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We present the results of an analysis of three maximal extensions of the Vaidya metric in Israel
coordinates, a spherically symmetric solution to the Einstein field equations for the energy momentum
tensor of pure radiation in the high-frequency approximation. This metric is necessary for various
applications, such as describing the exterior geometry of a radiating star in astrophysics and studying
possible formation of naked singularities in the geometry of spacetime. Contrary to the common
Eddington-Finkelstein-Like coordinates, these maximal extensions, in Israel coordinates, are complete
and cover the entirety of the Vaidya manifold. We develop three mass functions, one for each extension, and
consider the qualitative characteristics of the three mass models and the surfaces of constant (dynamical)
radius. We demonstrate that each maximal extension is null geodesically complete, which we assess
by solving the radial null geodesics equation and forming the Penrose conformal diagram for each
extension.
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I. INTRODUCTION

The Vaidya metric [1–3] was initially introduced as a
generalization of the Schwarzschild vacuum metric [4]
which accommodates a varying mass function. This metric
has been widely utilized for classically studying the
geometry around spherically symmetric stellar objects
when radiation is effective, e.g. [5–15]. In a semi-classical
context, the metric is indispensable for research into black
holes evaporation through Hawking’s radiation [16], as
evidenced by [17–28]. The Eddington-Finkelstein-Like
(EFL) coordinates, frequently used to express the Vaidya
metric, were criticized by Lindquist and Israel [29,30] for
having only partial coverage of the Vaidya manifold.
However, they did not provide a proof of such an
incompleteness problem. The proof is introduced in [31].
The most successful attempt to find maximal analytical

coverings of the Vaidya manifold, apart from Israel
coordinates [30], was demonstrated in [32]. Waugh and
Lake were able to construct double null covering
ðu; v; θ;ϕÞ, where both u and v are null coordinates, of
the Vaidya manifold. However, the spacetime line element
is only available when the mass function is linear. The
Vaidya metric in double-null coordinates [32] has been
used to study Quasinormal Modes in order to gain deeper
insights into the gravitational excitations of black holes
(see [33] for an example). That said, the mass models used
in this study were semianalytical. It will be shown shortly

that the mass function appearing in the Vaidya metric in
Israel coordinates, as reexamined in [31], does not require a
linear form, thus rendering the metric explicit for general
cases. This will be useful in revisiting the applications of
the Vaidya metric, as it removes the need to restrict
ourselves to any particular “linear” mass model, or to rely
on not explicit mass functions. The Vaidya line element in
Israel coordinates is given by

ds2 ¼
�

w2

2mðuÞrðu; wÞ þ
4hm0ðuÞ
UðuÞ

�
du2 þ 2hdudw

þ rðu; wÞ2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

whereUðuÞ ¼ R
u
0

hdx
4mðxÞ du, rðu; wÞ ¼ UðuÞwþ 2mðuÞ, and

mðuÞ is always positive. This is a spherically symmetric
solution to the Einstein field equations for the energy
momentum tensor of pure radiation given in the eikonal
form. This models a unidirectional radial flow of unpolar-
ized radiation,

Tαβ ¼ Φkαkβ

¼ 1

8π

�
2hm0ðuÞ

UðuÞrðu; wÞ2
�
δαwδ

β
w; ð2Þ

with the radiation directed along u ¼ const, and tangents
to radial null geodesics are affinely parametrized by w.
In [31], Israel coordinates were algorithmically con-
structed by directly integrating the field equations and
introducing appropriate choices for the characterizing
functions that arise as a consequence of integrating the
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field equations. Additionally, we have resolved the ambi-
guity in the definition of the UðuÞ function and have
demonstrated that the sign of h does not solely specify the
direction of radiation as in the EFL coordinates. In this
paper, we investigate three possible maximal extensions
of the Israel metric given an explicit form of the mass
function mðuÞ that is well-defined for u∈ ð−∞;∞Þ. To
achieve this, we specify the energy-momentum tensor in
the region u ≥ 0, the unextended Vaidya metric, and the
region u < 0. The energy-momentum tensor depends on
the definition of Φ (2), which includes the first derivative
of the mass function mðuÞ and the function UðuÞ. Thus,
the mass function mðuÞ plays the most important role in
determining the nature of any maximal extension to the
Vaidya metric. For instance, if the mass function is chosen
to be constant over some parts of its domain and then
monotonically increasing for the rest, the resulting maxi-
mal extension has a particular interpretation. Conversely,
if the mass function is monotonically decreasing for
some parts and then becomes constant on the remaining
parts, the resulting maximal extension will have a differ-
ent interpretation from the former. Finally, if the mass
function is not monotonic, the resulting maximal exten-
sion will have a different nature than the previous two.
Thus, it should be clear now that due to the freedom in
choosing the mass model, the maximal extension of the
Vaidya manifold, given in terms of Israel coordinates, is
destined to be not unique. This paper is organized as
follows. In the next section, we discuss the criteria that the
mass function must fulfill in order for it to be considered
as a valid candidate for a maximal extension of the Vaidya
metric in Israel coordinates. In Sec. III, we undertake a
comprehensive analysis of the first maximal extension,
beginning with introducing a mass function and deriving
the relevant UðuÞ function, and studying both the causal
nature of the surfaces of constant radius and the surfaces
of dynamical radius. The same procedure is repeated for
the second and third extensions in Secs. IV and V
respectively. In Sec. VI, we use specific instances of
the mass functions and UðuÞ to solve the radial null
geodesic equations numerically within the three exten-
sions. Through studying the behavior of the radial null
geodesics and constructing the Penrose diagrams, we
demonstrate the completeness of Israel coordinates. The
final section summarizes the main results of the paper and
considers potential applications of this work.

II. THE MASS FUNCTION

By recognizing that the mass function is the foundation
on which maximal extensions are built, we will establish a
set of requirements for the mass function that ensure
that both the metric and the energy-momentum tensor
are well-behaved at all points within the domain of the mass
function. These requirements are

(1) mðuÞ > 0,
(2) m0ð0Þ ¼ 0,
(3) m00ð0Þ ¼ const, where the constant does not have to

be zero, and
(4) mðuÞ of class C2.

