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The uniqueness of the static, asymptotically flat, nonextremal photon sphere in Einstein-Maxwell
spacetime with electric and magnetic charges has been proved. Using the conformal positive energy
theorem, as well as the positive mass theorem and adequate conformal transformations, we envisage the
two alternative ways of proving that the exterior region of a certain radius of the studied static photon
sphere is characterized by Arnowitt-Deser-Misner mass, electric, and magnetic charges.
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I. INTRODUCTION

In view of the first-ever obtained images of M87 and
Milky Way supermassive black holes [1,2] and the measure
of polarization (a signature of magnetic fields close to the
edge of a black hole) performed by the Event Horizon
Telescope (EHT) Collaboration [3–5], the growth of the
hope for the future possible verifications of the other black
hole characteristics and observations of new physics effects
in the vicinity of them can be observed.
From both theoretical and observational points of views

the regions of spacetime, where the photon orbits are
closed, forming timelike hypersurfaces on which the
bending angle of light is unrestrictedly high, attract much
attention. In essence, one can suppose that compact objects
such as black holes, wormholes, and neutron stars are
surrounded by photon spheres.
What is more, general relativity and its generalizations

foresee the existence of such kinds of regions. The concept
of photon sphere and photon surface are of great impor-
tance in studies of black hole shadows [6,7], triggered by
the recent achievements concerning black hole images at
the center of Milky Way and M87 galaxies [1,2]. They are
also used in the search for the traces of new physics beyond
the Standard Model.
In four-dimensional spacetime, photon sphere special

properties, which recall features of a black hole event
horizon, allow us to classify their spacetimes in terms of
their asymptotical charges. It constitutes the alternative
for the black hole uniqueness theorem [8–20]. Conse-
quently, the generalizations of the uniqueness theorem for
n-dimensional gravity were also investigated. In [21] the
higher-dimensional problem of the photon sphere and
the uniqueness of higher-dimensional Schwarzschild

spacetime was elaborated, while the photon sphere unique-
ness for electrovacuum n-dimensional spacetime was
given in [22]. On the other hand, in [23] the studies of
the so-called trapped photons, i.e., photons that never pass
the event horizon or escape toward spatial infinity, in
the spacetime of the higher-dimensional Schwarzschild-
Tangherlini black hole, have been elaborated.
The aforementioned concepts of the photon sphere

and surface play the key role in studies of Penrose
inequalities [24,25]. It turns out that they are timelike
totally umbilic hypersurfaces with the proportionality
between their first and second fundamental forms. Other
mathematical and geometrical aspects of these objects were
scrutinized for both static and stationary axisymmetric
spacetimes [26–37].
On the other hand, the generalization of the photon sphere

concept to the case of the massive charged particle surface,
was presented. They describe the case of timelike hyper-
surfaces to which any wordline of particles initially touching
them remains in the hypersurface in question [38,39].
As was mentioned above, the studies of the photon

sphere properties reveal that it is a totally umbilical
hypersurface (i.e., its second fundamental form is a pure
trace) with a constant mean curvature and surface gravity,
strongly resembling the black hole event horizon. On the
other hand, from black hole theory one knows that the
presence of the black hole event horizon enables one to
classify asymptotically flat spacetimes in terms of their
asymptotic charges (authorizes the uniqueness theorems for
various kind of black hole solutions).
Therefore the tantalizing question arises, whether the

presence of the photon sphere delivers a new tool for the
classification of spacetimes with asymptotical charges or
other physical quantities.
Our paper is concerned with the problem of classification

of static asymptotically flat spacetimes being the solution*rogat@kft.umcs.lublin.pl

PHYSICAL REVIEW D 109, 024056 (2024)

2470-0010=2024=109(2)=024056(10) 024056-1 © 2024 American Physical Society

https://orcid.org/0000-0003-4163-7633
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.024056&domain=pdf&date_stamp=2024-01-29
https://doi.org/10.1103/PhysRevD.109.024056
https://doi.org/10.1103/PhysRevD.109.024056
https://doi.org/10.1103/PhysRevD.109.024056
https://doi.org/10.1103/PhysRevD.109.024056


of Einstein-Maxwell gravity with electric QðFÞ and mag-
netic QðFÞ charges, having the line element of the form

ds2 ¼ −
�
1 −

2M
r

þ
Q2

ðFÞ þQ2
ðBÞ

r2

�
dt2

þ dr2

ð1 − 2M
r þ Q2

ðFÞþQ2
ðBÞ

r2 Þ
þ r2dΩ2; ð1Þ

where dΩ2 is the metric of the unit sphere, containing a
photon sphere. This paper is a continuation of our previous
work [14], devoted to the uniqueness of the photon sphere
for Einstein-Maxwell-dilaton black hole solutions with
an arbitrary coupling constant. In addition, the influence
of the magnetic field on the photon sphere region is very
interesting due to the measurements and observations of the
black hole magnetic field by EHT Collaboration and in the
context of future planned experiments [3–5,40].
The organization of the paper is as follows. In Sec. II we

