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A superradiant cloud of ultralight bosons near a rotating black hole provides a smoking gun for particle
physics in the infrared. However, tidal perturbations from a nearby binary companion can destabilize the
boson cloud and even terminate superradiance. In this work, we consider the backreaction of superradiance
termination to the dynamics of general binary orbits parametrized by their semilatus rectum, eccentricity
and inclination angle. Our analysis focuses on extreme mass ratio inspiral systems and employs the period-
average approximation to derive evolution equations of these binary parameters in the Newtonian limit.
We find that the binary evolution history can be significantly modulated by the backreaction towards large
circular equatorial orbits with reduced termination rate. This process can generically happen even away
from the resonance bands. Our work therefore serves as a first step towards probing ultralight bosons
through the statistics of extreme mass ratio inspiral binary parameters in the future.
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I. INTRODUCTION

A rotating Kerr black hole (BH) can amplify bosonic
fields by giving off its own angular momentum, a
well-known mechanism called BH superradiance instabil-
ity [1–7].1 If the boson possesses a finite mass μ, once a
mode has been amplified by the dissipative ergosphere, it
can be reflected by the mass barrier on the radial effective
potential and become amplified again at the ergosphere.
Such a cycle of amplification and reflection leads to the
exponential growth of the energy density stored in this
mode, resulting in the formation of a bosonic cloud around
the BH. In the nonrelativistic limit, the cloud resembles
the electron cloud in a hydrogen atom, thereby giving rise
to the name gravitational atom (GA) for this BH-cloud
system [4,13].
The GA can be observed through various channels. For

example, the GA emits monochromatic gravitational waves
(GWs) with a frequency twice the bosonic mass [13–15].
These GWs can in principle be detected by ground-based

or space-based GW detector, such as the Laser
Interferometer Gravitational-Wave Observatory and the
Laser Interferometer Space Antenna [16,17]. On the other
hand, the null detection of these GW signals also constrains
the mass of the light boson [18–22]. Since cloud growth
drains angular momentum from the BH, the BH will spin
down until reaching the amplification threshold Jc=M2,
where the cloud growth is saturated mode by mode. Since
the amplification threshold of BH spin depends on the BH
mass M as well as the boson mass μ, measuring the
statistical distribution of BHs on the so-called BH Regge
plane (J −M2) can shed light on the properties of boson
and the GA [16,23–25]. If the ultralight boson is an axion,
then it can couple to electromagnetic fields and plasmas
[26,27], while also producing observable electromagnetic
signals [28,29]. Moreover, for BHs in binary systems,
which are typically the case in reality, the GA phenom-
enology becomes even richer. Due to the periodic tidal
perturbation induced by the binary companion, the GA can
undergo resonant transitions when the gap between atomic
energy levels matches the orbital frequency of the binary
motion [30–33]. These gravitational collider physics (GCP)
transitions then generate backreaction to the binary orbital
motion [31,34,35],2 which can be detected through GW
observations and pulsar-timing techniques [37,38]. One
intuitive understanding of the backreaction is that the tidal
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1See Refs. [8–12] for the extensively studied under various

conditions, including in higher-dimensional charged-anti–de
Sitter BHs, rotating regular BHs, and alternative gravity theories
like f(R) and Horndeski models. 2See also [36] for a fully relativistic treatment.
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effect deforms the cloud and creates a bulge that leads the
motion of the companion, which then channels angular
momentum transfer between the cloud and the orbit [39].
Besides, when the companion moves through the cloud,
dynamic friction can also affect the binary motion [40–43].
Tidal perturbations can also couple bound states of the GA
to scattering states, leading to the ionization of boson
clouds similar to the photoelectric effect in atomic physics
[32,44,45]. The mass quadrupole moment of the GA can
induce orbital precession even at the Newtonian level,
which can be detected through GWs probes or pulsar
timing [46]. In addition, if two GAs form a binary, GCP
resonance can induce mass transfer between the primary
and the secondary [47]. When the binary separation is close
to the cloud radius, molecular structures can form with
interesting beating patterns [48,49].
However, note that all the phenomena discussed above

demand the existence of a boson cloud, which may not be a
robust assumption in general. In a previous work [50], we
have shown that superradiance can be terminated for BHs
with a binary companion3 due to its tidal perturbations. The
nonresonant mixing between the superradiant mode and the
highly absorptive mode can completely terminate super-
radiance when the binary separation is smaller than the
critical distance, meaning that no new boson cloud can
form. Meanwhile, any existing cloud modes will eventually
decay and become absorbed by the BH. Angular momen-
tum lost in this process is then transferred to the binary
companion in the form of backreaction that is observable
via various channels.
However, our previous analysis assumes large circular

equatorial orbits, which is only a crude approximation of
binary systems in reality. As a result, in this work, we set
out to analyse general orbits with nonzero eccentricity e
and inclination angle ι� (see Fig. 1 for illustration). We
compute the correction to the superradiance rate within
both the static approximation and the average corotation
approximation. We then solve the evolution of binary
parameters taking into account the superradiance termina-
tion backreaction effects. We find that similar to the case
of a circular orbit, the loss in the cloud energy in the GA
is accompanied by the gain in the energy of the binary
companion, typically with increased binary separation.
The superradiance termination effect is then weakened
correspondingly. One can think of the cloud as effectively
resisting the termination effect by pushing away the binary
companion. Additionally, termination backreaction also
tends to decrease the eccentricity and inclination,4 driving
the orbit towards large circular equatorial ones. We dem-
onstrate the time evolution of the orbital parameters in

EMRI systems, which sheds light on future analysis for
discovering ultralight bosons via the final-state statistics of
EMRI systems.
This paper is organized as follows. In Sec. II, we provide

an introduction to the theoretical background and formulas
pertaining to the system of GA in a binary. In Sec. III, we
calculate the period-averaged effective superradiance rate
in different regimes and approximations. In Sec. IV, we
examine the backreaction caused by the termination effect
on the companion and study how it affects the binary
separation, eccentricity and inclination. Finally, in Sec. V,
we present our concluding remarks. We adopt the
ð−;þ;þ;þÞ metric sign convention and set G¼ℏ¼c¼1
throughout the paper. Our conventions and notations
largely follow from [31,50].

