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In the present paper, we consider a rotating black hole moving in a homogeneous massless scalar field.
We assume that the field is weak and neglect its backreaction so that the metric at far distance from the
black hole is practically flat. In this domain, one can introduce two reference frames, K and K̃. The frame K̃
is associated with the homogeneous scalar field, in which its constant gradient has only time component.
The other frame, K, is the frame in which the black hole is at rest. To describe the Kerr metric of the black
hole, we use its Kerr-Schild form gμν ¼ ημν þΦlμlμ, where ημν is the (asymptotic) flat metric in K frame.
We find an explicit solution of the scalar field equation, which is regular at the horizon, and properly
reproduce the asymptotic form of the scalar field at the infinity. Using this solution, we calculate the fluxes
of the energy, momentum and the angular momentum of the scalar field into the black hole. This allows us
to derive the equation of motion of the rotating black hole. We discuss main general properties of solutions
of these equations and obtain explicit solutions for special type of the motion of the black hole.
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I. INTRODUCTION

Scalar field plays an immense role in the modern physics
and cosmology. In the high energy physics, a scalar Higgs
field is used to provide the particles their mass as a result
of the spontaneous symmetry breaking. In cosmology, the
inflation can be driven by the potential part of the scalar
field (“inflaton”). The scalar field and Higgs mechanism
are important parts of the models describing possible
symmetry breaking and phase transitions in the cosmology.
It is believed that in the early Universe, there might be
several of such phase transitions that played an important
role in its evolution. During these transitions, formation
of primordial black holes and cosmic strings might become
possible. More recently, another mechanism of symmetry
breaking known as the ghost condensation was proposed
[1,2]. The corresponding phase of the ghost condensate is
formed due to the special form of the kinetic part of the
scalar field action. In such a model, the ground state is the
scalar field with a nonvanishing vector of its gradient.
The presence of such a field breaks the Lorentz invariance.
The ghost condensation model belongs to a wide class

of scalar field models that are invariant with respect to the
scalar field shift Ψ → Ψþ const. At the lowest order in
derivatives, the Poincaré invariant Lagrangian for such a
theory takes the form

L ¼ LðXÞ; X ¼ ημνΨ;μΨ;ν: ð1:1Þ

Such a model can also be used as the low-energy effective
field theory for zero- and finite-temperature relativistic
superfluids [3,4]. For the superfluid state with finite charge
density and vanishing spatial current, the corresponding
solution is Ψ ¼ μt, where μ is the chemical potential [3].
Similar solutions with a constant spacelike gradient of
the scalar field were considered in application to the
cosmology in the framework of a so-called solid inflation
model [5]. Let us also mention an interesting approach in
which the scalar field is used to describe a phenomenon
emergence of time and dynamics in originally Euclidean
spacetime (see, e.g., [6–9]).
A natural and interesting question is how a black hole

interacts with a scalar field in different models and under
different conditions. Let us note that black holes cannot
have their own scalar field. Discussion of the no-hair
theorem for the scalar field and further references can be
found in [10]. At the same time, a black hole can exist in the
presence of an external scalar field. Accretion of the ghost
condensate by black holes in the expanding Universe was
discussed in [11–14]. Primordial black holes and Higgs
field vacuum decay were considered in [15–18]. Scalar
field accretion by black holes was also discussed in [19].
In this paper, we consider a motion of a rotating black

hole in an external homogeneous massless minimally
coupled scalar field. This model allows a rather complete
analysis. In the absence of the black hole, the scalar field
equation in the flat spacetime

□Ψ ¼ 0 ð1:2Þ*vfrolov@ualberta.ca
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has a simple solution

Ψ ¼ Ψ0t: ð1:3Þ

Such a field has constant gradient and is homogeneous in
space. This form of the solution is valid in a specially
chosen inertial reference frame, and, in this sense, it breaks
the Lorentz invariance. This choice of the solution is
motivated by the ghost condensate model. We consider a
rotating black hole moving in such a scalar field. In the
presence of the black hole, the scalar field Ψ is distorted.
We assume that the scalar field is weak, and its back-
reaction on the metric can be neglected.
Our first goal is to find a solution for the scalar field that

is regular at the horizon of the moving black hole and has
the asymptotic form (1.3) at far distance from it. We shall
demonstrate that this problem allows an exact solution.
To find this solution, we proceed as follows.
A remarkable property of the Kerr metric is that it can be

written in the Kerr-Schild form [20]

gμν ¼ ημν þΦlμlν; ð1:4Þ

where ημν is a flat metric, Φ is a scalar field, and l is a
tangent vector to a shear-free geodesic null congruence.
It has been shown that these solutions of the Einstein
equations can be obtained by complex coordinate trans-
formations from the Schwarzschild metric [21,22]. In
particular, the potential Φ for the Kerr metric can be
obtained as a solution of the Laplace equation in flat
coordinates ðX; Y; ZÞ

△Φ ¼ 4πj; ð1:5Þ

with a pointlike source j located at the complex coordinate
Z þ ia, where a is the rotation parameter of the Kerr black
hole [23,24]. A comprehensive review of the Kerr-Schild
metrics and complex space approaches can be found
in [25]. More recently, the Kerr-Newman representation
of the spacetime geometry attracted a lot of attention in the
so-called double copy formalism. This formalism is based
on the following result: Einstein equations for the metrics
that allow the Kerr-Schild representation can be reduced to
the linear equations for Maxwell and scalar fields. At the
moment, there exist dozens of publications on this subject.
Related references can be found, e.g., in the following
review articles [26–28].
One can interpret this result as follows. The form (1.4)

of the metric allows one to treat the metric η as the metric
of the background flat spacetime, while the term Φlμlν
describes its “perturbation” due to the black hole located
at the origin of the background space. Denote by M the
mass of the black hole. The gravitational field of the black
hole is strong in its vicinity. For an observer located at the
distance L ≫ M from the black hole, this field is weak.