The first requirement is reasonable since matter fields with
negative mass functions violate one or more of the energy
conditions. This can lead to inconsistencies in the solutions,
as the weak energy condition (WEC) is assumed to be
satisfied. As for the second requirement, it is clear from the

definition ofΦ, i.e., 8πΦ ¼ 2hm0ðuÞ
UðuÞrðu;wÞ2 > 0 that this quantity

must always remain positive and finite. However, it should
be noted that Φju¼0 is not finite because Uð0Þ ¼ 0. To
avoid any pathological behavior of this quantity, it is
necessary to stipulate that m0ð0Þ ¼ 0 [34]. There are three
types of Vaidya models. In the first, we start with a
Schwarzschild vacuum solution ðm0ðuÞ ¼ 0; mðuÞ ¼
const ¼ M0 > 0 for u < u1 < 0Þ and add an outflux of
radiation ðm0ðuÞ < 0 for u1 ≤ u < 0Þ; this outflux is then
terminated, resulting in a distinct Schwarzschild vacuum
solution ðm0ðuÞ ¼ 0; mðuÞ ¼ const ¼ M1 > 0 for u ≥ 0Þ
whose mass is less than that of the initial Schwarzschild
vacuum solution, M0. In the second model, we start with
a Schwarzschild vacuum solution ðm0ðuÞ ¼ 0; mðuÞ ¼
const ¼ M0 > 0 for u ≤ 0) and add an influx of radiation
ðm0ðuÞ > 0 for 0 < u ≤ u1Þ; after the influx is terminated,
we end up with a different Schwarzschild vacuum solution
ðm0ðuÞ ¼ 0; mðuÞ ¼ const ¼ M1 > M0 for u > u1Þ. In
the third model, we start with a Schwarzschild vacuum
solution ðm0ðuÞ¼0;mðuÞ¼ const¼M0>0 for u<u1<0Þ
and add an outflux of radiation ðm0ðuÞ < 0 for u1 ≤ u < 0Þ,
and then we add an influx of radiation ðm0ðuÞ > 0 for 0 <
u ≤ u2Þ; after the influx is terminated, we end up with
a different Schwarzschild vacuum solution ðm0ðuÞ ¼ 0;
mðuÞ ¼ const ¼ M1 for u > u2Þ.

III. FIRST MAXIMAL EXTENSION

In this section, we explore a mass function that leads to a
maximal extension of the Israel metric. The mass function
is monotonically decreasing for u < 0 and constant for
u ≥ 0, thereby defining an Israel metric that is irradiated
with streams of outgoing radiation. Ultimately, this solution
evolves to the Schwarzschild solution once the radiation is
no longer present. We can conclude that an outgoing
radiation Israel solution represents a white hole, while
the ingoing radiation Schwarzschild solution represents a
black hole. This is shown below.

A. The mass function and the UðuÞ function
One particular example of a mass function mðuÞ that

necessarily satisfies the previously discussed requirements
may explicitly be written as
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mðuÞ ¼

8>><
>>:

M0; u ≤ u1
anu2nþa0
bnu2nþb0

; u1 ≤ u < 0

M1; u ≥ 0

ð3Þ

where n ≥ 2 and an; a0; bn, and b0 are positive real
numbers. The mass function mðuÞ is decreasing for all
values ðu1 ≤ u ≤ 0Þ and is constant (M0 or M1) otherwise.
We can demand that the mass function mðuÞ is only
constant, mðuÞ ¼ M0, asymptotically [35]; we thus write
the mass function in the following form:

mðuÞ ¼
(

anu2nþa0
bnu2nþb0

; u < 0

M1; u ≥ 0
ð4Þ

where it should be noted that the previous form implies the
following constraint on the choice of the parameters

lim
u→−∞

mðuÞ ¼ an
bn

¼ M0: ð5Þ

We can further benefit from the fourth requirement to
impose additional restrictions on the selection of the
parameters of the mass function

lim
u→0−

mðuÞ ¼ a0
b0

¼ mð0Þ ¼ M1 < M0: ð6Þ

Now that we have introduced an explicit form of the mass
function (4), we need to write the function UðuÞ so that it
becomes defined at every point of the manifold. An explicit
expression that gives UðuÞ for u∈ ð−∞;∞Þ can now be
provided,

UðuÞ ¼
8<
:

h
R
u<0
0

dx

4ðanx2nþa0
bnx2nþb0

Þ
; u < 0

h
R
u>0
0

dx
4M1

: u ≥ 0

ð7Þ

The constraints (5) and (6) can be utilized to introduce a
more specific form of the mass function for later integration
of the radial null geodesics equation, as will be seen in

Sec. VI. In accordance with the previously established
requirements on the mass function, we consider the follow-
ing values for the parameters: n ¼ 2, a2 ¼ a0 ¼ b2 ¼ M1,
and b0 ¼ 1. The mass function, (4), then becomes

mðuÞ ¼
(

M1ðu4þ1Þ
M1u4þ1

; u < 0

M1: u ≥ 0
ð8Þ

It can be seen that, in accordance with the requirement that
the mass function be asymptotic to Schwarzschild’s mass in
the past, the mass function (8) has a horizontal asymptote of
mðuÞ ¼ 1 as u → −∞. Over a certain section of its domain,
the function slope turns negative (as seen in Fig. 1), thereby
giving rise to the outgoing Israel metric. Then, the function
remains constant for the remainder of its domain (resulting
in another Schwarzschild vacuum solution with a distinct
mass, i.e., M1). The function UðuÞ, with the aid of Table II
in [31], can be written as

