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Explicitly covariant analytical expressions are derived that describe the boundaries of shadows cast by
massive particles scattered by a gravitating object. This covers scenarios with particles having effectively
variable mass, such as photons in plasma, geodesics in higher dimensions, and particles interacting with a
scalar field. The derived formula takes advantage of recent advances in understanding the relationship
between slice-reducible Killing tensors and massive particle surfaces that generalize photon surfaces. The
formula allows us to obtain simple approximations of scaling as the particle energy changes. We illustrate
this structure using Kerr–Newman-Unti-Tomburino and Einstein-Maxwell-Dilaton black holes for both
massive particles and photons in plasma. The versatility of this framework extends beyond astrophysics and
has potential applications in analog models of gravity and condensed matter physics.
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I. INTRODUCTION

Spectacular success of the Event Horizon Telescope
(EHT) Collaboration in constructing shadows of super-
massive black holes in M87 and our galaxies [1,2]
stimulated rapid development in the theoretical description
of strong gravitation lensing in a closed vicinity of the event
horizon (for review see Refs. [3–11]). It was soon realized
that crucial role in understanding of the observed pictures is
played by the photon surfaces [12]—compact surfaces
outside the event horizon where the compact photon orbits
are located. It turned out that apart of the picture of these
surfaces as filled by compact null geodesics they can be
usefully presented as three-dimensional submanifolds in
spacetime satisfying the ubmilicity condition; proportion-
ality of the induced metric and the extrinsic curvature
tensor [13]. This purely geometric property can serve as a
constructive definition of photon surfaces instead of using
geodesic equations. Photon surfaces play crucial role in
analyzing the black hole uniqueness [14–17] and area
bounds [18–20].
In further investigations it was found that in spacetimes

with rotations such surfaces do not exist, but can be
generalized to partially umbilic surfaces filling the volumic
photon regions. A novel mathematical treatment was
created [21,22] presenting these surfaces as satisfying
umbilicity conditions for part of the tangent vectors
specified by a certainly defined impact parameter. With
varied impact parameter these surfaces fill the volumic

regions where bound photon orbits exist such as spherical
orbits in the Kerr metric (see Ref. [23] and references
therein). In turn, this foliation can be used to construct
Killing tensors of the second rank, which are reducible
in slices but nonreducible in the complete manifold [24].
The integrability conditions for the foliation, generating
(conformal) Killing tensors, guarantee that slices of the
foliation are photon surfaces. This construction general-
izes in a natural way to conformal Killing tensors [25] and
demonstrates a deep connection between the integrability
of geodesic equations [26,27] and characteristic photon
surfaces.
This framework was further generalized to massive

particle surfaces which have similar properties for timelike
geodesics corresponding to massive particles scattered by
black holes or other ultracompact objects [28,29]. Although
flows of massive particles are not directly observed from far
away (except probably for neutrino, whose detection is still
a big challenge) these surfaces can be observed indirectly
by their proper radiation which can be visible in some
cases. But more important application of massive particle
surfaces lies in relation to photons propagating in plasma
which may surround black holes. In inhomogeneous
plasma, in addition to gravitational deflection of light,
electromagnetic refraction is also present [30–33] which
can be incorporated into a combined lensing theory.
Photons in plasma have an effective mass related to
Langmiure plasma frequency depending on electron con-
centration and thus varying in space. Strong lensing, both
refractive and gravitational, of photons near black holes
surrounded by plasma was intensively studied recently
[30,34–40]. Separability of the corresponding equations of
motion in Kerr metric for certain plasma configurations was
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discussed in [41,42]. Thus, propagation of light in plasmic
media gives rise to concept of a particle with variable mass,
whose motion can be described by Polyakov action with
coordinate-dependent mass term. For such an action one
can further construct geometrical picture of massive char-
acteristic surfaces similarly to the case of particles with
constant mass. Formation of shadows of black holes
surrounded by plasma was recently discussed in a number
of papers [7,43,44].
The equation of motion for massive particles lacks the

conformal invariance of null orbits leading to some
complications. For instance, in stationary axisymmetric
spacetimes, photon trajectories are determined only by the
ratio of azimuthal angular momentum projection to energy
L=E, while trajectories of massive particles with mass m
are defined by two ratios; E=m and L=m. Taking a photo of
the optic shadow, each pixel corresponds to its own value of
L=E, but if the photo captures an image of the massive
shadow, each pixel corresponds to one-dimensional family
in the parametric space ðE=m;L=mÞ and there is no sharply
defined shadow boundary. One way to solve this issue is to
fix an integral of motion, e.g., the specific energy E=m, so
the photo captures the image of the shadow of particles
with a fixed specific energy E=m. This leads to a one-
dimensional family of shadows for all possible values of
E=m. Note that the observed particle energy depends on the
observer’s four-velocity. Particularly, in stationary axisym-
metric spacetime, if two observers move along two differ-
ent Killing vectors, the energy E1 observed by one of them
is equal to the linear combination of the energy E2 and
angular momentum projection L2 observed by the second
observer.
A family of spherical photon orbits with the same ratio

L=E forms a web aligning into a photon surface (occa-
sionally also called a fundamental photon surface, if each
value of L=E defines a distinct surface like in the Kerr
spacetime). The set of all such compact photon surfaces
forms a photon region. The photon region does not depend
on the observer’s four-velocity. However, distinctive fea-
ture appears for massive particles when we are attempting
to introduce a massive particle region similarly to the
photon region. Massive particle region does depend on the
observer, because it contains a set of massive particle
surfaces for a fixed specific energy E=m defined individu-
ally for each observer. All these observations serve as the
foundation for the development of the geometric theory of
massive shadows and regions presented in this paper.
We anticipate the application of our results not only in

astrophysical observations and theoretical gravity construc-
tions but also in experimental physics, particularly in analog
models of gravity and condensed matter physics. Analog
models of gravity involve the study of laboratory systems
described by equations similar to those in general relativity
[45]. These systems can encompass sound and fluid waves
[46,47], oscillating bubbles in sonoluminescence, photons in

media with variable refractive indices, Bose-Einstein con-
densates, helium superfluids, slow photons in fluids, and
more. Analog models are employed to analyze phenomena
such asHawking radiation [48–50], particle creation [51,52],
quasinormal modes [53], quantum particles [54], and quan-
tum fields [55,56] in curved spacetime. Our results can
facilitate the analysis of analog models of gravity, pushing
forward the understanding of the dynamics of waves through
tools like the Wentzel-Kramers-Brillouin approximation. In
the realm of condensedmatter physics, crystal defects can be
described using differential geometry [57,58] giving the
connection to the gravity. Moreover, in systems where the
potential energy is added to the (quasi)particle mass, they
both together can be combined into one effective variable
mass. Also, two-dimensional systems can incorporate non-
trivial geometry, contributing to the (quasi)particle dynamics
[59–61]. We see our tool in the application to studies how
particles like phonons, photons, or plasmons move near
crystal defects or in curved low-dimensional systems.
The article is organized as follows. In Sec. II, we

determine the observer’s tetrad and the main observable
quantities that affect the structure of the gravitational
shadow. We also recall the main features of the geometric
description of the massive particle surfaces/region and
slice-reducible Killing tensors. In Sec. III, we derive a
general, explicitly coordinate-independent expression for
the shadow boundaries, including the case of particles with
variable mass and photons in nonmagnetized pressureless
plasma. In particular, we demonstrate that essentially the
properties of the shadow are concentrated in so-called
shadow matrix. We also consider asymptotic limit of all
expressions to obtain compact formulas for the most
relevant observer distant from the black hole. In Sec. IV,
we provide all results in coordinates of separation variables
such as Boyer-Lindquist coordinates and consider general
metrics in the Benenti-Francaviglia form and others.
Finally, we illustrate the obtained expressions for the
shadow boundary using Kerr–Newman-Unti-Tomburino
(Kerr–NUT) and Einstein-Maxwell-Dilaton (EMD) black
hole models and compare them with well-known results to
confirm correctness and universality.

II. SETUP

We assume that the four-dimensional spacetime is sta-
tionary and axisymmetric with two Killing vectors κa

α,
where a ¼ 0, 1 is enumerating them index. One can
define the Gram matrix Gab ¼ κa

ακbα and its inverse
Gab ¼ ðGabÞ−1, imposing invertibility. We will use Gab

and Gab to lower and raise indices associated with the
Killing subspace. The set of vectors κaα can be understood
as a matrix projecting any vector to the subspace spanned
by Killing vectors. The signature of Gab assumed to be
(−þ) to span one timelike and one spacelike directions. For
example, it is common to use κ0

α
∂α ¼ ∂t and κ1

α
∂α ¼ ∂ϕ.

The Levi-Civita connection ∇α acts on subscripts and
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superscripts a, b as a partial derivative ∂α [25], since they
represent contractions with a Killing vector labeled by a or
b, but not tensor components.

A. Observables

We define a “stationary” [62] observer O with four-
velocity v̄α ¼ v̄aκ̄aα (Fig. 1). We will use bars for those
quantities, that are calculated at observer’s position.
Accordingly to the rule of lowering Killing indices, we
have

v̄a ¼ Ḡabv̄b ¼ κ̄aαv̄α: ð1Þ

If the observer follows the geodesic motion, v̄a are the
associated conserved quantities.
Now, consider a set of all possible geodesics γðsÞ

captured by the observer following the worldline para-
metrized with an affine parameter s such that s ¼ 0
corresponds to observer’s point O. The set of tangent
vectors to such geodesics can be parametrized as follows
[11,63–65]:

γ̇αð0Þ ¼ Nē0α þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 −m2

p
× ðsinΦ sinΘē1α þ cosΦ sinΘē2α þ cosΘē3αÞ;

ð2Þ

where γ̇αðsÞ denotes the derivative of γðsÞ with respect to
the affine parameter s,N is some function to be determined,
ēiα is an orthonormal tetrad. The term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 −m2

p
is

introduced in order to ensure the correct norm
γ̇αγ̇α ¼ −m2. The angles Φ∈ ½0; 2π� and Θ∈ ½0; π� encode
the azimuth and altitude of the observer’s celestial sphere,
respectively. On the celestial sphere, one can define the
zenith (Θ ¼ 0), the astronomical horizon (Θ ¼ π=2), and
the nadir (Θ ¼ π). Instead, stereographic projection

coordinates can be introduced by the following trans-
formation [11,63]