One can say that such an observer “lives” in the space
with the background metric η. Such an observer can
describe the black hole as a small compact object and use
for the description of its motion a “point particle”
approximation.
If the scalar field is present and has the form (1.3), the

interaction of this field results in its accretion by the black
hole. In this paper, we consider a black hole moving in such
a homogenous scalar field. In this case, their exist two
natural reference frames. One of them, which we denote
by K̃, is the frame in which at far distance from the black
hole, the scalar field has the form (1.3). The other frame,
moving with respect to K̃ with the velocity V⃗, is the frame
in which the black hole is at rest. We denote it by K. In this
frame, the form of the solution for the scalar field differs
from (1.3), and it can be obtained by making the corre-
spondent Lorentz transformation. We shall use both frames.
Namely, we use the Kerr-Schild form of the Kerr metric
associated with K frame to solve the scalar field equations
in the presence of the black hole. Using this result, we
calculate the force acting on the black hole due to its motion
in the scalar field and obtain the equation of motion of the
black hole in K̃ frame.
The paper is organized as follows. In Sec. II, we collect

useful formulas connected with the Kerr-Schild form of
the Kerr metric. Section III describes a solution for the
scalar field in the presence of the moving rotating black
hole. Fluxes of the scalar field in K frame are obtained in
Sec. IV. Section V contains calculation of the 4D force
acting on the black hole in the frame K̃. It also discusses
the equations of motion of the black hole, general proper-
ties of their solutions, and special cases. Useful informa-
tion concerning complex null tetrads is collected in
Appendix A. Appendix B contains details of the calcu-
lations of the fluxes of the energy and angular momentum
of the scalar field through the horizon of the black hole. In
the paper, we use units in which G ¼ c ¼ 1 and sign
conventions of the book [29].

II. KERR METRIC AND ITS
KERR-SCHILD FORM

A. The Kerr metric

The Kerr metric, describing a vacuum stationary rotating
black hole, written in the Boyer-Lindquist coordinates is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mar sin2θ
Σ

dtdφ

þ
�
r2 þ a2 þ 2Ma2r

Σ
sin2θ

�
sin2θdφ2

þ Σ
Δ
dr2 þ Σdθ2;

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð2:1Þ
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Here M is the black hole mass, and a is its rotation
parameter. This metric has two commuting Killing vectors
ξ ¼ ∂t and ζ ¼ ∂ϕ. Let us denote

r� ¼ M � b; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð2:2Þ

Equation r ¼ rþ, where Δ ¼ 0, describes the event hori-
zon. The surface area of the horizon is

A ¼ 4πðr2þ þ a2Þ ¼ 8πMrþ: ð2:3Þ

Coordinates ðt; r; θ;φÞ are singular at this surface.
To describe both the exterior and interior of a rotating
black hole, one can use so-called Kerr incoming coordi-
nates ðv; r; θ; φ̃Þ, which are regular at the future event
horizon [30]

dv¼ dtþdr�; dr� ¼ ðr2þa2Þdr
Δ
; dφ̃¼ dφþa

dr
Δ
:

ð2:4Þ

In these coordinates, the metric [30] takes the form

ds2 ¼ −
Δ
Σ

�
dv −

1

a
Δð0Þ

y dφ̃
�

2

þ Δð0Þ
y

Σ

�
dv −

1

a
Δð0Þ

r dφ̃
�

2

þ Σ

Δð0Þ
y

dy2 þ 2dr

�
dv −

1

a
Δð0Þ

y dφ̃

�
:

Similarly, one can introduce Kerr outgoing coordinates
ðu; r; θ; φ̃Þ

dv ¼ dt − dr�; dφ̃ ¼ dφ − a
dr
Δ

; ð2:5Þ

which are regular at the past horizon and cover the white
hole domain.

B. Useful coordinates

For M ¼ 0, the Riemann curvature of the Kerr metric
vanishes, and the metric (2.1) becomes flat. We write it in
the form1

dS2 ¼ −dT2 þ dh2;

dh2 ¼ Σ
r2 þ a2

dr2 þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2: ð2:6Þ

The coordinates ðr; θ;ϕÞ are oblate spheroidal coordinates
taking the following values r ≥ 0, θ∈ ½0; π�, ϕ∈ ½0; 2π�.

These coordinates are related to the Cartesian coordinates
as follows:

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cosϕ;

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinϕ;

Z ¼ r cos θ: ð2:7Þ

In these coordinates, the flat metric dS2 takes the
standard form

dS2 ¼ ημνdX2 dXν ¼ −dT2 þ dX2 þ dY2 þ dZ2: ð2:8Þ

For r > 0, the surfaces r ¼ const are oblate ellipsoids.
Figure 1 shows the coordinate lines of the oblate spheroidal
coordinates ðr; θÞ in the plane Y ¼ 0 (ϕ ¼ 0). For r ¼ 0
and θ∈ ½0; π�, ϕ∈ ½0; 2π�, one has a disc of radius a located
in the Z ¼ 0 plane. The coordinate θ is discontinuous on
the disc. For ð0; π=2Þ, the coordinate θ covers the upper part
of the disc, while for ðπ=2; πÞ, it covers the lower part of it.
The boundary of this disc is a ring of radius a. Equations
θ ¼ 0 and θ ¼ π describe the axis of symmetry X ¼ Y ¼ 0.
For θ ¼ 0 and Z ¼ r, it is positive, while for θ ¼ π
Z ¼ −r, it is negative.
In what follows, we shall also use another coordinate, y,

related to the angle θ as follows:

y ¼ a cos θ: ð2:9Þ

The flat metric dS2 in the spheroidal coordinates
ðT; r; y;ϕÞ is

dS2 ¼−dT2þΣ
�
dr2

Δ0
r
þdy2

Δ0
y

�
þΔ0

rΔ0
y

a2
dϕ2;

Σ¼ r2þ y2; Δ0
r ¼ r2þa2; Δ0

y ¼ a2− y2: ð2:10Þ

FIG. 1. Coordinate lines of the oblate spheroidal coordinates
ðr; θÞ in the plane Y ¼ 0.