UðuÞ ¼
8<
:

h
�
u
4
þ

ffiffi
2

p ðM1−1Þ
16M1

ð−tanh−1Γ − tan−1Δþ tan−1ΨÞ
�
; −u < 0

h
�

u
4M1

�
; u ≥ 0

ð9Þ

where Γ ¼
ffiffi
2

p
u

u2þ1
,Δ ¼ ffiffiffi

2
p

uþ 1, andΨ ¼ 1 −
ffiffiffi
2

p
u. In order

to obtain the previous equation, we have substituted (8) in
(7), and h can either be 1 or −1. The graphs of the function
UðuÞ (see Fig. 2) show that for the choice h ¼ þ1, Uðu <
0Þ < 0 and Uðu > 0Þ > 0; this is reversed if h ¼ −1 is
chosen. Moreover, a reflection on (9) and inspection of
Fig. 2 show that as the parameter M1 approaches unity or

the coordinate u decreases significantly, the linear term,
u
4
, dominates over the terms arctan ð1� ffiffiffi

2
p

uÞ and

arctanhð
ffiffi
2

p
u

u2þ1
Þ, making Uðu ≪ 0Þ linear. It is noteworthy

that, due to the assumption that the mass function mðuÞ
is asymptotically constant in the past [see (5)], the total
flux,

FIG. 1. A plot of the mass function (8) that gives rise to the first
maximal extension to the Vaidya metric. There are three values
used for the parameter M1 < M0, where M0 is taken to
equal unity.
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Z
0

−∞
Φdu ¼ 1

4π

Z
0

−∞

hm0ðuÞ
UðuÞ�UðuÞwþ 2mðuÞ�2 du; ð10Þ

is not finite. This will also be the case in the subsequent two
extensions. The only way to save the flux from diverging is
by relaxing the condition that the mass function is only
constant asymptotically, and thus the previous integration
can be rewritten asZ

0

−∞
Φdu¼

Z
u�

−∞
ð0Þduþ 1

4π

Z
0

u�

hm0ðuÞdu
UðuÞ�UðuÞwþ 2mðuÞ�2 ;

¼ 1

4π

Z
0

u�

hm0ðuÞ
UðuÞ�UðuÞwþ 2mðuÞ�2 du; ð11Þ

where −∞ < u� < 0.

B. Surfaces of constant radius

Now that we have constructed explicit expressions
for both the mass function mðuÞ and the function UðuÞ,
we can analyze various features related to the surfaces

rðu; wÞ ¼ const ¼ αM1 with α∈N, illustrated in Fig. 3
below. Notably, these surfaces can be mathematically
expressed as

w ¼
8<
:

αM1−2mðuÞ
UðuÞ ; u < 0

4ðα−2ÞM2
1

hu : u ≥ 0
ð12Þ

The exploration of the causal nature of (12) may be
achieved by studying the associated Lagrangian, confining
attention only to the submanifold θ ¼ ϕ ¼ const, of (1)

2L ¼
8<
:

−w
αM1UðuÞ u̇

2; u < 0

16ð2−αÞM2
1

αh2u2 u̇2: u ≥ 0
ð13Þ

Thus, when u ≥ 0, for α < 2 the surfaces of constant radius
are spacelike; for α ¼ 2 they are null; and for α > 2
they are timelike. For u < 0, depending on the sign of w
and the sign of UðuÞ, the surfaces of constant radius in
quadrant II [36] are spacelike, and those in quadrant III are
timelike, with h ¼ þ1. However, if h ¼ −1, the second
quadrant surfaces are timelike and the third quadrant ones
are spacelike. As the Lagrangian (13) is negative when w >
0 and positive for w < 0, these surfaces can be identified as
null when they cross the u axis (w ¼ 0), although this is
only true when mðuÞ ¼ const. It is clear that surfaces
computed by the second branch of (12) are hyperbolas
reminiscent of those in the Schwarzschild vacuum solution
(in Kruskal [37]—Szekeres [38] coordinates). However, the
situation for the remaining part (u < 0) is quite different as
the relation between the coordinates u and w is not that
simple, which results in the appearance of “bulges” in the
surfaces. The bulges are mathematically found by solving
the equation

0 ¼ dw
du

¼
−2m0ðuÞUðuÞ − h

4mðuÞ
�
αM1 − 2mðuÞ�

UðuÞ2 : ð14Þ

Instead of finding the exact numerical values of the roots
of (14), we graphically (see Fig. 4 below) show the
approximate locations of the bulges. We note that the
surfaces of constant radius ð0 ≤ rðu; wÞ ≤ 2M1Þ have two
bulges (two roots), whereas the surfaces rðu; wÞ > 2M1

only have one bulge (one root). We also note that with
substituting (12) in (14), we obtain

w ¼ −8
mðuÞm0ðuÞ

h
; ð15Þ

which gives the w coordinate of the bulge. It is worthy of
notice that the surfaces of constant radius tend to eliminate
the bulges as M1 increases toward unity (whenM1 ¼ 1 we
recover the Schwarzschild vacuum solution). In general, we

FIG. 2. Two illustrations of the function UðuÞ (9) for two
different values of h are presented.
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have demonstrated that, by identifying the sign of the
corresponding Lagrangian, the surfaces rðu; wÞ ¼ αM1, for
the choice h ¼ þ1ð−1Þ, are time(space) like in quadrants I
and III, and space(time) like in quadrants II and IV. Finally,
we want to draw attention to the impact of changing the
sign of h on the function UðuÞ and the surfaces of constant
radius. As can be seen from the diagrams (e.g., see Figs. 2

and 3), a change in the sign of h simply produces a mirror
reflection of the same graph. Therefore, it can be concluded
that the sign of h, unlike the EFL coordinates, is equivalent
to selecting the time direction and does not introduce any
new physics. This will remain true in the following two
extensions without any changes to this explanation.