X ¼ −2 tanðΘ=2Þ sinΦ; Y ¼ −2 tanðΘ=2Þ cosΦ: ð3Þ

In what follows, we choose the first two vectors of the
orthonormal tetrad to lie in the Killing vector space as

ē0α ¼ κ̄a
αv̄a=v̄; ē1α ¼ κ̄a

ατ̄a=v̄; ð4Þ

where

τ̄a ≡ ḠabĒbcv̄c; v̄≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ḡabv̄av̄b

q
;

Ēab ≡ ð− det ḠabÞ1=2ϵab; ϵ01 ¼ −ϵ01 ¼ 1; ð5Þ

while the remaining two vectors ē2α, ē3α will be specified
soon. Indeed, the orthonormality properties ē0αē1α ¼ 0 and
−ē0αē0α ¼ ē1αē1α ¼ 1 follows from Eqs. (4) and (5).
As it was discussed above, due to the lack of conformal

invariance, we have to fix some parameters of the observ-
able particle flux. Namely, we define the local observable
energy E of the particles as

Ē≡ −v̄αγ̇αð0Þ: ð6Þ

This value Ē is the energy seen by an observer with the
four-velocity v̄α, and it is positive, Ē > 0, since the
tangential velocities of the particle and the observer
are future directed. One can define the energy globally
as E≡ −v̄aκaαγ̇αðsÞ, which is conserved along the geo-
desic motion, and coincides with the observable energy
Ejs¼0 ¼ Ē at the observer’s position. Of course, if we
considered the case of v̄α not along the Killing vectors, we
would not be able to introduce such a globally defined
conserved energy. Fixing the observable energy allows us
to construct images of shadows for massive particle fluxes
in a reasonable way from experimental perspectives. The
entire spectrum of energies will create superposition of
these individual images. Once we have fixed the energy, we
can determine the function N:

Ē ¼ −v̄αγ̇αð0Þ ¼ −Nv̄αv̄α=v̄ ¼ v̄N ⇒ N ¼ Ē=v̄: ð7Þ

The entire set of constants of motion associated with the
Killing vectors κaα that are conserved along the geodesics
can be obtained in the form [29],

qa≡κaαγ̇
αðsÞ¼ m

mE
v̄a=v̄þ

m
mE

sinΦsinΘ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

E

q
τ̄a=v̄;

mE≡ v̄m=Ē; ð8Þ

where we used Eq. (2) with Eq. (4), and we remind that
τ̄a ¼ Ḡabτ̄

b. Thus, for geodesics with a given observable
energy Ē for the given observer v̄a, we have obtained a

FIG. 1. Schematic representation of an observer orbiting a
black hole. The blue and red curves depict the geodesics
associated with the shadow and scattered particles, respectively.
The green curve represents the geodesic corresponding to the
boundary of the shadow, winding along the massive particle
surface. The inset schematically shows the Kerr shadow points
corresponding to each of these curves.
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family of conserved quantities parametrized by Φ, Θ. The
family is one-dimensional since the observable energy Ē is
already fixed, imposing a linear condition qav̄a ¼ −Ē.
Since, the particle’s four velocity is a timelike future-
directed vector, the following natural inequality on the
observable energy arises

0 ≤ mE ≤ 1 ⇔ Ē ≥ mv̄ ≥ 0: ð9Þ
The massm represents the rest energy of a particle in a static
asymptotic observer’s reference frame,while the quantitymv
represents the rest energy observed by a nonstatic or non-
asymptotic observer. Thus, condition (9) means that the
energy of the particle is greater than the rest energy with
respect to the observer’s reference frame. The parametermE,
contained in the range 0 ≤ mE ≤ 1, is convenient to describe
the entire energy spectrum.
In what follows, two special types of observers will be

important (defined up to some norm):
(i) Static v̄ast ∼ ð1; 0Þ;
(ii) Zero angular momentum observer (ZAMO) v̄aZAMO ∼

ðḠ11;−Ḡ01Þ.
For asymptotically flat spacetimes, ZAMO observer at the
asymptotically distant sphere approaches the static observer
v̄aZAMO → v̄ast since G01 ¼ Oð1=rÞ. However, as we will
show, terms of the order Oð1=rÞ can be important for the
shadow.

B. Massive particle surfaces

Similarly to the case of photons, Refs. [9,11,63–68], the
boundary of the massive particle shadow will be formed by
particles which are asymptotically tangent to the massive
particle surfaces with a compact spatial section. The formal
definition of massive particle surfaces is given in
Refs. [28,29] (also, see Ref. [69]). In simple words, a
hypersurfaceS is themassive particle surface if anyworldline
with a given set of conserved quantities qa that touches S (at
least at one point) belongs to S entirely. As shown in
Ref. [29], the second fundamental form (extrinsic curvature)
of massive particle surfaces for neutral particles with a set of
conserved quantities qa must satisfy the equation

χαβ ¼ χτðhαβ þHabκaακbβÞ; ð10Þ
where hαβ is the induced metric, χτ is an arbitrary function
andHab is an arbitrarymatrix restricted only by the following
constraint

Habqaqb ¼ m2; ð11Þ
and the following inequality for geodesic motion:

Gabqaqb þm2 ≤ 0; ð12Þ

and all points of the massive particle surface S must satisfy
this condition. As qa represents a geodesic path passing

through the observer’s point, it inherently satisfies the
inequalities at the observer’s point. The maximal connected
region containing the observation point is the observable
region [21] (see Ref. [39] for the case of photons in plasma).
The gravitational shadow can be formed only for those
particles that are in the observable region containing the
black hole’s event horizon or other trapping surface.
Otherwise, such geodesics can create only the relativistic
images [9,70] but not a shadow.
Of our greatest interest will be the axistationary massive

particle surfaces which are touched by all the Killing vector
fields κa

α, i.e., all Killing vectors κa
α are tangent to the

massive particle surface S. In this case, according toRef. [25]
the matrixHab is expressed in terms of the Gram matrix Gab

Hab ¼ −
1

2χτ
nβ∇βGab − Gab: ð13Þ

Wewill also consider only the massive particle surfaces with
a compact spatial section, just like in the case of fundamental
photon surfaces [21].
The family of conserved quantities qa defined in the

previous section corresponds to a family of massive particle
surfaces. We will call this family for all possible Φ and Θ
the massive particle region. In the case of photons, an
individual photon is emitted by some source, asymptoti-
cally approaches the corresponding photon surface and
moves away from it in the direction of the observer [11,66].
Similarly to the case of photons, scattering of massive
particles will occur on individual surfaces in the massive
particle region. Thus, this definition is key to the problem
of constructing the gravitational shadow and relativistic
images [9,70].

C. Killing tensors

In the general case, the problem of finding the massive
particle region is very nontrivial. However, it is signifi-
cantly simplified in the case of integrable systems [27,71].
Assume that there is an exact slice-reducible Killing tensor
in the spacetime, defined in Refs. [24,25]. Recall that
Killing tensor is called slice-reducible if there exists at least
one foliation of the spacetime such that tangent projections
in all slices are reducible. Although, slice-reducible Killing
tensors do not represent the most general Killing tensors,
they are very common among physical spacetimes. We give
here a general theorem about their form and necessary and
sufficient conditions for their existence [25]:
Theorem 2.1. Let the manifold M of dimension m be

foliated by slices S and contains a collection of n ≤ m − 2
Killing vector fields κaα tangent to the foliation slices S. Let
the Gram matrix Gab be nondegenerate, and the basis of
foliation slices be completed by the set ofm − n − 1 vectors
σαi orthogonal to Killing vectors (i.e., κaασiα ¼ 0). The unit
vector field nα is normal to slices S. If the second funda-
mental form of slices possesses the following form:
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χαβκa
ασβi ¼ 0; χαβσ

α
i σ

β
j ¼ χτhαβσαi σ

β
j ; ð14Þ

and the following integrability conditions are met

Dγðφχτ − φnα∇α lnφÞ ¼ 0; ð15aÞ

Dγ

�
1

2χτ
nα∇αGab þ Gab

�
¼ 0; ð15bÞ

Dγðχτφ3Þ ¼ 0; ð15cÞ

then, there is a slice-reducible Killing tensor in the manifold
M, which can be constructed as follows:

Step one: Obtain Ψ ¼ lnφ2 þ Ψ̃ from the equations

nα∇αΨ̃ ¼ 2ðχτ − nα∇α lnφÞ; DτΨ̃ ¼ 0: ð16Þ

Step two: Obtain α and γab from the equations

nα∇αα ¼ −2χeΨ; Dτα ¼ 0: ð17aÞ

γab ¼ eΨGab þ νab; nα∇αν
ab ¼ 0; Dτγ

ab ¼ 0:

ð17bÞ

Step three: Using the functions found in the previous
steps, construct the corresponding KT:

Kαβ ¼ αgαβ þ γabκaακbβ þ eΨnαnβ: ð18Þ

Here, Dα denotes the covariant derivative tangent to the
slices S, and φ is a lapse function obeying the equation
nλ∇λnβ ¼ −Dβ lnφ, more details can be found in Sec. II
from Ref. [25].
In Ref. [29], the slices generating the Killing tensors are

shown to be massive particle surface. Indeed, the second
integrability condition (15b) can be rewritten in the form
DαHab ¼ 0, i.e., the matrix Hab is constant in each slice
(Refs. [24,25]). Thus, if Eq. (11) has a real solution qa at
some point of the slice, then the part of this slice that
satisfies inequality (12) is automatically a massive particles
surface. Even more, this slice is shown to allow for a
continuous family of solutions qa instead of an isolated
solution (this case is called a glued surface [29]). If the
inequality is not satisfied, e.g., the solution is complex, then
the slice is not a massive particle surface.
In order to make massive particle surfaces a meaningful

tool for analyzing shadows, we assume the compactness of
their spatial section. Otherwise, if the massive particle
surface were not compact, the geodesic would have an
infinite volume of space to travel. To our knowledge, all
physically meaningful four-dimensional solutions that
possess a Killing tensor have two foliations with slices
satisfying the integrability conditions from the theorem—
the slices with conelike and spherelike spatial sections. In

this paper we use the spherelike slices because the spatial
section of the corresponding massive particle surfaces are
guaranteed to be compact. To be specific, we choose the
outer normal nα pointing to the infinity. As a result the
foliation slices can be seen as flowing out of the compact
source, filling the entire space (Fig. 2).
Now we can define the massive particle region. Unlike

the previous subsection, it will be more convenient for us to
parametrize the family not by Φ and Θ, but by the foliation
parameter Ω that generates the Killing tensor (e.g., for
many solutions, such a foliation parameter is just the
coordinate r in Boyer-Lindquist coordinates [11,66]).
This is motivated by the fact that in most cases the product
sinΦ sinΘ is expressed through some high-order polyno-
mials of the foliation parameter, which cannot be resolved
in the opposite direction in radicals [11].
Since the slices are massive particle surfaces they

obviously satisfy Eq. (11) for some qa. Keeping in mind
that using the equations for the slice-reducible tensor, we
can get an alternative representation for Hab [25]