describe the basic features of the Maxwell gauge field in
spacetime with the presence of an asymptotically timelike
Killing vector field orthogonal to the hypersurface of
constant time. Section III will be devoted to the basic
characteristics of the photon sphere with electric and
magnetic charges. We found the functional dependence
among the lapse function and aforementioned charges,
which will be of key importance for revealing that the
photon sphere has scalar constant curvature. Section IV is
connected with the basic steps in the proof of the unique-
ness theorem, using the conformal positive energy theorem.
The alternative way of obtaining the classification (unique-
ness) of the nonextremal static asymptotically flat solution
in Einstein-Maxwell gravity with electric and magnetic
charges will be presented in Sec. V. The proof is based on
the method that uses the appropriate conformal trans-
formation and positive energy theorem. In the last section
we conclude our investigations.

II. EQUATIONS OF MOTION
WITH THE PRESENCE OF STATIONARY

KILLING VECTOR FIELD

In this section we recall the basic features of electric and
magnetic Maxwell fields in the presence of an asymptoti-
cally timelike Killing vector field. In what follows we shall
consider the ordinary Einstein-Maxwell system given by
the action

SEM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − FμνFμνÞ; ð2Þ

where g is the determinant of the four-dimensional metric
tensor and Fμν ¼ 2∇½μAν� stands for the Uð1Þ-gauge field
strength. Variation of the action (2) with respect to metric
tensor gμν and Aμ reveals the standard form of Einstein-
Maxwell equations of motion

∇μFμν ¼ 0; Rμν ¼ TμνðFÞ; ð3Þ

where the energy momentum tensors, defined as
Tμν ¼ −δS= ffiffiffiffiffiffi−gp

δgμν, are provided by

TμνðFÞ ¼ 2FμρFν
ρ −

1

2
gμνF2: ð4Þ

We introduce an asymptotically timelike Killing vector
field kδ and assume that the field strength in the considered
theory will be stationary, i.e.,LkFαβ ¼ 0. The exact form of
the energy-momentum tensor TαβðFÞ envisages that it also
fulfills the stationarity assumption, LkTαβðFÞ ¼ 0. The
existence of stationary Killing vector field ka enables
one to introduce into consideration the meaning of the
twist vector ωa, defined as

ωa ¼
1

2
ϵabcdkb∇ckd: ð5Þ

Furthermore, for any Killing vector field one has
∇α∇βχγ ¼ −Rβγα

δχδ, which implies in turn the relation
of the form as

∇βωα ¼
1

2
ϵαβγδkγRδχkχ : ð6Þ

It can also be found that ∇αðωα

N4Þ ¼ 0, where we
set N2 ¼ −kγkγ .
The introduction of the Killing vector field in question

allows one to define electric and magnetic components for
gauge field strengths Fαβ as follows:

Eα ¼ −Fαβkβ; Bα ¼
1

2
ϵαβγδkβFγδ; ð7Þ

and consequently the field strength Fαδ can be rewritten in
terms of Eα and Bα, i.e., N2Fαβ ¼ −2k½αEβ� þ ϵαβγδkγBδ.
On the other hand, the equations of motion for magnetic
and electric parts gauge field strength are provided by

∇α

�
Eα

N2

�
¼ 2

Bγ

N4
ωγ; ð8Þ

∇α

�
Bα

N2

�
¼ −2

Eγ

N4
ωγ; ð9Þ

while the field invariance conditions LkFαβ ¼ 0, as well
as the relations ∇½γFαβ� ¼ 0, establish the generalized
Maxwell source-free equations in the form

∇½αEβ� ¼ 0; ∇½αBβ� ¼ 0: ð10Þ

We shall consider the simply connected spacetime. It
permits us to implement the electric and magnetic poten-
tials in the forms as
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Eα ¼ ∇αψF; Bα ¼ ∇αψB: ð11Þ

Keeping in mind the relations (6) and the explicit form of
the Ricci tensor, one finds the Poynting flux in Einstein-
Maxwell gravity with electric and magnetic charges. It
yields

∇½αωβ� ¼ 4E½αBβ�: ð12Þ

In what follows we shall pay attention to static spacetime;
i.e., one supposes that there exists a smooth Riemannian
manifold and a smooth lapse function N∶ M3 → Rþ, such
that M4 ¼ R ×M3. The assumptions provide that the line
element in the studied spacetime can be written in the form

ds2 ¼ gμνdxμdxν ¼ −N2dt2 þ gabdxadxb; ð13Þ

where N and gab are time independent, as they are
determined on the hypersurface of constant time.
The spacetime under consideration is asymptotically flat

containing a dataset ðΣend; gij; KijÞ with gauge fields Aμ

such that Σend constitutes a manifold diffeomorphic to Rð3Þ

minus a closed unit ball at the origin of Rð3Þ. Besides, it is
subject to the following asymptotic behaviors of gij; Fμν:

jgij − δijj þ rj∂agijj þ � � � þ rkj∂a1���akgijj

þ rjKijj þ � � � þ rkj∂a1���akKijj ≤ O
�
1

r

�
; ð14Þ

Fαβ þ rj∂aFαβj þ � � � þ rkj∂a1���akFαβj ≤ O
�
1

r2

�
: ð15Þ

The Einstein-Maxwell equations are provided by the
following:

ðgÞ∇i
ðgÞ∇iN ¼ 1

N
ððgÞ∇iψF

ðgÞ∇iψF þ ðgÞ∇iψB
ðgÞ∇iψBÞ;

ð16Þ

NðgÞ∇i
ðgÞ∇iψF ¼ ðgÞ∇iNðgÞ∇iψF; ð17Þ

NðgÞ∇i
ðgÞ∇iψB ¼ ðgÞ∇iNðgÞ∇iψB; ð18Þ

ðgÞR ¼ 1

N2
ððgÞ∇iψF

ðgÞ∇iψF þ ðgÞ∇iψB
ðgÞ∇iψBÞ;

ð19Þ

ðgÞRij ¼
1

N
ðgÞ∇i

ðgÞ∇jNþ 1

N2
½gijððgÞ∇kψF

ðgÞ∇kψF

þðgÞ∇kψB
ðgÞ∇kψBÞ

−2ððgÞ∇iψF
ðgÞ∇jψF þðgÞ∇iψB

ðgÞ∇jψBÞ�;
ð20Þ

where ðgÞ∇i is the covariant derivative with respect to
metric tensor gij. ðgÞRij denotes the three-dimensional
Ricci tensor, while ðgÞR stands for the Ricci scalar
curvature.

III. GEOMETRY OF PHOTON SPHERE
IN STATIC ASYMPTOTICALLY

FLAT SPACETIME WITH ELECTRIC
AND MAGNETIC POTENTIALS

This section will be devoted to the description of the
photon sphere with one single component [11]. Namely, a
photon surface is an embedded timelike hypersurface for
which any null geodesics initially tangent to it remains
tangent during the passage of time of its existence. On
the other hand, by photon sphere one defines a photon
surface with constant lapse function N, and the additional
conditions imposed on the electric and magnetic charges
emerging in the studied theory.
We suppose that the lapse function regularly foliates

the manifold outside the photon sphere. Thus it effects
that all level sets with N ¼ const are topological spheres.
It yields that outside the photon sphere one has 1=ρ2 ¼
ðgÞ∇iNðgÞ∇iN ≠ 0.
Further, we define the electric and magnetic static system

as a time slice of the static spacetime ðR ×M3;−N2dt2 þ
gijdxidxjÞ. Then, we define the notion of the photon
surface. Namely, let ðM3; gij; N;ψF;ψBÞ be a Maxwell
electric-magnetic system bounded with spacetime defined
above, with the metric (13). By the photon sphere we shall
understand a timelike hypersurface embedded ðP3;hijÞ↪
ðR×M3;−N2dt2þ gijdxidxjÞ. If the embedding is umbilic
and the gradient of the lapse function, the electric one-form
is normal to P3.

A. Mean curvature of photon sphere

It has been revealed in [7] that the second fundamental
form of P3 may be written as Kij ¼ 1

3
Θhij, where Θ stands

for the expansion of the unit normal to the photon sphere.
Moreover, the condition for a timelike hypersurface to be a
photon sphere is its total umbilicity (its second fundamental
form is a pure trace).
To commence, we use the Codazzi equations to

analyze the properties of the photon sphere in question.
We denote by na the unit normal to the photon sphere, Yβ

will represent the element of tangent space TP3, and using
these quantities one obtains that for all vectors Yc,
belonging to TP3, the following relation is satisfied:

1

3
Θ;bð1 − 3ÞYb ¼ ðgÞRcdncYd; ð21Þ

where the right-hand side of Eq. (21) is given by
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ðgÞRcdncYd ¼ 2
1

N4
kaYakbnbðEmEm þ BmBmÞ

− 2
1

N2
ðEaEb þ BaBbÞYanb

þ nkYk

N2
ðEmEm þ BmBmÞ: ð22Þ

Keeping in mind the fact that electric fields Ea, Ba (Ea is
normal toP3, and by its definition and the results of Sec. III C
show that this is the case for Ba in static spacetime) are
normal to P3 and kαYα ¼ 0; kβnβ ¼ 0, one concludes that
ðgÞRcdncYd is equal to zero, and we arrive at

0 ¼ ð1 − 3ÞYζ Θ;ζ

3
: ð23Þ

Thus for an arbitrary vector Yβ, the mean curvature of the
considered photon sphere is constant.
It can also be shown [11] that LXðnjðgÞ∇jNÞ ¼ 0, where

X is an arbitrary tangent vector to Σ2, envisaging that
njðgÞ∇jN is constant on Σ2.