C. Surfaces of dynamical radius

Although the surfaces of constant radius are a great tool
for understanding static and stationary spacetimes, they do
not appear to have the same significance in dynamical
spacetimes. To elucidate, when one looks at the surfaces of
constant radius, the apparent horizon in the region u < 0 is
not represented as a surface of constant radius [31], and the
surfaces are not uniformly timelike or spacelike. Thus, we
introduce an alternative family of surfaces, which we call
surfaces of dynamical radius, rðu; wÞ ¼ αmðuÞ with α∈N.
This family is represented by

w ¼ ðα − 2ÞmðuÞ
UðuÞ ; ð16Þ

which is valid for both u < 0 and u > 0 and reduces to
the expression for surfaces of constant radius of the
Schwarzschild vacuum solution [see (12)] if the mass

FIG. 3. The top row displays surfaces of constant radius for the choice of h ¼ þ1, while the bottom row displays the same for h ¼ −1.
Increasing the value of M1 leads to a less pronounced bulge, while switching the sign of h creates a mirror reflection of the surfaces
about the horizontal axis.

FIG. 4. The graphical locations of the roots of (14) for the
choices h ¼ þ1 and M1 ¼ 0.25.
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function is taken to be constant,mðuÞ ¼ M1. The Lagrangian
associated with this family of surfaces is given by

2L ¼ ð2 − αþ 2α2χðuÞÞ u̇2

αU2ðuÞ ; ð17Þ

where χðuÞ ¼ hm0ðuÞUðuÞ > 0. This Lagrangian shows
that these surfaces are spacelike when α ≤ 2, and that they
are classified as timelike whenever α > 2ð1þ α2χðuÞÞ.
To gain better insight into these surfaces of dynamical
radius, graphs are provided in Fig. 5 for three different
values of M1 and also considering the impact of changing
the sign of h. The region u > 0 is equivalent to surfaces
of constant radius, while in the region u < 0, similar to
the surfaces of constant radius, the surfaces come with
bulges that attenuate with increasing values of M1 or
decreasing values of u, as expected with the asymptotically
constant mass function. Furthermore, changing the sign of
h gives a mirror reflection about the u axis, determining the
direction of the propagation of time on the u − w diagram.
Studying surfaces of dynamical radius may be more
adequate for dynamical black holes, since the apparent
horizon is now represented as a surface of dynamical radius
in both the regions u < 0 and u > 0, unlike the surfaces of
the constant radius case. Furthermore, there is no

discernible alteration in causality as one shifts from
quadrant II to quadrant III. Finally, we note that the
location of the bulges may be found by the solution of
the equation χðuÞ ¼ 1

4
.

IV. SECOND MAXIMAL EXTENSION

This maximal extension can be envisaged as extending
the ingoing Israel metric (it acts as a black hole) to the
Schwarzschild metric (it acts as a white hole) in the past.
Equivalently, one can think of this extension as a
Schwarzschild vacuum metric being extended to the
ingoing Israel metric. In the following subsection we give
an example of a mass function that defines this extension.

A. The mass function and the UðuÞ function
An example of a mass function mðuÞ which is designed

to fulfill the previously discussed requirements (see Sec. II)
is given by

mðuÞ ¼

8>><
>>:

M0; u < 0

anu2nþa0
bnu2nþb0

; 0 ≤ u ≤ u1

M1; u ≥ u1

ð18Þ

FIG. 5. The top row displays surfaces of dynamical radius for the choice of h ¼ þ1, while the bottom row displays the same for
h ¼ −1. Similar to surfaces of constant radius, increasing the value ofM1 leads to a less pronounced bulge, while switching the sign of h
creates a mirror reflection of the surfaces about the horizontal axis.
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where n ≥ 2, an; a0; bn, and b0 are positive real numbers.
This mass function is clearly constant for u < 0 (giving rise
to the Schwarzschild vacuum solution with mass M0),
increasing in the interval u∈ ½0; u1�, and then constant
again for u∈ ½u1;∞Þ (yielding another Schwarzschild
vacuum solution that is necessarily different from the
initial one). However, similarly to what we have done in
the mass function characterizing the first maximal exten-
sion, we can combine the last two branches of (18) under
the condition that the mass function approaches M1

asymptotically. Thus, the mass function is now written as

mðuÞ ¼
(
M0; u < 0

anu2nþa0
bnu2nþb0

: u ≥ 0
ð19Þ

Since we have demanded that the mass function mðuÞ
asymptotically approaches M1, the following condition
must be satisfied:

lim
u→þ∞

mðuÞ ¼ an
bn

¼ M1 > M0: ð20Þ

Another useful condition similar to (6) is

lim
u→0þ

mðuÞ ¼ a0
b0

¼ mð0Þ ¼ M0: ð21Þ

Now, we are in a position to express the functionUðuÞ over
the entire domain of the coordinate u:

UðuÞ ¼
8<
:

R
u<0
0

hdx
4M0

; u < 0R
u>0
0

hdx

4ðanx2nþa0
bnx2nþb0

Þ
: u ≥ 0 ð22Þ

We use the constraints (20) and (21) to introduce a more
specific instance of the mass function. For example, we can
substitute n ¼ 2, a2 ¼ a0 ¼ b2 ¼ M0, and b0 ¼ 1 in (19),
resulting in, see Fig. 6,

mðuÞ ¼
	M0; u < 0

M0ðu4þ1Þ
M0u4þ1

: u ≥ 0
ð23Þ

Accordingly, the expression of the function UðuÞ, with the
aid of Table II in [31], is

UðuÞ ¼
8<
:

−h u
4M0

; u < 0

h
�
u
4
þ

ffiffi
2

p ðM0−1Þ
16M0

ð−tanh−1Γ − tan−1Δþ tan−1ΨÞ
�
; u ≥ 0

ð24Þ

where h ¼ �1, Γ ¼
ffiffi
2

p
u

u2þ1
, Δ ¼ ffiffiffi

2
p

uþ 1, and Ψ ¼
1 −

ffiffiffi
2

p
u. The behavior of the functionUðuÞ is now distinct

depending on the choice of h. For u < 0, a positive slope,
−1
4M0

, is found when h ¼ þ1, and this slope becomes

negative, 1
4M0

, for h ¼ −1. For u ≥ 0, the function UðuÞ
is greater than 0 when h ¼ þ1 and less than 0 if h ¼ −1.
Additionally, there is a similar trend to the first extension, in
that the linearity of the function increases with the value
of the parameter M0 [shown by the dotted black line, in
Fig. 7].