Hab ¼ −
1

2χτ
nα∇αGab − Gab ¼ −

nα∇αðeΨGabÞ
nβ∇βeΨ

; ð19Þ

which allows us to rewrite Eq. (11) as

ðeΨGabÞ0qaqb þ ðeΨm2Þ0 ¼ 0; ð20Þ

where the prime 0 means the derivative with respect to the
foliation parameter φnα∇α. As in the case of photons, this
equation can be represented in the homogeneous form with
respect to the impact parameter vector ρa [24,25]

ðSabÞ0ρaρb ¼ 0; ð21Þ

where we have defined an object that will be called shadow
matrix:

Sab ≡ eΨðGab þm2
E · v̄av̄b=v̄2Þ; ð22Þ

and the original conserved quantities qa in (20) are
expressed through

FIG. 2. Schematic representation of a foliation by slices of the
spacetime. Slices fill the entire spacetime.
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qa ¼ −
mv̄
mE

· ρa=ðv̄bρbÞ: ð23Þ

Relation (23) is chosen in such a way that the identity
v̄aqa ¼ −Ē holds automatically. It is seen from Eq. (23),
that the impact parameter vector ρa has an arbitrary norm.
By choosing ρ0 ¼ −1, its second component becomes a
conventional impact parameter of a geodesic ρ1 ¼ −q1=q0.
According to Eq. (17b), the derivative along directions
tangent to the slices is also zero

Dγ½ðSabÞ0� ¼ 0: ð24Þ

Furthermore, comparing Eqs. (23) and (8) and contracting
with vector τ̄a, one will find the solution for sines:

sinΦ sinΘ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −m2
E

p · ðτ̄aρaÞ=ðρbv̄bÞ: ð25Þ

Obviously, Eq. (21) does not always have solutions which
also satisfies Eq. (12). Thus, some slices of the foliation
does not contain massive particle surfaces with a given
value of the observed energy Ē. The following existence
conditions can be identified. First, the matrix ðSabÞ0 must
be indefinite, that is, its determinant must be nonpositive
detfðSabÞ0g ≤ 0. The second condition follows from the
natural inequality j sinΦ sinΘj ≤ 1

ðτ̄aρaÞ2 ≤ ð1 −m2
EÞðv̄bρbÞ2: ð26Þ

The last condition follows from (12), which can be
rewritten as (assuming eΨ > 0)

Sabρaρb ≤ 0: ð27Þ

Summarizing, when a slice-reducible Killing tensor
exists, we have the following simple coordinate indepen-
dent recipe for constructing a massive particle region. For
each slice with compact spatial section on which the Killing
tensor is reducible, find the corresponding shadow matrix
Sab and ρa if the latter exists. Then, find the part of the slice
that satisfies the condition Sabρaρb ≤ 0. The union of all
such submanifolds of all slices constitutes the massive
particle region. This time the massive particle region is
parametrized by the foliation parameter Ω. In the case of
photons, it will exactly coincide with the well-known
photon region, Refs. [3,11,66,68].
The advantage over the classical approach of solving

geodesic equations for construction of massive particle
region is that we no longer need to go through the
procedure of solving geodesic equations by explicitly
selecting a suitable coordinate system at all. For example,
in the Kerr’s case we do not need to work in the Boyer-
Lindquist coordinate system (or any other coordinate
system that provides separability) to define the massive

particle region. The only job we have to do is to find slices
on which the Killing tensor becomes reducible. In the
general case, such slices may differ from the standard
surfaces r ¼ const. This can be particularly advantageous
in spacetimes where the coordinates that provide separation
of variables are unknown, or when the nonseparating
coordinates yield more concise expressions. The only
necessary and sufficient conditions that allow applying
the results of this paper are the integrability conditions (15)
along with (14).

III. MASSIVE PARTICLE SHADOWS

A. Basic definitions

Having defined the massive particle region, we can take
the final step towards obtaining a formula for the boundary of
the gravitational shadow, or at least the boundary of
relativistic images, in the vicinity of which high-order
relativistic images are located [9,70]. Just established rela-
tionship between geodesics that go through the observer O
with a fixed ρa and the corresponding massive particle
surfaceS canbe interpretedby considering the four following
cases, tracking the geodesics in the inverse direction (i.e.,
from the observer to the source) [9,11,66–68,72]:

(i) If a geodesic goes far away from the surface, it flies-
by the massive gravitating object with a small
distortion of its path (red curve in Fig. 1).

(ii) If a geodesic is about to touch the surface, it wraps
around the surface several times and fly away. This
corresponds to the occurrence of large deflection
angles and, accordingly, of the relativistic images of
different orders [9,34,70,72].

(iii) If a geodesic is infinitely close to touching the
surface, it wraps the surface an infinite number of
times (green curve in Fig. 1). It corresponds to the
boundary of the shadow or/and high-order relativ-
istic images.

(iv) If a geodesic intersects the surface, it falls inside the
surface and get trapped by the massive gravitating
object (blue curve in Fig. 1). As it will be mentioned
below, thismay be not fair for some objects like naked
singularities. In the case of regular blackholeswithout
exotic matter, all the geodesics that get inside the
surface are caught by the horizon forming a dark spot
—a gravitational shadow of the black hole.

If the scenario (iv) is realized, the boundary of the
gravitational shadow coincides with the boundary of
relativistic images described in the scenario (iii). This is
true if we assume that the geodesic approaching the object
closer and closer suffers a stronger gravitational attraction.
However, in the case of superextremal solutions, naked
singularities and wormholes, the scenario (iv) can fail. In
particular, geodesics can also turn back inside the massive
particle surfaces. In the latter case, light spots may be
observed inside the shadow or the shadow may disappear
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completely, but the boundary of the relativistic images
remains unchanged [64,72]. Nevertheless, the existence of
massive particle surface is not necessary for the formation
high-order relativistic images [73].
Of course, to determine the entire boundary of the

shadow, it is not enough to know the vector ρa.
Fortunately, the presence of the Killing tensor allows us
to establish another connection between the massive
particle surface and the observed parameters of the particle
through the conserved Carter’s constant [74–76]

C≡ Kαβγ̇
αðsÞγ̇βðsÞ ¼ −αm2 þ γabqaqb þ eΨðnαγ̇αðsÞÞ2;

ð28Þ

where we have applied Eq. (18) for slice-reducible Killing
tensors. By calculating this expression at the observation
point and at the arbitrary point of geodesic tangent to the
massive particle surface with a given set of conserved
quantities qa we get

− ᾱm2 þ γ̄abqaqb þ ðm=mEÞ2ð1 −m2
EÞeΨ̄cos2Θ

¼ −αm2 þ γabqaqb; ð29Þ

wherewe have chosen the tetrad vector ē3α ¼ −nα (sincewe
choose the outer normal vectors of the surface, observer’s
zenith points towards the black hole). Substituting explicitly
Eq. (23) gives the following equation:

ð1 −m2
EÞeΨ̄cos2Θ ¼ −ðα − ᾱÞm2

E þ v̄2ðγab − γ̄abÞ
· ρaρb=ðv̄cρcÞ2: ð30Þ

According to Ref. [25], matrix γab can be decomposed onto
the following parts:

γab ¼ eΨGab þ νab; ð31aÞ

nα∇αν
ab ¼ 0; ð31bÞ

Dτγ
ab ¼ 0: ð31cÞ

The condition (31c) states that γab is constant on the
surface. In particular, the expression (30) does not actually
depend on the point on the massive particle surface.
However, according to the condition (31b), the term νab

does not change along the integral curves of the normal
vector field nα. Thus, it is reasonable to evaluate the
expression on the surface at the point, which is connected
with the observer by the integral curve (Fig. 3). Though, it
may sound difficult for general foliations, in practice we
deal with foliations with slices defined by the constant
radius in Boyer-Lindquist coordinates [11], so two points
are connected by the integral curve along nα if they have the
same coordinates at their surfaces. So the following differ-
ence can be written as

ðγab − γ̄abÞρaρb ¼ ðeΨGab − eΨ̄ḠabÞρaρb; ð32Þ

where now the expressions without a bar must be evaluated
in the slice point which lies in the orbit of observer
positions generated by integral curve of normals nα (Fig. 3).
The sum αþ eΨ is constant along the integral curves

along nα either. To check this, we act on the sum with the
derivative along nα:

nα∇αðαþ eΨÞ ¼ −2χτeΨ þ eΨnα∇αΨ

¼ −2χτeΨ þ eΨ · ð2χτÞ ¼ 0; ð33Þ

where we take into account Eqs. (17a) and (16). This sum,
calculated at the observer’s position, ᾱþ eΨ̄, can be
compared with its value αþ eΨ at any other arbitrary point
along the integral curve along the normal vector nα:

αþ eΨ − ðᾱþ eΨ̄Þ ¼ 0 ⇒ α − ᾱ ¼ eΨ̄ − eΨ: ð34Þ

Substituting Eqs. (32) and (34) into Eq. (30), we get an
equivalent expression

ð1 −m2
EÞeΨ̄cos2Θ ¼ −ðeΨ̄ − eΨÞm2

E

þ v̄2ðeΨGab − eΨ̄ḠabÞ ρaρb
ðv̄cρcÞ2

¼ v̄2ðSab − S̄abÞ ρaρb
ðv̄cρcÞ2

; ð35Þ

where quantities with no bars are calculated at the point
lying at the same integral curve as the observer does. This
expression allows us to get cosΘ in terms of Ψ̄, Sab and ρa
(taken in observer’s point and the point on the massive
particle surface connected with the observer by the integral
normal curve). Collecting Eqs. (35) and (25) together gives
the final expressions for the shadow boundary in coordi-
nates ðΦ;ΘÞ

FIG. 3. Schematic representation of an integral curve along
normal vectors of slices from the observer to the massive particle
surface. In the general case, the integral curve may be not
straight line.
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cosΘ ¼ �
v̄e−Ψ̄=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSab − S̄abÞρaρb

