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For the analysis of gravitational-wave signals, fast and accurate gravitational-waveform models are

required. These enable us to obtain information on the system properties from compact binary mergers. In
this article, we introduce the NRTidalv3 model, which contains a closed-form expression that describes
tidal effects, focusing on the description of binary neutron star systems. The model improves upon previous

versions by employing a larger set of numerical-relativity data for its calibration, by including high-mass

ratio systems covering also a wider range of equations of state. It also takes into account dynamical tidal
effects and the known post-Newtonian mass-ratio dependence of individual calibration parameters. We
implemented the model in the publicly available LALSuite software library by augmenting different binary
black hole waveform models (IMRPhenomD, IMRPhenomX, and SEOBNRv5_ROM). We test the validity
of NRTidalv3 by comparing it with numerical-relativity waveforms, as well as other tidal models.
Finally, we perform parameter estimation for GW170817 and GW 190425 with the new tidal approximant
and find overall consistent results with respect to previous studies.
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I. INTRODUCTION

Two years after the discovery of a binary black hole
(BBH) merger [1], which initiated the era of gravitational-
wave (GW) astronomy, the discovery of the binary neutron
star (BNS) merger GW170817 inaugurated a new era
in multi-messenger astronomy [2—4], in which GWs and
electromagnetic signals are combined to unravel these
highly energetic events. Indeed, the GW detection of
GW170817 came along with electromagnetic signatures
covering the whole frequency range from radio to gamma
rays [3,4]. However, GW170817 was just the beginning.
Two years later, the LIGO-Virgo-Kagra Collaboration
detected the BNS GW190425 [5] and with the increasing
sensitivity of current GW detectors as well as planned new-
generation detectors, it is expected that the number of BNS
events observed will increase in the future [6-9].
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One of the key scientific achievements of GW170817
was the improved knowledge of neutron star (NS) interior
[2,10]. The structure of the NS is primarily described by an
equation of state (EOS) of neutron-rich supranuclear-dense
matter [11,12]. In fact, matter in the core of NSs is thought
to be at least a few times denser than the nuclear saturation
density p ~ 10'* g/cm?, and there are various (competing)
theoretical and phenomenological models in nuclear phys-
ics (e.g., [11,13-19]) describing this state of matter.

Given that the EOS describing the NS interior influences
the tidal deformability, which is a measure of the star’s
deformation in response to an external tidal field (e.g.,
during the gravitational interaction with another compact
object [20,21]), BNS merger observations will shed light on
the behavior of matter at extreme densities [2,5,20,22,23].

Physical parameters of the system, such as mass, spin,
and tidal deformabilities, can be extracted from GW signals
by comparing the observed data with theoretical predictions
obtained by solving the Einstein field equations (EFEs),
usually through Bayesian analysis [24,25]. In principle,
ab-initio, numerical-relativity (NR) simulations which
solve the EFEs on supercomputers would be the method
of choice for the description of a BNS waveform. However,
such simulations come with high computational costs and
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typically only cover the late stage of the inspiral and
merger [26-33]. Furthermore, these simulations are also
characterized by an intrinsic uncertainty due to the numeri-
cal discretization that is employed to solve the EFEs.
Over the years, the community has developed different
waveform models for BNS systems. One class of models is
based on post-Newtonian (PN) theory, which expands the
EFEs in powers of v/c, where v is the binary characteristic
velocity and c¢ is the speed of light. These approximants
include tidal interactions that start at the fifth PN order [34]
(x (v/c)'%) up to 7.5 PN order [35-37], which is the
highest PN order that is currently known for tidal effects.
However, even high-PN approximants are still not accurate
enough in describing the full GW signal, particularly in the
late inspiral shortly before the merger, when the velocities
of the objects are larger, and the distance between the stars
is smaller. One approach for improving the accuracy of PN
predictions is made by using the effective-one-body (EOB)
formalism [38—43]. Over the years, two different ‘families’
of tidal EOB models have emerged: SEOBNRv4T [44,45]
and TEOBResumS [46-48]. Generally, tidal EOB models
are more accurate than PN predictions and allow, in most
cases, a reliable description (within the uncertainty of
NR simulations) of the GW signal up to the merger of
the stars. To avoid the increase in computational costs,
which comes naturally when using EOB (as these models
solve ordinary differential equations) instead of PN approx-
imations, people have introduced reduced-order models
(ROM) [49-52], postadiabatic approximations [53,54],
machine learning techniques [55], or a combination of
the stationary phase and postadiabatic approximations [56].
Finally, phenomenological GW models [57,58] also
exist, which incorporate EOB and/or NR data with the
aim to model the tidal phase contribution during the
coalescence as accurately as possible while still being fast
and efficient (e.g., through the use of closed-form analytical
expressions for the tidal contribution itself) [28,59].
One such model is called NRTidal [59], which extracts
information from NR, EOB, and PN and constructs an
analytical tidal contribution that augments a given BBH
waveform baseline, either from EOB models or phenom-
enological models (such as PhenomD and PhenomX). Two
NRTidal versions (NRTidal [59] and NRTidalv2 [60])
have been implemented in the LIGO Algorithm Library
(LAL) [61]. The second iteration, NRTidalv2, builds upon
NRTidal by using improved NR data, adding amplitude
corrections to the GW signal, as well as incorporating
spin effects [60]. Though computationally efficient, both
NRTidal models come with certain caveats. First, both
versions only include equal-mass systems in the calibration
of their fitting parameters. Second, the models consider the
tidal bulge Q;; of the star to be directly related to the tidal
field £;; generated by its companion via a parameter A known
as the tidal deformability, i.e., Q;; = /15,»]». In this case, the
former NRTidal models considered only adiabatic tides

(4 = const.) throughout the duration of the inspiral [59,60].
However, it has been shown that dynamical tides (implying a
nonconstant, frequency-dependent 1) can arise from these
systems due to the quadrupolar fundamental oscillation
mode of the stars [20,44,45,62], see also Refs. [63-71].

Given these limitations, the aim of this work is to
extend the existing NRTidal model. In particular, this
new model, called NRTidalv3, includes the following
improvements:

(1) a larger set of NR BNS waveforms; in total, we
utilize 55 waveforms from BAM [31-33] and
SACRA [28,72] including various total masses,
EOSs, mass ratios;

(i1) inclusion of mass-ratio dependence of the fitting
parameters in the calibrated model; and

(iii) dynamical tides [20,44,45,63].

The paper is organized as follows. In Sec. II, we discuss the
employed NR data and the hybridization of the NR data
with SEOBNRV4T to construct the hybrid waveforms that
are used for the calibration. Section III introduces the time-
domain NRTidalv3 phase, while Sec. IV discusses the
frequency-domain phase. We discuss the implementation
and tests for the validation of the model in LAL in Sec. V.
We then conduct a parameter estimation analysis of the
model with existing GW observations in Sec. VI. Finally,
our main conclusion and recommendations are discussed in
Sec. VII. Throughout the paper, we use geometric units,
where G = ¢ = 1, unless otherwise stated. For the indi-
vidual components of the BNS, we define M, to be the
primary mass (mass of the heavier companion), M to be
the mass of the secondary companion, each with tidal
deformability A, and Ap, respectively. The total mass is
given by M = M, + My and the mass ratio is defined as
q=My/Mp>1. The aligned spin components are
denoted by y4 and yp.

II. NUMERICAL RELATIVITY DATA AND
EXTRACTION OF TIDAL PHASE
CONTRIBUTIONS

The NRTidal model is a closed-form GW model that
describes the tidal effects in the inspiral part of BNS
coalescences [59,60,73]. We start from the GW strain

h(1) = A(t)e™ ), (1)

where A(t) is the amplitude, and time-domain ¢(¢) is the
phase. We assume that we can decompose the phase as

P(@) = o(&) + 5o (@) + Pss (@) + s (&) + pr (@) + -+,
(2)
where @ = Mw = Md¢/dt = M(2zf) is the rescaled GW

frequency, ¢, denotes the nonspinning point-particle con-
tribution to the total phase, ¢go denotes the spin-orbit (SO)
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coupling, ¢gg denotes the spin-spin (SS) interactions
(both self-spin and spin interactions), ¢q: denotes contri-
butions cubic in spin (S?), and ¢y is the tidal phase
contribution [20]. We are neglecting all other (higher-order)
spin terms in Eq. (2). Similarly to the time domain, we can
also write the frequency-domain strain as

h(f) = A(f)e ), (3)
with

w(f) =wolf) +wsolf) +wss(f) +ws (f) +wr(f)+---.
4)

The NRTidal model aims at modeling the tidal contri-
butions ¢y and w7, since, unlike the BBH case, tidal
deformabilities are present in BNS and BHNS systems and
provide valuable information about the internal composi-
tion of the individual stars.

A. Numerical relativity dataset

Previous versions of the NRTidal model start with
the tidal part of the GW constructed by combining EOB
and NR waveforms [59,60]. For the -calibration of
NRTidalv3, 46 NR waveforms simulated by the
SACRA code [28,29,72], and nine waveforms simulated
with the BAM code [31-33] were employed. We provide
more detailed information in Appendix A. Overall, the
NR dataset covers ten different EOSs with ¢ € 1.0, 2.0]
(see Fig. 1).
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FIG. 1. Distribution of the masses (where we set M, > Mp)

and corresponding tidal deformabilities A, 5 of the neutron stars
used in the NR simulations (see Table VII). The plot shows
overlapping data points for systems with the same masses, but
can have different tidal deformabilities due to the various EOSs
that were employed.

B. Construction of hybrid waveforms

For each of the NR simulations that we employ for
calibration, we compute corresponding configurations
employing SEOBNRv4T [50] from the LALSuite [61] library.
This means that we compute SEOBNRv4T waveforms
including tidal contributions (which we refer to as EOB-
BNS later) and without tidal effects, which we call EOB-
BBH later. The EOB-BNS waveforms are used in the
extraction of the tidal phase contributions, from the early
inspiral up to the merger [60]. The EOB-BBH and EOB-
BNS waveforms are computed at a starting frequency of
15 Hz. These tidal phase contributions will then be used in
the calibration of NRTidalv3.

For the construction of hybrid waveforms, we first
determine the convergence order of the NR dataset. If
we find a clear convergence order, we construct a higher-
order Richardson-extrapolated waveform assuming this
convergence order [74,75]. In our set of waveforms, this
is the case for the BAM waveforms from Refs. [32,60].
For all other data, we are simply employing the highest
resolution for the hybrid construction.

