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Although Lorentz symmetry is a staple of general relativity (GR), there are several reasons to believe it
may not hold in a more advanced theory of gravity, such as quantum gravity. Einstein-aether theory is a
modified theory of gravity that breaks Lorentz symmetry by introducing a dynamical vector field called the
aether. The theory has four coupling constants that characterize deviations from GR and that must be
determined through observations. Although three of the four parameters have been constrained by various
empirical observations and stability requirements, one, called cω, remains essentially unconstrained. The
aim of this work is to see if a constraint on cω can be derived from the I-Love-Q universal relations for
neutron stars, which connect the neutron star moment of inertia (I), the tidal Love number (Love), and the
quadrupole moment (Q) in a way that is insensitive to uncertainties in the neutron star equation-of-state. To
understand if the theory can be constrained through such relations, we model slowly rotating or weakly
tidally deformed neutron stars in Einstein-aether theory, derive their I-Love-Q relations, and study how they
depend on cω. We find that the I-Love-Q relations in Einstein-aether theory are insensitive to cω and that
they are close to the relations in GR. This means that the I-Love-Q relations in Einstein-aether theory
remain universal but cannot be used to constrain the theory. These results indicate that to constrain the
theory with neutron stars, it is necessary to investigate relations involving other observables.
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I. INTRODUCTION

General relativity (GR) is the most successful theory
of gravity to date and has stood up to a multitude of tests
[1–3]. Despite this, a particular concern for GR is its
incompatibility with quantum mechanics, an incompatibil-
ity that ought to be resolved by a more fundamental theory
of quantum gravity. One proposed feature of quantum
gravity theories that are renormalizable and ultraviolet
complete is the presence of a local preferred rest frame
everywhere in spacetime [4–6]. Since the existence of
such a frame would break local Lorentz symmetry, a
pillar of GR, searches for gravitational Lorentz symmetry
violation provide an avenue for understanding gravity
beyond GR.
Einstein-aether theory is a vector-tensor theory of gravity

that introduces such preferred frame effects via a dynami-
cal, unit, and time-like vector field called the aether [4,7,8].
The aether selects a preferred time direction at each point in
space and affects gravity by coupling to the metric tensor
via covariant derivatives in the action. Importantly, the
aether does not couple to matter fields directly at the level
of the action. This coupling setup helps Einstein-aether
theory avoid stringent constraints on Lorentz symmetry
violation in the matter sector [9–11], which are stronger
than those in the gravitational sector [4,12]. This gap in the
gravity sector can be ameliorated by studying specific
theories, such as Einstein-aether theory, which provides a

generic framework in which to test low-energy, Lorentz-
violating gravity [8,13].
Various gravitational tests have strongly constrained

three of the four coupling constants in Einstein-aether
theory, ðca; cθ; cω; cσÞ, splitting the theory into two viable
regions of parameter space [13,14]. Observations such
as the gravitational wave event of a binary neutron star
merger GW170817 and its corresponding gamma-ray burst
GRB170817A [15], binary pulsars [12,16,17], solar system
experiments [2], and light element production during
big bang nucleosynthesis [18], as well as theoretical
constraints on the mode stability and the absence of the
gravitational Cherenkov radiation, all put relatively tight
constraints on ca, cθ, and cσ. However, cω has been
essentially unconstrained thus far [17], with the only bound
cω > 0 coming from requiring that the vector mode carries
positive energy [19]. Recent attempts to develop constraints
with gravitational-wave data have been unsuccessful in
providing further, more stringent bounds on these param-
eters [20], and it has also been found that rotating black
holes in Einstein-aether theory deviate only slightly from
rotating black holes in GR [21]. Hence, an exploration of
different tests is needed to further constrain Einstein-aether
theory and the cω parameter in particular. The goal of this
work is to see if better constraints on these coupling
constants can be derived from the I-Love-Q relations for
neutron stars.
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Due to their compactness, neutron stars are excellent
systems with which to probe gravity in the strong-field
regime. A particularly useful tool for probing gravity
with neutron stars is the I-Love-Q relations [22–25].
This acronym refers to relations between the neutron star
moment of inertia (I), the tidal Love number (Love), and the
spin-induced quadrupole moment (Q), which are insensi-
tive to the nuclear matter equation of state. This latter
fact, sometimes referred to as “universality,” allows the
I-Love-Q relations to avoid contamination from uncertain-
ties in the internal structure of neutron stars, thus making
them especially useful for conducting tests of GR.
Additionally, the I-Love-Q relations differ between dif-
ferent gravitational theories, and thus, they can be used
to measure deviations from GR in non-GR theories
[22,23,26]. The I-Love-Q relations have been studied in
several modified gravity theories [26–28]. This includes
khronometric gravity [29], a closely related theory that
corresponds to the low-energy effective theory of Hořava-
Lifshitz gravity [6,30]. The Love number has been con-
strained by GW170817 [15,31,32] while the moment of
inertia has been inferred from NICER observations [33]
and is expected to be measured with the double pulsar
binary PSR J0737-3039 [34,35].
In this paper, we investigate whether one could use the