B. Scalar curvature of electric-magnetic photon sphere

The scalar curvature of the photon sphere in question
will be found by means of the contracted Gauss equation. It
implies

ðgÞR − 2ðgÞRijninj ¼ ðpÞR −
2

3
Θ2; ð24Þ

where in our case ðgÞRijninj yields

ðgÞRijninj ¼ −
1

N2
ðEaEb þ BaBbÞnanb: ð25Þ

As a result, one achieves the relation for the scalar curvature
of the photon sphere

ðpÞR ¼ 2

3
Θ2 þ 2

1

N2
ðEaEb þ BaBbÞnanb: ð26Þ

To show that the photon sphere has a constant scalar
curvature one needs to prove that Eana and Bknk are
constant on P3. Above we mentioned that njðgÞ∇jN is
constant on P3 (see for the proof [11]), and in the next
subsection we envisage that electric and magnetic poten-
tials are functions of N; see relation (39). It leads to the
conclusion that Eana nad Bknk are constant on P3,
implying that P3 has the constant scalar curvature.

C. Functional dependence–lapse function electric
and magnetic potentials

In static spacetime with Killing vector field kμ, one has
that the twist vector ωα (12) is equal to zero. It implies

proportionality between magnetic and electric fields [8].
Because of the fact that the electric one-form is spacelike
(kμ is timelike), every one-form parallel and orthogonal to it
vanishes, Eqs. (8) and (9). Moreover, keeping in mind the
asymptotic conditions ψF → 0 and ψB → 0, when r → ∞,
we get that

ψB ¼ μψF; ð27Þ
where μ is constant.
As in [41], one can introduce coordinates on the

N ¼ const; t ¼ const manifold provided by

gabdxadxb ¼ ð2Þgabdyadyb þ ρ2dN2: ð28Þ

Keeping in mind equations of motion for electric and
magnetic potentials and the relation (27), we obtain

1ffiffiffiffiffiffiffið2Þg
p � ffiffiffiffiffiffiffi

ð2Þg
q

ϕF

N

�
¼ −

ðρψ ;a
F Þ;a
N

; ð29Þ

where we have denoted

∂ψF

∂N
¼ ρϕF; ð30Þ

and the gravitational relation of the form

1

ρ2
∂ρ

∂N
¼ K þ 2ρð1þ μ2Þ

N
ðϕ2

F þ ψF;aψ
;a
F Þ; ð31Þ

where K ¼ Km
m is the extrinsic scalar curvature of N ¼

const spacetime. Based on equations of motion (29)–(31)
for the theory in question, one can arrive at the integral
identity given by

1ffiffiffiffiffiffiffið2Þg
p ∂

∂N

� ffiffiffiffiffiffiffi
ð2Þg

q �
1

N
FðN; ψ̃Þϕ̃þ GðN; ψ̃Þ

ρ

��

¼ Aρðϕ̃2 þ ψ̃ ;aψ̃
;aÞ þ Cψ̃ þ 1

ρ

∂G
∂N

−
1

N
ðFρψ̃ ;aÞ;a; ð32Þ

for differentiable arbitrary (for the time being) functions F,
G and the new potential ψ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
ψF (where we have

used the dependence of electric and magnetic potentials in
the static spacetime), for the same reason we get that
ϕ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
ϕF. The functions A and B are provided by

A ¼ 1

N

�
Gþ ∂F

∂ψ̃

�
; ð33Þ

B ¼ 1

N
∂F
∂N

þ ∂G
∂ψ̃

: ð34Þ

To achieve the integral conservation laws from (32),
we have to restrict our consideration to the case where
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A ¼ B ¼ ∂G
∂N ¼ 0. The general solutions of the above

overdetermined linear system of differential equation for
F and G constitute a linear combination of the following
particular solutions:

F ¼ 1; G ¼ 0; F ¼ 2ψ̃ ; G ¼ 1;

F ¼ 2ψ̃2 − N2; G ¼ 2ψ̃ : ð35Þ

One can integrate the relation (32), with respect to all the
aforementioned values of functions F and G, keeping in
mind that the integral of two-dimensional divergence over a
closed N ¼ const space disappears. The two boundary
surfaces Σ0 and Σ∞ were taken into account with the
appropriate asymptotic conditions imposed on fields and
characteristic features of them. Namely, for approaching
Σ∞ one has that rψF → QðFÞ; r2ϕF → −QðFÞ;

ρ
r2 →

1
M. For

Σ0 we have that ϕF ¼ OðNÞ;ψF;a ¼ OðNÞ. The Σ0 ψF and
1=ρ are constant [41].
Finally, one arrives at the following:

Z
Σ0

dS

�
ϕF

N

�
¼ −QðFÞ; ð36Þ

2ð1þ μ2Þψ ð0ÞF

Z
Σ0

dS

�
ϕF

N

�
þ S0

ρ0
¼ M; ð37Þ

2ð1þ μ2Þψ2
ð0ÞF

Z
Σ0

dS
�
ϕF

N

�
þ 2

S0
ρ0

ψ ð0ÞF ¼ QðFÞ; ð38Þ

where S0 is the area of two-space Σ0.
It can be seen that the addition of magnetic charge does

not change the basic features of the photon sphere (as
obtained in the Maxwell case in [11]). Qualitative features
such as the constancy of its mean curvature and scalar
curvature are the same; however, quantitative ones are
different. Namely, they are valid for the modified potential
ψ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p
ψF, on which the magnetic potential imprints

its influence.
All the above reveal that one arrives at the following

functional dependence among the N0 lapse function on Σ0,
the ψ ð0ÞF electric potential at Σ0, and the constant μ
bounded magnetic and electric potentials