In the next step, we align and hybridize the EOB-BNS
with the NR waveforms. This is required since our NR data
only cover the last few orbits before the merger, but we are
planning to construct a closed-form approximant that is
valid for the entire frequency range.

For the alignment, we minimize the following integral
[26,27,76]:

T(5t.60) = / " il (1) — duo (i +51) + ¢l (5)

A

over the chosen frequency interval (or hybridization win-
dow, typically near the beginning of the NR waveform)
[@1, @,] corresponding to times [t, ,].

Once the EOB-BNS and the NR waveforms are aligned,
we create the hybridized waveform through [26,27,76],

heoB-BNs> 1<t
hgop-NR = § AngH (1) + hpop_pns[l —H(1)], 1 <1<t
NS t> 1,
(6)
where
H(t) : | = cos [ =0 (7)
=—|1- T ,

is the Hann window function. This ensures a smooth
transition between the EOB and NR waveforms. The result
of this hybridization is shown in Fig. 2 for one example. As
indicated above, the final waveforms are labeled EOB-NR.

From the expression of the hybrid waveform above in
Eq. (6), we expect the tidal phase contributions of the
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FIG. 2. An example of a hybrid waveform (SACRA:15H_135_
135_00155_182_135). Here, we plot the real part of the (2,2)
mode rhy, of the GW strain (where r is the extraction radius) as a
function of the retarded time u. The blue curve is the NR
waveform, the orange dashed curve is the EOB-BNS waveform
from SEOBNRv4T, and the black, dotted curve is the hybridized
waveform EOB-NR. The gray, dashed, vertical lines denote the
boundaries of the hybridization window, [¢1, 1,] corresponding to
@ €[0.035,0.04]. The peak amplitude of the NR and EOB-NR
hybrid, indicating merger, is set at u/M = 0.

hybrid to be identical to the one of the EOB-BNS wave-
form right up to the start of the hybridization window.
The start of the hybridized waveform is chosen to be
@ = 0.0015 (corresponding to f€[17.7,19.4] Hz). After
the window, the tidal contribution would then be identical
to that of the NR waveform. For the purposes of con-
structing NRTidalv3, we only consider the EOB-NR
tidal phase contributions up to merger. The postmerger
parts of the EOB-NR phase are not included.

C. Extracting the tidal phase

In the next step, we extract the tidal phase contribution
¢r up to merger by subtracting the EOB-BBH phase from
the EOB-NR phase, which (schematically) means

¢T = A¢ = ¢EOB—NR - ¢EOB—BBH- (8)

Figure 3 shows the different tidal phase contributions.
We find that the resulting ¢ calculated from Eq. (8) has
considerable noise, e.g., due to residual eccentricity or
remaining density oscillations during the NR simulations.
To avoid this, the noise is filtered using a Savitzsky-Golay
filter [32,77] to smoothen the hybrid waveform. This leads
to the final tidal phase that we will use as an input for the
construction of our NRTidalv3 model.

III. DYNAMICAL TIDES AND THE TIME
DOMAIN NRTidalv3 PHASE

A. Employed tidal PN knowledge

Our construction of the NRTidalv3 approximant
begins with the analytical expression of the time-domain
tidal phase contribution through 7.5 PN order [36,37]:
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—20[ NRTidalv2
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Foeeees A(EOB-BNS — EOB-BBH) L
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w
FIG. 3. Hybrid tidal phases (EOB-NR) for the configuration

SACRA:15H_135_135_00155_182_135. The cyan curve repre-
sents the EOB-NR data without applying the smoothening oper-
ation indicated in the text, the blue dashed line is EOB-NR after
filtering. We also show the phase difference between the pure EOB
and NR data, as well as for comparison the NRTidalwv2 descrip-
tion. The reference frequency @, is used to subtract the EOB-BBH
phase from the pure NR phase. The hybridization window
@ €10.035,0.04] is denoted by the vertical dashed gray lines. Only
the hybrid tidal phase up to the merger frequency @y, (indicated by
a black vertical line) is used in the construction of NRTidalv3.

¢17>"N = _KAcﬁeWIXS/z(l + C?x + C134/2x3/2
+egx? + cf,00) +[A - B,
where x = (&/2)*/3, and the ¢;’s are

" (12=11X,4) (X, +Xp)?

cNeWt: SXAX% )
4 _s260X3 —~2286X3 919X, +3179
! 336(11X, - 12) ’
5
cg‘/zz_iﬂ’

4 =[5(4572288X3 —20427120X* +158378220X3
+174965616X2 +43246839X , —387973870)]
/[9144576(11X, —12)),

10520X3 —7598X2 +22415X , 27719
192(11X,—12) ’

A
C5p =7

©)

where we also have A <> B and X, 3 = M, /M. Note
that the coefficients are different from Ref. [60] in
NRTidalv2, which employed the PN expression derived
in Ref. [35]." The expression employed for NRTidalv3
uses the updated PN expression introduced in Refs. [36,37].
We also note that the tidal parameters are given by

_k

Ka = 3XBXiAA» Ay = roch
A

(10)

'"The PN coefficients in Ref. [35] were corrected in Refs. [36,37],
though the actual differences in the computed ¢YN values are
negligible.
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where C4 = M,/R, is the compactness of star A in
isolation, R, is the radius, and k’z‘ is the tidal Love number
of the star [21].

For NRTidalv3, we will incorporate dynamical tides,
ie., Ayp will be a function of the orbital frequency
Wy, = w/2 of the system [45,66]. This stems from the
quadrupolar oscillations of the star due to f-mode excita-
tions, which can be represented by a dynamical quadrupole
moment obeying the equation of motion of a tidally driven
harmonic oscillator plus relativistic corrections such as
redshift, frame dragging, and spin [45,65,66]. The dynami-
cal Love number for nonspinning systems can be approx-
imately expressed in terms of an enhancement factor k‘}ff
as ky = ky(w) = ky kS (w) (for £ = 2), where

KT = u, + v, [ @ 4 f”(2)2
a)(2)2 + (Za)orb)2 2 €2t|9/|(2worb)2
2
o, n
T 0n(1)], 11
Ve 224 )] )

where @y, is the fundamental mode frequency, Q' is the
derivative (with respect to the gravitational radiation
reaction) of the ratio of the mode and tidal forcing
frequencies (which in the nonspinning case is Q' = —3/8),

0 (1) = cos(|V[2) / '

—0o0

sin(|Q'|s?)ds
~ 7 ~
- sin(|£2/|?2)/ cos(|Q|s*)ds,  (12)

and

[ (o)) 2
fd - Chys——M =
5 €y 2a)orb ’ 2 5'25/3 ’

where y = M,Myz/M and the quadrupole coefficients are
uy, = 1/4 and v, = 3/4. The enhancement factor Eq. (11)
results from a two-timescale approximation for the dynami-
cal tidal quadrupole with a Newtonian estimate for the
orbital evolution [45,66], which should be extended to
higher-PN orders in future work.

Since ST is a tidal enhancement factor, k5T — 1.0 at
@y, — 0, which means that the tidal deformability of the
NS is at its adiabatic value at large distances (i.e., r — o)
from its partner. The fundamental frequency (in kHz)
M 4f00 = (M/1.4Mg)wg,/(27) rescaled to a 1.4Mg NS
can be obtained using the quasiuniversal relation found
in [78]

5

M 4fo [kHz] = Zgi(logml\z)", (14)
i=0

where

3.0r 1
S RV
§25:_ o%% o AB _:
=2, %%
% 2 O_ @%% ]
= 15F g, 7
1.0: PR | PR | -
102 10° 10*
A

FIG. 4. The universal relation between the f-mode frequency
(in kHz) and A used for stars A and B.

g; €[4.2590, —0.47874, —0.45353,
0.14439,-0.016194,0.00064163]. (15)

This relation is shown in Fig. 4 for various values of A, for
stars A and B. Then, for £ = 2, our tidal parameters for
NRTidalv3 contains the modification

Kap — KA,B(C?)) = KA,Bkgﬁx,B@b)' (16)

Note that, as constructed, x recovers at large distances
(very small frequency) the original (constant) adiabatic
value (see Fig. 5).

B. Calibrating the time-domain, tidal phase

We then write the effective representation of the time-
domain tidal phase in NRTidalv3 as

PR = —ka (@) e *PRgrs(*) +[A < Bl (17)
where we use the following functional form:

e nix+ ng‘/2x3/2 +n4x? + ng‘/zx5/2 +nfx?

Pleps(x) = ,
RT3 () 1+d’{‘x+dg‘/2x3/2

(18)

— 15 SFHo 1

300 F o T

F — HB — ;]

< C —_— )

z 200: . B MSTt :

100 E 3

E e

0.025 0.050 0.075 0.100
d)orb

FIG. 5. Dynamical tidal parameter in the time-domain as a

function of orbital frequency (@.4, = @/2) for different EOSs,
given g = 1.0. Note that each curve starts at the given constant
value of the tidal parameter, which is provided by the dashed lines.

. A _ A amrg
The curves terminate at the merger frequency @y, = 20y, -

024062-5



ADRIAN ABAC et al.

PHYS. REV. D 109, 024062 (2024)

and the same with A <> B. The exact functional form
employed in this work is based on numerous tests for
various different fitting functions and provided overall the
best performance. However, it is clearly an assumption, and
also other forms could have been used. We also note that a
polynomial form of the fitting function could describe
the 55 EOB-NR tidal phase hybrids well, but it is not
guaranteed to work for extreme cases, i.e., large masses
and/or tidal deformabilities. For some of these configura-
tions, the polynomial can become very large for some
mass- and tidal-deformability-dependent combination of
coefficients at low frequencies.

Taking the Taylor series expansion of Eq. (17) and
comparing it with Eq. (9) allows us to enforce the
following constraints to ensure consistency with the PN
expression:

nf =t + df,
A A A A A A
CL €5y = C5pp = C5pdy + 15,

A
n =
3/2 A ’
€]

A A AJA
ny = c5 +cidy,

A+ cd dt —nd
d?/z _ 5T Gpti Ty (19)

A
€1

and similar constraints for A — B.”> This means that we are
left with six unknown parameters, (n?/'g, n?’B , d/f’B ), which
can be fitted to the data. However, to make sure that the
parameters remain symmetric with respect to stars A and B,
we can impose additional constraints on these parameters.
We find the following functional form to be sufficient for
our model:

p?,B(é)) = a;o+ ai,1XA,B + ai,2(KA,B + ])a + ai,3X§,B,
for p; € [ns/zﬂs]v
d/f’B =dig+d 1 Xap+ dl,ZXQ,B' (20)

This leaves us with the 13 parameters a;’s, d| ;’s, a, and
that we now determine by fitting the function to the EOB-
NR hybrid tidal phase data. We note that this parametriza-
tion, Eq. (20), should ensure that the coefficients of the
Padé approximants themselves are functions of the mass-
ratio and tidal deformability, thus making itself applicable

“This is a choice as to what coefficients will be constrained
by the PN tidal phase. In principle, we can constrain different
combinations of coefficients, e.g., including n%,, and d}, by
constructing a linear system (like the above), as long as there
exists a solution in that system. However, we find the above
choice is robust and allows for reasonable results also outside the
calibration region.