I-Love-Q relations to constrain Einstein-aether theory.
More precisely, we study the structure of slowly rotating
and tidally perturbed neutron stars in Einstein-aether
theory and focus on how the moment of inertia, the
quadrupole moment, and the tidal Love number depend
on the coupling constants of the theory. Of particular
interest is the dependence of these quantities on the
unconstrained constant cω. To carry out this study, we
follow the same procedure as in GR to construct slowly
rotating or weakly tidally deformed neutron stars pertur-
batively in rotation and tidal deformation. With these
solutions, we then derive the moment of inertia, quadrupole
moment, and tidal Love number from the asymptotic
behavior of the metric [23]. The analysis is similar to
previous calculations of stellar sensitivities of slowly
moving neutron stars in Einstein-aether theory [12,16].
In addition, we briefly study other components of the
metric perturbations unrelated to the I-Love-Q trio but that
do determine whether neutron stars in Einstein-aether
theory are the same as in GR.
Our main findings are as follows. We focus on the first

viable parameter region, called region I, where cω is
unconstrained, while the other three coupling constants
are suppressed by at leastOðcaÞ, where ca ≲Oð10−5Þ from
various observations. This means that the field equations
relevant to extracting I-Love-Q quantities are dominantly
dependent on cω and ca only. In particular, we study the
dependence on cω in the relevant field equations and find
that it always enters the ϕ-component of the aether
field, equivalently the perturbation function SðrÞ. We then

schematically solve the differential equation for SðrÞ and
provide analytic arguments to show that the I-Love-Q
relations do not depend strongly on cω. Specifically, we
argue that deviations from the GR I-Love-Q relations due
to cω are suppressed or comparable relative to deviations
due to ca, and that the dominant deviation for each of the
I-Love-Q quantities is of OðcaÞ. This makes it difficult to
probe the theory further with neutron star observations
through the I-Love-Q relations, as the equation-of-state
variation [Oð1%Þ] is much larger than the Einstein-aether
correction of OðcaÞ ≲Oð10−5Þ. We confirm these findings
by calculating the I-Love-Q quantities in Einstein-aether
theory numerically. In the second parameter region, region
II, where cω and cθ are the only free constants, while the
other two are set to vanish, the I-Love-Q relations are
exactly identical to those in GR. These findings are similar
to those of the khronometric case in [30] and confirm
that the I-Love-Q relations are universal not only to the
variation in the equations of state but to the variation in
Lorentz-violating effects, at least in Einstein-aether and
khronometric theory.
The rest of the paper is organized as follows. In Sec. II,

we summarize Einstein-aether theory, introduce the field
equations, and describe the current bounds on the theory.
In Sec. III, we introduce the Ansätz for the metric, aether
vector field, and the matter stress-energy tensor that we use
in this work. In Secs. IV to VI, we present the region I
neutron star field equations relevant for the I-Love-Q
relations and show that effects due to cω, while present,
are subdominant to those from ca. In Sec. VII, we conclude
and discuss future directions. In Appendix A, we show that
the I-Love-Q quantities in region II reduce exactly to their
GR values. Next, in Appendix B, we present the full
neutron star field equations relevant to the I-Love-Q
relations. In Appendix C, we map and compare our neutron
star field equations to those previously found in khrono-
metric gravity. In Appendix D, we briefly study off-
diagonal perturbations for tidally deformed neutron stars.
Throughout this work, we use the metric signature
ðþ;−;−;−Þ, and geometric units c ¼ 1 ¼ GN , where
GN is the local Newtonian gravitational constant.