B. Surfaces of constant radius

In a similar way to what we did in the first maximal
extension, by giving explicit expressions for the functions
mðuÞ and UðuÞ over the entire range of the coordinate u,
we can explore the surfaces of r ¼ αM0 ¼ const. Mathema-
tically, these surfaces are described by

w ¼
8<
:

4ðα−2ÞM2
0

hu ; u < 0

αM0−2mðuÞ
UðuÞ : u ≥ 0

ð25Þ

FIG. 6. A plot of the mass function (23) that gives rise to the
second maximal extension to the Vaidya metric. There are three
values used for the parameter M0 < M1, where M1 is taken to
equal unity.
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In order to examine the causal nature of the surfaces
r ¼ αM0, we need to determine the sign of the Lagrangian
associated with (1), where in this case the mass function is
taken to be (23). Accordingly, the Lagrangian reads as

2L rðu;wÞ¼const ¼

8>><
>>:

�
− 4w

αhu

�
u̇2; u < 0�

− w
αM0UðuÞ

�
u̇2: u ≥ 0

ð26Þ

Hence, for the choices h ¼ �1, the surfaces r ¼ αM0 are
timelike (spacelike) in quadrants I and III, and spacelike
(timelike) in quadrant II. We can see that the physical
singularity in this extension, the surface r ¼ 0, is spacelike,
and therefore both timelike and null geodesics cannot avoid
it. Additionally, for u ≥ 0 we observe that the apparent
horizon (spacelike hypersurface) is not coinciding with the
event horizon (null hypersurface). This can be attributed to
the fact that the apparent horizon and event horizon are
only indistinguishable in static spacetimes, which is not the
case for u ≥ 0; this part of the spacetime is considered

as dynamical, or simply nonstatic. Moreover, the surfaces
r ¼ αM0 ¼ const are graphically represented by hyper-
bolas, u < 0, in the u–w plane due to the simple relation
uw ¼ const. The appearance of bulges in the curves
rðu; wÞ ¼ αM0 (see Fig. 8) corresponds to the existence
of fixed points on the same curves, which mathematically
can be characterized by solving

0 ¼ dw
du

¼
−2m0ðuÞUðuÞ − h

4mðuÞ ðαM0 − 2mðuÞÞ
UðuÞ2 ; ð27Þ

where the graphical locations of the roots (where the bulges
are expected to appear) can be seen from the graph
below, Fig. 9.

C. Surfaces of dynamical radius

As has been previously demonstrated in the first exten-
sion, the surfaces of constant radius in the second extension
are not uniformly timelike or spacelike and the apparent
horizon is not represented as a surface of constant radius in
the region (u ≥ 0). Thus, we explore surfaces of dynamical
radius to avoid these issues. These surfaces are still
specified in (16) and (17), and they can be classified as
spacelike when α ≤ 2 or timelike when α > 2ð1þ α2χðuÞÞ.
The surfaces are only null when m0ðuÞ ¼ 0, true in the
region u < 0 and α ¼ 2 as illustrated in Fig. 10. We also
notice that these surfaces of dynamical radius still form
bulges which occur when χðuÞ ¼ 1

4
.

V. THIRD MAXIMAL EXTENSION

In order to construct this extension, we employ a
symmetric mass function around the u axis, thus assuming
that the matter content (radiation) is the same when u < 0
and u > 0. Nevertheless, the direction of the radiation is
dissimilar, being outward oriented for u < 0 and inward
directed for u > 0.

A. The mass function and the UðuÞ function
A particular instance of a mass function that meets all of

the criteria outlined in Sec. II is

mðuÞ ¼

8>>>>><
>>>>>:

M0; u < u1
anu2nþa0
bnu2nþb0

; u1 ≤ u < 0

cnu2nþc0
dnu2nþd0

; 0 ≤ u < u2

M1; u ≥ u2

ð28Þ

where n ≥ 2 and an; a0; bn; b0; cn; c0; dn, and d0 are
positive real numbers. Similarly, we choose to work with
the following simpler form of the mass function:

FIG. 7. Two illustrations of the function UðuÞ (24) correspond-
ing to two choices of the function h.

SHEREF NASERELDIN and KAYLL LAKE PHYS. REV. D 109, 024063 (2024)

024063-8



mðuÞ ¼
8<
:

anu2nþa0
bnu2nþb0

; u < 0

cnu2nþc0
dnu2nþd0

: u ≥ 0
ð29Þ

It follows that in order for the previous form to be
consistent with (28), the following stipulations must be
taken into account. First,

lim
u→−∞

mðuÞ ¼ an
bn

¼ M0: ð30Þ

Second,

lim
u→þ∞

mðuÞ ¼ cn
dn

¼ M1; ð31Þ

and thus with the aid of these two stipulations, we can
choose the mass function to take the form

FIG. 9. The graphical locations of the roots of (27) for the
choices h ¼ þ1 and M0 ¼ 0.5.

FIG. 8. The top row displays surfaces of constant radius in the second extension for the choice of h ¼ þ1, while the bottom row
displays the same for h ¼ −1. Increasing the value ofM1 leads to a less pronounced bulge, while switching the sign of h creates a mirror
reflection of the surfaces about the horizontal axis.
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mðuÞ ¼
8<
:

M0u2nþa0
u2nþb0

; u < 0

M1u2nþc0
u2nþd0

: u ≥ 0
ð32Þ

Thus, the function UðuÞ is now defined for the whole range
of the coordinate u as

UðuÞ ¼
Z

u<0

0

hdx

4
�
M0x2nþa0
x2nþb0

�þ
Z

u>0

0

hdx

4
�
M1x2nþc0
x2nþd0

� : ð33Þ

That said, we now specify a single parameter mass function
(see Fig. 11),

mðuÞ ¼ Mðu4 þ 1Þ
Mu4 þ 1

; ð34Þ

where n ¼ 2 and 0 < M < 1. Moreover, we have
demanded that M0 ¼ M1 ¼ M [39], b4 ¼ d4 ¼ M,

FIG. 10. The top row displays surfaces of dynamical radius in the second extension for the choice of h ¼ þ1, while the bottom row
displays the same for h ¼ −1. Similar to surfaces of constant radius, increasing the value ofM1 leads to a less pronounced bulge, while
switching the sign of h creates a reflection of the surfaces.