TABLE 1. Parameters for the NRTidalv3 timed-domain
approximant. The table lists the fitting parameters for the Padé
approximant, given in Egs. (18) and (20).

Tides k;ff(cb) (Eq. (11))
a 0.762130731
p —0.577611983
ap a as as

ns;  10973.4227 —7775.85588 —0.113688274 —4483.08830
ny  —11424.2843 8026.17700 —0.379126345 4665.72647

dio di din
dy,  —546.799216 379.280986 223.018238

to a wide range of EOSs. This is unlike the attempt that was
made in Ref. [79] where each set of coefficients (n’s and
d’s) of the Padé approximant in Eq. (18) was specifically
determined for two equations of state describing two SpEC
waveforms. The parameters for the time-domain NRtidal
phase are shown in Table I.

We show in Fig. 6 the comparison between ¢YR™ and
the previous versions of the NRTidal model, as well as
the 7.5 PN approximation of the tidal phase, for the
SACRA:15H_125_146_00155_182_135 configuration.

The results of the fitting in the time-domain are shown in
Fig. 7, together with the fractional differences from the
hybridized data. We note the “curving up” of the fits near
the merger part of the waveforms; this is primarily due to
the dynamical nature of the tides that were incorporated
here. For the fits, significant fractional differences
Adr /Rt = (IRT3 — pPata) /pData qre found within the
earlier frequencies (where very small phase magnitudes
can correspond to large fractional differences) and in the
vicinity of the hybridization window, where most of the
noise from the NR data can persist even after filtering.

Hz
/1 7\40 1000 1250

0 250 500

720_

or

= SEOBNRVAT-NR Hybrid
— 75PN
= NRTidal
NRTidalv2
== NRTidalv3
== fune

0.0 0.5 0075 0.100

FIG. 6. Time-domain tidal phase contributions calculated from
different Models for the configuration of the NR waveform
SACRA:15H_125_146_00155_182_135. We also show the
EOB-NR phase for comparison. The vertical dashed line marks
the merger frequency.
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. 9‘"’5‘"

FIG. 7. Top: The fits (dashed lines) plotted on top of the time-
domain hybridized tidal phase data (solid lines). Bottom: Frac-
tional differences between the fits and the data. The EOB-NR
hybrid tidal phases are color-indicated by their EOS.

IV. FREQUENCY DOMAIN REPRESENTATION
A. PN knowledge and SPA

We now construct the frequency-domain phase using
Eq. (9) in the stationary phase approximation (SPA) [35,80]

Py (w) _ ldff’r(a’)
dw? o do

(21)

The 7.5PN order analytical expression [36,37] of the
frequency-domain tidal phase with constant tidal deform-
ability is then

WI;N = _KAEIIéIeWtXS/2<1 + En?x + E?/2x3/2
+egx +84,0°7) +[A < B, (22)
with

| 3(12 = 11X,) (X4 + Xp)?

Newe = 16X, X3 ’
s 260X3 —2286X3 — 919X, + 3179
¢l =- )
! 672(11X, — 12)
&y = -7,

A = [5(4572288X5 — 20427120X% + 158378220X3
+ 174965616X2 + 43246839X 4 — 387973870)]
/[27433728(11X,, — 12)],

A 10520X3 — 7598X3 + 22415X, — 27719
Cs;p = —T
>/2 672(11X, — 12) '
(23)

and similarly for A <> B. We use Eq. (22) in constraining
the frequency-domain phase for NRTidalv3.

B. Dynamical tides in the frequency domain

One of the main differences between NRTidalv2
and NRTidalv3 is the inclusion of dynamical tides in
the latter. Therefore, it is not straightforward to define a
constant effective kg (as was done in NRTidal [59] and
NRTidalv2 [60]) that can be used in both the time- and
frequency-domain tidal phases, see also Ref. [63]. We
model the entire frequency-domain dynamical tidal
deformability (or Love number) in the same manner as
in Eq. (11), serving as a frequency-dependent correction/
enhancement factor to the adiabatic Love number. This is
unlike in Ref. [63], where the frequency-domain dynamical
f-mode tidal effects were rewritten as an additive correc-
tion to the adiabatic component. Hence, we write the PN
expression Eq. (22), with k - k(w) as (for £ = 2)

Vi = KT (@) (@), (24)

where kS(®) is the frequency-domain effective tidal
enhancement factor. Note that in this case, the same S
applies to both stars, which makes the calculation of the
frequency-domain tidal phase more convenient. We can
then solve for kS by substituting Eq. (24) into the SPA in
Eq. (21), yielding the following differential equation:
PR 1R
do* & di

d’ ]_Cgff wEN 4 2dl_€3ff dy 4 et
da* T dé do
We can then solve for k5T by imposing the following initial

conditions:

dR5T(0)

ksft(0) = 1, o

=0, (26)
for it to behave similarly to the enhancement factor in the
time-domain. Solving for ks however, for different values
of the tidal parameter and mass can be computationally
inefficient, especially when implemented in LALSuite. For
this reason, we introduce a phenomenological representa-
tion of the enhancement factor of the frequency-domain

Love number I_cgfﬁep as follows:

_ sp—1 sp—1
eff 1 1

k2,rep =1 +

expl—sy (@ —s3)] + 1 exp(sys3) + 1

sy(s1 — 1) exp(sys3) .
T lexp(sasy) + 127 .

where the parameters s;, (i = 1, 2, 3) are constrained using
si,ja (.] = O’ ls 2),

S; = S8i0 + Si1Keft T S;2qKett (28)
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TABLE 1II. Fitting parameters s;; for s; that comprise the
representation of the frequency-domain Love number enhance-
ment factor, given in Eq. (27).

J
i 0 1 2
1 1.273000423  0.00364169971 0.00176144380
2 27.8793291 0.0118175396 ~0.00539996790

3 0.142449682  —1.70505852 x 107>  3.38040594 x 107>

and k. is the effective tidal parameter

Kefp = 123 { [1 + 1?53 (C) kA} +[A < B]}. (29)

The fitting parameters s, ; for s; are given in Table II. The
fitting formula was chosen to ensure the monotonicity of
the enhancement factor l_cgff up to some maximum at least
near (or beyond) the merger frequency, and that it follows
the initial conditions laid out in Eq. (26). The fitting
formula satisfies the numerically calculated frequency-
domain effective enhancement factor, with a maximum
(deviation) error of 1.8% and mean error of 0.2% (see
Appendix B).

C. NRTidalv3 in the frequency domain

The previously derived representation k5, in Eq. (27),
which we write from this point onward for convenience as
just &S, can finally be used for building the frequency-

domain NRTidalv3 phase,

WI}IRW =—K (a))CNewtx 5/2 PNRTS( x)+[A < B], (30)
where
R p(@) = Ky pkST (@), (31)
pa (ﬂ:1+wmwgﬂm+ﬁpﬂm@ﬁﬂ+@ﬁ
NRT3 1+d x+d3/2x ’
(32)
with
= +df,
A E?Egl/z - E?/z - E?/zdfll + ’_1?/2
3/2 Z,A ’
1
iy =74 +etdt
—A ~A
- C5)y + C5pdi — 115y
dyyy === 2? 2 (33)

TABLE III. Parameters for the NRTidalv3 frequency-domain
approximant. The table include the fitting parameters for the
dynamical Love number enhancement, as well as the respective
fitting parameters for the Padé approximant given in Eq. (32).

Tides i, (Eq. 27))
a —0.00808155404
B —1.13695919
aop a; ap as

fis;,  —940.654388 626.517157 553.629706  88.4823087
i3 405.483848 —425.525054 —192.004957 —51.0967553

le.() aI,l a14,2
dy  3.80343306 —25.2026996 —3.08054443

The remaining parameters are given by

PP (@) = a0+ @\ Xap + Gia(kap + 17 + 5:‘.3X§,B7
for ]_)i (S [f[s/z, 1713],
EI?’B :c_il,o+c_ll,1XA’B+c_ll,2X§’B. (34)

The values of the fitting parameters are found in Table III.
For comparison, recently, a phenomenological tidal
approximant (with the Padé function up to the x> term
in the denominator) was also developed in Ref. [42], where
some coefficients of the Padé were constrained to the PN
expressions for the tidal and self-spin contributions, while
the free coefficients were fitted to the TEOBResumS
waveform model; here, two sets of these free coefficents
were obtained for ¢ =1 and ¢ > 1. However, for
NRTidalv3, we consider the tides to be dynamical,
and the free coefficients are themselves explicit functions
of the individual masses and/or tidal deformabilities of the
system [as indicated in Eq. (34)].

We show the results of the fitting in Fig. 8. In this case,
the significant fractional differences with respect to the
EOB-NR hybrid data AyRT? = Ay /yPaa = (/RT3 —
W) /yRa@ are found again early in the frequencies and
around the hybridization window. Furthering the inves-
tigation of the performance of NRTidalv3, we plot the
difference between the absolute fractional differences
of NRTidalv2 and NRTidalv3 with respect to the
data, that is, |AyYRT2| — Ay RT3, against @, and show
the results in Fig. 9. We also indicate in the figure
|AyNRT2| — | Ay RT3 =0, denoted by a black dotted
horizontal line. Above this line, NRTidalv2 has greater
error with respect to the data than NRTidalv3 and below
this line, NRTidalv3 has a greater error. We observe that
NRTidalv3 performs overall better than NRTidalv2 for
most of the configurations, both for ¢ = 1.0 (yellow
curves) and g > 1.0 (blue curves).