II. GRAVITATIONAL ATOM IN A BINARY

In this section, we briefly review the physics of super-
radiance instability in the presence of binary tidal pertur-
bations. Our treatments closely follow [31,50].

A. The gravitational atom

Consider a Kerr BH with mass M and spin angular
momentum a. For clarity, we introduce the dimensionless
spin parameter ã≡ a=M with 0 ≤ ã ≤ 1. The dynamics of
an ultralight scalar field5 is described by a Klein-Gordon
equation in Kerr spacetime

ð□Kerr − μ2ÞΦ ¼ 0: ð1Þ

In the nonrelativistic limit, one can factor out the dynamical
phase due to the rest mass of the boson and evoke the ansatz

Φ≡ 1ffiffiffiffiffi
2μ

p e−iμtψ þ c:c; ð2Þ

where μ is the rest mass of the boson. In cases where
the Schwarzschild radius of the BH is smaller than the
Compton wavelength of the boson, RS ∼M < μ−1, one can
treat the bosonic field as a classical wave. Substituting (2)
back into the Klein-Gordon equation and expand in powers
of the gravitational fine structure constant α≡Mμ < 1,
one obtains a Schrödinger-like equation at leading order,

i∂tψðt;rÞ¼H0ψðt;rÞ; H0≡−
1

2μ
∂
2
r−

α

r
þOðα2Þ; ð3Þ

with a Newtonian potential resembling the Coulomb
potential of the hydrogen atom. After taking the ingoing
boundary condition at the BH outer horizon and the

3In fact, the cloud may be destabilized not only by a binary
companion but also by inhomogeneities in the accretion disk [51].

4In contrast, GW emission only affects the eccentricity but is
blind to the inclination angle to the leading order.

5Although the phenomenon of superradiance instability is
universal to all ultralight bosons, we will focus exclusively on
spin-0 scalar fields in this work. See also [52–57] for progress on
the superradiance of spinning fields.

FAN, TONG, WANG, and ZHU PHYS. REV. D 109, 024059 (2024)

024059-2



vanishing boundary condition at infinity, one can solve the
quasibound states ψnlm as modes labeled by the usual three
quantum numbers of the hydrogen atom, i.e. n; l; m. To
leading order in α (or equivalently at large distances where
r ≫ M), the mode functions read

ψnlmðr; θ;ϕÞ ≃ RnlðrÞYlmðθ;ϕÞe−iðωnlm−μÞt; ð4Þ

where Rnl is given by the hydrogen radial function and Ylm
stands for spherical harmonics. The typical boson cloud
size for a mode with principal quantum number n is
given in units of the Bohr radius r1 ¼ ðμαÞ−1 by
rn ¼ n2r1. One distinction from the solution of the hydro-
gen atom is that the eigenvalues ωnlm are now complex,
ωnlm ¼ Enlm þ iΓnlm, as a consequence of the difference in
boundary conditions. The real part Enlm gives the energy
level of the mode, which enjoys the form [31,58]

Enlm ¼ μ

�
1 −

α2

2n2
−

α4

8n4
−
ð3n − l − 1Þα4
n4ðlþ 1=2Þ

þ 2ãmα5

n3lðlþ 1=2Þðlþ 1Þ þOðα6Þ
�
: ð5Þ

The imaginary part of the frequency is due to the BH
superradiance instability and can be traced back to the
ingoing boundary condition at the horizon. From (4),
we see that if Γnlm > 0, the amplitude of the mode can
exponentially grow with time, i.e. je−iωnlmtj ∝ eþΓnlmt,
which is the manifestation of superradiance amplification
by a rotating BH. In contrast, if Γnlm < 0, the correspond-
ing mode will exponentially decay, i.e. je−iωnlmtj ∝ e−jΓnlmjt,
and become absorbed by the BH. Henceforth, we refer to
modes with positive imaginary part of frequencies as the
superradiant modes and those with negative imaginary part
of frequencies as absorptive modes. Using the Detweiler
approximation (which is valid up to α ≲ 0.5 [59]), Γnlm is
given by [60]

Γn00 ¼ −
4

n3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p �
μα5; ð6Þ

Γnlm ¼ 2r̃þCnlglmðã; α;ωÞðmΩH − ωnlmÞα4lþ5; ð7Þ

with r̃þ ≡ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
and ΩH ≡ ã=½2Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
Þ�

is the angular velocity of the outer horizon. The definition
of Cnl and glm can be found in [50]. For an isolated BH, the
superradiant modes will grow and extract angular momen-
tum from the BH until the BH spins down to saturate the
superradiance threshold at mΩH ¼ ωnlm, where Γnlm ¼ 0.
Afterwards they slowly deplete via emitting monochro-
matic GWs at a rate [61,62]

γnlm ¼ −Bnl
Sc=m
M2

μα4lþ10; ð8Þ

where Sc is the cloud angular momentum and the numerical
coefficients Bnl can be found in [14]. We stress that for
an isolated GA, the axial symmetry of the spacetime
background implies that modes with different azimuthal
quantum number m do not linearly mix into each other.
Henceforth, each superradiant modes grow, saturate and
deplete separately as stated above. We will see in the next
subsection that this is no longer the case when the axial
symmetry is broken by a nearby binary companion.