FIG. 11. A plot of the mass function (34) that defines the third
maximal extension to the Vaidya metric.
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a0 ¼ c0 ¼ M, and b0 ¼ d0 ¼ 1. Accordingly, the explicit
expression of the function UðuÞ takes the form

UðuÞ¼h
�
u
4
þ

ffiffiffi
2

p ðM−1Þ
16M

ð−tanh−1Γ− tan−1Δþ tan−1ΨÞ
�
;

ð35Þ

where h¼�1, Γ ¼
ffiffi
2

p
u

u2þ1
,Δ ¼ ffiffiffi

2
p

uþ 1, andΨ ¼ 1 −
ffiffiffi
2

p
u.

It is seen that increasing the value of the parameter
0 < M < 1 toward unity, based on the function UðuÞ in
Fig. 12 below, produces a linear behavior similar to theUðuÞ
of the Schwarzschild vacuum solution. When M ¼ 1, this
restores the Schwarzschild vacuum solution in Israel
coordinates.

B. Surfaces of constant radius

The surfaces of constant radius, rðu; wÞ ¼ αM, are
explicitly given by

w ¼ αM − 2mðuÞ
UðuÞ ; ð36Þ

where α∈N. The causality of the surfaces rðu; wÞ ¼ αM is
again determined through the sign of the Lagrangian
associated with this extension:

2L jrðu;wÞ¼αM ¼
�
−

w
αMUðuÞ

�
u̇2: ð37Þ

We note that (see Fig. 13) all the surfaces rðu; wÞ ¼ const,
for the choice h ¼ �1, are characterized as timelike
(spacelike) surfaces in quadrants I and III , and spacelike
(timelike) in quadrants II and IV. Therefore, the physical
singularity, the surface r ¼ 0, is again a spacelike hyper-
surface. Notably, we no longer have the relation uw ¼
const that yields perfect hyperbola graphs for the surfaces
rðu; wÞ ¼ const. Therefore, the bulges in the surfaces
of constant radius appear to the left and to the right
of the w axis. Needless to say the reason for this
state of affairs is that the following equation indeed has
roots:

0 ¼ dw
du

¼
−2m0ðuÞUðuÞ − h

4mðuÞ
�
αM − 2mðuÞ�

UðuÞ2 : ð38Þ

However, we still see the effect of increasing the value of
the parameter M on removing most of the bulges that
appear with those surfaces. The only bulge (see Fig. 14)
that resists the increase in the value of M is the one
appearing with the curve r ¼ 2mðuÞ.

C. Surfaces of dynamical radius

We once more explore the surfaces of dynamical radius
to avoid the causality breaches, i.e., the surfaces are not
uniformly timelike or spacelike that are present in the
surfaces of constant radius. These surfaces are still speci-
fied in (16) and (17), and they can be classified as spacelike
when α ≤ 2 or timelike when α > 2ð1þ α2χðuÞÞ. In this
extension the surfaces cannot be null since m0ðuÞ ≠ 0,
either in the region u < 0 or in the region u ≥ 0; see
Fig. 15. Similar to the previous two extensions, the surfaces
of dynamical radius still form bulges which occur
when χðuÞ ¼ 1

4
.

VI. COMPLETENESS OF ISRAEL COORDINATES

In this section, we demonstrate the completeness of
Israel coordinates by locally studying the behavior of radial

FIG. 12. Two illustrations of the function UðuÞ (35),
that appears in the third extension, corresponding to two
choices of h.
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null geodesics in the three extensions and globally by
constructing the corresponding Penrose diagrams. The
radial ðθ ¼ ϕ ¼ constantÞ null geodesics in the Vaidya
metric are solutions to the equation

0 ¼
�

w2

2mðuÞrðu; wÞ þ
4m0ðuÞh
UðuÞ

�
du2 þ 2hdudw: ð39Þ

It is evident that (39) admits two solutions. The first
solution is the trivial solution u ¼ const, which represents
radial null geodesics affinely parametrized by w. The
second solution is obtained by integrating

dw
du

¼ −1
2h

�
w2

2mðuÞrðu; wÞ þ
4m0ðuÞh
UðuÞ

�
: ð40Þ

The previous equation is classified as Abel second type
class A for which no known exact solution exists, so
solutions must be obtained numerically. Here, we use the
package “ODEINT” [40] and provide suitable initial con-
ditions, wðu0Þ ¼ w0, for each trajectory.

A. Radial null geodesics in the first extension

As the weak energy condition, 8πΦ ¼ 2hm0ðuÞ
UðuÞrðu;wÞ2 > 0,

indicates, the condition m0ðuÞ < 0 implies that when
h ¼ þ1 then UðuÞ < 0, whereas for h ¼ −1 this results
in UðuÞ > 0. To assess both cases, we employ the mass
function (8) with M1 ¼ 0.5. There is an infinite number of

FIG. 13. The top row shows surfaces of constant radius for the third extension with h ¼ þ1, and the bottom row exhibits the same with
h ¼ −1. As M increases, the bulges become less prominent, whereas reversing the sign of h gives a mirrored version of the surfaces
around the horizontal axis.