2ð1þ μ2Þψ2
ð0ÞF þ 2ψ ð0ÞF

M
QðFÞ

− 1 ¼ N2
0; ð39Þ

as was mentioned above ψ ð0ÞF and N0 are constant on the
considered hypersurface and ψF → 0, as r → ∞.
Equation (39) is valid not only on the surface in

question but also in all its exterior region. Namely, let
us compose the divergence identity based on the above
equations

1

2
ðgÞ∇m

��
−N2þ2ð1þμ2Þψ2

Fþ
2ψFM
QðFÞ

−1

�
θm

�
¼Nθmθ

m;

ð40Þ
where θm yields

θm ¼−ðgÞ∇mN

þ 1

N

�
2ð1þμ2ÞψF

ðgÞ∇mψF þ
M
QðFÞ

ðgÞ∇mψF

�
: ð41Þ

In the next step one applies the Gauss theorem to the
relation (40), and taking into account the asymptotic
behaviors of N;ψF, and the fact that N > 0 in the exterior
region of the photon sphere, one can draw a conclusion that
θm ¼ 0. Fixing in this relation the integration constant as
equal to 1, we arrive at the equation expressing a functional
dependence among electric/magnetic potentials and N.
It proves the constancy of Eana and Bcnc on P3,

implying that ðgÞR is a constant scalar curvature.

D. Auxiliary formulas

Some additional formulas envisaging the influence of the
magnetic charge on the photon sphere can be obtained by
the equation of motion (16), for the isometric embedding
ðΣ2; σijÞ ↪ ðM3; gijÞ. Namely, if one considers the con-
tracted Gauss relation, it yields

NðσÞR ¼ 2

N
ðEaEb þ BaBbÞnanb þ 2HnkðgÞ∇kN þH2

2
N;

ð42Þ
where we have denoted H ¼ 2

3
Θ. The integration of (42)

over the hypersurface Σ results inZ
Σ
dΣNðσÞR ¼

Z
Σ
dΣ

2

N
ðEaEb þ BaBbÞnanb

þ 2

Z
Σ
dΣHnkðgÞ∇kN þ

Z
Σ
dΣ

H2

2
N: ð43Þ

Let us examine the area of the hypersurface Σ denoted by
AΣ and apply the Gauss-Bonnet theorem. Consequently, we
arrive at

N0 ¼
1

4πN0

ðEaEb þ BaBbÞnanbAΣ þHMPhs

þ 1

16π
H2AΣN0; ð44Þ

where the mass of the photon sphere implies

Mphs ¼
1

4π
nkðgÞ∇kNAΣ: ð45Þ

Next, we take into account the contracted Gauss equation
ðσÞR ¼ ðpÞR − 2ðpÞRijη

iηj, for ðΣ2; σijÞ ↪ ðP3; hijÞ isomet-
ric embedding, with a unit normal ηi.
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The same procedure as above leads us to the equation
provided by

1 ¼ 3

16π
H2AΣ þ

1

4πN2
0

ðEaEb þ BaBbÞnanbAΣ; ð46Þ

which can be rewritten using the definition of the electric
and magnetic charges

QðFÞ ¼ −
AΣEknk

4πN0

; QðBÞ ¼ −
AΣBknk

4πN0

; ð47Þ

and Eqs. (44) and (46), in the form as

1 ¼
4πðQ2

ðFÞ þQ2
ðBÞÞ

AΣ
þ 3

2

H
N0

Mphs: ð48Þ

On the other hand, the relation among na; N0, and H yields

2naðgÞ∇aN ¼ HN0: ð49Þ

Then, using (49) we get the expression envisaging how
magnetic charge influences AΣ:

AΣ

4π
¼ ðQ2

ðFÞ þQ2
ðBÞÞ þ 3

M2
phs

N2
0

¼ ð1þ μ2ÞQ2
ðFÞ þ 3

M2
phs

N2
0

:

ð50Þ

IV. UNIQUENESS OF PHOTON SPHERE
WITH ELECTRIC AND MAGNETIC CHARGES

The uniqueness proof of the photon sphere in Einstein-
Maxwell dark photon gravity will be conducted in several
steps, keeping in mind the attitude presented in Refs. [9–14].
In this section the photon sphere emerges as the inner

boundary of the studied spacetime [12]. Namely one
has that

ðP3; hijÞ ¼∪I
i¼1 ðR × Σ2

i ;−N2
i dt

2 þ σðiÞij dx
idxjÞ; ð51Þ

where P3
i denotes each connected component of P3.