B. Tidal perturbations from a binary companion

Now let us embed the GA into a binary system, where
the companion can be either a BH, a neutron star or a
white dwarf. We consider a general orbit geometry illus-
trated in Fig. 1. The gravity of binary companion induces
perturbations to the metric around the boson cloud. In
Fermi normal coordinates, one can perform a multipole
expansion for the Newtonian potential, which starts out
at quadrupole order and behaves as a tidal perturbation
depending on the mass of the companionM� and the binary
separation R�,

V�ðr; θ;ϕÞ ¼ −αq
X
l�≥2

X
jm�j≤l�

El�m�Yl�m� ðθ;ϕÞ

×

�
rl�

Rl�þ1
�

ϑðR� − rÞ þ Rl��
rl�þ1
�

ϑðr− R�Þ
�
; ð9Þ

where ϑ is the Heaviside step function and q≡M�=M is
the mass ratio of the companion and the GA. Here we have

FIG. 1. Illustration of Keplerian elements we use to describe the
binary system with eccentricity and inclination. To indicate the
relative position of the GA and the binary companion, we can
introduce two coordinate frames. The orbital frame coordinates
(blue) are given by the inclination ι�, true anomaly φ� and the
binary separation R�. The cloud frame coordinates (brown) are
given by the spherical coordinates ðR�;Θ�;Φ�Þ defined by the
BH spin. Here Ŝc is the spin direction of the GA, and L̂ is the
direction of angular momentum of the binary companion. With-
out loss of generality, we choose 0 ≤ ι� ≤ π and φ̇� ≥ 0 is always
positive. Under this choice, 0 ≤ ι� ≤ π=2 gives a corotating orbit
while π=2 ≤ ι� ≤ π gives a counterrotating orbit.
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also introduced the tidal moments6

El�m� ¼
4π

2l� þ 1
Y�
l�m� ðΘ�;Φ�Þ: ð10Þ

The angle Θ� represents the angle between the BH spin
direction and the companion location, while Φ� represents
the projection of the true anomaly onto the BH equatorial
plane as shown in Fig. 1. These two angles are related to the
inclination angle ι� and the true anomaly φ� by

cosΘ� ¼ sin ι� cosφ�; ð11Þ

tanΦ� ¼ sec ι� tanφ�: ð12Þ

Notice that Θ�ðtÞ, Φ�ðtÞ and φ�ðtÞ are strongly time
dependent during an orbital period of the binary, whereas
the inclination angle ι�ðtÞ stays nearly constant during any
single orbital period, but can pick up a slow time depend-
ence in the long-term evolution (which will be shown later
in Sec. IV).
This additional Newtonian potential V� enters the boson

field’s equation of motion (3) and induces overlaps between
any two H0 eigenstates in the form

hψn0l0m0 jV�ðtÞjψnlmi≡ ð−1Þm0þ1αq
X
l�m�

El�m� ðtÞGl0l�l
−m0m�m

Ir:

ð13Þ

Here Ir represents the radial integral

Ir ¼
Z

R�

0

r2drR�
n0l0 ðrÞRnlðrÞ

rl�

Rl�þ1
�

þ
Z

∞

R�
r2drR�

n0l0 ðrÞRnlðrÞ
Rl��
rl�þ1
�

: ð14Þ

We will be mostly working with the scenario where the
binary companion is outside the cloud of the GA, thus Ir is
dominated by the first term. The Gaunt integral

Gl0l�l
−m0m�m

¼
Z

dΩYl0−m0 ðΩÞYl�m�ðΩÞYlmðΩÞ ð15Þ

is nonvanishing only when the following selection rules are
satisfied:

8>><
>>:

−m0 þm� þm ¼ 0;

lþ l� þ l0 ¼ 2k; for k∈Z;

jl − l0j ≤ l� ≤ lþ l0:

ð16Þ

When the orbital frequency matches the energy difference
between twoH0 eigenstates of the cloud, the GA undergos a
resonant mode transition guided by the selection rules above.
These resonant transitions are sometimes called GCP tran-
sitions [31]. These atomic transitions of cloud modes in turn
backreact on the binary orbit, which can be detected through
multiple observational channels [31,37,38].

III. EFFECTIVE SUPERRADIANCE RATE
FOR GENERAL ORBITS

The mode transitions occur not only in a resonant fashion
at specific orbital frequencies, but also in a non resonant
fashion at arbitrary orbital frequencies. In particular, if a
superradiant mode transits to an absorptive mode due to the
overlap caused by the tidal perturbation, the effective growth
rate of the superradiant mode will be decreased. For a
superradiant mode jψnlmi, tidal perturbations generically
couple it to the spherically symmetric mode7 jψn00i, which
possess a large absorption rate. Thus even if the tidal
perturbations are small for a large binary separation, the
correction from mode mixing can still be considerable and
may even overturn the original growth rate of jψnlmi,
terminating superradiance. This superradiance termination
effect and its backreaction to the orbital motion of the binary
have been previously discussed in [50] but were restricted to
large circular equatorial orbits. In this section, we will
generalize the discussion tomore general orbits with nonzero
eccentricity and inclination angle.