In addition, we plot the frequency-domain tidal phases of
the different NRTidal models for four waveform hybrids
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FIG. 8. Top: The fits plotted on top of the frequency-domain

hybridized tidal phase data. Bottom: Fractional differences

between the fits and the data, where Ay, = yhit — R,

FIG. 9. The difference between the absolute fractional
differences of NRTidalv3 and NRTidalv2 with respect to
the hybrid data. The curves for ¢ = 1.0 and ¢ > 1.0 are indicated.
We observe NRTidalv3 to perform better (i.e., most curves are
above the zero line) than NRTidalv2 for both equal and
unequal mass ratios.

in Fig. 10, representing ¢ = [1.0, 1.33, 1.75, 2.0]. We note
that NRTidalv3 describes the EOB-NR tidal phase
contributions better than NRTidalv2 and 7.5PN approx-
imant. We also indicate the merger frequency fit f. from
the fitting function shown in Sec. IV G.

D. Spin effects

Spinning NS and BH have an infinite series of nonzero
multipole moments [81,82] which will depend on the type
of object and its internal structure. Hence, aside from the
corrections in the tidal phase contributions that we dis-
cussed above, we now include spin effects in NRTidalv3.
Here, we follow the same approach as NRTidalv2
where EOS-dependent spin-squared terms up to 3.5 PN
were included, as well as leading-order spin-cubed terms
that enter at 3.5 PN order [60,83]. But note that the

dynamical-tidal enhancement factor Eq. (11) is specialized
to the nonspinning case in this work.

In terms of the spin-induced quadrupolar CS'B and
octupolar deformabilities C4” for stars A and B, the

self-spin terms in the phase that are added to the BBH
baseline are given by (for aligned spins)

Yss = 31%;//2 (‘/A’g),szx2 + I/A/é/;?3PNx3 + 1/7(5/;).3.5PNX7/2)
+[A < B], (35)
with
‘/A/(sé?sz = —5066)(%)(2,
lifé‘;gPN = % (9407 + 8218X, —2016X3)CAX3xA.
l/A/(Sf;g.SPN = —400”66)(/24)(2’ (36)

where Cf = Cé —1and C4, = C3. — 1. We subtract one
to remove the BH multipole contribution that is already
present in the baseline BBH phase. Meanwhile, the spin-
cubed term is given by

-5/2 308
@ 3 )
V35PN = 128y {10[<XA + TXA>ZA
89 .
+ <X%} - ?XB>)(B:| CoX5
- 44oégcxgxg}x7/2 +[A< Bl. (37

To reduce the number of free parameters, we link C/é
to A4, and C{, to C{ via the following EOS-independent
relations [84]
logIOC’é2 = 0.1940 + 0.09163log ;A4
+ 0.04812log?,A4 — 0.004286log3, A,
—0.00012450l0g{,A 4, (38)

and

logloc‘gc = 0.003131 + 207110g10Cé
— 0.7152l0g3,C} + 0.2458l0g},C}
— 0.0330910g},C4,. (39)

E. Tidal amplitude corrections

We also include amplitude corrections in the NRTidalv3
frequency-domain model following NRTidalv2 [60]. We
incorporate these corrections as an ansatz whose form was
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FIG. 10. Frequency-domain, EOB-NR hybrid tidal phase contributions of SACRA:B_135_135_00155_182_135, SACRA:B_117_
156_00155_182_135, BAM_0131, and BAM_0130, representing mass ratios [1.0, 1.33, 1.75, 2.0]. The tidal phase contributions for
NRTidal, NRTidalv2,NRTidalv3, and 7.5 PN approximants are also shown. We also indicate the estimated merger frequency f.q
from the fitting function in Sec. IV G, and the merger frequency of the NR simulations f,,. The tidal contributions using other tidal

models are also shown for comparison.

taken from the frequency-domain representation of
TEOBResumS-NR hybrids, as discussed in Ref. [60],

- SrvIM?>
ANRT2 _ _ [2%7
4 V24 p "

where D is the luminosity distance to the source.

449 . | 22672 .2.89
1+]08x+ 5 X

1+13477.8x* °

13/4

effX (40)

F. Spin precession effects

As with NRTidalv2, we also consider BNS systems
whose individual spins have an intrinsic rotation and where
this rotation is not necessarily aligned with the orbital
angular momentum, causing the orbital plane to precess.

We augment NRTidalv3 onto the BBH baseline
IMRPhenomXP, as was done for IMRPhenomXP
NRTidalv2 [85], already available in LALSuite. The
IMRPhenomXP baseline improves on IMRPhenomPv2
by incorporating double-spin effects in the twisting-up
construction instead of a single-spin approximation.
Moreover, the Euler angles are calculated via a preces-
sion-averaged treatment of the PN precession dynamics,
and there is also an option offered to the user for a more
accurate twisting-up prescription based on the solutions of
the orbit-averaged SpinTaylorT4 equations implemented in

LALSuite. Note that here, the spin-induced multipole cor-
rections introduced in Sec. IV D are applied in the co-
precessing frame and then twisted up.

G. Merger frequency

As a final ingredient for the construction of the full model,
we have to define the stopping criterion or the final
frequency until which our model is applicable. For this
purpose, we use the estimated merger frequency (peak in the
GW amplitude) Mf.o/v (With v =X, Xp = M Mg/ M?)
from Ref. [33]. The expression is then given by

Mfest
1%

=woVM(X), VS, X))V, X), (41)

where the factor V¥ depends on the mass ratio, V* depends
on the spin contributions (specifically the aligned-spin
components of the binary), and V7 contains the tidal
contributions [33]. The factors are
VM =1+ allZ,
VS =1+ p3is,
Jr_ L pId o+ pT(ed)?
T+ pld + ph(ch)?
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where
Z=1-4p,
M.\3
Kb = 31/{(1‘;) A+ (A< B)],
o (M2
pf = als(l + bfZ),
Pl =al (14 572), (43)

with coefficients

wo = 0.22,

al! = 0.80,

af =0.25,

al €[0.0485,5.86 x 1076,0.1, 1.86 x 1074],

b! €[1.80,599.99,7.80, 84.76]. (44)

Since the Padé approximant is a rational function,
asymptotes (corresponding to a zero denominator in the
approximant) can appear depending on the specific source
parameters. For this reason, we have performed careful
checks to verify that no unphysical behavior occurs, i.e.,
that the estimated merger frequency of the system [as
calculated in Eq. (41)] is less than the frequencies at which
the asymptotes occur (fes < fasymp)- Practically speaking,
we generated 30,000 random nonspinning configurations
with masses M,, Mp€|0.5,3.0], (corresponding to
X4, Xp€[0.14,0.86]) and A4, Ag €[0,20000]. We then
performed another 30,000 random spinning configurations
with aligned-spin components y, g = [—0.5,0.5]. For all
configurations, we verify that f.q < fasymp if fasymp EXIiSts.
Since NRTidalv3 only models the inspiral part up to the
merger of the binary, the condition f. < fasymp suffices for
the purposes of the model.

However, to ensure that the phase contribution remains
smooth even after the merger, i.e., during the time interval
when we taper the waveform, and to remove any asymp-
tote, we make the tidal contribution constant if it reaches a
local minimum, then connect the tidal phase from inspiral
to merger given by y YR and the postmerger with the PN
tidal contribution w4~ (which is polynomial in nature and is
therefore smooth)3 to obtain the tidal function as a function
of the frequency,

YR (3) = (1= (@) RT3 (&) + o(d)WIN (@), (45)

’In principle, any smooth function can do this, but we choose
the usual PN for convenience.

where wRT3 includes the postmerger information from

PN, and 6(®) is the Planck taper,

0, & < o
- s A \]-1
AN Wr)—0y Dr—0 A A A
O'(m)— |:1+6Xp (fi)——&h+(z)——@)} , W Swﬁwz
1, W > 0,

(46)

for a frequency window after the estimated merger fre-
quency [&)lv C}‘\)2] = [1'15&)est’ 1'35&)est] > 6/‘\)est = M(Q’ﬂfest)'
The same Planck taper is used to taper the entire waveform
abruptly up to 1.2d@.y, to minimize the presence of any
postmerger signal (since this is not part of the description
of NRTidalv3). Then, for the rest of the discussion, we
will just refer to the wiRT3* as y RT3 knowing that this
implicitly includes the tapered phase beyond merger (in its

LALSuite implementation).

V. IMPLEMENTATION AND VALIDATION

To make use of the newly developed NRTidalv3 model,
we implement it into LALSuite [61] by adding the outlined
corrections to several different BBH baseline models:
the spinning, nonprecessing models IMRPhenomD [86],
IMRPhenomXAS [87], SEOBNRv5 ROM [88], and the
spinning, precessing model IMRPhenomXP [89]. We list
all the new approximants in Table I'V. The full approximant
name is given by combining the BBH baseline name with the
NRTidal version (e.g., IMRPhenomXAS NRTidalv3).
Versions of NRTidal which are currently present in
LALSuite are shown in Table IV, both previously existing
models and the ones newly implemented in this work. We
also show in Table IV their computation times employing
different values of starting frequencies and using a sampling
rate of 2!5 = 32768 Hz, for a system M, = Mz = 1.35M,
and A, = Az = 400. Overall, we find that NRTidalv3 has
retained both speed and efficiency (particularly for starting
frequencies f;, > 20 Hz) despite having a more accurate
(and mathematically more complicated) description of the
GW signal than NRTidalv2.

A. Time domain comparisons

In this section, we compare the waveform models
utilizing NRTidalv3 with other waveforms, particularly
their corresponding NRTidalv2 versions, as well as the
SEOBNRv4T model using NR waveforms from BAM
[31,33], SACRA [28,29,72], and SpEC [30]. The configu-
rations of the NR waveforms used for comparison are
found in Table V. We note that the waveforms named
BAM:0001, BAM:0037, SACRA:15H_135_135_00155_
182_135, and SACRA:HB_121_151_00155_182_135
are also used in the calibration of NRTidalv3 (see
Table VII in Appendix A). For NRTidalv3 we employ
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TABLE IV. Available NRTidal approximants in LAL. The first column contains the BBH baseline model and the second column
contains the versions of NRTidal that were added to the BBH model. Full approximant names are given by joining the BBH baseline
name with the NRTidal version. We also include information about the corrections in the approximants (i.e., spin-spin, cubic-in-spin,
tidal amplitude, and precession), as well as the computational time AT of the models at different lower frequencies fy,. The
computational time was obtained using the configuration M, = 1.35M, A, g = 400, with no spins, and were simulated using an
Apple M1 Pro processor.