1Let us note that we use notations T and ϕ for the time and
angle variables in the flat spacetime. These coordinates are used
in the Kerr-Schild form of the Kerr metric, while the standard
Bouer-Lindquist coordinates t and φ are related to T and ϕ by
means of relations (2.18).
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In these coordinates, the Cartesian coordinates take the
form

X ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð0Þ

r Δð0Þ
y

q
cosϕ;

Y ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð0Þ

r Δð0Þ
y

q
sinϕ;

Z ¼ 1

a
ry: ð2:11Þ

We denote

eðXÞμ ¼ X;μ; eðYÞμ ¼ Y;μ; eðZÞμ ¼ Z;μ: ð2:12Þ

We also denote by ei, i ¼ 1, 2, 3 a set of 4D unit vectors eμi
along X, Y and Z axes.

C. Kerr metric in the Kerr-Schild form

Let us consider the following 1-form

lμdxμ ¼ −dT −
Σ
Δ0

r
drþ Δ0

y

a
dϕ: ð2:13Þ

We define a metric

ds2 ¼ dS2 þΦðlμdxμÞ2; ð2:14Þ

where Φ ¼ Φðr; yÞ is some function. The metric coeffi-
cients of the metrics ds2 and dS2 are related as follows:

gμν ¼ ημν þΦlμlν: ð2:15Þ

The following statements are valid for each of the metrics
ds2 and dS2. In other words, these statements are valid for
an arbitrary functionΦ, includingΦ ¼ 0. The vector field l
has the following properties:

(i) The contravariant components of the vector l in
ðT; r; θ;ϕÞ coordinates are

lμ ¼
�
1;−1; 0;

a
r2 þ a2

�
: ð2:16Þ

(ii) l is a null vector l2 ¼ lμlμ ¼ 0.
(iii) Vectors l are tangent vectors to incoming null

geodesics in the affine parametrization, lνlμ;ν ¼ 0.
(iv) lμ;μ ¼ − 2r

Σ .
(v) lðμ;νÞlðμ;νÞ − 1

2
ðlμ;μÞ2 ¼ 0 .

The last property implies that the congruence of null
vectors l is shear free (for more details see, e.g., [31,32]).
Such a null geodesic congruence is related to the light
cones with apex on the worldline in the complex space. The
twist is a measure of how far the complex worldline is from
the real slice [33].

It is easy to check that for a special choice of the
function Φ

Φ0 ¼
2Mr
Σ

; ð2:17Þ

the metric ds2 given by (2.14) is Ricci flat, and in fact, it
coincides with the Kerr metric. In order to prove this, it is
sufficient to make the following coordinate transformation:

T ¼ tþ t0ðrÞ; ϕ ¼ φþ φ0ðrÞ;

t0ðrÞ ¼
Z

2Mr
Δ

dr

¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ½rþ lnðr − rþÞ − r− lnðr − r−Þ�;

φ0ðrÞ ¼
Z

2Mar
ðr2 þ a2ÞΔ dr

¼ a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ln

�
r − rþ
r − r−

�
− arctanðr=aÞ þ 1

2
π:

ð2:18Þ
Here Δ is defined in ([30]). These coordinates ðt; r; θ;φÞ
are chosen so that the nondiagonal components grt and grφ
of the metric ds2 vanish. One can check that the metric ds2

written in the ðt; r; θ;φÞ coincides with the Kerr metric dS2,
provided one identifies the coordinates t and φ in ds2 with
the standard Boyer-Lindquist coordinates t and φ in the
metric (2.1). The integration constant in the expression for
φ0 is chosen so that this quantity vanishes when r → ∞.
Hence, in this limit, the angle variables φ and ϕ coincide.
It is easy to check that the coordinates T and ϕ are related

to the Kerr incoming coordinates v and φ̃ as follows:

T ¼ v − r; ϕ ¼ φ̃ − arctanðr=aÞ: ð2:19Þ
Coordinates ðT; r; y;ϕÞ are regular at the future event
horizon and cover the exterior region of the black hole
as well as a part of its interior. Similarly, by a simple change
of the sign of the coefficient of dr term in the expression
(2.13), one can obtain outgoing null vector and use it to
construct the Kerr-Schild metric, which is regular at the
past horizon.

III. SCALAR FIELD

A. Flat spacetime

Let us consider a minimally coupled massless scalar field
Ψ that obeys the equation

□Ψ ¼ 0: ð3:1Þ
Its stress-energy tensor is

Tμν ¼ Ψ;μΨ;ν −
1

2
gμνΨ;αΨ;α: ð3:2Þ
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Let us consider first the flat spacetime. We choose
some inertial frame in it. We denote it by K̃ and denote
by X̃μ ¼ ðT̃; X; Y; Z̃Þ the Cartesian coordinates associated
with this frame. In this frame, there exists a simple solution
of the (3.1)

Ψ ¼ Ψ0T̃; ð3:3Þ

describing a homogeneous scalar field. The stress-energy
tensor for this solution is diagonal and has the following
nonvanishing components:

TT̃ T̃ ¼ TX̃ X̃ ¼ TỸ Ỹ ¼ TZ̃ Z̃ ¼ 1

2
Ψ2

0: ð3:4Þ

The gradient of the fieldΨ has only a time component. In
this sense, this solution breaks the Lorentz invariance and
singles out an inertial frame in which the field Ψ does not
depend on spatial coordinates. As we already mentioned,
such solutions with a constant gradient of the field play an
important role in the shift-invariant scalar field theories
(see, e.g., [1,2,4,5]).
Consider a rotating black hole moving with respect to K̃

with a constant velocity V⃗ (see Fig. 2). We denote by K a
reference frame associated with the black hole and denote
by Xμ ¼ ðT; X; Y; ZÞ the Cartesian coordinates associated
with this frame. We choose the coordinate axes in both

frames to be in the same directions. We also choose the
Z axis to be parallel to the spin of the black hole. The vector
V⃗ has the following components:

V⃗ ¼ ðVX; VY; VZÞ;
V2 ¼ ðV⃗Þ2 ¼ V2

X þ V2
Y þ V2

Z: ð3:5Þ

Denote by R⃗ ¼ ðX; Y; ZÞ a 3D vector connecting the origin
Õ of the frame K̃ with the origin O of the moving frame K.
Then the Lorentz transformation implies

T̃ ¼ γðT þ ðV⃗; R⃗ÞÞ;
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
: ð3:6Þ

The solution (3.3) written in the frame K comoving with
the black hole takes the form

Ψ ¼ Ψ̄0ðT þ VXX þ VYY þ VZZÞ;

Ψ̄0 ¼
Ψ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p : ð3:7Þ

B. Scalar field solution in the presence
of a moving rotating black hole

In the previous subsection, we ignore the gravitational
field of the black hole. To obtain a solution for the scalar
field in the presence of a moving rotating black hole, we
proceed as follows. We use the Kerr-Schild form of the
metric (2.14) associated with K frame, in which the black
hole is at rest. In this form, the Einstein equations are
linearized. One can identify the metric dS2 with the flat
background geometry in the K frame, while the Φlμlν
describes its “perturbation” due to the presence of the
black hole. We are looking for a solution of the scalar
field equation (3.1), which is regular at the horizon of the
black hole and at far distance has the asymptotic
form (3.7).
The required solution satisfying the imposed boundary

conditions in the coordinates ðT; r; y;ϕÞ is

Ψ ¼ Ψ̄0ðT þ T0ðrÞ þ VXVX þ VYVY þ VZVZÞ;
T0ðrÞ ¼ −2M lnðr − r−Þ;

VX ¼ 1

a

ffiffiffiffiffiffiffiffi
Δð0Þ

y

Δð0Þ
r

s
ððΔð0Þ

r −MrÞ cosϕ −Ma sinϕÞ;

VY ¼ 1

a

ffiffiffiffiffiffiffiffi
Δð0Þ

y

Δð0Þ
r

s
ððΔð0Þ

r −MrÞ sinϕþMa cosϕÞ;

VZ ¼ y
a
ðr −MÞ: ð3:8Þ

X

Y

Z

X

Z

K

J
O

V

V

V

Y

K

O �
�

� �

�

FIG. 2. Two inertial frames, K and K̃, are schematically shown
at this figure. The Cartesian coordinates in these frames are
ðT; X; Y; ZÞ and ðT̃; X̃; Ỹ; Z̃Þ, respectively. The frame K̃ is the
“rest frame” of the homogeneous scalar field, in which it has the
form Ψ ¼ Ψ0T̃. The frame K is the rest frame of the rotating
black hole. The origin of this frame O is at the position of the
black hole. The frame K moves with respect to K̃ with the
velocity V⃗. The coordinate axes in both frames are parallel. The Z
axis in the K frame coincides with the direction of the spin J⃗ of
the black hole. The velocity V⃗ in the frame K can be decomposed
as follows: V⃗ ¼ V⃗k þ V⃗⊥, where V⃗k is parallel to the spin of the

black hole, and V⃗⊥ is orthogonal to it.
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To check the validity of the boundary conditions at the
infinity, it is sufficient to use following asymptotics of the
functions V:

VX ≈ r sin θ cos ϕ ¼ X;

VY ≈ r sin θ sin ϕ ¼ Y;

VZ ≈ r cos θ ¼ Z: ð3:9Þ

Since the coordinates ðT; r; y;ϕÞ are regular on the future
horizon, and the components of its gradient Φ;μ are regular
functions of these coordinates, one can conclude that the
presented solution (3.8) does satisfy the required condition
of the regularity at the horizon.
The same solution written in the Boyer-Lindquist coor-

dinates ðt; r; θ;φÞ is

Ψ ¼ Ψ̄0ðtþ t̃0 þ VXUX þ VYUY þ VZUZÞ;

UX ¼ sin θffiffiffiffiffiffiffiffi
Δð0Þ

r

q ½ðΔð0Þ
r −MrÞ cos ψ −Ma sin ψ �;

UY ¼ sin θffiffiffiffiffiffiffiffi
Δð0Þ

r

q ½ðΔð0Þ
r −MrÞ sin ψ þMa cos ψ �;

UZ ¼ Vðr −MÞ cos θ;

t̃0 ¼ t0ðrÞ þ T0ðrÞ ¼
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p ½rþ lnðr − rþÞ

− r− lnðr − r−Þ� − 2M lnðr − r−Þ;

φ0ðrÞ ¼
a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ln

�
r − rþ
r − r−

�
− arctanðr=aÞ;

ψ ¼ φþ φ0ðrÞ: ð3:10Þ

IV. FLUXES

A. Energy and angular momentum fluxes through
r= const surface

Let us calculate the fluxes of the energy, angular
momentum, and the momentum through a 2D surface
of constant radius r ¼ r0 surrounding the black hole. For
these calculations, it is convenient to use the Boyer-
Lindquist coordinates ðt; r; θ;φÞ. Denote by Σ0 a 3D
timelike surface describing the “evolution” of S for the
time interval ðt−; tþÞ.
Denote by q a 3D metric on Σ induced by its embedding

in the 4D space. Then

q≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðqÞ

p
¼

ffiffiffiffiffiffiffi
ΔΣ

p
sin θ: ð4:1Þ

A unit vector n orthogonal to Σ0 and inward directed is

nμ ¼ −
ffiffiffiffiffiffiffiffiffi
Δ=Σ

p
δμr : ð4:2Þ

The vector of the volume element of the surface Σ is

dσμ ¼ nμdt dθ dφ ¼ −δμrΔ sin θ dt dθ dφ: ð4:3Þ

We denote the fluxes of the energy and angular momen-
tum through 3D surface Σ0 into its interior per a unit time t
by E and J , respectively. Then one has