A. The adiabatic case and the static approximation

We start with the perturbed Hamiltonian H ¼ H0 þ V�
consisting of a free partH0 [see (3)] and a tidal perturbation
part V� [see (9)],

hψn0l0m0 jHjψnlmi ¼ ωnlmδn0nδl0lδm0m þ hψn0l0m0 jV�jψnlmi:
ð17Þ

The diagonal terms are led by the H0 eigenvalues ωnlm,
while the off-diagonal terms represent mode mixings
introduced by V�. For simplicity, we restrict ourselves to
a two-mode subspace fj1i; j2ig with a superradiant
mode denoted as j1i≡ jψnlmi and an absorptive mode
denoted as j2i≡ jψn0l0m0 i. Defining the mixing coupling as
η≡ V21 ≡ h2jV�j1i, we can express the Hamiltonian (17)
in matrix form as

6Note that there is a typo in Eq. (28) of our previous paper [50],
which should be corrected as El�m� ¼4π=ð2l�þ1ÞY�

l�m�ðπ=2Þ;φ�ðtÞ ¼
el�m�e

−im�φ�ðtÞ.
7One exception is the jψn11i modes, where the selection

rules (16) forbid their overlap with jψn00i.
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H ¼
�
ω1 þ V11 V12

V21 ω2 þ V22

�

¼
 
Ē1ðtÞ þ iΓ1 η�ðtÞ

ηðtÞ Ē2ðtÞ þ iΓ2

!
; ð18Þ

where ĒiðtÞ≡ Ei þ ViiðtÞ, i ¼ 1; 2, and we have explicitly
spelled out the time dependence. Throughout this work, we
assume that the companion is light and far away from the
GA, i.e. q ≪ 1 and mint R�ðtÞ ≫ rn. Consequently the real
part of the diagonal terms are dominated by the free energy
levels, i.e. ĒiðtÞ ≈ Ei. The off-diagonal terms, however,
cannot be discarded even if they are small, since they play
the leading role of mixing H0 eigenstates. More specifi-
cally, we assume the hierarchy jVijj ≪ jEi − Ejj ≪ Ei. In
the adiabatic limit where

				 η̇=η
E1 − E2

				≪ 1; ð19Þ

one can apply the Wentzel-Kramers-Brillouin (WKB)
approximation and solve the occupation coefficient of
the cloud ciðtÞ≡ hijψðtÞi by

ciðtÞ ¼ Ciþe
−i
R

λþdt þ Ci−e
−i
R

λ−dt; i ¼ 1; 2; ð20Þ

where λ� are the instantaneous eigenvalues of the perturbed
Hamiltonian,

λ� ≡ ω̄1 þ ω̄2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηj2 þ

�
ω̄1 − ω̄2

2

�
2

s

≃

8>><
>>:

Ē1 þ jηj2
Ē1−Ē2

þ i
h
Γ1 −

Γ1−Γ2

ðĒ1−Ē2Þ2 jηj
2
i
;þ

Ē2 þ jηj2
Ē2−Ē1

þ i
h
Γ2 −

Γ2−Γ1

ðĒ1−Ē2Þ2 jηj
2
i
;−

: ð21Þ

Here in the second line we have expanded λ� in powers of
jη=ðE1 − E2Þj ≪ 1 and truncated to the first nontrivial
order. In summary, the correction to the superradiance rate
is given by

ΔΓ1ðtÞ ≃ −
Γ1 − Γ2

ðE1 − E2Þ2
jηðtÞj2: ð22Þ

The validity of (22) rests upon the adiabatic limit and the
WKB approximation. Physically it means when the binary
motion is slow, one can neglect the motion of the
companion, and obtain the effective superradiance rate
as dictated by the binary configuration at the given moment
in time. Then one can adiabatically vary the binary
configuration over an orbital period to obtain the
period-averaged effective superradiance rate as a static
approximation,

Γ̄ðSÞ
1 ≡ Γ1 þ ΔΓðSÞ

1 ; ΔΓðSÞ
1 ¼ 1

T

Z
T

0

ΔΓ1ðtÞdt: ð23Þ

Tomakemanifest the time dependence ofΓ1ðtÞ and complete
the above period-average integral, we introduce a para-
metrization of the elliptic orbit as8

R�ðtÞ ¼
p

1þ e cosφ�ðtÞ
; ð24Þ

where e is the eccentricity and p is the semilatus rectum
which is related to the semimajor axis a by p≡ að1 − e2Þ.
Using the total orbital angular momentum L and the total
orbital energy E of the binary,

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MM�mrp

p
; E ¼ MM�

2p
ðe2 − 1Þ; ð25Þ

wheremr ≡Mq=ð1þ qÞ is the reduced mass, we can write
the angular velocity as a function of the true anomaly,

φ̇� ¼
L

mrR2�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1þ qÞ

p3

s
ð1þ e cosφ�Þ2: ð26Þ

In this way we can rewrite the period-average integral as an
average over the angle φ�,