To begin with, we define the electric-magnetic Einstein-
Maxwell dark photon system as ðM3; gij; N;ψF;ψBÞ, being
asymptotic to the static spherically symmetric solution in
the considered theory, and possessing the Killing horizon
boundary. It can be done by glueing spatial pieces of the
aforementioned solution, having the adequate mass and
Maxwell electric and magnetic charges. Namely, each of
the photon spheres Σ2

i will be glued at the neck piece of the
Einstein-Maxwell manifold with a mass greater than zero

and having charges QðFÞ
i ; QðBÞ

i .
The manifold M3 will be smooth, and the metric tensor,

the lapse function, and the potentials ψF and ψB will be
smooth away from the glueing surface. The considered

manifold will be characterized by non-negative scalar
curvature (away from the glueing surface) and will be
geodesically complete.
Next the adequate conformal transformations will be

applied, and we use the conformal positive energy theorem
to show that the photon sphere is isometric to Einstein-
Maxwell spacetime characterized by the Arnowitt-Deser-
Misner (ADM) mass, electric, and magnetic charges. The
nondegenerate case of the Einstein-Maxwell static, spheri-
cally symmetric system will be considered.

A. Conformal positive theorem and uniqueness
of electric-magnetic photon sphere

In our attitude to the problem, the conformal positive
energy theorem, derived in Refs. [42,43], will account
for the key role in the uniqueness proof. To implement it to
our considerations one ought to fulfill its assumptions.
Namely, we have to consider two asymptotically flat
Riemannian (n − 1)-dimensional manifolds, ðΣðΦÞ; ðΦÞgijÞ
and ðΣðΨÞ; ðΨÞgijÞ for which metric tensors are bounded
with the conformal transformation given by

ðΨÞgij ¼ Ω2ðΦÞgij; ð52Þ
where Ω stands for a conformal factor. On the other
hand, the masses of the above manifolds satisfy the relation
of the form ðΦÞmþ βðΨÞm ≥ 0, under the auxiliary require-
ment putting on the Ricci curvature scalar tensor
ðΦÞRþ βΩ2ðΨÞR ≥ 0, where ðΦÞR and ðΨÞR are the Ricci
scalars with respect to the adequate metric tensors, defined
on the two manifolds, while β is a positive constant. The
inequalities are satisfied if (n − 1)-dimensional manifolds
are flat [42].
The conformal positive energy theoremwaswidely applied

in proving the uniqueness of four- and higher-dimensional
black objects [43–51] and wormhole solutions [52].
In our considerations we implement the conformal

transformation of the form as follows:

g̃ij ¼ N2gij; ð53Þ
leading to the conformally rescaled Ricci tensor given by

R̃ijðg̃Þ ¼
2

N2
ðgÞ∇iNðgÞ∇jN

−
2

N2
ððgÞ∇iψF

ðgÞ∇jψF þ ðgÞ∇iψB
ðgÞ∇jψBÞ: ð54Þ

Next, we define the quantities provided by the relations,
for electric potential ψF,

Φ1 ¼
1

2

�
N þ 1

N
−

2

N
ψ2
F

�
; ð55Þ

Φ0 ¼
ffiffiffi
2

p

N
ψF; ð56Þ

MAREK ROGATKO PHYS. REV. D 109, 024056 (2024)

024056-6



Φ−1 ¼
1

2

�
N −

1

N
−

2

N
ψ2
F

�
; ð57Þ

and the quantities including the ψB potential are given by

Ψ1 ¼
1

2

�
N þ 1

N
−

2

N
ψ2
B

�
; ð58Þ

Ψ0 ¼
ffiffiffi
2

p

N
ψB; ð59Þ

Ψ−1 ¼
1

2

�
N −

1

N
−

2

N
ψ2
B

�
: ð60Þ

It can be observed that the auxiliary constraint rela-
tion can be found when one defines the metric tensor
ηAB ¼ diagð1;−1;−1Þ. They are provided by

ΦAΦA ¼ ΨAΨA ¼ −1; ð61Þ

where we set A ¼ −1, 0, 1. Consequently, the other
symmetric tensors can be constructed for the potential ΦA,

G̃ij ¼ e∇iΦ−1
e∇jΦ−1 − e∇iΦ0

e∇jΦ0 − e∇iΦ1
e∇jΦ1; ð62Þ

and similarly for the potential ΨA,

H̃ij ¼ e∇iΨ−1
e∇jΨ−1 − e∇iΨ0

e∇jΨ0 − e∇iΨ1
e∇jΨ1; ð63Þ

where e∇i is denoted for the covariant derivative with
respect to the conformally rescaled metric g̃ij.
Because of relations (61) one arrives at

∇̃2ΦA ¼ G̃i
iΦA; ∇̃2ΨA ¼ H̃i

iΨA: ð64Þ

Moreover, the Ricci curvature tensor R̃ij connected with
conformally rescaled metric g̃ij may be rewritten in terms of
G̃ij and H̃ij, i.e.,

R̃ij ¼ G̃ij þ H̃ij: ð65Þ

Relations (64) and (65) can be derived by varying the
Lagrangian density [44,53,54]