E ¼ −
1

tþ − t−

Z
Σ
ξμTμνdσμ ¼ Δ

Z
S
Ttrdω;

J ¼ 1

tþ − t−

Z
Σ
ζμTμνdσμ ¼ −Δ

Z
S
Trφdω;

dω ¼ sin θdθdφ: ð4:4Þ

The signs in these expressions are chosen so that these
quantities describe the flux into the surface S from its
exterior.
Since gtr and grφ components of the Kerr metric in the

Boyer-Lindquist coordinates vanish, one has

Ttr ¼ ΨtΨr; Ttφ ¼ ΨrΨφ: ð4:5Þ

Calculating these expressions and taking integrals in (4.4),
one obtains

E ¼ 8πΨ̄2
0Mrþ;

J ¼ −
4

3
πΨ̄2

0aM
2ðV2

X þ V2
YÞ: ð4:6Þ

Let us emphasize that these quantities do not depend on the
radius r ¼ r0 of the surface S, which was used for their
calculation. (For explanation of this property and more
details, see Appendix B.)

B. Momentum fluxes

We use the vectors eμi , defined in (2.12) to define the
following objects2:

PX ¼ 1

tþ − t−

Z
Σ
Tμνe

μ
ðXÞdσ

ν ¼ −Δ
Z
S
TXrdω;

PY ¼ 1

tþ − t−

Z
Σ
Tμνe

μ
ðYÞdσ

ν ¼ −Δ
Z
S
TYrdω;

PZ ¼ 1

tþ − t−

Z
Σ
Tμνe

μ
ðZÞdσ

ν ¼ −Δ
Z
S
TZrdω;

TXr ¼ Tμre
μ
ðXÞ; TYr ¼ Tμre

μ
ðYÞ; TZr ¼ Tμre

μ
ðZÞ: ð4:7Þ

2Let us note that the norm of the vectors eμi , calculated in the
metric gμν, at far distance slightly differs from one. However, it is
possible to check that using the normalized versions of these
vectors in the expressions given below does not change the results
when the limit r ¼ r0 → ∞ is taken.
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Calculating these integrals and taking the limit r0 → ∞,
one obtains the following results:

PX ¼ −8πΨ̄2
0

�
MrþVX þ 2

3
aMVY

�
;

PY ¼ −8πΨ̄2
0

�
MrþVY −

2

3
aMVX

�
;

PZ ¼ −8πΨ̄2
0MrþVZ: ð4:8Þ

The obtained results can be presented in the following
3D vector form. Let us denote

β ¼ 8πΨ2
0; V⃗ ¼ ðVX; VY; VZÞ;

P⃗ ¼ ðPX;PY;PZÞ; J⃗ ¼ Ma⃗; J⃗ ¼ a⃗
a
J : ð4:9Þ

Here a⃗ is a 3D vector with the norm a and directed along
Z-axis. Consider an observer that is located at a very far
distance from the black and assume that the black hole is
initially at rest in his/her frame. As a result of the interaction
with “moving” scalar field, the black hole absorbs energy
and momentum. To describe its further evolution as a result
of this effect, a far-distant observer can neglect the black
hole size and approximate it by the massive point with spin
that has energy and momentum. In this interpretation, the
calculated quantities E and P⃗ are nothing but the compo-
nents of the 4D force F acting on such a massive point.
In the asymptotic flat coordinates ðT; X; Y; ZÞ, the

components of this 4D force are

Fμ ¼ ðE;PX;PY;PZÞ;

FT ¼ βMrþ
1 − V2

;

F⃗ ¼ −
β

1 − V2

�
MrþV⃗ þ 2

3
J⃗ × V⃗

�
: ð4:10Þ

In addition to these expressions for the 4D force acting
on the black hole, there exists one more equation that
demonstrates that the spin of the black changes when the
black hole has a nonvanishing transverse component of the
velocity V⊥

J⃗ ¼ −
1

6
βMV2⊥J⃗;

V2⊥ ¼ V⃗2 −
1

J2
ðJ⃗ · V⃗Þ2: ð4:11Þ

V. MOTION OF A ROTATING BLACK HOLE
THROUGH THE SCALAR FIELD

A. Friction force in K̃ frame

The 4D force Fμ is calculated in the frame where the
black hole is initially at rest. Under the action of this force,

the black hole has a nonvanishing acceleration. Since the
velocity of the black hole interacting with the scalar fields
changes in time, the frame in which the black hole is at rest
is not inertial. For this reason, it is more convenient to write
the equations of motion in the frame K̃ associated with the
scalar field. Let us denote by fμ ≡ F̃μ the components of
the 4D force in K̃ frame. The corresponding Lorentz
transformation implies

f0 ¼ γðFT þ V⃗ · F⃗Þ;

f⃗ ¼ F⃗ þ γFTV⃗ þ ðγ − 1Þ V⃗ · F⃗
V2

V⃗: ð5:1Þ

Here γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
. Using (4.10), one obtains

f0 ¼ βMrþffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ;

f⃗ ¼ −
2

3

βffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ½J⃗ × V⃗�: ð5:2Þ

Let us notice that the following two useful relations
are valid:

V⃗ · f⃗ ¼ 0; J⃗ · f⃗ ¼ 0: ð5:3Þ

B. Equations of motion

We denote by P the 4Dmomentum of the black hole in K̃
frame. In Cartesian coordinates, it has the following form:

Pμ ¼ ðE; P⃗Þ; P⃗ ¼ ðPX; PY; PZÞ: ð5:4Þ

The energy E and momentum P⃗ of the black hole with mass
M and velocity V⃗ are

E ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; P⃗ ¼ MV⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p : ð5:5Þ

Such a black hole is similar to a massive relativistic particle,
with two important differences: (i) Themass of the black hole
changes as a result of the absorption of the scalar field, and
(ii) the black hole has spin J⃗, which also changes with time.
The equations of motion are

dE
dτ

¼ f0;
dP⃗
dτ

¼ f⃗; ð5:6Þ

where f0 and f⃗ are given in (5.2), and τ is the proper time
along the worldline of the black hole. There exists an
additional equation for the spin evolution

dJ
dτ

¼ −J ; ð5:7Þ

where J is given by (4.6).
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Since vector P⃗ is collinear with V⃗, one has

1

2

dP⃗2

dτ
¼ P⃗ ·

dP⃗
dτ

¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p V⃗ · f⃗ ¼ 0: ð5:8Þ

Hence, P⃗2 ¼ P2
0 ¼ const.

Let us write the momentum vector in the form

P⃗ ¼ P⃗k þ P⃗⊥; ð5:9Þ

where P⃗k is parallel to the spin vector J⃗, and P⃗⊥ is
perpendicular to it. Then one has

P⃗k ·
dP⃗k
dτ

¼ 0: ð5:10Þ

This means that the norms of the both vectors Pk ¼
ffiffiffiffiffiffi
P⃗2
k

q
and P⊥ ¼

ffiffiffiffiffiffi
P⃗2⊥

q
are conserved quantities.

Using relations

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

0

q
;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ¼ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

0

q
; ð5:11Þ

one can rewrite the first equation in (5.6) as follows:

dM
dτ

¼ β
rþ
M

ðM2 þ P2
0Þ;

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2=M2

q
: ð5:12Þ

Using relation

V2⊥ ¼ P2⊥
M2 þ P2

0

; ð5:13Þ

one can write (5.7) in the form

dJ
dτ

¼ −
1

6
β

MP2⊥
M2 þ P2

0

J: ð5:14Þ

The second equation in (5.6) implies

dP⃗⊥
dτ

¼ −
2

3
β
1

M
½J⃗ × P⃗⊥�: ð5:15Þ

Let us denote

PX þ iPY ¼ P⊥ expðiαÞ: ð5:16Þ

Then the equation (5.15) implies

dα
dτ

¼ −
2

3

βJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

0

p : ð5:17Þ

The obtained equations (5.12) and (5.14) allow one to
find the time dependence of the black hole massM and spin
J for a given initial values M0 and J0 of these parameters.
The equation (5.17) determines the time evolution of the
transverse momentum P⃗⊥. In order to find a unique
solution, one needs also specify the conserved parameters
P0 and P⊥.
Let us make a following remark. In the above consid-

eration, we assumed that a distant observer is located at far
distance L from the black hole, L ≫ M. This allows one to
describe a black hole as a “pointlike particle,” which has
mass M and spin J. We also assume that these parameters
change slowly in time so that

Ṁ=M ≪ 1=M; J̇=J ≪ 1=M: ð5:18Þ
In this adiabatic approximation, one can describe the
black hole metric by the Kerr solution with a slowly
changing parameters MðtÞ and JðtÞ. Note that such an
adiabatic approximation is broken in the vicinity of the
moment of time, at which the mass of the black hole
formally becomes infinite.

C. General properties of solutions

1. Mass evolution

Let us discuss general properties of the solutions of the
equations of motion for the rotating black hole moving in
the homogeneous scalar field. First of all, let us notice that
equations (5.12) and (5.14) show that the black hole mass
M is a monotonically increasing function of time τ, while
its spin J monotonically decreases in time.
One can obtain a more detailed information about the

time dependence of these parameters by using the follow-
ing trick. Let us denote rþ ¼ bM, where 1 ≤ b ≤ 2. The
quantity b takes the value 1 for the extremely rotating black
hole when J ¼ M2, and b ¼ 2 for a nonrotating black hole.
Solving (5.12) for b ¼ const, one gets

arctanðMb=P0Þ − arctanðM0=P0Þ ¼ bβP0τ; ð5:19Þ
whereM0 is the mass at the initial moment of time τ ¼ 0. If
MðτÞ is the exact solution of the equation (5.12), then for
the same initial mass M0, one has

M1ðτÞ ≤ MðτÞ ≤ M2ðτÞ: ð5:20Þ
Denote

τ0 ¼
1

βP0

�
π

2
− arctanðM0=P0Þ

�
: ð5:21Þ
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Then the black hole mass M becomes infinite at the finite
proper time τ ¼ τfin

1

2
τ0 ≤ τfin ≤ τ0: ð5:22Þ

2. Spin evolution

Let us consider the spin of the black hole as a function of
its mass, J ¼ JðMÞ. Then using (5.12) and (5.14), one
obtains

1

J
dJ
dM

¼ −
1

6

P2⊥M2

rþðM2 þ P2
0Þ2

: ð5:23Þ

Substituting rþ ¼ bM and solving the obtained equation
with fixed value of b, one finds

JbðMÞ ¼ J0 exp

�
−

1

6b
P2⊥ðM2 −M2

0Þ
ðM2 þ P2

0ÞðM2
0 þ P2

0Þ
�
: ð5:24Þ

The exact solution JðMÞ of (5.23) satisfies the inequalities

J1ðMÞ ≤ JðMÞ ≤ J2ðMÞ: ð5:25Þ

For M → ∞,

Jbfin ¼ J0 exp

�
−

P2⊥
6bðM2

0 þ P2
0Þ
�
: ð5:26Þ

Hence, at the moment when the mass of the black hole
becomes infinitely large, its spin remains finite J ¼ Jfin