ΔΓðSÞ
1 ¼ 1

T

Z
2π

0

ΔΓ1

dφ�
φ̇�

; ð27Þ

where T ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3=½Mð1þ qÞð1 − e2Þ3�

p
is the orbital

period of the binary. For the j1i ¼ jψ322i mode, to leading
order in α, we found

Δ̄ΓðSÞ
322 ¼ −

q2

α10
M5

p6

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p �
ð1 − e2Þ3=2

× ½AðeÞ þ BðeÞ cosð2ι�Þ þ CðeÞ cosð4ι�Þ�
× ½1þOðãα; α2Þ�; ð28Þ

where

AðeÞ≡ 455625

65536
ð656þ 1488e2 þ 169e4Þ; ð29Þ

BðeÞ≡ 455625

16384
ð80þ 336e2 þ 45e4Þ; ð30Þ

CðeÞ≡ 455625

65536
ð48þ 240e2 þ 35e4Þ; ð31Þ

8In this work, we shall ignore precession effects since they do
not enter the dynamics at the level of our approximations. Thus
we set the periapsis at φ� ¼ 0.
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are fourth-order polynomials in the eccentricity. Note that
although jψ322i can mix into absorptive modes other than

jψ300i, their contribution to ΔΓðSÞ
322 is highly suppressed

in α. Thus to leading order, (28) is indistinguishable from
the total termination rate. To make a numerical comparison,
wenote that the superradiant growth rate of jψ322i atmaximal
BH spin (ã ¼ 1) and its GW depletion rate at saturation are
given by

Γ322 ≃þ8: × 102 Myr−1
�

α

0.2

�
13
�

M
103M⊙

�−1

× ½1þOðαÞ�; ð32Þ

γ322 ≃ −6: × 10−6 Myr−1
�

α

0.2

�
20
�

M
103M⊙

�−1

× ½1þOðαÞ�: ð33Þ

The superradiance termination rate can be quite significant,
too, if the binary separation is small,

ΔΓðSÞ
322 ≃ −5: × 102 Myr−1

×

�
α

0.2

�
−10
�

q
1.4 × 10−3

�
2
�

M
103M⊙

�−1

× ½1þOðαÞ�; ð34Þ

wherewe have chosenp ¼ 103M, e ¼ 0.5 and ι� ¼ π=4 as a
benchmark.

B. The diabatic case and the average-corotation
approximation

The WKB approximation we used in the previous
discussion requires the adiabaticity of the system.
However, if the binary separation is small, the rising orbital
frequency increases the time dependence in the mixing
coupling, T−1 ∼ jη̇=ηj. This leads to the breakdown of
adiabaticity, 				 η̇=η

E1 − E2

				 ∼ 1

jE1 − E2jT
≳ 1: ð35Þ

In such diabatic cases, we need to apply an alternative
treatment that takes into account the highly oscillatory
mixing coupling. In the circular equatorial orbit case, one
can perform a unitary transformation that brings the system
into a corotating frame in which the time dependence is
much weaker and WKB can be safely used [31,48,63].
However, for general orbits, it is much less straightforward
to find a unitary transformation that accomplishes this goal.
One may need a systematic Floquet analysis to fully solve
the problem [31]. Therefore, in favor of practicality and
physical intuition, we set out on a different route and make
a crude approximation by averaging over the instantaneous

corotating frames. More precisely speaking, for each
instant in a binary period, we compute the instantaneous
angular velocity of the companion with respect to the GA,
and then imagine the companion is in a circular equatorial
orbit with the same angular velocity (the separation remains
still R�). For this fictitious circular orbit, we perform a
unitary transformation to go into its corotating frame

HD ¼ UðtÞ†ðHðtÞ − i∂tÞUðtÞ;
with UðtÞ≡ e−iφ�ðtÞLz ; ð36Þ

where Lz is the spin-z direction angular momentum
operator for the boson field. Including the selection
rules (16) and the Hamiltonian after the transformation
reads

HD ¼
�
Ē1 þ iΓ1 −m1φ̇� jηj

jηj Ē2 þ iΓ2 −m2φ̇�

�
: ð37Þ

Going through the same procedure as in the last subsection,
we obtain the correction to the superradiance rate

ΔΓ1 ≃ −
Γ1 − Γ2

½E1 − E2 − ðm1 −m2Þφ̇�ðtÞ�2
jηðtÞj2: ð38Þ

In this case, when Ē1 − Ē2 ∼ ðm1 −m2Þφ̇ðR�Þ, the orbital
frequency will enter the GCP resonance band and hit the
pole in (38). Since binaries are typically more likely to stay
out of the resonance band, and we care more about the
evolution off the resonance, we perform a “Wick rotation”
to get rid of the poles on the real energy domain,

ΔΓ1 ≃ −
Γ1 − Γ2

ðE1 − E2Þ2 þ ½ðm1 −m2Þφ̇�ðtÞ�2
jηðtÞj2: ð39Þ

Finally we perform the same average over a period to
obtain

ΔΓ1 ¼
1

T

Z
2π

0

ΔΓ1

dφ�
φ̇�

: ð40Þ

Unfortunately this integral is not analytically solvable. To
gain better control over the parametric dependences and
speed up numerical solutions later in the next section,
we perform a further approximation and replace the time-
dependent φ̇�ðtÞ in the denominator by its value taken at the
semilatus rectum,

ΔΓðACRÞ
1 ≈ −

Γ1 − Γ2

ðE1 − E2Þ2 þ ½ðm1 −m2Þφ̇�ðtÞjR�¼p�2
jηðtÞj2;

≈ −
Γ1 − Γ2

ðE1 − E2Þ2 þ ðm1 −m2Þ2 Mð1þqÞ
p3

jηðtÞj2;

ð41Þ
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which can be considered as a typical characterization of
rotational effect of the binary companion. The final average
corotation (ACR) approximation for the correction of
superradiance rate is therefore

ΔΓ1
ðACRÞ ¼ 1

T

Z
2π

0

ΔΓðACRÞ
1

dφ�
φ̇�

: ð42Þ

To demonstrate the validity of such an approximation,
we numerically solve (40) and compare it to the ACR
approximation (42) and the static approximation (27) in
Fig. 2. It can be seen that in the adiabatic limit where the
binary separation is large, all three results agree well with
each other. However, in the diabatic limit where the binary
separation is small, the ACR approximation tracks the
numerical result (40) well, with only an Oð1Þ mismatch,

whereas the static approximation significantly overesti-
mates the superradiance rate correction.