L¼
ffiffiffiffiffiffi
−g̃

p �
G̃i

iþ H̃i
iþ

e∇iΦA
e∇iΦA

ΦAΦA þ
e∇iΨA

e∇iΨA

ΨAΨA

�
; ð66Þ

with respect to g̃ij;ΦA;ΨA, and taking into account the
constraint relations (61).
The conformal positive energy theorem accounts for the

main point in the uniqueness theorem. Thus, we suppose
that one has two asymptotically flat Riemannian three-
dimensional manifolds ðΣΦ; ðΦÞgijÞ and ðΣΨ; ðΨÞgijÞ. The
conformal transformation between two manifolds will be of

the form as ðΨÞgij ¼ Ω2ðΦÞgij. It provides that the corre-
sponding masses satisfy the relation Φmþ βΨm ≥ 0 if
ðΦÞRþ βΩ2ðΨÞR ≥ 0, for some positive constant β. The
inequalities in question ensure that the three-dimensional
Riemannian manifolds are flat.
To satisfy the requirement of the conformal positive

energy theorem, we introduce into consideration conformal
transformations provided by

ðΦÞg�ij ¼ ðΦÞω2
�g̃ij;

ðΨÞg�ij ¼ ðΨÞω2
�g̃ij; ð67Þ

where the conformal factors imply

ðΦÞω� ¼ Φ1 � 1

2
; ðΨÞω� ¼ Ψ1 � 1

2
: ð68Þ

Then, the standard procedure of pasting three-dimensional
manifolds ðΣΦ

�;
ðΦÞg�ijÞ and ðΣΨ

�;
ðΨÞg�ijÞ across their shared

minimal boundary can be put into application. As a
result, we obtain four manifolds ðΣΦþ; ðΦÞgþijÞ, ðΣΦ

− ; ðΦÞg−ijÞ,
ðΣΨþ; ðΨÞg

þ
ijÞ, and ðΣΨ

− ; ðΨÞgþijÞ, which will be pasted across
shared minimal boundaries BΨ and BΦ. Thus, complete
regular hypersurfaces ΣΦ ¼ ΣΦþ ∪ ΣΦ

− and ΣΨ ¼ ΣΨþ ∪ ΣΨ
−

can be constructed.
It can be checked that the total gravitational mass Φm on

hypersurface ΣΦ and Ψm on ΣΨ vanish; i.e., it can be shown
that the metric tensors connected with the adequate hyper-
surface are proportional to the Kronecker delta [43].
On this account, it is customary to define another

conformal transformation provided by the relation

ĝ�ij ¼ ½ððΦÞω�Þ2ððΨÞω�Þ2�12g̃ij; ð69Þ

leading to the following form of the Ricci curvature tensor
on the defined space:

R̂� ¼ ½ðΦÞω2
�
ðΨÞω2

��−
1
2ððΦÞω2

�
ðΦÞR� þ ðΨÞω2

�
ðΨÞR�Þ

þ ð∇̂i ln ðΦÞω� − ∇̂i ln ðΨÞω�Þ
× ð∇̂i ln ðΦÞω� − ∇̂i ln ðΨÞω�Þ: ð70Þ

The direct calculations revealed that the first term on the
right-hand side of the above equation can be rewritten as

ðΦÞω2
�
ðΦÞR� þ ðΨÞω2

�
ðΨÞR� ¼ 2

����Φ0∇̃iΦ−1 −Φ−1∇̃iΦ0

Φ1 � 1

����2

þ 2

����Ψ0∇̃iΨ−1 −Ψ−1∇̃iΨ0

Ψ1 � 1

����2:
ð71Þ

It leads to the conclusion that in terms of Eqs. (70) and (71),
the Ricci scalar R̂� is greater than or equal to zero.
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Consequently, on account of the conformal positive
energy theorem, it is revealed that the manifolds ðΣΦ; ΦgijÞ,
ðΣΨ; ΨgijÞ, and ðΣ̂; ĝijÞ are flat, which in turn enables
us to claim that ðΦÞω ¼ constðΨÞω, Φ0 ¼ constΦ−1, and
Ψ0 ¼ constΨ−1.
We conclude that the manifold ðΣ; gijÞ is conformally

flat. Moreover, its metric tensor ĝij can be rearranged in
conformally flat form ĝij ¼ U4ðΦÞgij, where the conformal
factor is given by U ¼ ðΦω�NÞ−1=2.
Keeping in mind relation (72), calculating Ricci scalar R̂,

we obtain ðΦÞR plus a term proportional to ∇2U [43].
Because R̂ ¼ ðΦÞR ¼ 0, thus U is a harmonic function on
the three-dimensional Euclidean manifold ∇i∇iU ¼ 0,
where ∇ is the covariant derivative on a flat manifold.
One can define a local coordinate for the base space in

the form

ðΦÞgijdxidxj ¼ ρ̃2dU2 þ h̃ABdxAdxB: ð72Þ

The photon sphere will be located at some constant value of
U, and the radius of the photon sphere can be given at the
fixed value of the ρ-coordinate [9]. All these enable that on
the hypersurface Σ the metric tensor can be given in the
form of