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

E

p
· ðv̄cρcÞ

;

sinΦ · sinΘ ¼ −
ðτ̄aρaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −m2
E

p
· ðρbv̄bÞ

: ð36Þ

In terms of the stereographic projection coordinates ðX; YÞ,
the shadow boundary reads

X ¼ −
2B

1∓ A
; Y ¼ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2 − B2

p

1∓ A
;

A≡ j cosΘj; B≡ sinΦ · sinΘ: ð37Þ

The expression from the square root has a simple form

1 − A2 − B2 ¼ 1 −
v̄2e−Ψ̄ðSab − S̄abÞρaρb þ ðτ̄aρaÞ2

ð1 −m2
EÞ · ðv̄cρcÞ2

¼ −
v̄2e−Ψ̄Sabρaρb

ð1 −m2
EÞ · ðv̄cρcÞ2

; ð38Þ

where we have used the identity

S̄abρaρb ¼ −eΨ̄ð1 −m2
EÞ · ðv̄cρcÞ2=v̄2 þ eΨ̄ðτ̄aρaÞ2=v̄2;

ð39Þ

that follows from orthogonality of v̄a and τ̄c:

Ḡabρaρb ¼ −ðv̄aρaÞ2=v̄2 þ ðτ̄aρaÞ2=v̄2: ð40Þ

Thus, the final expression for the shadow boundary is

X ¼ 2τ̄aρaffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

E

p
· ρav̄a ∓ v̄e−Ψ̄=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSab − S̄abÞρaρb

q ;

ð41aÞ

Y ¼ � 2v̄e−Ψ̄=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Sabρaρb

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

E

p
· ρav̄a ∓ v̄e−Ψ̄=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSab − S̄abÞρaρb

q :

ð41bÞ

In Eq. (41), the shadow boundary is described para-
metrically by the foliation parameter. The foliation param-
eter takes all values corresponding to the massive particle
region. We will come back to the discussion of this result
after we generalize it to the case of variable mass.

B. Particles with variable mass and separability

It is known that photons in nonmagnetized pressureless
plasma acquire an effective description by the Hamiltonian
[41–43,63,65]:

H ¼ 1

2
ðgαβπαπβ þ ω2

pÞ; ð42Þ

whereωp is the plasma electron frequency which equals, up
to a scalar factor, the electron density. Plasma frequency ωp

in the Hamiltonian (42) can be interpreted as effective mass
m ¼ ωp of the photons. Since plasma generically is
inhomogeneous, the effective mass can vary in spacetime,
i.e., photons in plasma are described as particleswith variable
mass. Other geodesic systems with variable mass are
presented by particles interacting with the scalar field, dark
matter with time-dependent mass [77], or an effective
description of geodesics in higher dimensions (see
AppendixB inRef. [78] andRef. [79]).Unlike the previously
noted literature, instead of the Hamiltonian formalism, we
give preference to second-order equations of motion that are
closely related to the massive particle surfaces.
The action for particles with variable mass can be written

in a usual Polyakov form [77,80]:

S ¼ 1

2

Z
fσ−1gαβγ̇αγ̇β −m2σgds; ð43Þ

where σ is a Lagrange multiplier and the mass m is
considered to be some prescribed coordinate dependent
scalar function mðxÞ. The Hamiltonian for (43) reads

H ¼ σ

2
ðgαβπαπβ þm2Þ; πα ¼ σ−1gαβγ̇β: ð44Þ

Variation of the action with respect to σ gives the constraint

gαβγ̇αγ̇β ¼ −m2σ2: ð45Þ

The parametrization fixing σ ¼ 1 leads to the Hamiltonian
(42) and the geodesic equations with an effective gradient
force at the right-hand side:

γ̇α∇αγ̇
β ¼ −mgβλ∇λm; γ̇αγ̇α ¼ −m2: ð46Þ

This dynamical system, with similar equations in the flat
space, is considered in various sources, such as Ref. [81] or
lectures on wave propagation in an inhomogeneous plasma.
It is expected that the equilibrium plasma distribution in

a stationary axisymmetric gravitational field will inherit
these symmetries, so the corresponding mass distributions
will also be stationary and axisymmetric. A more subtle
question is whether the Killing tensor symmetry of space-
time will ensure the separability of the equations of motion
of a particle of variable mass. Particular mass distributions
that allow one to generalize the Carter constant were found
in the Kerr metric [41] and some more general metrics [42]
(see also [71,82]) using the Hamilton-Jacobi equation
in Boyer-Lindquist coordinates. Here we formulate a
coordinate-independent method for searching mass distri-
butions that ensure Killing tensor symmetries of the
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dynamics of variable mass particles. We do this general-
izing technique for slice-reducible exact and conformal
Killing tensors in suitably foliated spacetimes.
Basic constructions of the previous section and Ref. [29]

can be generalized to the case of the variable effective mass
in different ways, and the simplest one is to combine the
Weyl transformation of the metric tensor with the geodesic
reparametrization [41]. This will bring us back to the
case of constant mass and allow us to apply all previous
formulas without changes. Indeed, performing the Weyl
transformation g̃αβ ¼ e2ψgαβ supplemented by the mass
and the Lagrange multiplier redefinitions m̃ ¼ e−ψm, and
σ̃ ¼ e2ψσ brings the action to the form

S ¼ 1

2

Z
ðσ−1e−2ψ g̃αβγ̇αγ̇β −m2σÞds

¼ 1

2

Z
ðσ̃−1g̃αβγ̇αγ̇β − m̃2σ̃Þds: ð47Þ

We choose the transformation function ψ such that m̃ is
some constant (of the same sign as m), ψ ¼ lnðm=m̃Þ. The
parametrization choice σ̃ ¼ 1 results in the relation
between old and new geodesics ˙̃γα ¼ e−2ψ γ̇α. Then, the
equations of motion in the new frame read

˙̃γαe∇α
˙̃γβ ¼ 0; g̃αβ ˙̃γα ˙̃γβ ¼ −m̃2; ð48Þ

where e∇α is a Levi-Civita connection for the metric
tensor g̃αβ.
Thus, we have reduced the motion of particles with the

coordinate-dependent mass to the motion of constant mass
particles in the Weyl transformed metric. However, the new
metric g̃αβ may not have the same set of symmetries as the
original one. On one hand, we can require that the new
metric g̃αβ possesses the required symmetries independ-
ently, without any direct reference to the original metric
gαβ. On the other hand, if the original metric gαβ already
exhibits certain symmetries, the mass function mðxÞ must
somehow share these same symmetries. Therefore, for
correct application of the previously obtained results, it
is necessary to present a number of requirements on the
distribution of mass.
First, an arbitrary Weyl transformation ψ , preserves the

exact Killing vectors κaα if and only if κaα∇αψ ¼ 0 which
implies κaα∇αm ¼ 0. If the original metric is axistationary,
then the mass function mðxÞ must be axistationary too. In
this case, integrals of motion coincide

q̃a ¼ κa
αg̃αβ ˙̃γα ¼ κa

αgαβγ̇α ¼ qa: ð49Þ

Second, conformal Killing tensors are preserved by Weyl
transformations, but exact Killing tensors become con-
formal Ref. [25]. If we want the transformed metric g̃αβ to
posses an exact Killing tensor of rank two, then the original

one must posses at least a conformal Killing tensor of rank
two. Since we have used an assumption of slice-reducibility
of the Killing tensor for the shadow description, we have to
analyze the case of slice-reducible both conformal and
exact Killing tensors. To find general condition on Weyl
transformation that allows for a slice-reducible exact
Killing tensor, we write down the condition from Ref. [25]

Dγðχ̃τφ̃3Þ ¼ 0: ð50Þ

Substituting the quantities associated with the original
metric tensor and the Weyl transformation ψ ¼ lnm=m̃,
the condition will read:

Dγðχ̃τφ̃3Þ ¼ Dγðφ3e2ψðχτ þ nα∇αψÞÞ

¼ 1

2
Dγðφ3e−Ψnα∇αðeΨðm=m̃Þ2ÞÞ

¼ 1

2
Dγðφ2e−ΨÞðφnα∇αðeΨðm=m̃Þ2ÞÞ

þ 1

2
φ2e−ΨDγðφnα∇αðeΨðm=m̃Þ2ÞÞ;

In the first transition we used the following relations [25]:

φ̃ ¼ eψφ; χ̃τ ¼ eψ ðχ̃τ þ nα∇αψÞ; ð51Þ

while in the second transition we used the expression for ψ
and Eq. (16) which is fair for a conformal tensor as well
[25]. The first term is zeroDγðφ2e−ΨÞ ¼ φ2e−ΨfDγ lnφ2 −
DγΨg ¼ 0 due to Eq. (16) again. The remaining term gives
us a condition of the existence of an exact Killing tensor of
rank two:

Dγ½ðeΨm2Þ0� ¼ 0 or Dγ

h
m2φ3χτ þ

1

2
φ2ðm2Þ0

i
¼ 0:

ð52Þ

Since we assumed the existence of a slice-reducible
conformal Killing tensor in the original metric, the inte-
grability conditions (15a) and (15b) hold automatically.
Since we did not use the condition for the existence of an
exact tensor in the original metric, but only a conformal
one, we can consider the motion of photons in plasma and
particles of variable mass even for systems without an exact
tensor, if the distribution m2 has a suitable form. However,
if the original metric already has an exact Killing tensor, the
termDγðφ3χτÞ is zero, and the mass function must obey the
condition Dγðm2Þφ3χτ þDγðφ2ðm2Þ0Þ ¼ 0.
Generalization of Eq. (41) can be performed by replacing

all the quantities associated with the original spacetime
with the metric gαβ by the new quantities associated with
the transformed spacetime g̃αβ and expressing them back in
terms of the quantities with no tilde. Recall that according
to Ref. [25] the quantity eΨGab is invariant and
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G̃αβ ¼ e−2ψGαβ; ˜̄va ¼ v̄a; ˜̄v ¼ eψ̄ v̄;

˜̄τa ¼ τ̄a; ˜̄E ¼ Ē; m̃E ¼ m̄E; Ψ̃ ¼ 2ψ þ Ψ;

ð53Þ

and

S̃ab ¼ eΨfGab þ eΨe2ðψ−ψ̄Þm̄2
E · v̄av̄b=v̄2g

¼ eΨfGab þ eΨm2
E · v̄av̄b=v̄2g; ˜̄ve−

˜̄Ψ=2 ¼ v̄e−Ψ̄=2;

ð54Þ

where m2
E ¼ v̄2m2=Ē2, m̄2

E ¼ v̄2m̄2=Ē2 are effective
masses at the observer’s and massive particle surface’s
point (lying on the same integral curve), respectively. As a
result of these transformations, the only modification we
have to do when we move from the system with constant
mass to the system with variable mass is just considering
m2

E as variable in shadow matrix Sab and considering
constant m̄2

E in S̄ab and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E

p
. Moreover, Eq. (21) also

remains unchanged, with the caveat that the mass is
variable now and it must be differentiated. Since we do
not change the foliation, the derivative is also invariant,
from Eq. (52) follows the unchanged form of the condition
in Eq. (24)

Dγ½ðSabÞ0� ¼ 0: ð55Þ

C. General result and discussion

Summarizing the entire procedure for construction of a
gravitational shadow for massive particles (probably, with
variable mass) in spacetimes with a slice-reducible Killing
tensor of rank two, one can highlight three steps:
(1) Find compact slices S generating the slice-reducible

exact Killing tensor (Ref. [25]). Calculate quantities
nα, Ψ, Gab for the slices. If the particles under
consideration have variable mass, the Killing tensor
can be conformal and not exact, with two additional
condition imposed on the mass function:
DαððeΨm2Þ0Þ ¼ 0 and κa

α∇αm ¼ 0.
(2) Define an observer at some point O with the four-

velocity vector v̄a and fix the particle energy Ē
detected by the observer. Construct an integral curve
of the normal field nα passing through the observa-
tion point.