TheACR superradiance termination rateΔΓðACRÞ
1 ðp; e; ι�Þ

directly depends on the orbital parameters of the binary.
The dependence on the semilatus rectum p is apparently a
broken power-law function, as shown in Fig. 2. The
dependence on the eccentricity e and the inclination angle

ι� are more subtle.We plotΔΓðACRÞ
322 as a function of e and ι�

with fixedp in Fig. 3.We can seewith a fixed inclination ι�,
the superradiance termination rate first increases and then
drops down to zerowith an increasing eccentricity e. This is
because with the semilatus rectum p held fixed, increasing
e means the decrease of the perigee, which means that
the companion is closer to the GA at the periapsis, leading
to stronger superradiance termination. However, as the
eccentricity continues to increase, the orbit becomes too
eccentric with an indefinitely increasing orbital period.
Meanwhile, the total amount of suppressed superradiance
is bounded from above, suggesting that the period-
averaged superradiance termination rate tends to zero as
e tends to one. On the other hand, with a fixed eccentricity,
the superradiance termination rate is monotonically
increasing towards the coplanar configuration with
ι� ¼ 0; π, and is the smallest when the orbit is orthogonal
to the equatorial plane, i.e. ι� ¼ π=2. This is physically
understandable because when the companion passes

Numerical Result

ACR Approximation

Static Approximation

102 103 104 105

106

103

100

10�3

10�6

10�9

p�M

��
�
32
2�
M
yr

�1
�

FIG. 2. We compare the correction to the superradiance rate due
to mode mixing with three different levels of approximations to
the superradiance rate. The blue curve shows the numerically
computed period-averaged result (40), the red curve shows the
ACR approximation result (42), and the black curve shows the
static approximation result (27). The gray region indicates that
the orbit lies inside the boson cloud and must be excluded as it is
beyond the validity range of our multipole expansion. Here we
chose the superradiant mode j1i ¼ jψ322i and considered its
mixing into the absorptive mode j2i ¼ jψ300i. The parameters are
chosen to be α ¼ 0.2, M ¼ 103M⊙, and q ¼ 1.4 × 10−3. The
orbit has an eccentricity of e ¼ 0.5 and an inclination angle
of ι� ¼ π=4. Moreover, we have selected the BH spin at the
saturation value of jψ322i, i.e. ãc ¼ 2α=ð1þ α2Þ. Clearly at a
large binary separation p, the three results all match well.
However, at small binary separations where the tidal perturba-
tions are diabatic, there is a significant overestimation for the
static approximation whereas the ACR approximation tracks the
numerical result very well. The dependence of the superradiance
termination rate roughly follows a broken power-law function,
which scales as p−6 in the adiabatic limit and as p−3 in the
diabatic limit.

���322
�ACR�

� Myr�1

0. 0.1 0.2 0.3 0.4 0.5

�

FIG. 3. The magnitude of the ACR superradiance termination
rate jΔΓðACRÞ

322 j for the jψ322imode as a function of the eccentricity
e and inclination angle ι�. Here we choose α ¼ 0.2,M ¼ 103M⊙,
q ¼ 1.4 × 10−3, p ¼ 4 × 103M, with a BH spin saturated at the
jψ322i threshold.
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through the spin axis of the GA, the tidal perturbation
is axisymmetric and does not induce any mode mixings
(i.e. η ¼ 0). The loss of contribution from this part of the
orbit suggests the total effect of superradiance termination
is weaker than the coplanar configuration.

IV. ORBITAL DYNAMICS WITH TERMINATION
BACKREACTION

In the absence of the boson cloud, a binary system
gradually loses energy by emitting GWs, which leads to a
circularized and shrinking orbit [64]. In the presence of the
boson cloud, however, because of the depletion via super-
radiance termination, the cloud angular momentum is then
transferred to the binary companion, thereby also affecting
the orbital evolution of the system. In our previous work
focused on circular equatorial orbits, such backreaction
produces floating or sinking orbits in which the shrinking
of binary separation either decelerates or accelerates,
for corotating orientation and counterrotating orientation,
respectively [50]. However, for more general orbits, the
consequence of backreaction can be much richer, since all
the binary parameters fpðtÞ; eðtÞ; ι�ðtÞg can change with
time. Physically one can understand the backreaction as the
cloud being resistant to the termination effect, exerting
an effective torque on the companion that lies along the
spin direction of the GA. We will adopt the nonrelativistic
approximation to solve the evolution of binary parameters.
The reason is twofold. First, we focus on the case where the
binary separation is much greater than the horizon size of the
BH, hence the orbital speed is much smaller than the speed
of the light. Second, the relativistic corrections (e.g. the post-
Newtonian corrections) do not entail the long-term evolution
of the binary parameters more so than the termination
backreaction effect, apart from the braking torque from
GW emission which we do include in the computation. The
precession effect due to post-Newtonian corrections, for
instance, do not play a role in affecting the orbital parameters
fpðtÞ; eðtÞ; ι�ðtÞg. To single out the effect of backreaction,
we also assume the superradiant mode is saturated (i.e.
Γ1 ¼ 0) so that the BH spin does not enter the dynamics.
We start from deriving the effective torque due to the