Implemented Tidal AT f 8]
BBH baseline wr by this work? Spin-spin Cubic-in-spin amplitude Precession 10 Hz 20 Hz 30 Hz 40 Hz
IMRPhenomD NRTidal No up to 3PN (BBH) X X X 0.610 0.153 0.038 0.019
NRTidalv2 No up to 3PN X X X 1.020 0.253 0.063 0.031
NRTidalv3 Yes up to 3PN X X X 2.349 0.591 0.147 0.072
IMRPhenomPv2  NRTidal No up to 3PN X X v 0.745 0.184 0.047 0.023
NRTidalv2 No up to 3.5PN up to 3.5PN v v 0.969 0.243 0.060 0.030
IMRPhenomXAS NRTidalv2 No up to 3.5PN up to 3.5PN v X 0.084 0.022 0.006 0.004
NRTidalv3 Yes up to 3.5PN up to 3.5PN v X 0.089 0.026 0.008 0.005
IMRPhenomXP_ NRTidalv2 No up to 3.5PN up to 3.5PN v v 0.353 0.091 0.024 0.013
NRTidalv3 Yes up to 3.5PN up to 3.5PN v v 0.358 0.093 0.025 0.014
SEOBNRv4 ROM  NRTidal No up to 3PN X X X 0.423 0.110 0.029 0.016
NRTidalv2 No up to 3.5PN up to 3.5PN v X 0.630 0.163 0.043 0.022
SEOBNRv5 _ROM  NRTidal Yes up to 3PN X X X 0.418 0.102 0.030 0.017
NRTidalv2 Yes up to 3.5PN up to 3.5PN v X 0.639 0.168 0.045 0.024
NRTidalv3 Yes up to 3.5PN up to 3.5PN v X 1.193 0.306 0.080 0.041

TABLE V. BNS configurations for the time-domain dephasing comparisons. We show the configurations of NR simulations using
BAM, SACRA, and SpEC that are used in the comparison of waveforms in the time domain. The SACRA waveforms, as well as
BAM:0001, BAM:0037 and BAM:0064, are also used in the calibration in NRTidalwv3. For each NR simulation listed here, we
indicated the EOS used, the individual masses M4 g, spins y, p, tidal deformabilities A, g, effective tidal deformability A of the system,
resolution Ay, eccentricity e, and whether or not a Richardson extrapolated waveform was constructed from the simulations.

Name EOS M, [Mgl Mg Mgl ya B Ay Ap A hge [Mg] €e[1073] Richardson
CoRe:BAM:0001 2B 1.35 1.35 0 0 126.7 126.7 126.7 0.093 7.1 X
CoRe:BAM:0011 ALF2 1.5 1.5 0 0 382.8 382.8 3828 0.125 3.1 X
CoRe:BAM:0037 H4 1.37 1.37 0 0 1006.2 1006.2 1006.2  0.0833 0.9 v
CoRe:BAM:0039 H4 1.37 1.37 0.141  0.141 1001.8 1001.8 1001.8  0.0833 0.5 4
CoRe:BAM:0062 MS1b  1.35 1.35 —0.099 —0.099 1531.5 1531.5 15315 0.097 1.8 v
CoRe:BAM:0068 MS1b 1.35 1.35 0.149  0.149 1525.2 15252 15252 0.097 22 v
CoRe:BAM:0081 MS1b 1.5 1.00 0 0 863.8 70224 24255 0.125 15.5 X
CoRe:BAM:0094 MS1b 1.94 0.944 0 0 182.9 9279.9 1308.2 0.125 33 X
SACRA:15H_135_135 15H 1.35 1.35 0 0 1211 1211 1211 0.0508 <1 X
_00155_182_135 X
SACRA:HB_121_151 HB 1.21 1.51 0 0 200 827 422 0.0555 <1 X
_00155_182_135 X
SXS:NSNS:001 2 1.40 1.40 0 0 791 791 791 0.133 ~2 X
SXS:NSNS:002 MS1b 1.35 1.35 0 0 1540 1540 1540 0.159 ~2 X
IMRPhenomXAS NRTidalv3 and SEOBNRv5_ ROM For the time-domain comparison, we are first aligning

NRTidalv3, and the other tidal waveforms for the  the waveforms using the same procedure as for the
comparison are TEOBResumS [47,90-94], SEOBNRv4T construction of the EOB-NR hybrids described in Sec. II.
[50], SEOBNRv5 ROM NRTidalv2 (also implemented Figure 11 shows our comparison for the BAM waveforms,
by this work), and IMRPhenomXAS NRTidalv2. where we also indicate the numerical uncertainty as shaded
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bands. In particular, we use a blue band for setups for
which we just calculate the phase difference between the
two highest resolutions.” For NR simulations where we find
a clear convergence order and employ the Richardson-
extrapolated waveform, we are using a green band as an
error measure given by the phase difference between
the Richardson-extrapolated waveform and the highest
resolution.

We observe from Fig. 11 that for the BAM NR data,
both NRTidalv3 models perform well in terms of the
dephasing with respect to the NR waveforms, and the
NRTidalv3 models are consistent with the other models
such that they generally fall within the estimated numerical
uncertainties. The exception to this would be for
BAM:0081 and BAM:0094 (the same can be said for
the other waveform models), which are characterized by
large mass ratios, and large tidal deformabilities which are
far outside the space of calibration for NRTidalv3,
though we still observe NRTidalv3 to perform a bit
better than NRTidalv2. We also note that the employed
EOS for these setups (MS1b) is already disfavored by
the observation of GW170817 [2-4], i.e., this could be
considered as a reasonable upper bound for a realistic BNS
setup. We also present the comparison between the models
and the SACRA and SpEC waveforms. Generally, due to
the higher resolution, the computed uncertainties are
generally smaller than for the BAM waveforms, however,
we do not see a clear convergence order, which means
that we cannot estimate the error based on Richardson
extrapolation. For SACRA waveforms, we see that the
NRTidalv3 models perform better than the other wave-
form models. However, we note that this might also simply
be due to the fact that the same waveforms were also used
in the calibration of NRTidalv3. Meanwhile, no model
was able to capture the merger part of SXS:NSNS:0001,’
while NRTidalv3 performed better than the others in
terms of the dephasing for SXS:NSNS:002.

B. Mismatch against EOB-NR hybrid data

We further test the accuracy of our fits by comparing
mismatches of the NRTidalv2 and NRTidalv3 models

“The exception to this would be the two SACRA waveforms,
whose errors were computed using the highest and third-
highest resolutions. This is due to the SACRA waveforms
having higher resolutions (than BAM) in general but not
showing a clear convergence order, so the errors may be
underestimated.

An alternative time-domain dephasing comparison was
done with SEOBNRv4 T, but not using a quasiuniversal relation
to compute the waveform parameters for the polytropic EOS
(used for SXS:NSNS:0001), and the result stays the same as in
Fig. 11.

with the hybrid EOB-NR waveforms. The mismatch (or
unfaithfulness) between two frequency-domain complex
waveforms 7, and 7, is given by

(hl (¢c7 tc)|h2)

F=1-max, , , (47)
) (o)
where the overlap is
S By (f) s (f)
— 4R IR 4

and the maximization of the overlap for some arbitrary
phase ¢, and time shift 7. (in the time domain, correspond-
ing to a phase and frequency shift in the frequency domain)
ensures the alignment between the two waveforms.
Here, we assume the spectral density of the detector as
S,(f) = 1.0 so that the computation is detector-agnostic.
We set frax = fmre- For the waveforms, we choose a

sampling rate of 2'3 = 8192 Hz. For a full comparison, we
construct full waveforms with corresponding BBH base-
lines (from the model we want to compare with) and add
to its phase the EOB-NR hybrid tidal phase, i.e., we have
IMRPhenomD Data, IMRPhenomXAS Data, and
SEOBNRv5 ROM Data. The minimum frequency f .,
is chosen to be either 20 Hz or 350 Hz. The former takes
into account almost the entire hybrid waveform, which is
dominated in the very early inspiral by the EOB model used
for constructing the EOB-NR hybrid (SEOBNRv4T), while
the latter value considers mainly the NR contribution
(typically where the hybridization starts).

We show results as mismatch histograms for IMRPhe-
nomD NRTidalv3, IMRPhenomXAS NRTidalv3,
and SEOBNRv5_ ROM NRTidalv3 in Fig. 12. Taking a
look, for example, at the histograms for IMRPhenomD
NRTidalv3 with f;, = 20 Hz (the uppermost-left panel),
we compute the mismatches between IMRPhenomD
NRTidalv3 and IMRPhenomD Data, between IMR-
PhenomD NRTidalv3 and IMRPhenomD NRTidal-
v2, and between IMRPhenomD NRTidalv2 and
IMRPhenomD Data. For each histogram, the mean
mismatch ug is indicated by a vertical dashed line. The
mismatches are larger with larger f;,. We note the improve-
ment in the accuracy of the NRTidalv3 waveforms with
respect to NRTidalv2, as indicated by their lower mis-
matches with respect to the hybrid data. In general,
NRTidalv3 has a mismatch of about half of an order of
magnitude smaller than that of NRTidalv2. We also note
that for f;, =350 Hz, NRTidalv2 has a tail in its
distribution for F > O(1072), while this is not present
for NRTidalv3. While the reduction of the mismatch is
to some extent also caused by the fact that all of the employed
waveforms have been used in the calibration of NRT1idalv3,
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Time-domain dephasing comparisons for the BAM, SACRA, and SpEC waveforms. For each NR waveform, the upper panel
shows the real part of the gravitational wave strain as a function of the retarded time, while the bottom panel shows the phase difference
between the waveform model and the NR waveform. We note that BAM:0001, BAM:0037, and both SACRA waveforms (indicated by

blue frames in their plots) were also used in the calibration of NRTidalv3.
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FIG. 12. Mismatch histograms for different BBH baselines augmented with the NRTidalv3 model, versus the BBH baseline model
added with the EOB-NR hybrid tidal phase. Vertical lines denote the mean of the histograms with the same color. The mismatches with
NRTidalwv2 are also shown for comparison. For each BBH baseline + NRTidalv3 model, mismatches are computed starting from
Sfmin = 20 Hz in the left panel, indicating the mismatch for the full waveform where EOB contribution is present in the early inspiral.
Mismatches are also computed for f,;, = 350 Hz in the right panel, where typically the hybridization starts and where the NR

contribution becomes dominant up to merger.

it still shows the overall robustness and performance of
the model.