(3) Calculate X and Y for each slice at the point related
to the observer through the integral curve using
formulas [or Eq. (36)]:

X ¼ 2τ̄aρaffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E

p
· v̄aρa ∓ v̄e−Ψ̄=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSab − S̄abÞρaρb

q ;

ð56aÞ

Y¼� 2v̄e−Ψ̄=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Sabρaρb

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− m̄2

E

p
· v̄aρa∓ v̄e−Ψ̄=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSab− S̄abÞρaρb

q ;

ð56bÞ
where ρa is an arbitrary nontrivial solution to the
equation

ðSabÞ0ρaρb ¼ 0; Sab ¼ eΨðGabþm2
E · v̄

av̄b=v̄2Þ;
m2

E ¼ v̄2m2=Ē2; ð56cÞ

and the prime 0 means the derivative with respect to
the foliation parameter φnα∇α (keep in mind that the
observer’s coordinate are not differentiated). The
solution ρa must satisfy Eqs. (26) and (27), other-
wise X and Y become imaginary. Coordinates X and
Y of the boundary are parametrized as a function of
the foliation parameterΩ. The resulting curve should
be analyzed to determine whether it corresponds to
the shadow boundary or the boundary of relativistic
images (further details will be provided in examples
of Sec. IV).

There are several distinctive features related to the choice
of signs in the expressions (56):

(i) The sign ∓ in the denominator refers to different
stereographic projections of the shadow image
related by inversion ρa → −ρa. For the future-
directed case ρav̄a < 0 in most cases we can choose
the sign −. Moreover, Eq. (56) is invariant under
transformations ρa → sρa for some arbitrary s > 0.

(ii) The general sign � in front of the fraction Y is
independent and provides a mirror symmetry of the
shadow with respect to the line Y ¼ 0 [3]. While this
symmetry is expected when the observer is located
at the equatorial plane, it seems counterintuitive
when the observer is off-plane. However, the mirror
symmetry of the shadow for any observers arises due
to the independence of the Killing tensor from the
choice of the direction tangent vector ē2α (e.g., ē2α ∼
∂θ in Kerr spacetime). So, considering the geodesic
curve with γ̇αē2α → −γ̇αē2α leads to the same
integrals of motion and the same massive particle
surface, where these geodesics wind up.

(iii) The expression for shadow also has the symmetry
eΨ → const · eΨ. This symmetry is associated with
the freedom to multiply the Killing tensor by an
arbitrary positive constant.

(iv) Another feature is that the Killing tensor (18) does
not contain terms linear in the normal vector nα. This
leads to appearance of the symmetry nα → −nα in all
obtained expressions. As a result, we can unambig-
uously determine the image of a shadow only on the
projective celestial sphere, in which the opposite
points are identified. In order to obtain a real image
of the shadow, it is necessary to discard an extra

KOBIALKO, BOGUSH, and GAL’TSOV PHYS. REV. D 109, 024060 (2024)

024060-10



piece of the image using additional physical con-
siderations. For example, for a far away observer, the
shadow will be located in the vicinity of the zenith (if
the normal and the tetrad are chosen as described
above, i.e., the observer’s camera is pointing towards
the gravitating object). So, we must choose the þ
sign of cosΘ, resolving the ambiguity.

As a result of applying Eq. (56a), we get the curve
describing the boundary of the relativistic images
[9,34,70] parametrized by the foliation parameter Ω.
For black hole objects, this corresponds to the boundary
of the shadow. The described procedure is completely
independent on the coordinate choice, though a special
choice may be more convenient. Moreover, the task of
solving geodesic equations is no longer necessary and the
construction of the final formula comes down to simple
calculations. Of course, the main problem is now con-
centrated in the construction of the slice-reducible Killing
tensor and the corresponding slices. However, this prob-
lem was formulated in a coordinate-independent way in
Refs. [24,25]. The expression for the boundary itself is
simpler and explicitly coordinate independent than, for
example, in Refs. [37,41,42,44,63,65,82] and can be
studied analytically from various points of view. In
particular, the properties of the shadow matrix are closely
related to the geometric properties of massive particle
surfaces. Similarly to the photon surfaces [18–20], mas-
sive particle surfaces are subject to various geometric
restrictions. These restrictions can ultimately lead to
rather universal restrictions on the shadow parameters
in the presence of plasma [19,20,83] or perhaps provide a
new analytical approach to exploring the compactness of
gravitating objects [84].
There is one more useful property of expressions in

Eq. (56). Namely, despite the fact that the expressions are
not tensors indexed by a, b, they are invariant under trans-
formation of the basis in the space of Killing vectors with
constant coefficients κa0

α ¼ Λa
a0κa

α. Indeed, if the trans-
formation matrix Λa

a0 is constant, all contractions are invari-
ant, including those with derivatives [e.g., ðSabÞ0ρaρb], or
involving vectors from different points (e.g., S̄abρaρb).
Expressions (56) are not invariant under a more general
transformation, since we calculate contractions of tensors
and vectors (of the Killing vector space) at different points of
spacetime. In general, such contractions are not valid. In our
case it is only possible because we can transfer vectors using
combinations of Killing vectors with constant coefficients
along the integral curves of the foliation normals. As an
exception, we can use a transformation that does not depend
on the foliation parameter, ðΛa

a0 Þ0 ¼ 0, but in this casewe lose
the property from Eq. (55).

D. Shadows for distant observers in
asymptotically flat spacetimes

As a rule, we are interested in shadows that are seen by
an observer far away from the gravitating object, i.e., the

distance from the observer to the gravitating object is much
larger than the gravitational radius of the object. In this
case, it is reasonable to consider the observer asymptoti-
cally distant. At large distances, the gravitating object is
seen as a point source of mass with all higher multipoles
suppressed. Asymptotically, slices tend to be convex
spheres with χτ > 0. The parameter measuring the distance
from the object is chosen in the form of a foliation
parameter Ω, tending to infinity for the slice where the
asymptotically distant observer Ω̄ → ∞ lives (here Ω̄—Ω
value for a slice with an observer). In many particular
examples, the parameter Ω coincide with the Boyer-
Lindquist radius r. Though, the situation can be less
obvious for solutions with the gravimagnetic mass (NUT
parameter) and causality violation, the following calcula-
tions are fair for them as well. In what follows, we assume
for simplicity that the coordinate systems tends asymptoti-
cally to spherical coordinate system with two Killing
vectors ∂t and ∂ϕ, though similar steps can be applyed
to more general spacetimes and coordinates.
Let us pick out bounded and unbounded parts of this

limit. The scalar Ψ grows unbounded due to the equation;
nα∇αΨ ¼ 2χτ. Indeed, for asymptotically spherical surfa-
ces, the quantity associated with the curvature χτ is positive
and decreases as ∼1=r, where r is a radius in a coordinate
system, which tends to the spherical one. Thus, we expect
logarithmic growth; Ψ ∼ ln r.
We expect that the observer has a finite speed v̄,

assuming that vector components v̄a are bounded either.
This allows us to define the following limits:

v̄a∞ ≡ lim
Ω̄→∞

ðv̄aÞ; v̄∞ ≡ lim
Ω̄→∞

ðv̄Þ: ð57Þ

The effective particle mass m̄ must be also bounded

m̄∞≡ lim
Ω̄→∞

ðm̄Þ; m2
E∞¼ v̄2∞m2=Ē2; m̄2

E∞¼ v̄2∞m̄2
∞=Ē2;

ð58Þ
or even zero m̄∞ ¼ 0 if we consider photons in plasma.
Then, the shadow matrix occurs to be finite:

Sab
∞ ≡ lim

Ω̄→∞
ðSabÞ ¼ eΨðGab þm2

E∞v̄
a
∞v̄b∞=v̄2∞Þ: ð59Þ

The solution ρ∞a defined by equation

ðSab
∞ Þ0ρ∞a ρ∞b ¼ 0; ð60Þ

can also be considered finite. Though, the observer with
nonzero finite linear velocity can have infinite angular
momentum, we will not consider this case since it intro-
duces well-known aberrations that can be obtained in the
special relativity framework (as a rule, the effect is called
light aberration, but in our case this effect should be
considered for massive particles [63]):
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v̄∞a ≡ lim
Ω̄→∞

ðḠabv̄bÞ: ð61Þ

Static and ZAMO observers have finite v̄∞a . Particularly,
one can consider a limiting procedure such that the angular
momentum can approach any finite value, though the linear
velocity in the azimuthal direction is zero.
However, vector components τ̄a have det Ḡab in their

definition, which can be not finite, e.g., for asymptotically
spherical coordinate system. Thus, it is reasonable to pick
out an explicitly finite part of the vector components as
follows:

τ̄a∞ ≡ lim
Ω̄→∞

�
τ̄a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det Ḡab

q �
¼ ϵabv̄∞a : ð62Þ

In particular, from Eq. (39) follows a nontrivial asymptotic
behavior

S̄abρ∞a ρ
∞
b ≈ −eΨ̄ð1 − m̄2

EÞ · ðv̄c∞ρ∞c Þ2=v̄2∞
þ eΨ̄=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det Ḡab

q
· ðτ̄a∞ρ∞a Þ2=v̄2∞; ð63Þ

Substituting all expressions back into Eq. (56), and keeping
only the first nonzero term of the expansion with respect to
Ω̄ → ∞, we find (we retain only the one sign—in the
denominator for future directed directions ρav̄a < 0, dis-
carding the mirror image on the projective sphere)

X ≈
AðΩÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det Ḡab

p ; Y ≈�BðΩÞe−Ψ̄=2; ð64Þ

where Ω is a finite foliation parameter of the massive
particle surface. The observer is placed infinitely far away
from the gravitating object, so the shadow image must be
infinitely small. Since any aberrations are absent due to our
choice of the observer, the image must be placed right in the
zenith without any shifts. This conclusion is confirmed by

Eq. (64) if we take into account that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det Ḡab

p
and eΨ̄=2

tend to infinity. In particular, condition (26) reduces to
ρ∞a v̄a∞ ≠ 0. Multiplying X and Y by eΨ̄=2 results in

X∞ ≡ lim
Ω̄→∞

ðXeΨ̄=2Þ ¼ α∞ · ðτ̄a∞ρ∞a Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p
· ðv̄a∞ρ∞a Þ

; ð65aÞ

Y∞ ≡ lim
Ω̄→∞

ðYeΨ̄=2Þ ¼ �
v̄∞ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Sab

∞ ρ∞a ρ
∞
b

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p
· ðv̄a∞ρ∞a Þ

; ð65bÞ

where

α∞ ≡ lim
Ω̄→∞

�
eΨ̄=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det Ḡab

q �
; ðSab

∞ Þ0ρ∞a ρ∞b ¼ 0:

ð65cÞ

Note that the function Ψ is defined up to some additive
constantΨ → Ψþ 2C, which can be used to control a scale
of the image: ðX∞; Y∞Þ → eCðX∞; Y∞Þ. If eΨm2

E∞ can be
neglected in Sab

∞ , coordinates X∞, Y∞ scales as

ðX∞; Y∞Þjm̄2
E∞

≈
ðX∞; Y∞Þj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − m̄2
E∞

p : ð66Þ

IV. EXPLICIT FORM AND EXAMPLES

A. Benenti-Francaviglia form

All results obtained above were obtained for an arbitrary
coordinate system, and instead of an explicit search for a
separable coordinate system, it is required to know the
corresponding foliation. However, an explicit relation
between the separable coordinate system and the foliation
is presented in Ref. [25]. Adopting the result for our case, it
was shown that if a slice-reducible conformal Killing tensor
of rank two and two commuting Killing vectors exist in a
four-dimensional spacetime, then there is a coordinate
system with metric tensor of the form (see discussion of
the Benenti-Francaviglia ansatz in Refs. [85–88])

ds2 ¼ λðr; θÞ½ðF−1Þabdyadyb þ frðrÞdr2 þ fθðθÞdθ2�;
ð67Þ

where matrix F abðr; θÞ ¼ Xab
r ðrÞ þ Xab

θ ðθÞ is separable,
functions frðrÞ, fθðθÞ, Xab

r ðrÞ, Xab
θ ðθÞ, λðr; θÞ are arbi-

trary. We denoted coordinates with letters r and θ to stay
connected with common metrics, but they can be arbitrary
in general. Vectors along coordinates ya represent Killing
vectors, usually, representing a timelike vector ∂t and
azimuthal spacelike Killing vector ∂ϕ. The foliation slices
are determined by r ¼ const with foliation parameter
Ω ¼ r. The corresponding conformal Killing tensor is

Kαβ ¼ αðr; θÞgαβ þ Xab
r ðrÞδaαδbβ þ frðrÞ−1δαrδβr : ð68Þ

The geometric quantities of this foliation are

φnα∇α ¼ ∂r; χτ ¼
1

2
ðλfrÞ−1=2∂r lnðλfθÞ; φ¼ðλfrÞ1=2;

ð69aÞ

Ψ ¼ ln λðr; θÞ; Gab ¼ λðF−1Þab: ð69bÞ

Additionally, if we are interested in exact slice-reducible
Killing tensors, the integrability condition Dγðχτφ3Þ ¼ 0
gives ∂θ∂rλ ¼ 0, thus the conformal factor λ must be a
function of the form λ ¼ X λ

rðrÞ þ X λ
θðθÞ resulting in α ¼

−X λ
rðrÞ (for comparison see Refs. [86–88], where a similar

form of the metric was proposed from other considera-
tions). In the case of massive particles, we have to consider
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only exact type of Killing tensors. However, the presence of
plasma of a suitable type allows one to consider conformal
tensors. In this case, following Eq. (52), we must have (see
Refs. [41,42,65])

λm2
E ¼ MEðr; θÞ ¼ ME

r ðrÞ þME
θ ðθÞ: ð70Þ

The shadow matrix reads

Sab ¼ F ab þME · v̄av̄b=v̄2; ð71Þ

where observer’s velocity v̄a and its dual vector τ̄a read

v̄a¼
�
v̄t

v̄ϕ

�
; τ̄a¼ F̄ abϵbcv̄cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−detF̄ ab
p ; v̄¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ̄ðF̄−1Þabv̄av̄b

q
:

ð72Þ

To find ρa explicitly, the shadow matrix Sab can be
expanded into a Killing basis with the following norm
fixation

ρa ¼
�−1
ρϕ

�
: ð73Þ

As a consequence of Eq. (23), in this norm we have
ρϕ ¼ −qϕ=qt, i.e. ρϕ is an ordinary impact parameter of the
geodesic. From Eq. (56c), we obtain a quadratic equation,
the solution to which is:

ρ�ϕ ¼ ðStϕÞ0 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detfðSabÞ0g

p
ðSϕϕÞ0 ;

detfðSabÞ0g ¼ ðSttÞ0ðSϕϕÞ0 − ðStϕÞ0ðStϕÞ0: ð74Þ

We get two solutions ρþϕ , ρ
−
ϕ and in general we should hold

both of them. However, for numerous examples, one of the
solutions may not correspond to any massive particle
region, yielding nonreal values for X and Y, and should
therefore be discarded (see Ref. [65] for details). The
formula for the boundary is obtained by directly substitut-
ing these expressions into (56), and using Eq. (39). After
some simplifications we get

X ¼ 2τ̄aρaffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E

p
v̄aρa ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − m̄2

EÞðv̄cρcÞ2 − ðτ̄aρaÞ2 þ v̄2

λ̄
· Sabρaρb

q ; ð75aÞ

Y ¼ �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− v̄2

λ̄
· Sabρaρb

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E

p
v̄aρa ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − m̄2

EÞðv̄cρcÞ2 − ðτ̄aρaÞ2 þ v̄2

λ̄
· Sabρaρb

q ; ð75bÞ

where

Sabρaρb ¼ −
ðSϕϕÞ2
ðSϕϕÞ0

��
Stt

Sϕϕ

�0
− 2

�
Stϕ

Sϕϕ

�0
ρ�ϕ

�
: ð75cÞ

Equations (75) represent a general expression for the
shadow boundary of an arbitrary metric that can be written
in Benenti-Francaviglia form or its conformal generaliza-
tion. This family includes the Plebanski-Demianski sol-
ution [89,90], EMD [91], EMDA [92], STU rotating black
holes [93]. In asymptotically spherical coordinates, the
asymptotics of the functions are as follows:

Gab →

� −1 −N∞ðθÞ
−N∞ðθÞ r2sin2θ

�
;

λðr; θÞfrðrÞ → 1; λðr; θÞfθðθÞ → r2; ð76Þ

where N∞ðθÞ ¼ 2Nðcos θ þ CNÞ, N is the NUT parameter,
and CN is a constant for the NUT gauge. This asymptotic
implies that fθ → C, fr → C=r2, λ → r2=C for some

unimportant constant C, which is natural to choose
equal to 1.
Let us asymptotically expand quantities related to the

stationary observer at the point ðr̄; θ̄Þ. The requirement that
the speed v̄ and the observer’s conserved quantities v̄a are
bounded leads to the following general expression (static,
ZAMO)

v̄a ¼
�

1

w∞=r̄2

�
; ð77Þ

where w∞ is a constant and the length of the vector is
chosen to be equal to unity v̄ ¼ 1 for simplicity, since it
does not influence the final result. This gives us the
following limits:
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v̄a∞ ¼
�
1

0

�
; v̄∞a ¼

�−1
W

�
;

τ̄a∞ ¼
�−W

−1

�
; α∞ ¼ sin−1θ̄; ð78Þ

where W ¼ w∞ sin2 θ̄ − N∞. Then from (60) for ρ∞a in the
same norm fixation (73) we find

ρ∞�
ϕ ¼ ðF tϕÞ0 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF tϕÞ02 − ðF tt þMEÞ0ðFϕϕÞ0
p

ðFϕϕÞ0 : ð79Þ

By collecting everything together and simplifying the
expressions, we find

X∞ ¼ lim
r→∞

ðXrÞ ¼ ρ∞�
ϕ −W

sin θ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p ;

Y∞ ¼ lim
r→∞

ðYrÞ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Sab

∞ ρ∞a ρ
∞
b

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p ; ð80aÞ

where

Sab
∞ ρ∞a ρ

∞
b ¼ −

ðFϕϕÞ2
ðFϕϕÞ0

��
F tt þME

Fϕϕ

�0
− 2

�
F tϕ

Fϕϕ

�0
ρ∞�
ϕ

�
;

m̄2
E∞ ¼ lim

r→∞
ðλ−1MEÞ: ð80bÞ

Note that changing w∞ leads to the usual shift of the
shadow along axis X since the shadow matrix is indepen-
dent of w∞ in asymptotic limit.