backreaction of the cloud. The total angular momentum of
the cloud is

ScðtÞ ¼ Sc;0

�
m1jc1ðtÞj2 þ

X
i≠1

mijciðtÞj2
�
; ð43Þ

where m1Sc;0 is the saturation cloud angular momentum
of superradiance mode j1i. For instance, Sc;0 ≃ αM2 for
the mode j1i ¼ jψ322i. Under the saturation assumption,
the occupation numbers of other modes are negligible.
As a result, we write the cloud angular momentum as
ScðtÞ ¼ m1Sc;0jc1ðtÞj2, which is depleted via two separate
channels,

dScðtÞ
dt

¼
�
dScðtÞ
dt

�
ST

þ
�
dScðtÞ
dt

�
cGW

: ð44Þ

The depletion rate contributed by superradiance termina-
tion is �

dScðtÞ
dt

�
ST

¼ 2ΔΓðACRÞ
1 ScðtÞ; ð45Þ

and the depletion rate arising from cloud GW emission is
given by �

dScðtÞ
dt

�
cGW

¼ γ1ðScÞScðtÞ; ð46Þ

where γ1ðScÞ is given in (8). Notice that the angular
momentum carried away by cloud-emitted GWs does
not enter binary dynamics at leading order9; therefore only
the depletion due to superradiance termination can give rise
to an effective torque backreacting on the binary,

τc ¼ −
�
dScðtÞ
dt

�
ST
: ð47Þ

The power of such a torque averaged over a period is

Pc ¼
1

T

Z
dtφ̇�τc cos ι� ≈ −

2π

T

�
dScðtÞ
dt

�
ST

cos ι�: ð48Þ

One can understand Pc as the rate of energy injection into
the orbital motion of the binary. Apart from the effect of
superradiance termination, the binary system also loses
energy and angular momentum through the emission of
GWs at a power [64]

PbGW ¼−
32

5

M5q2ð1þqÞ1=2
p5

ð1− e2Þ
�
1þ 73

24
e2þ 37

96
e4
�
;

ð49Þ

along with a braking torque acting on the binary,

τbGW¼−
32

5

M9=2q2ð1þqÞ1=2
p7=2 ð1−eÞ3=2

�
1þ7

8
e2
�
: ð50Þ

Now we have a system of four variables that evolve in
time, namely the three orbital parameters fpðtÞ; eðtÞ;
ι�ðtÞgÞ, together with the cloud spin ScðtÞ. Thus we need
four equations to determine the evolution dynamics.
The first equation is given by the cloud spin evolution
(44). We also have two scalar equations describing angular

9The effect of GA mass loss due to GW emission of the cloud
is suppressed by the ratio of the cloud mass and the BH mass,
which is at least Oðα2Þ for the jψ322i mode. Therefore we can
safely neglect this effect at leading order.
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momentum conservation projected onto the Ŝc direction of
BH spin as well as its orthogonal plane,

d
dt
½LðtÞ cos ι�ðtÞ� ¼ τc þ τbGW cos ι�ðtÞ; ð51Þ

d
dt
½LðtÞ sin ι�ðtÞ� ¼ τbGW sin ι�ðtÞ: ð52Þ

At last, conservation of energy implies

dEðtÞ
dt

¼ Pc þ PbGW: ð53Þ

These four equations, i.e. (44), (51), (52), (53), when
combined with equations relating the orbital energy,
angular momenta, power and torques to the four variables
fp; e; ι�; Scg, become a set of first-order ordinary differ-
ential equations that completely determines the orbital
evolution given the initial conditions,

dXi

dt
¼ fiðfXgÞ; Xi ∈ fp; e; ι�; Scg: ð54Þ

We numerically solve this set of equations and plot the
evolution of binary parameters in Fig. 4. We give a
few remarks on the key features for the evolution of
binary parameters and their corresponding physical intuitions
below:
(1) From the p − t diagram, we observe that super-

radiance termination backreaction generically
pushes the companion further away from the
GA, which in turn, reduces the termination rate
itself. This is a clear manifestation of the cloud
resisting being terminated. For the corotating case,
p increases monotonically as the cloud pumps
energy into the binary, resulting in a floating orbit.
For the counterrotating case, however, p initially
decreases, suggesting a short period of sinking
orbit, but is eventually pushed away as a floating
orbit. The reason for this two-stage evolution will
become apparent as we discuss the ι� − t diagram
below. In both cases, at much longer time scales,
the cloud eventually depletes and the effect of
binary GW emission starts to kick in. The binary
separation then drops down, leading to the onset of
merger phase.

FIG. 4. The time evolution of pðtÞ, eðtÞ and ι�ðtÞ in a typical EMRI system with (solid lines) and without (dashed lines) the jψ322i
cloud. Upper panels: large initial binary separation with pð0Þ ¼ 4 × 103M. Lower panels: small initial binary separation with
pð0Þ ¼ 3 × 102M. The blue lines correspond to corotating initial conditions with ι�ð0Þ ¼ π=4, while the red lines stand for
counterrotating initial conditions with ι�ð0Þ ¼ 8π=9. The gray dashed lines indicate evolution solely due to GW emission. Other
parameters are chosen to be α ¼ 0.2, M ¼ 103M⊙, q ¼ 1.4 × 10−3 and eð0Þ ¼ 0.5. Additionally, we assume that the cloud is at the
saturation value of the jψ322i mode, i.e. ãc ¼ 2α=ð1þ α2Þ. It can be seen from the plots that superradiance termination backreaction
tends to bend any binary orbit into a large circular equatorial orbit with the same orientation as the BH spin.
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(2) From the e − t diagram, we can observe that
termination backreaction tends to circularize the
corotating orbit, similar to the effect of binary
GW emission. In contrast, the counterrotating case
is again a two-stage evolution in which the eccen-
tricity initially grows but eventually decays.