C. Mismatches against other tidal waveform models

Finally, we want to compare our model with other tidal
models in three cases: (a) nonspinning configurations;
(b) aligned spins; and (c) precessing systems. For the
nonspinning configurations, we compute the mismatch
between NRTidalv3 (specifically, IMRPhenomXAS
NRTidalv3 and SEOBNRv5 ROM NRTidalv3) and
TEOBResumS, SEOBNRv4T, and NRTidalv2. The mis-
matches computed in this section assume f.;, = 40 Hz,
fmax = 2048 Hz and a waveform sampling rate of 2!3 =
8192 Hz, except for when comparisons are done with
SEOBNRvAT, where a sampling rate of 2'3 = 4096 Hz
was used for the sake of efficiency.

1. Nonspinning setups

In the nonspinning case, the mismatches are computed for
4000 random configurations of masses M, 5 =1[0.5,3.0]M
and tidal deformabilities A, z = [0, 5000], for comparisons
done with TEOBRessumsS and SEOBNRv4T. For A, 5 > 5000,
and especially when combined with a high-mass-ratio or
high-spin configuration, we find both TEOBResumS and
SEOBNRv4T to fail to produce a waveform. For comparisons
which do not involve these two waveform models, we use
A4 p = [0,20000]. These mismatches are then plotted in a 2D
scatter plot (in the x — y plane) with the masses and tidal
deformabilites (Fig. 13). In addition, we also directly compare
the mismatches between the NRTidalv3 models. We note
the very small mismatches, with uz = 3.608 x 107, indicat-
ing that the waveforms behave very similarly to each other. In
general, we find very small mismatches for relatively low
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FIG. 13. Mismatch Comparisons of NRTidalv3 with other tidal waveform models for nonspinning configurations. Each comparison
with either TEOBResumS or SEOBNRv4T contains 4000 random configurations of mass M, z = [0.5,3.0] and tidal deformability
Ay p =[0,5000]. The rest of the comparisons are done with A4 g = 20000. For each subfigure we include a color bar indicating the
values of the mismatches. Note that the maximum value in the color bar for IMRPhenomXAS NRTidalv3 vs SEOBNRV5
ROM_NRTidalv3 is different from the rest of the subfigures due to the NRTidalv3 models yielding very small mismatches with
respect to each other.

masses and low-mass ratios, with the largest mismatches
occurring at higher masses (M, g 2 2.0M ) and high-mass
ratios (¢ 2 1.5). Large mismatches also occur for large tidal
deformabilities [A4 5 = O(10%)]. For all comparisons in the

2. Aligned-spin setups

For the aligned-spin configurations, we compute the
mismatches between two NRTidalwv3 variants,
IMRPhenomXAS NRTidalv3 and SEOBNRv5 ROM

nonspinning case (except IMRPhenomXAS NRTidalv3
vs SEOBNRv5 ROM NRTidalv3) up = O(107%) and
max(F) = O(1072) (see Table VI).

NRTidalv3 and these NRTidalv3 variants against
TEOBResumS and SEOBNRvV4T. In addition to the
4000 random configurations of the masses and tidal
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TABLE VL

The mean mismatch pp and maximum mismatch max (F) for various waveform model comparisons

for the nonspinning, aligned-spin, and precessing configurations. A ‘=’ symbol indicates that the mismatches were

not calculated between the two waveform models.

Nonspinning case

IMRPhenomXAS NRTidalv3

SEOBNRv5 ROM NRTidalv3

IMRPhenomXAS NRTidalv3 U 3.608 x 107*
max(F) 0.005032
SEOBNRv5 ROM NRTidalv3 UF 3.608 x 104
max(F) 0.005032
TEOBResumS Up 0.004238 0.004736
max(F) 0.02527 0.02648
IMRPhenomXAS NRTidalv2 UF 0.004279
max(F) 0.02804
SEOBNRv5_ ROM NRTidalv2 Ui 0.006038
max(F) 0.03243
SEOBNRVAT Up 0.005874 0.006729
max (F) 0.03282 0.03415
Aligned spin case
TEOBResumsS SEOBNRv4T
IMRPhenomXAS NRTidalv3 Ui 0.005577 0.01456
max(F) 0.06703 0.1713
SEOBNRv5_ ROM NRTidalv3 UE 0.006278 0.01454
max(F) 0.06221 0.1708
Precessing case
IMRPhenomXP NRTidalv3
IMRPhenomPv2 NRTidalv2 Up 0.0056560
max(F) 0.08585

deformabilities used in the nonspinning case, that we
generated for the nonspinning case, we also generate
4000 random aligned spins y4p = [—0.5,0.5]. In the
mismatch scatter plots, we plot the masses, the tidal
deformabilities, and the aligned-spin components in the
x —y plane, and the mismatches in the color bar (see
Fig. 14). When the NRTidalv3 variants are compared
against TEOBResumsS, large tidal deformabilities [A =
O(10%)], mass-ratios (g 2 1.5), and masses (M4 p 2 2.0)
result to large mismatches. In general, comparisons with
SEOBNRvV4T yield on average larger mismatches than that
with TEOBResumS (see Table VI). The mismatches are
largest [O(107")] for the configurations with very high spin
magnitudes [y, | = 0.4.

3. Precessing setups

For the precessing configurations, we compare
IMRPhenomXP_NRTidalv3 and IMRPhenomPv2
NRTidalv2 [60,95]. Aside from the randomly generated

masses and tidal deformabilities used in the nonspinning
and aligned-spin cases, we also generate 4000 random
values of the x, y, z components of the spin, y,% =
[—0.5,0.5]. Here, for the spins, we plot in Fig. 15 on the
x —y plane the effective spin precession y, against the
effective aligned spin y.g, where

S
=—F_, (49)
K My

Xp

where S, is the average magnitude of the spins,

S, = max(K,Ss 1, KpSp1), (50)
with K, =2+ 3/(2¢q) (with M, > Mpg), and S, | is the
magnitude of the in-plane spin for body A [96]. Meanwhile,
the effective aligned spin is given by

(51)

Xett = Mpy, +Mpyp,
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My Ay XA

FIG. 14. Mismatch Comparisons of NRTidalv3 with other tidal waveform models for aligned-spin configurations. Each subfigure
has 4000 random configurations of mass M, » = [1.0,3.0], tidal deformability A, z = [0, 5000] and spin y, = [-0.5,0.5]. We also
put the mismatches with NRTidalv2 for comparison. For each subfigure we include a color bar indicating the values of the
mismatches.

where my 5 = (1/2)(1 £+v/1 —4v). From Fig. 15, we For all the configurations discussed above, we calculate
observe laige mismatches [((1072)] for configurations  the mean mismatch 7 and maximum mismatch max(F)
with large masses (M, g 2 2.5M ), large tidal deformabil-  for all waveform comparisons done. The results are shown
ities [Aqp 2 O(10)], or large y, and |y| (20.4). in Table VL.
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IMRPhenomXP_NRTidalv3 vs IMRPhenomPv2_NRTidalv2
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FIG. 15. Mismatches for IMRPhenomXP NRTidalwv3 vs
IMRPhenomPv2 NRTidalv2 for precessing configurations.
For this comparison, we generate 4000 random samples with
mass M,z = [0.5,3.0], tidal deformabilities A4 5 = [0,20000],
and spins ;s = [—0.5,0.5]. For the spins, we plot the effective
spin precession y, against the effective aligned spin y.q;. We
include a colorbar indicating the values of the mismatches.

VI. PARAMETER ESTIMATION

Finally, to test the applicability of the developed
NRTidalv3 models, we will reanalyze the two BNS
detections GW170817 [2] and GW190425 [5]. For this
purpose, we utilize parallel BILBY [97,98], which performs
GW parameter estimation using a parallelized nested sampler
named DYNESTY [99]. Parallel BILBY uses Bayes’ theorem,

L(d|0, ”)p(0|H)
E(dH) ~

P(6

d,H) = (52)

where P(0|d,’H) is the posterior probability distribution
of the parameters @ given some data d (which consists the

waveform) and hypothesis H, p(6|H) is the prior probability
distribution, and E(d|H) is the evidence, serving
as normalization constant to P(6|d,H). Meanwhile,
L(d|6,H) is the likelihood of obtaining the data d given
that the parameters 6 are under the hypothesis . For further
details, we refer to Refs. [97,100,101]. In our study, we
use GW170817 and GW190425 as our GW events, and we
use the following waveform models: IMRPhenomXP
NRTidalv3, IMRPhenomPv2 NRTidalv2, and
IMRPhenomXP NRTidalv2, and also compare their
results with each other. We also use low-spin and high-
spin priors for both GW events following the standard
LIGO Scientific-, Virgo, KAGRA Collaboration (LVK)
analyses [2,5,10,23,100,101].

A. GW170817

We show the results of the inferred marginalized 1D
and 2D posterior probability distribution of a selection of
source parameters for GW170817 in Fig. 16, for a low-spin
prior with y < 0.05. In this figure, we show the individual
masses of the stars M, p, the luminosity distance D in Mpc,
and the inclination angle i,. We also include here dimen-
sionless tidal deformability defined in terms of the indi-
vidual masses and tidal deformabilities of the stars [10],

% _ 16 (M + 12Mp) ML + (Mg + 12M,) M Ay
13 (M4 + Mpg)? '

(53)

From Fig. 16, we note that the performance of IMR-
PhenomXP_ NRTidalv3 in terms of the inferred param-
eters is consistent with the results of IMRPhenomPv2
NRTidalv2 [23]. The main difference is the slightly
tighter constraint of ITMRPhenomXP_NRTidalv3 for A
compared to the other models (which are based on
NRTidalv?2). This is due to the reduction of the secondary
peak that NRTidalv2 models show at higher A.

Finally, we investigate the spin constraints of
IMRPhenomXP NRTidalv3 on GW170817 by plotting
the inferred spin component magnitudes and orientation (in
terms of tilt angles). A tilt angle of 0° means that the spin
components are aligned with the orbital angular momentum
L. The results are shown in Fig. 17, where the left hemi-
sphere is for y; and the right hemisphere corresponds to y,.
We note that large negative components and antialigned
spins are ruled out, which is consistent with previous studies
using IMRPhenomPv2 NRTidalwv2 [23].

For the corresponding parameter estimation for the high-
spin prior (y < 0.5), we refer to Appendix C.

B. GW190425

The results for the marginalized posterior distributions
for GW190425 can be found in Fig. 18, where (as in the
case for GW170817), we see a slightly tighter constraint
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FIG. 16. The marginalized 1D and 2D posterior probability distributions for selected parameters of GW170817, obtained with
IMRPhenomXP_ NRTidalv3 (black), IMRPhenomPv2 NRTidalv2 (blue), and IMRPhenomXP NRTidalv2 (orange). The
parameters shown here are the individual star masses M 4 g, binary tidal deformability A, luminosity distance D, and inclination angle z.
The 68% and 90% confidence intervals are indicated by contours for the 2D posterior plots, while vertical lines in the 1D plots indicate
90% confidence interval. We note a narrow constraint on the tidal deformability for IMRPhenomXP_NRTidalv3 compared to the

other models, due to the updated tidal information that was used.