J1;fin ≤ Jfin ≤ J2;fin: ð5:27Þ

VI. SPECIAL CASES

A. Black hole at rest in K̃ frame

If the black hole is at rest, then P0 ¼ 0, and the spin of
the black hole remains constant. The equation for the black
hole mass takes the form

dM
dτ

¼ βMrþ ¼ β
�
M2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 − J2

p �
: ð6:1Þ

If the spin J does not vanish, one can denote

μ ¼ M=
ffiffiffi
J

p
; ð6:2Þ

and write a solution of the equation (6.1) in the form

ffiffiffi
J

p
βτ ¼ τ̂; τ̂ ¼

Z
dμ

μ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4 − 1

p : ð6:3Þ

Taking the integral, one obtains

τ̂ ¼ 1

3

h
μ3 − 1 − μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4 − 1

q
þ 2ðFðiμ; iÞ − Fði; iÞÞ

i
: ð6:4Þ

Here Fða; bÞ is the incomplete elliptic integral of the first
kind, and the integration constant in this expression is
chosen so that τ̂ ¼ 0 for μ ¼ 1. For μ → ∞, the parameter τ̂
has a limit 0.54068. The plot of τ̂ as a function of μ is
shown in Fig. 3.
If J ¼ 0, one obtains the following solution of the

equation (6.1) for the mass

M ¼ M0

1 − 2βM0τ
: ð6:5Þ

B. Motion of a nonrotating black hole

When the spin of the black hole vanishes, one can always
chose the orientation of the axes so that P⊥ ¼ 0 and
Pk ¼ P0. One also has rþ ¼ 2M. The equation (5.12)
simplifies and takes the form

dM
dτ

¼ 2βðM2 þ P2
0Þ: ð6:6Þ

It can be easily integrated with the following result:

2βP0τ ¼ arctanðM=P0Þ: ð6:7Þ

C. Motion in the spin direction

For the motion in the spin direction, one has P⊥ ¼ 0,
and, as a result, the spin of the black hole remains constant.
If its initial value does not vanish, we denote

μ ¼ M=
ffiffiffi
J

p
; p ¼ P0=

ffiffiffi
J

p
: ð6:8Þ

FIG. 3. τ̂ as a function of μ. Dashed line shows the limiting
value of τ̂ for μ → ∞, which is equal to 0.54068.
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Then one has

β
ffiffiffi
J

p
τ ¼

Z
μ2dμ

ðμ2 þ p2Þðμ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4 − 1

p
Þ
: ð6:9Þ

The integral in the right-hand side of this relation can be
expressed in terms of the incomplete elliptic integrals.

D. Transverse to the spin motion

For this case, Pk ¼ 0 and P0 ¼ P⊥. We denote

M ¼ P⊥m; J ¼ P⊥j; τ̂ ¼ βP⊥τ: ð6:10Þ

Then the equations for the mass and spin evolution take
the form

dm
dτ̂

¼ r̂þðm2 þ 1Þ
m

;

dj
dτ̂

¼ −
1

6

mj
m2 þ 1

;

r̂þ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − j2=m2

q
: ð6:11Þ

VII. DISCUSSION

In this paper,we discussed amotion of a rotating black hole
in the homogeneous massless scalar field. For this purpose,
we used the Kerr-Schild form of the Kerr metric. We
introduced two frames. One that we denoted by K̃ is the
frame inwhich the asymptotic scalar field does not depend on
the spatial coordinates. The other frame,whichwedenoted by
K, is a frame moving with respect to K̃ with a constant
velocity V and in which the black hole is at rest. We first
solved the scalar field equation in K frame and found a
solutions satisfying the condition of the regularity at the black
hole horizon and proper behavior at the infinity. After this, we
calculated the fluxes of the energy, momentum and angular
momentum through a surface surrounding the black hole.
This allowed us to find the force acting on the black hole and
to obtain the equation of its motion in K̃ frame.
The main results of the analysis of the solutions of these

equations are the following:
(i) For a general type of motion, the components of the

momentum of the black hole both in the direction
of its spin Pk and in the transverse plane P⊥ are
conserved.

(ii) The black hole mass M monotonically grows and
formally becomes infinitely large in a finite interval
of time τfin, which depends both on the strength of
the scalar field and initial value of the mass, spin and
velocity of the black hole.

(iii) The spin J of the black hole monotonically de-
creases but does not vanish at τ ¼ τfin. However,
since the mass of the black hole becomes infinitely

large, the rotation parameter s ¼ J=M vanishes in
this limit, and the Kerr metric reduces to its
Schwarzschild limit.

Let us note that these results are obtained in the adiabatic
approximation in which the mass M and the spin J of the
black hole change slowly in time. At time close to τfin,
where Ṁ is not small, this approximation is broken.
In this paper, we considered a simple model and assumed

that the scalar field obeys a linear equation □Φ ¼ 0. This
approximation can be violated in application to some
interesting cases, e.g., for the scalar field of the ghost
condensate, where the effects of the nonlinearity might
become important. In application to the cosmology, the
scalar field may depend on the general expansion of
the Universe, which would affect the imposed boundary
conditions at the infinity. For the black hole in the
expanding universe, the adopted form (1.4) of the metric
should also be modified. It is interesting to study how these
modification of the model would affect the interaction of
the black hole with a scalar field and its motion.
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APPENDIX A: COMPLEX NULL TETRADS

In this appendix, we collect useful formulas and expres-
sions for the complex null tetrads in the Kerr-Schild
geometry. Let us denote

mμ ¼
ffiffiffiffiffiffiffiffi
Δð0Þ

y

2Σ

s �
1; 0; i;

a

Δð0Þ
y

�
;

m̄μ ¼
ffiffiffiffiffiffiffiffi
Δð0Þ

y

2Σ

s �
1; 0;−i;

a

Δð0Þ
y

�
: ðA1Þ

These vectors satisfy the following relations:

gμνmμmν ¼ ημνmμmν ¼ 0;

gμνm̄μm̄ν ¼ ημνm̄μm̄ν ¼ 0;

gμνmμm̄ν ¼ ημνmμm̄ν ¼ 1: ðA2Þ
The complex null vectors m and m̄ are orthogonal to l both
in g and η metrics.
The forth vector of the null tetrad has a slightly different

form for g and η metrics. We denote

Kμ ¼ Δð0Þ
r

2Σ

�
1; 1; 0;

a
r2 þ a2

�
: ðA3Þ

VALERI P. FROLOV PHYS. REV. D 109, 024055 (2024)