FIG. 14. The graphical locations of the roots of (38) for the
choices h ¼ þ1 and M ¼ 0.75.
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radial null geodesics that can be demonstrated (see Fig. 16)
[41]. However, only representatives of all the possible
scenarios are considered. The solid magenta curve repre-
sents a family of radial null geodesics that originate from
Vaidya’s white hole singularity and continue to the
Schwarzschild part, without crossing the event horizon
of the Schwarzschild black hole. In fact, these null geo-
desics eventually reach Iþ. The solid green curve is
distinct; it comes from Vaidya’s white hole and coincides
with the Schwarzschild event horizon (w ¼ 0), before
ultimately reaching iþ in the future. The solid blue curve
is an example of a congruence of null geodesics which
originate from Vaidya’s singularity, cross Vaidya’s apparent
horizon (w ¼ 0), and finally hit Schwarzschild’s singular-
ity. The solid brown curve is a unique null geodesic, tracing
down the location of Vaidya’s event horizon and continuing
to hit the spacelike singularity surface rSchw ¼ 0. Finally,
the solid red curve is not unique, but it is the first null
geodesic, compared with the aforementioned null geo-
desics, to emerge from outside Vaidya’s event horizon,
from I −. This geodesic then continues until it hits the
Schwarzschild singularity. The only noticeable difference
between the case h ¼ þ1 [see Fig. 16, top left] and the case
h ¼ −1 [see Fig. 16, top right] is that the future direction is

pointing downward when h ¼ þ1 and the future direction
is pointing upward when h ¼ −1. Thus, in this extension,
and the other two extensions yet to be discussed, the only
change when we switch the sign of h is the direction of the
future in the u − w diagrams. We want to emphasize that
this was not known until a thorough analysis of all of the
constructed extensions was conducted. Now that we have
established that there is no difference in the underlying
physics between the cases of h ¼ þ1 and h ¼ −1, one can
choose either to work with. Moreover, we call attention to
the fact that this case was implicit in [43], but that case was
static.

B. Radial null geodesics in the second extension

In a similar fashion to the outgoing case, two different
choices of the functions h and UðuÞ are considered. Since
the ingoing radiation is characterized by m0ðuÞ > 0, the
choice h ¼ þ1 implies UðuÞ > 0, and the choice h ¼ −1
results inUðuÞ < 0. Both cases are examined below, using
the mass function (23) with M0 ¼ 0.5. The trajectories of
the radial null geodesics that flow from the Schwarzschild
white hole and proceed to the ingoing Vaidya section are
given in Fig. 17. Similar to the outgoing case, the solid
magenta curve represents a whole class of geodesics

FIG. 15. The top row displays surfaces of dynamical radius in the third extension for the choice of h ¼ þ1, while the bottom row
displays the same for h ¼ −1. Similar to surfaces of constant radius, increasing the value of M leads to a less pronounced bulge, while
switching the sign of h creates a reflection of the surfaces.
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which emerges from the Schwarzschild white hole sin-
gularity and travels to the ingoing Vaidya section without
ever crossing the apparent horizon (w ¼ 0). The curve
starts from rSchw ¼ 0 and ultimately hits Iþ in the
Vaidya’s section. The solid brown curve is unique in
the sense that it is the only null geodesic that evolves from
the Schwarzschild’s singularity and is asymptotic to the
Vaidya dynamic apparent horizon at iþ. Thus, the pre-
vious null geodesic actually never makes it to the surface
rVaidya ¼ 0 in a finite value of its affine parameter. The
solid blue curve represents a class of null geodesics that
originates at rSchw ¼ 0 and cannot clearly evade an
encounter with rVaidya ¼ 0. The solid green curve is
another unique geodesic since it is the only one that
traces down the location of the event horizon of the
Schwarzschild metric, but it separates from the Vaidya’s
apparent horizon and continues moving to finally hit the

singularity in the Vaidya part. Finally, a candidate from
the family of the null geodesics which originate at the past
null infinity, I −, in the Schwarzschild spacetime is given
by the solid red curve. This null geodesic, as shown,
cannot elude an encounter with the ingoing Vaidya’s
singularity surface, rðu; wÞ ¼ 0.

C. Radial null geodesics in the third extension

Having exhausted the information from the previous
two extensions, we now turn our attention to exploring the
behavior of the radial null geodesics existing in the
outgoing Vaidya metric extended to the ingoing version.
Similar to the previous two extensions, we choose to
address both the case h ¼ þ1 and the case h ¼ −1, where
the mass function that gives rise to this extension is chosen
to be (34), with M ¼ 0.75. The trajectories of the radial
null geodesics that flow from the outgoing Vaidya metric

FIG. 16. Top: an illustration is presented of the radial null geodesics in the first maximal extension of the Vaidya metric for both
h ¼ þ1 (left) and h ¼ −1 (right). Solid (nonaffinely parametrized) and dashed (affinely parametrized) curves are used to represent the
two branches of the radial null geodesics, with black jagged lines indicating rðu; wÞ ¼ 0. The future null cone is depicted for orientation.
Bottom: the Penrose diagram of the first maximal extension. The future direction on the Penrose diagram is always represented upward
on the page. Additionally, the future event horizon (FEH) of the nonaffinely parametrized radial null geodesics is also illustrated on the
Penrose diagram.
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and proceed to the ingoing Vaidya metric are given in
Fig. 18 [44]. The solid magenta curve represents a family
of radial null geodesics which originate from the outgoing
Vaidya singularity and extend to the ingoing Vaidya
section without crossing the surface w ¼ 0, and instead
continue to Iþ. The solid green curve is unique, as it is
the only curve that originates from the outgoing Vaidya
singularity and traces the location of the event horizon of
the ingoing Vaidya section. This geodesic is also asymp-
totic to the ingoing Vaidya apparent horizon at iþ. Many
radial null geodesics move from the surface rVaidya;out ¼ 0

to the surface rVaidya;in ¼ 0, yet only the solid blue curve is
considered. The solid brown curve is the only one which
starts from i−, combines with the outgoing Vaidya
apparent horizon, and then reaches the singularity surface
in the ingoing Vaidya part. The solid red curve represents

the first class of radial null geodesics to come from outside
the causal boundary in the outgoing Vaidya part. This
class of geodesics is unable to avoid encountering the
ingoing Vaidya singularity surface, rVaidya;in ¼ 0. At the
end, we need to emphasize the fact that all the maximal
extensions that have been discussed in this paper were
assumed to be asymptotically flat, which explains the
existence of the Iþ and I − in the out(in) going Vaidya
regions in the Penrose diagrams (see Figs. 16–18). In fact,
the existence of asymptotically flat regions in the Vaidya
metric is not always guaranteed as the metric is more
likely to be matched to other solutions that represent other
regions in the spacetime. However, for the purpose of
studying the various categories of radial null geodesics,
we assume that the Vaidya metric becomes asymptoti-
cally flat.