B. Boyer-Lindquist coordinates

Let us commence with the simplest example of the Kerr
metric and similar solutions, including EMD, EMDA, and
STU black holes [89–93]. In Boyer-Lindquist coordinates
[89], the metric assumes the following straightforward form

ds2 ¼ −
Δ − a2sin2θ

Σ
ðdt − ωdϕÞ2

þ Σ
�
dr2

Δ
þ dθ2 þ Δsin2θ

Δ − a2sin2θ
dϕ2

�
: ð81Þ

It is well-known that these solutions possess at least
conformal Killing tensors reducible on slices r ¼ const.
Thus, we can represent these solutions in the form (67).
Initially, we can readily identify the factor λ ¼ Σ and
determine the matrix:

F ab ¼ Δ− a2sin2θ
sin2θΔ

�
ω2 ω

ω 1

�
þ
�
− Σ2

Δ−a2sin2θ 0

0 0

�
: ð82Þ

From the existence of the Killing tensor we know that this
matrix is separable, but we do not need to separate variables
explicitly. Instead we need to calculate the derivative:

ðF abÞ0 ¼ a2Δ0

Δ2

�
ω2 ω

ω 1

�
þ Δ − a2sin2θ

sin2θΔ

�
2ω 1

1 0

�
ω0 þ

 
−
�

Σ2

Δ−a2sin2θ

�0
0

0 0

!
: ð83Þ

Since the general expression (75) is rather cumbersome, we will give an explicit form for the asymptotic formula (80) only.
Applying Eqs. (79) and (80) allows obtaining an expression of the shadow boundary for an asymptotically distant observer

X∞ ¼ 1

sin θ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p
0B@ω −W þ

8<:Rω0 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRω0Þ2 þ Δ2Y0

a2Δ0

s 9=;
1CA; ð84aÞ

Y∞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p
0B@Y −RY0 −

2Δ0a2

Δ2
R2ω0

8<:Rω0 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRω0Þ2 þ Δ2Y0

a2Δ0

s 9=;
1CA

1=2

; ð84bÞ

where

R≡ Δ − a2 sin2 θ̄
a2 sin2 θ̄

Δ
Δ0 ; Y ≡ Σ2

Δ − a2 sin2 θ̄
−ME; ð84cÞ

and m̄2
E∞ ¼ m̄∞=Ē and m̄∞ is an asymptotic mass of the particle. The massive particle region is described by the inequality
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Y −RY0 ≥
2Δ0a2

Δ2
R2ω0

(
Rω0 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRω0Þ2 þ Δ2Y0

a2Δ0

s )
:

ð85Þ

These formulas generalize results from
Refs. [11,41,42,63,65,66,68], since we do not specify
the expression for ω explicitly, which can vary from model
to model. They clearly express the contour of the shadow
through the components of the metric in the usual form.

1. Kerr-NUT spacetime

We begin our exploration with the vacuum Kerr-NUT
spacetime, characterized by essential parameters: mass M,
rotational Kerr parameter a, and the Newman-Unti-
Tomburino parameter N representing the gravimagnetic
mass. The choice of the vacuum Kerr-NUT spacetime
serves a dual purpose. Firstly, it provides a familiar
foundation for evaluating the developed framework by
leveraging well-known results [41,44,82]. Secondly, we
illuminate the versatility and robustness of the framework
introduced in this paper. This solution, denoted by the Kerr-
NUT metric, assumes the form (81) with the following
functions:

Δ ¼ rðr − 2MÞ þ a2 − N2; Σ ¼ r2 þ ða cos θ þ NÞ2;
ð86aÞ

ω ¼ −
2ða sin2 θðMrþ N2Þ þ ΔN cos θÞ

Δ − a2 sin2 θ
: ð86bÞ

The shadows cast by massive particles with constant
mass are depicted in Fig. 4. In Fig. 4(a), the red line
corresponds to the standard photon shadow with m̄E∞ ¼ 0.

Unlike photons, the shadows of massive particles exhibit an
increase in size as the particle energy decreases, i.e., as
m̄E∞ increases. Notably, the growth in shadow size from
m̄E∞ ¼ 0 to 0.8 is comparable to the increase from 0.8 to
0.9, aligning well with the prediction from Eq. (66),
which yields ðR0.9 − R0Þ=ðR0.8 − R0Þ ≈ 1.94. The inset
of Fig. 4(a) presents the same set of shadows rescaled
by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p
, revealing that the right side closely

follows the approximation (66), while the left side shows
appreciable deviations. In Fig. 4(b), the evolution of the
shadow for m̄E∞ ¼ 0.9 remains similar to the evolution of
the photon shadow (m̄E∞ ¼ 0) as the observer changes its
angle θ. A notable feature of the shadows is the presence of
fixed points at X ¼ 0 for different angles. Similarly, in
Fig. 4(c) the evolution of massive shadows for different N
mimics the progression of photon shadows. AsN increases,
the shadow tends to become more circular, mitigating the
effects of rotation since a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2

p
decreases.

To preserve the integrability of the dynamical system, we
confine our attention to a specific class of plasma distri-
butions, which gives rise to the following variable effective
mass function [42,63,65]

m2 ¼ Mðr;θÞ
r2þðacosθþNÞ2 ; Mðr;θÞ¼MrðrÞþMθðθÞ;

ME ¼M=Ē2; ð87Þ

which tends to zero in the distant regions away from the
black hole. We exclusively examine the scenario where
there is no gravimagnetic mass, N ¼ 0, focusing our
attention on more plausible astrophysical systems. We will
explore four distinct types of plasma distributions, as
illustrated in Figs. 5 and 6. In all instances, the plasma
density is modulated by a multiplicative constant μ.

FIG. 4. Shadows cast by particles with nonzero constant mass in the Kerr-NUT spacetime with parameters M ¼ 1 and a ¼ 0.98.
(a) Illustrates shadows produced by particles with m̄E∞ ranging from 0 to 0.9 in a spacetime with N ¼ 0; the inset presents the same set
of shadows, rescaled by the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄2

E∞

p
. (b) Depicts shadows formed by massive particles (solid lines) and massless particles

(dashed lines) for varying observer angles in the spacetime with N ¼ 0. (c) Exhibits shadows cast by massive particles (solid lines) and
massless particles (dashed lines) for diverse values of the NUT parameter.
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The first type is characterized by the function
M ¼ μ2 cos16 θ, reminiscing jets emanating from the black
hole poles [Fig. 5(g)]. The shadow boundary, governed by
Eq. (84a), depends onM and its derivativeM0 evaluated at
the observer’s angle. When the observer resides in the

equatorial plane (θ ¼ π=2), both M and M0 equal zero,
rendering no effect of plasma on the shadow boundary.
However, for observers at other positions, the presence of
plasma becomes discernible. Shadows for various μ=E
values with the observer at θ ¼ π=4 and shadows for

FIG. 5. (a)–(c) Depiction of shadows formed by photons in plasma for varying values of the parameter μ. (d)–(f) Illustration of
shadows cast by photons in plasma at different observer angles, with a fixed parameter μ indicated in each respective panel.
(g)–(i) Visualization of the distribution of the function m2

E=μ
2 in spacetime, where the blue disk represents the event horizon. The insets

in panels (g)–(i) show the region of massive particles for various values of μ, red color corresponds to the absence of plasma. Each
column corresponds to a separate plasma distribution: (a), (d), (g) M ¼ μ2 cos16 θ, (b), (e), (h) M ¼ μ2 sin16 θ, (c), (f), (i) M ¼ μ2r.
The parameters are set to M ¼ 1, a ¼ 0.98, and N ¼ 0.
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different observer angles for μ=E ¼ 40 are presented in
Figs. 5(a) and 5(d), respectively. In denser plasma with
higher μ values, the shadow contracts and takes on a more
circular shape. Additionally, with an increased observer
altitude, the shadow exhibits further contraction. This
behavior can be attributed to the prolonged interaction
of photons with the plasma medium at higher altitudes,
where the plasma exerts a focusing effect on photons, as
discussed in Ref. [41]. The inset of Fig. 5(g) illustrates the
impact of plasma on the massive particle region, revealing
that the plasma, confined to the vicinity of the polar axis,
primarily induces smoothing and shrinkage near the polar
axes.
The second type of plasma, reminiscent of an accretion

disk, is characterized by the function M ¼ μ2sin16θ
[Fig. 5(h)]. Analogous to the first type of plasma, for photons
with lower energy (higher μ=E), the shadow contracts and
assumes a more circular shape [Fig. 5(b)]. However, in
contrast to the first type, in this scenario, the shadow
observed by an equatorial observer is smaller than that for
nonequatorial observers [Fig. 5(e)]. The massive particle
region associated with this plasma type may manifest
topologically nontrivial features, as depicted in the inset
of Fig. 5(h). This arises because photons may lack sufficient
energy to penetrate the high-density plasma near the equator.

The first two types of plasma were characterized by a
function M dependent solely on θ. In contrast, the third
type is described by an r-dependent function M ¼ μ2r
reminiscent of nearly-spherical nebulae [Fig. 5(i)]. This
scenario exhibits a similar focusing effect [Fig. 5(c)], but
the size of the shadow remains almost constant for
observers at different altitudes [Fig. 5(f)]. This observation
is not surprising, considering that the plasma distribution
weakly depends on θ through the function Σ, specifically
m2 ¼ μ2r=ðr2 þ a2 cos2 θÞ. The massive particle region is
subtly displaced from the near-horizon region, where the
plasma density is higher [inset in Fig. 5(i)].
The fourth type of considered plasma is characterized

by a shell-like distribution with the function M ¼
10−5μ2r8 exp f− 1

2
ðr − 2Þ2g [Figs. 6(g)–6(l)]. To elucidate

the dynamics of photons in plasma, one can construct the
effective potential at the equator θ ¼ π=2:

ṙ2 ¼ gtt

grr
E2ð1 − Vþ

eff=EÞð1 − V−
eff=EÞ; ð88Þ

where functions V�
eff=E are functions of the parameter r

parametrized by Lz=E and μ=E [Figs. 6(m)–6(r)]. The
boundaries of the shadow correspond to the maxima of

FIG. 6. (a)–(f) Illustration of shadows formed by photons in the Kerr spacetime with plasma, considering a fixed μ=E at θ ¼ π=2.
(g)–(l) Visualization of the massive particle region and the distribution of the function m2

E for a fixed μ=E. (m)–(r) Presentation of the
effective potential V�

eff=E at the equator for various values of Lz=E with a fixed μ=E. The red vivid line corresponds to points of maxima
(solid) or minima (dashed) of the function Vþ

eff=E. Green dots represent the shadow boundary, and blue dots indicate the artefact
boundary. In all examples, parameters are set to M ¼ 1, a ¼ 0.98, N ¼ 0, and the plasma distribution is described by
M ¼ 10−5μ2r8 expf−ðr − 2Þ2=2g. Each column corresponds to a fixed value of μ=E as indicated in the figure.
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Vþ
eff=E located at the line Vþ

eff=E ¼ 1 [green points in
Figs. 6(m)–6(r)]. For μ=E ¼ 0, we have the standard
boundary of the photon shadow [Fig. 6(a)] with the massive
particle region depicted in Fig. 6(g) (in this case, it
degenerates to the photon region).
The effective potential shown in Fig. 6(m) has amaximum