180° 1
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FIG. 17. Inferred spin parameters for GW170817 from a low-
spin prior (y < 0.05) using IMRPhenomXP_NRTidalv3. Plot-
ted here are the probability densities for the dimensionless spin
components y; (left hemisphere) and y, (right hemisphere)
relative to the orbital angular momentum L and tilt angles (a
tilt angle 0° means that the spin is aligned with the L). The plot
was done using a reference frequency of 20 Hz.

on the tidal deformability A from IMRPhenomxP
NRTidalv3, than the other waveform models.
However, all results are consistent between the different
GW models.

Finally, the spin magnitudes and orientation inferred
for GW190425 using IMRPhenomXP NRTidalv3 in
Fig. 19 shows that negative values of the spin component
magnitudes are heavily disfavored, as well as orienta-
tion greater than 90°. The corresponding parameter
estimation for the high-spin prior (y <0.5) is found
in Appendix C.

C. Performance of NRTidalv3

To  further investigate the performance of
IMRPhenomXP_ NRTidalv3 we plot the posterior prob-
ability distribution of the natural logarithm of its likelihood
(also known as the log-likelihood), In £, and compare it
with the other two waveform models, as shown in the
top panel of Fig. 20. We note that for GW170817, the In £
of IMRPhenomXP NRTidalv3 is generally shifted
towards slightly larger values when compared to that of
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FIG. 18.

The marginalized 1D and 2D posterior probability distributions for selected parameters of GW190425, obtained with

IMRPhenomXP_ NRTidalv3 (black), IMRPhenomPv2 NRTidalv2 (blue), and IMRPhenomXP NRTidalv2 (orange). The
parameters shown here are the individual star masses M 4 g, binary tidal deformability A, luminosity distance D, and inclination angle z.
The 68% and 90% confidence intervals are indicated by contours for the 2D posterior plots, while vertical lines in the 1D plots indicate
90% confidence interval. As with GW170817, note a narrow constraint on the tidal deformability for IMRPhenomXP_NRTidalv3
compared to the other models, due to the updated tidal information that was used.
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FIG. 19. Inferred spin parameters for GW190425 from a low-
spin prior (y < 0.05) using IMRPhenomXP_NRTidalv3. Plot-
ted here are the probability densities for the dimensionless spin
components y; (left hemisphere) and y, (right hemisphere)
relative to the orbital angular momentum L and tilt angles
(i.e., a tilt angle 0° means that the spin is aligned with the L).
The plot was done at a reference frequency of 20 Hz.

IMRPhenomPv2 NRTidalv2 and IMRPhenomXP
NRTidalv2. In addition, we compute the Bayes factors
(which is the ratio of the evidences or posterior proba-
bilities) with respect to the null hypothesis of a non-
detection and find IMRPhenomXP NRTidalwv3 has
In B =526.726 + 0.085 which is larger than that of
IMRPhenomPv2 NRTidalv2 (InB=526.64710.084)
and IMRPhenomXP NRTidalv2 (InB = 526.668 +
0.079). Although these numbers might indicate a slight
preference for IMRPhenomXP NRTidalv3, they are not
statistically significant.

Similar to GW170817, we also present the log-like-
lihood for GW190425 in the bottom panel of Fig. 20. As
before, we find slightly larger In £ for IMRPhenomXP
NRTidalv3, and at the same time Bayes Factors of
IMRPhenomXP_NRTidalv3 InB = 53.849 £ 0.079,
which is larger than that of IMRPhenomPv2 NR-
Tidalv2 (In B = 53.756 £ 0.079) and IMRPhenomXP__
NRTidalv2 (InB =53.766 £0.079), though with
overlapping uncertainties and not being statistically
significant.
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FIG. 20. The distribution of the log-likelihood InL for
GW170817 (top) and GW 190425 (bottom). The vertical lines
indicate 90% confidence intervals for the models. We note the
shifting of the distribution using IMRPhenomXP_ NRTidalv3
towards larger In L.

VII. CONCLUSIONS AND OUTLOOK

A. Summary

In this work, we introduced NRTidalv3 as a new
description of the tidal phase contribution to the total GW
phase of BNS systems. This model improves upon the
previous version (NRTidalv2) by employing a larger set
of NR waveforms across a wide range of tidal deform-
abilities with mass ratios up to ¢ = 2.0. To construct the
model, we employed a representation of the frequency-
domain, dynamical enhancement factor for the Love
number, as well as a Padé approximant, which imposes
additional constraints pertaining to the masses and tidal
deformabilities of the component stars.

The model was then augmented onto existing BBH base-
line models in LALSuite (IMRPhenomD, IMRPhenom-
XAS, IMRPhenomXP, and SEOBNRv5 ROM). To test the
performance of NRTidalv3 we calculated its dephasing
relative to existing NR waveforms and found overall con-
sistency between NRTidalwv3 with respect to the uncertain-
ties in the NR waveforms and with respect to other waveform
models. The computed mismatches between NRTidalv3
and NR waveforms, as well as NR hybrids, were smaller than
for the previously constructed model NRTidalv2 [60]. With
respect to other tidal waveform models, we observe the largest

mismatches for high masses, mass ratios, tidal deformabil-
ities, and spin magnitudes. However, we find that overall
NRTidalv3 can be employed for masses M, € (0.5,
3.0]M, dimensionless spins with magnitude below
lxapl <0.5, and for dimensionless tidal deformalities
Ay 5 €[0,20000].

To finalize our investigations, we performed parameter
estimation analyses for the GW events GW170817
and GW190425 using IMRPhenomXP NRTidalv3,
IMRPhenomPv2 NRTidalv2, and IMRPhenomXP
NRTidalv2. We find a slightly tighter constraint on the
tidal deformability A for NRTidalv3 than NRTidalv2.
For both events, the NRTidalv3 model displays a slightly
higher log Bayes factor, but the difference is too small to be
of statistical significance. In general, the performance of
NRTidalv3 is consistent with previous analyses done by
LVK on these GW events [23,101].

B. Outlook

A suitable extension to NRTidalv3 would be the
inclusion of higher-order modes since NRTidalwv3
only includes the (2,2)-mode in its tidal phase description.
It has recently been shown that the higher-order modes
for BNS can be rescaled with respect to the (2,2)-mode, in
the same manner as found on the BBH waveform phase
contributions of higher-modes [32]. Moreover, the inclu-
sion of higher-order spin contributions to the BBH baseline
phase can also be investigated. Aligned with the inclusion
of higher modes in NRTidalv3 models would be the
extension of existing BHNS models such as IMRPhenom-
NSBH [102] or SEOBNRv4 ROM NRTidalv2 NSBH
[103] with NRTidalv3 phase contributions.

Another possible extension of the model would be a
generalization of the frequency dependence of the Love
numbers to be able to set the fundamental f-mode
frequency fo, as a free parameter. In the current imple-
mentation, this cannot be straightforwardly done, as the
time-domain effective enhancement factor k5 (and sub-
sequently the frequency-domain k§) depends on the
quasiuniversal relation [Eq. (14)] between f, and A,.

Finally, other NR waveforms may also be added in a
future version of the model, such as BNS and/or NSBH
waveforms with [104] and without [105] subsolar-mass
components, as well as waveforms whose NS have more
exotic EOS. This will allow the model to accommodate an
even wider range of neutron star properties and to constrain
these EOSs with GW observations.
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APPENDIX A: CONFIGURATIONS OF THE NR
WAVEFORMS USED IN NRTIDALV3

We present in Table VII the configurations of all the 55 NR
waveforms from SACRA [28,29,72] and CoRe (using the
BAM code) [31-33] that were used in the calibration of
NRTidalv3. We include in the table the individual masses

Properties of the 55 NR waveforms used in the calibration of NRTidalv3. The first 46 waveforms are from SACRA

[28,29,72], while the last nine are from the CoRe database simulated with the BAM code [31-33]. For each waveform, we indicate its
EOS, the masses M, z(M,) of the individual bodies, the total mass M (M), the mass ratio ¢ = M /Mp(M, > Mp), the dimensionless
tidal deformabilities A4 g, effective tidal deformability A, and the radii R, 5 [km].