FIG. 17. Top: an illustration is presented of the radial null geodesics in the second maximal extension of the Vaidya metric for both
h ¼ þ1 (left) and h ¼ −1 (right). Solid (nonaffinely parametrized) and dashed (affinely parametrized) curves are utilized to mark the
two branches of the radial null geodesics, with black jagged lines indicating the singularity surface rðu; wÞ ¼ 0. The future null cone is
depicted for orientation. Bottom: the Penrose diagram of the second maximal extension. The future direction on the Penrose diagram is
always represented upward on the page. Additionally, the FEH of the nonaffinely parametrized radial null geodesics is also illustrated on
the Penrose diagram.
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VII. SUMMARY AND DISCUSSION

We have studied the issue of finding maximally extended
Vaidya manifolds, leveraging the fact that it reduces to
choosing a mass function that is defined along the entire
range of coordinates. Consequently, we have derived a set
of criteria that the mass function must satisfy in order to be
a valid extension of the manifold. Utilizing these require-
ments, we have constructed three mass functions that give
different interpretations of a maximally extended Vaidya
manifold. Moreover, we have examined the qualitative
features of the mass function, the UðuÞ function, and the
causality of the surfaces of constant (dynamical) radius,
which is vital for gaining an understanding of the nature of
crucial parts of the manifold such as the apparent horizon
and the singularity hypersurface. Since we have claimed
that the Vaidya manifold in Israel coordinates is null
geodesically complete, we have shown this to be true

via studying the behavior of the radial null geodesics in the
three constructed maximal extensions. The equation of the
radial null geodesics is an Abel second type class A, and as
we have already stated before that this equation does not
have a general solution. We have thus developed a
numerical scheme to solve this equation and obtain the
radial null geodesics. The diagrams of these geodesics
demonstrate that the manifold is geodesically complete as
the radial, null geodesics terminate at a true singularity or
continue their motion indefinitely. To further bolster the
notion that Israel coordinates are globally valid, the Penrose
diagrams for the three extensions were provided, with the
trajectories of radial null geodesics plotted on them.
Furthermore, we prove that the null junction conditions
(see the Appendix) are satisfied, and that there is no jump or
discontinuity present on the joining surface u ¼ 0 between
the outgoing Israel metric and the Schwarzschild metric
when h ¼ þ1.

FIG. 18. Top: an illustration is presented of the radial null geodesics in the third maximal extension of Vaidya metric for both h ¼ þ1
(left) and h ¼ −1 (right). Solid (nonaffinely parametrized) and dashed (affinely parametrized) curves are utilized to mark the two
branches of the radial null geodesics, with black jagged lines indicating the singularity surface rðu; wÞ ¼ 0. The future null cone is
depicted for orientation. Bottom: the Penrose diagram of the third maximal extension. The future direction on the Penrose diagram is
always represented upward on the page. Additionally, the FEH of the nonaffinely parametrized radial null geodesics is also illustrated on
the Penrose diagram.
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APPENDIX: NULL JUNCTION CONDITIONS

In general, if two regions V−, endowed with the metric
g−αβðxμ−Þ, and Vþ, endowed with the metric gþαβðxμþÞ, of a
spacetime are joined on a null hypersurface Σ, there must
be some stipulations to ascertain that the resulting metric
g−αβ ∪ gþαβ is a valid solution to the Einstein field equations.

1. The null junction conditions
of the first maximal extension

In this appendix, the null junction conditions shall be
developed [45] for the case h ¼ þ1 and UðuÞ < 0. In the
course of our development of these conditions the metric in
V− is taken to be the outgoing Vaidya metric, while the
metric outside Vþ is given by the Schwarzschild metric. As
seen either from V− or from Vþ, the null hypersurface Σ is
given by the equation u ¼ 0. Thus, the intrinsic metric to Σ
is given by ds2Σ ¼ rðu; wÞ2dΩ2

2. Given that θ
A ¼ ðθ;ϕÞ and

that the null generators of Σ are affinely parametrized by w,
w ¼ λ, the intrinsic metric, on both sides, now assumes the
form

σABdθAdθB ¼ 4M2
1ðdθ2 þ sin2 θdϕ2Þ: ðA1Þ

As seen from V−, the null hypersurface Σ is explicitly given
by u ¼ 0, w ¼ λ, θ ¼ θ, and ϕ ¼ ϕ. This gives rise to the

tangent vectors kα∂α ¼ ∂w, eαθ∂α ¼ ∂θ, and eαϕ∂α ¼ ∂ϕ, and

the basis is completed by Nαdxα ¼ − guu;Vaidya
2

du − dw.
Based on this setup, the vanishing component of the
transverse curvature tensor [46] is

C−
λλ ¼ 0; ðA2Þ

in accordance with the fact that λ ¼ w is an affine parameter
on the V− side of Σ. The nonvanishing components are
given as

C−
AB ¼ −w

8M2
1

σAB: ðA3Þ

As seen from Vþ, the parametric equations are
u ¼ 0, w ¼ λ, θ ¼ θ, and ϕ ¼ ϕ. The basis vectors are
kα∂α ¼ ∂w, eαθ∂α ¼ ∂θ, and eαϕ∂α ¼ ∂ϕ, and Nαdxα ¼
− w2

uwþ8M2
1

du − dw. The components of Cþ
AB are found to

be identical to those of C−
AB. The fact that Cþ

λλ ¼ 0

completes the argument that λ is an affine parameter on
both sides of Σ. The angular components of the transverse
curvature are found to be continuous across Σ. Thus, we
conclude that there is no jump across the surface u ¼ 0, and
the resulting metric from joining the outgoing Vaidya
metric to the Schwarzschild metric is a true solution
to the field equations. Finally, we would like to emphasize
that the null junction conditions for the other two
extensions can be derived in a similar manner to the one
presented here.
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