OðM2

pa3Þ. If there is no outgoing mode emerging from the
singularity, Hawking radiation simply stops after u ∼ uΔ.
While there are uncertainties regarding Hawking radia-

tion due to our limited knowledge about the singularity, we

can safely conclude that Hawking radiation will undergo
significant modifications as long as the quantum state at the
singularity differs from the Minkowski vacuum state.
Contrary to the prevailing notion in the literature that

Hawking radiation is robust against UV-modifications of
the dispersion relation, our findings demonstrate that
Hawking radiation is actually only insensitive to certain
types of UV-modifications, while it can be highly sensitive
to other types, to the extent that the radiation can be
completely suppressed after the scrambling time. This
conclusion aligns with recent studies [17,18,32] indicating
that Hawking radiation can be significantly modified
beyond the scrambling time due to other UV properties
of the effective field theory, such as higher-derivative
interactions with the background.
It is crucial that we have analyzed the time dependence

of Hawking radiation. We have observed that even when
the magnitude of Hawking radiation dramatically changes
over time, the Hawking temperature remains the same. This
is perhaps part of the reason why the substantial modifi-
cations to Hawking radiation discussed in this work may
have eluded previous investigations. The focus on the time
dependence of the magnitude of Hawking radiation, in
addition to its temperature, has allowed us to uncover this
novel aspect.
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APPENDIX: THE BOGOLIUBOV
TRANSFORMATION

In this appendix, we derive the explicit forms of the
Bogoliubov coefficients defined in Eq. (28). Since the
Minkowski mode χΩðv ¼ 0; rÞ represents a Fourier mode
with a given momentum pΩ, the calculation is analogous to
performing a Fourier transform of φωðrÞ. We write
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φωðrÞ ¼
Z

∞

−∞

dpΩ

2π
φ̃ωðpΩÞeipΩr

¼
Z

Λ

−Λ

dΩ
2π

dpΩ

dΩ
φ̃ωðpΩÞeipΩr

¼
Z

Λ

0

dΩ
2π

2

g0Ω
½φ̃ωðpΩÞeipΩr þ φ̃ωð−pΩÞe−ipΩr�:

By substituting this into the mode expansion (24) and
matching it with Eq. (25) at v ¼ 0, we obtain

aΩ ¼
Z

Λ

0

dω
2π

2

ffiffiffiffiffiffi
2Ω
g0Ω

s
½bωφ̃ωðpΩÞ þ b†ωφ̃�

ωð−pΩÞ�: ðA1Þ

On the other hand, the commutation relation constrains
the Bogoliubov coefficients to satisfy the normalization
condition

2πδðω − ω0Þ ¼ ½bω; b†ω0 �

¼
Z

Λ

0

dΩ
2π

ðαωΩα�ω0Ω − βωΩβ
�
ω0ΩÞ: ðA2Þ

It then follows from Eqs. (28) and (A2) that the inverse
Bogoliubov transformation is

aΩ ¼
Z

Λ

0

dω
2π

ðα�ωΩbω − βωΩb
†
ωÞ: ðA3Þ

Comparing the equation above with Eq. (A1), we arrive at
Eq. (29):

αωΩ ¼ 2

ffiffiffiffiffiffi
2Ω
g0Ω

s
φ̃�
ωðpΩÞ; βωΩ ¼ −2

ffiffiffiffiffiffi
2Ω
g0Ω

s
φ̃�
ωð−pΩÞ:
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