NR Waveform name EOS M, M q Ay Ap A R, Ry

SACRA:15H_135_135_00155_182_135 15H .35 1.35 270  1.00 1211 1211 1211 13.69  13.69
SACRA:125H_135_135_00155_182_135 125H .35 1.35 270 1.00 863 863 863 1297 1297
SACRA:H_135_135_00155_182_135 H .35 1.35 270 1.00 607 607 607 1227  12.27
SACRA:HB_135_135_00155_182_135 HB 1.35 .35 270 1.00 422 422 422 11.61 11.61
SACRA:B_135_135_00155_182_135 B 135 135 270  1.00 289 289 289 1096  10.96
SACRA:15H_125_146_00155_182_135 15H 146 125 271 1.17 760 1871 1201 13.72  13.65
SACRA:125H_125_146_00155_182_135 125H 146 125 271 1.17 535 1351 858 1299 1294
SACRA:H_125_146_00155_182_135 H 146 125 271 1.17 369 966 605  12.18  12.26
SACRA:HB_125_146_00155_182_135 HB 146 125 271 1.17 252 684 423 1159  11.61
SACRA:B_125_146_00155_182_135 B 146 125 271 1.17 168 477 290 1092  10.98
SACRA:15H_121_151_00155_182_135 15H 1.51 121 272 125 625 2238 1197 1373  13.63
SACRA:125H_121_151_00155_182_135 125H 1.51 121 272 1.25 435 1621 855 1298 1293
SACRA:H_121_151_00155_182_135 H 1.51 121 272 125 298 1163 604 1226 1225
SACRA:HB_121_151_00155_182_135 HB 1.51 121 272 125 200 827 421 11.57  11.60
SACRA:B_121_151_00155_182_135 B 1.51 272 1.25 131 581 289  10.89  10.98
SACRA:15H_118_155_00155_182_135 15H .55 118 273 131 530 2575 1192 13774 13.62
SACRA:125H_118_155_00155_182_135 125H .55 118 273 131 366 1875 853 1298 1292
SACRA:H_118_155_00155_182_135 H 1.5 118 273 131 249 1354 605 1226  12.24
SACRA:HB_118_155_00155_182_135 HB .55 118 273  1.31 165 966 422 1155  11.60
SACRA:B_118_155_00155_182_135 B .55 118 273  1.31 107 681 291 10.87  10.98
SACRA:15H_117_156_00155_182_135 15H 1.56 1.17 273 1.33 509 2692 1196 13774  13.61
SACRA:125H_117_156_00155_182_135 125H 1.56  1.17 273 1.33 350 1963 856 1298 12091
SACRA:H_117_156_00155_182_135 H 1.56  1.17 273 133 238 1415 607 1225 12.24
SACRA:HB_117_156_00155_182_135 HB .56  1.17 273  1.33 157 1013 424 1155  11.60
SACRA:B_117_156_00155_182_135 B .56  1.17 273  1.33 101 719 293 10.86  10.98
SACRA:15H_116_158_00155_182_135 15H 1.58 1.16 274 136 465 2863 1189  13.73  13.60
SACRA:125H_116_158_00155_182_135 125H 1.58 .16 274 136 319 2085 851 12.98 12.90
SACRA:H_116_158_00155_182_135 H 1.58  1.16 274 136 215 1506 603 1225 1223
SACRA:HB_116_158_00155_182_135 HB 1.58  1.16 274 136 142 1079 423 1153 11.59
SACRA:B_116_158_00155_182_135 B 1.58 1.16 274 136 91 765 292 10.84  11.98
SACRA:15H_125_125_0015_182_135 15H 125 125 250  1.00 1875 1875 1875  13.65 13.65
SACRA:125H_125_125_0015_182_135 125H 125 125 250 1.00 1352 1352 1352 1294 1294
SACRA:H_125_125_0015_182_135 H 1.25 125 250  1.00 966 966 966 1226  12.26
SACRA:HB_125_125_0015_182_135 HB 1.25 125 250 1.00 683 683 683 11.61 11.61
SACRA:B_125_125_0015_182_135 B 1.25 125 250 1.00 476 476 476 1098  10.98

(Table continued)
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TABLE VII. (Continued)

NR Waveform name EOS M, M q Ay Ap A R, Ry

SACRA:15H_112_140_0015_182_135 15H 140 1.12 252 125 975 3411 1838  13.71 13.58
SACRA:125H_112_140_0015_182_135 125H 140 1.12 252 125 693 2490 1329 1298  12.89
SACRA:H_112_140_0015_182_135 H 140 1.12 252 125 484 1812 953 1228 1223
SACRA:HB_112_140_0015_182_135 HB 140 112 252 125 333 1304 675 11.60  11.59
SACRA:B_112_140_0015_182_135 B 140 1.12 252 125 225 933 474 1095  10.97
SACRA:15H_107_146_0015_182_135 15H 146 1.07 253 136 760 4361 1848  13.72  13.54
SACRA:125H_107_146_0015_182_135 125H 146 1.07 253 136 535 3196 1337 1299 12.86
SACRA:H_107_146_0015_182_135 H 146 1.07 253 136 369 2329 959 1218 1222
SACRA:HB_107_146_0015_182_135 HB 146 1.07 253 136 252 1695 685 11.59  11.60
SACRA:B_107_146_0015_182_135 B 146 1.07 253 1.36 168 1216 481 1092 10.97
SACRA:SFHo_135_135_00155_182_135  SFHo .35 1.35 270  1.00 460 460 460 1191 11.91
CoRe:BAM:0137 SLy 1.50 1.20 270 1.25 191 812 409 1142 1146
CoRe:BAM:0136 SLy 1.62 1.08 270 1.50 108 1503 453 1134 1143
CoRe:BAM:0131 SLy .72 098 270 175 66 2557 504 1127 1140
CoRe:BAM:0130 SLy 1.80 090 270  2.00 43 4088 566  11.14  11.36
CoRe:BAM:0095 SLy 1.35 135 270 1.00 390 390 390 1146  11.46
CoRe:BAM:0097 SLy .35 1.35 270 1.00 390 390 390 1146  11.46
CoRe:BAM:0037 H4 .37 1.37 274  1.00 1006 1006 1006  13.53  13.53
CoRe:BAM:0001 2B .35 1.35 270  1.00 127 127 127 9.72 9.72
CoRe:BAM:0064 MSIb 135 1.35 270 1.00 1531 1532 1532 14.02 14.02

of the stars M 4 3(M,), the total mass M (M), mass ratio g,
dimensionless tidal deformabilities A4 p, and radii R4 p in
km. The radii data for the SACRA waveforms were adapted
from Refs. [28,29,72], while the radii for the CORE (BAM)
waveforms were computed using the adiabatic Love number
and tidal deformability, i.e. from A= (2/3)k,R>/M°.

APPENDIX B: COMPARISON BETWEEN THE

NUMERICALLY COMPUTED k' AND ngrfep

We show here a comparison between the frequency-
domain effective enhancement factor kST numerically

[ 15H — SLy Y ]
14— 1250 —— H4 ) B

MS1b

FIG. 21. Top: The k5T, plotted on top of the numerically
calculated kS, color-coded according to EOS. Bottom: Fractional

differences between the numerical calculation and the fit.

calculated from Eq. (25) and the effective representation

ks, in Eq. (27). The results are shown in Fig. 21. We also

show the relative error between k$™ and k§T . The fitting

formula satisfies the numerically calculated ST, with a
maximum (deviation) error of 1.8% and mean error
of 0.2%.

APPENDIX C: PARAMETER ESTIMATION
FOR HIGH-SPIN PRIORS

We present here the results for the parameter estimation
runs for GW170817 and GW190425, as was done in
Sec. VI, but this time, using high-spin priors. For both
events, we use a spin prior of up to y < 0.50. We do not
employ spins up to 0.89 as done in some LVK studies,
given that this spin is well above the breakup spin of
neutron stars and is unrealistically large for BNS systems:
(a) GWI70817. The inferred properties of GW170817 with
a high-spin prior, together with the marginalized 1D and
2D posterior distributions are shown in Fig. 22. As with
the low-spin prior case, the result is consistent with the
other waveform models and with previous results [23],
and we observe a slightly narrow constraint for IMR -
PhenomXP_ NRTidalv3 in the tidal deformability A.
As for the inferred spin parameters, Fig. 23 shows that
relatively large components of the spin which are
aligned or antialigned with the orbital angular momen-
tum L are heavily disfavored, and constraints are placed
on the in-plane spin components.

(b) GWI190425. We show inferred properties of
GW190425 with a high-spin prior, together with the
marginalized 1D and 2D posterior distributions in
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FIG. 22. 'The marginalized 1D and 2D posterior probability distributions for selected parameters of GW 170817, with a high-spin prior
(r £0.5) obtained with IMRPhenomXP NRTidalv3 (black), IMRPhenomPv2 NRTidalv2 (blue), and IMRPhenomXP
NRTidalv2 (orange). The parameters shown here are the individual star masses M, g, binary tidal deformability A, luminosity
distance D, and inclination angle #,. The 68% and 90% confidence intervals are indicated by contours for the 2D posterior plots, while
vertical lines in the 1D plots indicate 90% confidence interval. We note a narrow constraint on the tidal deformability for
IMRPhenomXP NRTidalwv3 compared to the other models, due to the updated tidal information that was used.
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FIG. 23. Inferred spin parameters for GW170817 from a high-spin prior (y < 0.5) using IMRPhenomXP_NRTidalv3. Plotted here
are the probability densities for the dimensionless spin components y; (left hemisphere) and y, (right hemisphere) relative to the orbital
angular momentum L and tilt angles (i.e., a tilt angle 0° means that the spin is aligned with the L). The plot was done at a reference
frequency of 20 Hz.
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GW190425, high-spin prior
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FIG. 24. The marginalized 1D and 2D posterior probability distributions for selected parameters of GW190425, obtained with
IMRPhenomXP_ NRTidalwv3 (black), IMRPhenomPv2 NRTidalv2 (blue), and IMRPhenomXP NRTidalv2 (orange), for a
high-spin prior (y < 0.50). The parameters shown here are the individual star masses M, g, binary tidal deformability A, luminosity
distance D, and inclination angle 1y. The 68% and 90% confidence intervals are indicated by contours for the 2D posterior plots, while
vertical lines in the 1D plots indicate 90% confidence interval. We note a narrow constraint on the tidal deformability for
IMRPhenomXP NRTidalwv3 compared to the other models, due to the updated tidal information that was used.
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FIG. 25. Inferred spin parameters for GW 190425 from a high-spin prior (y < 0.50) using IMRPhenomXP_NRTidalv3. Plotted here
are the probability densities for the dimensionless spin components y; (left hemisphere) and y, (right hemisphere) relative to the orbital
angular momentum L and tilt angles (i.e., a tilt angle 0° means that the spin is aligned with the L). The plot was done at a reference
frequency of 20 Hz.
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FIG. 26. The distribution of the log-likelihood In £ for GW170817 (top) and GW 190425 (bottom) with high-spin priors (y < 0.5).
The vertical lines indicate 90% confidence intervals for the models. We note the shifting of the distribution using IMRPhenomXP_
NRTidalv3 towards larger In L.

(©)

Fig. 24. As with the low-spin prior case, the result is
consistent with the other waveform models, and we
observe a narrower constraint for IMRPhenomXP
NRTidalv3 in the tidal deformability A. Fig. 25
shows similar behavior as in Fig. 23 such that
relatively large components of the spin which are
aligned or antialigned with the orbital angular mo-
mentum L are heavily disfavored, and constraints are
placed on the in-plane spin components [5].

Performance. Finally, the posterior probability distri-
bution of the log likelihood In £ of the three models
used with GW170817 and GW190425 and shown in

Fig. 26. We note that for both GW events, the In £
values for IMRPhenomXP_NRTidalv3 are shifted
towards larger values relative to the other two models.
For GW170817, we find In B = 525.114 £ 0.091 with
IMRPhenomXP NRTidalv3, InB=524.926=+
0.090 with IMRPhenomPv2 NRTidalv2, and
InB =525.131 £0.090 with IMRPhenomXP_NR-
Tidalv2. Meanwhile, for GW190425, we obtain
In B = 53.831 £ 0.078 with IMRPhenomXP_NRTi-
dalv3, InB=53.6304+0.077 with IMRPhe-
nomPv2 NRTidalv2, and InB = 53.632 + 0.077
with IMRPhenomXP NRTidalv2.
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