(3) The ι� − t diagram shows that termination back-
reaction universally reduces the inclination angle of
the orbit until merger. In other words, the cloud
torque tends to align the binary orbit with its spin
direction. This solves the mystery of the two-stage
evolution in the case with counterrotating initial
condition. Namely, termination backreaction first
produces a sinking orbit with increasing eccentricity,
then the torque brings down the inclination angle
past ι� ¼ π=2, after which the binary companion
actually becomes corotating with a circularized
floating orbit. In summary, termination backreaction
tends to bend any binary orbit into a large circular
equatorial orbit aligned with the BH spin.

(4) Notice that the gray dashed lines represent the usual
binary evolution in the absence of boson cloud. In this
case, the orbit is still circularized, but the inclination
angle does not change because Eqs. (49) and (50) are
blind toBHspin at leadingorder. Comparison to cases
with a cloud shows that the both the merger time and
the final-state statistics can be drastically affected by
the presence of the cloud. This gives us a potential
probe of such boson clouds from the statistics of
extreme mass ratio inspiral (EMRI) systems. We will
pursue such an analysis in future works.

One can also analyze the evolution governed by (54)
as a phase portrait in the parameter space spanned by
fp; e; ι�; Scg. In Fig. 5, we plot the gradient vector field fi
which determines the flow of orbital parameters. As it is
difficult to visualize a four-dimensional vector field, we
take two-dimensional sections by fixing the other two
parameters. The first row represents the flow in the p − e
plane with fixed ι� and for three different fixed choices
of Sc, while the second row depicts the flow in the p − ι�
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FIG. 5. The flow of p, e and ι� for different sections of constant cloud spin Sc in an EMRI system. Here we choose α ¼ 0.2,
q ¼ 1.4 × 10−3, M ¼ 103M⊙, together the BH spin set at the threshold of jψ322i. The cloud occupation numbers are chosen to be
jc322j2 ¼ 1 (left column), jc322j2 ¼ 0.3 (middle column) and jc322j2 ¼ 0 (right column), which correspond to cloud spin at Sc ¼ 2Sc;0,
Sc ¼ 0.6Sc;0 and Sc ¼ 0, respectively.
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plane with fixed e and for three different fixed choices
of Sc. A few remarks follow from inspecting the plots:
(1) As expected, cloud backreaction generically decreases

eccentricity and inclination while pushing the orbits
further away until reaching a transient dynamical
balance with effects of binary GW emission.

(2) It is apparent that with a smaller cloud occupation
number and thus smaller cloud spin Sc, backreaction
is weakened correspondingly. In the case with zero
cloud occupation, the inclination angle does not
evolve at leading order, while the eccentricity still
decreases due to binary GW emission.

(3) In some of the plots in Fig. 5 (e.g. the middle
column), there appears to be a fixed-point attractor
of time flow. We note that this is an artefact of
reducing high-dimensional parameter spaces to two-
dimensional sections. Due to energy leakage into
outgoing GWs, the binary separation will eventually
decrease. The only genuine attractor of this system is
the merger event at p ¼ e ¼ 0.

V. CONCLUSION

BHs surrounded by an ultralight boson cloud exhibit
numerous exciting phenomena, whose discovery can bring
invaluable insight into the infrared physics beyond the
Standard Model. In the meanwhile, however, it is important
to test the robustness of postulating such a GA. In cases
where the GA is in a binary, superradiance can be
terminated by tidal perturbations of the companion. This
mechanism has been studied for large circular equatorial
orbits in our previous work. In this paper, we have extended
our discussions to general orbits with nontrivial eccentricity
and inclination. We calculated the effective superradiance
rate both in the adiabatic case with the static approximation
and in the diabatic case with the average corotation
approximation. Applying these period-averaged correction
to cloud growth rate, we moved on to study the back-
reaction to the binary orbit in EMRI systems. We found that
termination backreaction generically circularizes the orbit
and pushes it outwards, while also bending the orbital plane
towards aligning with the equator of the BH. In particular,
even if the companion starts out counterrotating the GA
with a sinking orbit, termination backreaction soon bends

the inclination angle into corotating and the companion is
subsequently pushed outwards as a floating orbit. One can
understand this as the cloud being resilient to superradiance
termination and tends to give a negative feedback that
reduces termination.
There are certainly many directions left to explore in

the future. To name a few, although we relaxed the large
circular equatorial orbit assumption in this work, many
approximations are still evoked to acquire a reasonable
analytical formula so as to characterize superradiance
termination. It would be more satisfactory to work out a
numerical solution of the cloud Schrödinger equation and
the equations of motion of the binary, which can offer a
more concrete depiction of superradiance termination.
It is also interesting to include precession and relativistic
corrections and examine how they may affect our predic-
tions. Second, with the control over the evolution history of
binary parameters, one can examine the statistical proper-
ties of such EMRI systems in general. It is not inconceiv-
able that, even if we cannot directly observe the cloud
before depletion, its transient presence may be encoded in
the final-state statistics of EMRIs. Third, as mentioned in
Sec. II A, linear mixings between modes with different
azimuthal quantum numbers are forbidden by the axial
symmetry of the Kerr background. This is not true when
one goes to the nonlinear regime, where all the modes are
expected to couple to each other via local self-interactions
or nonlocal self-gravity [65–68]. Thus superradiance ter-
mination may occur even in the absence of any external
perturber, but as a consequence of the interaction of
multiple cloud modes that coexist around the BH. We
leave this interesting possibility to future works.
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