ĝijdxidxj ¼ ρ2dN2 þ hABdxAdxB;

and a connected component of the photon surface can be
identified at a fixed value of the ρ-coordinate.
Suppose that U1 and U2 comprise two solutions of the

boundary value problem of the Einstein-Maxwell system
with electric and magnetic charges. Keeping in mind the
Green identity, integrating over the volume element, one
gets �Z

r→∞
−
Z
H

�
ðU1 − U2Þ

∂

∂r
ðU1 − U2ÞdS

¼
Z
Ω
j∇ðU1 − U2Þj2dΩ: ð73Þ

The surface integrals on the left-hand side of Eq. (73)
vanish because of the imposed boundary conditions and
provide that the volume integrals have to be identically
equal to zero. It all leads to the conclusion that the
considered two solutions of the Laplace equation with
the Dirichlet boundary conditions are identical.

B. Positive mass theorem and uniqueness

For the completeness of the presented results, we
propose the alternative way of conducting the uniqueness
proof of electric and magnetic charged photon spheres,
based on another conformal transformation and on the use
of the positive energy theorem [55–58]. Namely, consider
the conformal transformation on ðΣ;Ω2gijÞ; then one pastes

two copies of Σ� along the boundary and takes into account
the conformal transformations on each copy of Σ, i.e.,
Ω2

�gij. The conformal factors yield [8,56]

Ω� ¼ 1

4
½ð1� NÞ2 − ZZ��: ð74Þ

The Ricci curvature for the metric Ω2gij, where for brevity
we denote Ω ¼ Ω�, has the form

1

2
Ω4N2RðΩ2gijÞ ¼

����
�
Ω−N

∂Ω
∂N

�
ðgÞ∇iZ− 2N

∂Ω
∂Z�

ðgÞ∇iN

����2
−

1

16
N2jZðgÞ∇iZ�−Z�ðgÞ∇iZj2: ð75Þ

It turns out that the relation between electric and mag-
netic potentials in the static spacetime causes the last term
in (75) to disappear, and one can conclude that ðΣ;Ω2gijÞ is
an asymptotically flat complete three-dimensional mani-
fold with non-negative scalar curvature and vanishing
mass. Next, the implementation of the positive energy
theorem implies that the manifold in question is isometric
to ðR3; δijÞ.
The requirements for the positive energy theorem point

out that it cannot be implemented for ðΣþ;Ω2þgijÞ [57].
However, they are satisfied for

ðΣ; gijÞ ¼ ðΣþ;Ω2þgijÞ ∪ ðΣ− ∪ fpg;Ω2
−gijÞ;

where fpg is a point at infinity at Σ− [57,58]. On the other
hand, the conformal flatness of ðΣ; gijÞ entails its spherical
symmetry [8,57].
The arguments, presented, for instance, in [8,56–58],

lead to the final conclusion that the metric gij is spherically
symmetric, and we arrive at the uniqueness of the photon
sphere characterized by ADM mass M and electric and
magnetic charges as the only static spherically symmetric
spacetime possessing the photon sphere in Einstein-
Maxwell gravity with electric and magnetic potentials.
Summing it all up, we achieve the main result, the

uniqueness of the photon sphere for the nonextremal
Reissner-Nordström electric-magnetic system.
Theorem. Suppose that the set ðM3; gij; N;ψF;ψBÞ is the

asymptotic to the static nonextremal Einstein-Maxwell
black hole spacetime with electric and magnetic charges.
Moreover, the spacetime in question has the photon sphere
ðP3; hijÞ ↪ ðR ×M3;−N2dt2 þ gijdxidxjÞ, which can be
regarded as the inner boundary of R ×M3. Suppose further
that M, QðFÞ, and QðBÞ are the ADM mass and the total
charges connected with the Maxwell electric and magnetic
fields of ðR ×M3;−N2dt2 þ gijdxidxjÞ. Then, ðR ×M3;
−N2dt2 þ gijdxidxjÞ is isometric to the region exterior to
the photon sphere in the electrically and magnetically
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charged nonextremal Einstein-Maxwell black hole
spacetime.

V. CONCLUSIONS

Our paper is devoted to the problem of uniqueness of the
black hole photon sphere in Einstein-Maxwell gravity with
electric and magnetic charges. Keeping in mind the special
features of electric and magnetic fields in the spacetime
with an asymptotically timelike Killing vector field,
which is orthogonal to the hypersurface of constant time,
we find the functional dependence among lapse function
and electric and magnetic potentials. It authorizes that the

Ricci curvature scalar of the photon sphere is a constant
scalar curvature one.
The conformal positive energy and positive energy

theorems allow us to find the two alternative proofs of
the uniqueness of a static, nonextremal asymptotically flat
black hole photon sphere in Einstein-Maxwell gravity with
electric and magnetic charges (the Reissner-Nordström
electric-magnetic black hole photon sphere).
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