A (B) corresponding to the positive (negative) impact
parameter ρϕ ¼ Lz=E and the right (left) point of the shadow
boundary at Y ¼ 0. For μ=E ¼ 4 and 9, the shadow
boundary [Figs. 6(b) and 6(c)], the massive particle region
[Figs. 6(h)–6(i)], and the effective potential [Figs. 6(n)
and 6(o)] are almost the same, except for the following
feature; there is a new maximum and a new minimum
of Vþ

eff=E between points A and B. However, these new
extrema do not play any role because they correspond to
particles with lower energy than the energy fixed by the
condition μ=E ¼ 4 or 9.
When μ=E is 12, there is one more maximum D and a

new minimum C between the previous maxima A and B
[Fig. 6(p)]. This corresponds to the appearance of two
disjoint massive particle regions in Fig. 6(j). This leads to
an artifact in the calculated shadow boundary, which should
be considered unphysical. Indeed, the minimum should not
play a role in the boundary formation, as it is hidden above
the maximum of Vþ

eff=E and is not achievable by the
geodesics connected with the distant observer. The new
maximum is not related to the shadow boundary as well. If
the energy is slightly smaller than the value of themaximum,
the corresponding geodesics turn back from the massive
particle surface. If the energy is slightly larger, then the
corresponding geodesic will be turned back somewhere
closer to the event horizon, as Vþ

eff achieves higher values
near the horizon than at the local maximum D.
When μ=E is 16, the situation is different [Fig. 6(q)]. The

points corresponding to the real shadow are D and B, but A
and C correspond to the artifact [Fig. 6(e)], though the
massive particle region has the same structure [Fig. 6(k)].
Now, maximum A is lower than the outermost maximum of
the same function Vþ

eff=E, while the maximum D is a global
maximum in the region outside the event horizon.
Finally, at μ=E ¼ 20, there is no shadow at all [Fig. 6(f)].

The outermost massive particle region disappears [Fig. 6(l)]
with the corresponding maxima B and D [Fig. 6(r)]. At the
same time, maximum A is not achievable, since there is
another higher outermost maximum. Note that the tran-
sition of maxima between μ=E equal to 12 and 16 has its
manifestation at the shadow. The right side of the shadow at
μ=E ¼ 12 is flat, but the artifact is quite circular, while for
μ=E ¼ 16 it is vice versa. The artifact is not physical in
astrophysical applications. Nevertheless, it may find an
application in quantum effects of condensed matter.

2. Einstein-Maxwell-dilaton black holes

The Einstein-Maxwell-dilaton model emerges from the
5D vacuum gravity through Kaluza-Klein dimensional

reduction, wherein the dilaton constant is fixed at
α ¼ ffiffiffi

3
p

. Consequently, the 5D gravity can be split into
4D gravity, an electromagnetic field Aμ, and a dilaton
field φ:

ds25 ¼ e4αφ=3ðdχ − 2AμdxμÞ2 þ e−2αφ=3ds24; ð89Þ

where χ represents the fifth compactified dimension. This
model can be interpreted in two frameworks. In the first
framework, 4D gravity and other fields are considered
physical, and geodesics are calculated with respect to ds4.
In the second framework, the fields are regarded as
auxiliary, but the 5D spacetime is considered physical,
leading to geodesics calculated with respect to ds5. Four-
dimensional geodesics possess only a conformal Killing
tensor, while 5D geodesics are fully integrable thanks to an
exact Killing tensor. Nevertheless, 5D geodesic equations
can be reduced to four dimensions (see Appendix B in
Ref. [78]). Such 5D geodesics, when reduced to 4D, obey
the usual 4D geodesic equations, with the only difference
being a variable effective mass, similar to Eq. (46). The
momentum along the fifth dimension generates electric
charge, which we set to zero, as we do not consider charged
particles in this paper. Therefore, the effective mass is

m2
eff ¼ m2e−2αφ=3: ð90Þ

Given that the dynamical system is reduced and properly
truncated from another system possessing an exact Killing
tensor, the integrability is inherited from 5D to 4D, as
shown below. As an illustrative example, we will employ
the solution discovered in Ref. [91]:

Δ ¼ rðr − 2MÞ − 3D2 þQ2 þ P2 þ a2;

Σ ¼
ffiffiffiffiffiffiffi
AB

p
; e−2αφ=3 ¼

ffiffiffiffiffiffiffiffiffi
A=B

p
; ð91Þ

where the functions A and B take the form of separable
quadratic polynomials in terms of r and cos θ. These
functions, along with ω, are detailed in Ref. [91], and
they involve five parameters; massM, rotation parameter a,
electric and magnetic charges Q and P, and dilaton charge
D (note that the dilaton charge here differs from the scalar
charge Σ in Ref. [91] by a factor of

ffiffiffi
3

p
). The charges are

constrained by the equation:

Q2

DþM
þ P2

D −M
¼ 2D; ð92Þ

which has three solutions for D, but it is established in
Ref. [78] that only one of them can appropriately represent
a black hole solution. The effective mass is

m2
eff ¼ m2

ffiffiffiffi
A
B

r
; ð93Þ
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which satisfies the integrability condition, i.e., Σm2
eff ¼

m2A is separable.
We explore three examples (Fig. 7). In all instances, the

deviation of the effective mass, ðm2
eff −m2Þ=m2, does not

exceed �10%. The first case involves equal electric and
magnetic charges, and zero dilaton charge [Fig. 7(a)], the
second is magnetically charged [Fig. 7(b)], and the third
one is electrically charged [Fig. 7(c)]. The first example
exhibits a regular shadow boundary. In the second case, a
crescent-shaped artifact, as discussed in the Kerr example,
is present. The third example features a “fishtail” type of
artifacts, which has been discussed in Ref. [65] for photons
in plasma in the Kerr spacetime. This type of artifact shares
similar roots with the crescent artifact, i.e., the existence of
unachievable minima/maxima of the effective potential.
However, in our case, the “fishtail” appears without plasma,
arising from the interaction with the dilaton field or the
existence of the fifth compactified dimension, depending
on the model’s interpretation. More examples of shadows
cast by photon in plasma in EMD model are given in
Ref. [94]. All results can be generalized to the case of
cosmological spacetime [40,95,96]. Numerous other gravi-
tational models with different plasma distributions have
been reviewed in Refs. [7,32,33,38,42,44,65,67,97–100].

V. CONCLUSIONS

The goal of this article was to obtain, for a general
spacetime with a slice-reducible exact or conformal Killing
tensor, explicitly coordinate-independent analytical expres-
sions defining the photon/massive particle regions (27) and
the contours of gravitational shadows (36) and (56) for
neutral particles with variable mass. This framework is
directly applicable to neutral elementary and composite
particles, such as neutrinos, photons, nonionized atoms,
etc. Using the concept of coordinate-dependent mass it

naturally expands to include the important case of photons
in nonmagnetized pressureless plasma whose distribution
inherits symmetries of spacetime. General conditions on
the mass function are formulated in coordinate-independent
way which ensure the integrability of the equations of
motion in integrable spacetime. In the absence of electric/
magnetic charges of black holes and magnetic fields in their
vicinity, the electric (magnetic) charge of moving particles
is irrelevant, effectively expanding the scope to the case of
electrons, protons, or alpha particles. The concept of
massive particle surfaces can be generalized to charged
particles in presence of electromagnetic fields possessing
the same symmetries, so our framework can be extended in
the future to include charged particles more generally.
The presented expressions have the advantage of a

completely invariant construction, combining simplicity
and universality. Notably, there is no need to explicitly use
coordinates ensuring separation of variables such as
Boyer-Lindquist coordinates. However, the latter simpli-
fies the calculations in many cases. In fact, the entire
structure of the gravitational shadow and the massive
particles region is determined by a single shadow matrix
(22), which has a surprisingly simple form and is deeply
connected to the massive particle surfaces. We hope that
this framework will contribute to analytical studies of
gravitational shadows and integrable systems, especially
in determining general constraints on shadow size and
other observable quantities.
We also examine the asymptotic behavior of the results

and derive shadow formulas for an asymptotically distant
observer (65). It is obvious that the current experimental
capabilities of radio and neutrino astronomy are insufficient
to make deep conclusions about the details of the dynamics
of elementary particles in curved spacetime and their
deviations from the Kerr picture, since this requires much
greater resolution. Although we hope that the required

FIG. 7. Shadows formed by massive particles in the EMD black hole spacetime for different mE. Each panel corresponds to
specific solution parameters indicated within. Insets feature images of the massive particle surface, where blue disks denote the event
horizon.
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resolution will be achievable in the future, the presented
structure is promising also for the analysis of analog
models of gravity or the description of (quasi)particles in
crystals. In these scenarios, either the effective mass is
variable, or the crystallographic defects can be effectively
described in terms of differential geometry, or both.
Using separation coordinates, the result simplifies to a

shadow formula for the general Benenti-Francaviglia met-
ric (75) and (80) (including the conformal generalization)
and a general metric allowing Boyer-Lindquist coordinates
(84). The use of these formulas facilitates the direct
construction of shadow images of massive particles and
photons in plasma by simply replacing the explicit com-
ponents of the metric in its original form without the need
for auxiliary calculations. This versatility extends to a wide
range of solutions in supergravity and the low-energy limits
of string theory.
The developed scheme is illustrated with various exam-

ples in spacetime of Kerr-NUT and EMD black holes,
which successfully reproduce the focusing effect of a
plasma medium on low-energy photons. We explore the
effects of plasma distributions resembling jets, accretion

disks, and near-spherical nebulae, discussing their impact
on the massive particle region. In addition, we provide an
example of 5D geodesics reduced to a 4D system with a
variable effective mass, which can be interpreted as
interaction with a scalar field in the EMD model. The
framework reproduces two types of edge artifacts—one
crescent-shaped and the other known as a fishtail. We found
that the flattened side of the shadow can be accurately
approximated by a scale factor of ð1 − m̄2

E∞Þ−1=2, while the
rounder part exhibits visible deviations described by the
mass-dependent term of the shadow matrix Sab.
We hope that the developed framework will contribute to

the understanding of the general patterns of the formation
of shadows cast by both massive and massless particles,
both in vacuum and plasma environments. This concept
may find applications in astrophysics, analog models of
gravity, and condensed matter physics.
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