024055-10



This vector is null in the metric η and normalized so that

ημνlμKν ¼ −1: ðA4Þ

A similar vector k for g metric is

kμ ¼ Kμ þ 1

2
Φlμ: ðA5Þ

It satisfies the relations

gμνkμkν ¼ 0; gμνlμkν ¼ −1; gμνmμkν ¼ gμνm̄μkν ¼ 0:

ðA6Þ

The complex null tetrad in the metric g regular at the future
horizon of the Kerr black hole is

za ¼ ðl; k;m; m̄Þ: ðA7Þ

The index a enumerating the basis vectors takes the values
0, 1, 2, 3. By the construction, the vectors of the basis za are
regular the future event horizon.

APPENDIX B: ENERGY AND ANGULAR
MOMENTUM FLUXES THROUGH

THE HORIZON

Let ξμ be a Killing vector and Tμν be a conserved stress-
energy tensor, Tμν

;ν ¼ 0. Then the following vector,

Pμ ¼ Tμνξν; ðB1Þ

is conserved

Pμ
;μ ¼ 0: ðB2Þ

Let us consider a rotating black hole and use the
coordinates ðT; r; y;ϕÞ. We denote by Σ� two 3D slices
determined by the equations T ¼ T� and restricted from
one side by the horizon r ¼ rþ and from the other side by a
surface r ¼ r0 > rþ. We denote by ΣH a part of the horizon
surface between T ¼ T− and Tþ. Similarly, we denote
be Σ0 a 3D surface r ¼ r0 between T ¼ T− and Tþ
(see Fig. 4).

Let V be a four volume restricted by Σ�, ΣH and Σ0.
Using the Stockes’ theorem, one can write

0 ¼
Z
V

ffiffiffiffiffiffi
−g

p
d4 xPμ

;μ

¼
�Z

Σþ
−
Z
Σ−

�
Pμdσμ þ

�Z
Σ0

−
Z
ΣH

�
Pμdσμ: ðB3Þ

The surface elements dσμ are chosen so that for Σ� and at
the horizon ΣH, they are both future directed, while at Σ0, it
is directed into this surface’s interior.
For the problem under consideration, the gradient of

the scalar field Ψ does not depend on time, and, since the
metric is also time independent, the stress-energy tensor has
the same property. As a result, the expression in the first
square bracket in (B3) vanishes, and one hasZ

Σ0

Pμdσμ ¼
Z
ΣH

Pμdσμ: ðB4Þ

This relation shows that
(i) The flux of P inside Σ0 during the time interval

Tþ − T− is equal to the flux through the horizon for
the same interval of time T.

(ii) The flux of P inside Σ0 in fact does not depend in
the choice of the radius r0.

Let us emphasize that at the surface of constant radius
r ¼ r0, the coordinates T, v, and t differ only by constant
values. For this reason, one has

Tþ − T− ¼ vþ − v− ¼ tþ − t−: ðB5Þ
These remarks can be used to confirm the results (4.6) for
the energy and angular momentum fluxes through Σ0.
Let us calculate the energy and angular momentum

fluxes through the horizon of the black hole. Denote by

ημ ¼ ξμ þ Ωζμ; Ω ¼ a
2Mrþ

: ðB6Þ

Then for the horizon surface ΣH, one has

dσμ ¼ −ημ
2Mrþ
a

dy dϕ dT: ðB7Þ

The energy and angular momentum fluxes through the
horizon are

E ¼ −
1

Tþ − T−

2Mrþ
a

Z
ΣH

ξμηνTμνdydϕdT

¼ 2Mrþ
a

Z
a

−a
ðTTT þ ΩTTϕÞdydϕ;

J ¼ 1

Tþ − T−

2Mrþ
a

Z
ΣH

ζμηνTμνdy dϕ dT

¼ −
2Mrþ
a

Z
a

−a
ðTTϕ þ ΩTϕϕÞdy dϕ: ðB8Þ

FIG. 4. Illustration to the Stockes’ theorem.
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Calculations give

TTT þΩTTϕ ¼H Ψ̄2
0

"
1 −

ðr− cos ϕþ a sinϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − y2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
2Mrþ

p
a

VX

−
ðr− sinϕ − a cosϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − y2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
2Mrþ

p
a

VY

#
:

ðB9Þ

After integration of this expression over the angle ϕ, the
terms that depend on the velocity components VX and VY
vanish. The further integration over y gives

E ¼H 8πΨ̄2
0Mrþ: ðB10Þ

This expression correctly reproduces the result (4.6) as it
should be.
To calculate the angular momentum flux through the

horizon, one needs first to find the value of TTϕ þ ΩTϕϕ on

the horizon. The corresponding expression is rather long,
and we do not reproduce it here. Instead of this, we give the
expression that is obtained after integration of this object
over the angle ϕ

Z
2π

0

ðTTϕ þΩTϕϕÞdϕ ¼ −Ψ̄2 πM
2arþ

ðV2
X þ V2

YÞða2 − y2Þ:

ðB11Þ

Using (B8) and performing the integration over y, one
obtains

J¼H −
4

3
πΨ̄2

0aM
2ðV2

X þ V2
YÞ: ðB12Þ

This result correctly reproduces the expression obtained
earlier in (4.6). The calculations presented in this appendix
provide an additional check of the results presented
in Sec. IV.
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