II. EINSTEIN-AETHER THEORY

In this section, we present the action and field equations
for Einstein-aether theory. We also discuss current con-
straints on the theory and describe two viable regions for
the coupling constants. The action for the metric and aether
is given by [17]

SÆ ¼ −
1

16πGbare

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ λðUμUμ − 1Þ

þ 1

3
cθθ2 þ cσσμνσμν þ cωωμνω

μν þ caAμAμ

�
: ð1Þ
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Here, g is the metric determinant, R is the Ricci scalar,Uμ is
the aether vector field, and λ is a Lagrange multiplier that
enforces UμUμ ¼ 1. The other terms come from decom-
posing the aether congruence into the expansion θ, the
shear σμν, the twist ωμν, and the acceleration Aμ, which are
defined via

θ≡∇μUμ; ð2Þ

Aμ ≡Uν∇νUμ; ð3Þ

σμν ¼ ∇ðνUμÞ þ AðμUνÞ −
1

3
θ ðgμν −UμUνÞ; ð4Þ

ωμν ≡∇½νUμ� þ A½μUν�: ð5Þ

The parameters ðca; cθ; cω; cσÞ are the coupling constants
of the theory, and we can recover GR by taking the
limit ðca; cθ; cω; cσÞ → 0. In the action, Gbare is the “bare”
gravitational constant, which is given by

Gbare ¼ GN

�
1 −

ca
2

�
¼

�
1 −

ca
2

�
; ð6Þ

where GN is the Newtonian gravitational constant, mea-
sured locally in the solar system [4,18]. We shall set
GN ¼ 1 throughout this work. The inclusion of matter
fields, denoted ψ , produces the full action for Einstein-
aether theory

S ¼ SÆ þ Smatðgμν;ψÞ; ð7Þ

with Smat being the matter action, which defines the matter
stress-energy tensor

TðmatÞ
μν ≡ −

2ffiffiffiffiffiffi−gp δSmat

δgμν
: ð8Þ

Taking the matter action to be diffeomorphism invariant,
it follows that the stress-energy tensor is conserved,

∇μTðmatÞ
μν ¼ 0.

We now present the equations of motion in Einstein-
aether theory. Varying the full action with respect to the
metric gives the modified Einstein equations [16,17]

Eμν ≡Gμν − 8πGbareT
ðmatÞ
μν − TðÆÞ

μν ¼ 0: ð9Þ

Here, Gμν is the Einstein tensor and TðÆÞ
μν is the stress-

energy tensor for the aether field, defined by

TðÆÞ
μν ¼∇ρ½JðμρUνÞ− JρðμUνÞ− JðμνÞUρ�

þ
�
ca −

cσ þ cω
2

�
½U̇μU̇ν− ðU̇ρU̇ρÞUμUν�

þ ðUρ∇σJσρÞUμUνþ
1

2
Mσρ

αβ∇σUα∇ρUβgμν; ð10Þ

where

Mαβ
μν ≡

�
cσ þ cω

2

�
gαβgμν þ

�
cθ − cσ

3

�
δαμδ

β
ν

þ
�
cσ − cω

2

�
δανδ

β
μ þ

�
ca −

cσ þ cω
2

�
UαUβgμν;

ð11Þ

and

Jαμ ≡Mαβ
μν∇βUν; U̇ν ≡Uμ∇μUν: ð12Þ

Varying the full action with respect to the aether gives the
aether equations

Æμ ≡
�
∇αJαν −

�
ca −

cσ þ cω
2

�
U̇α∇νUα

�

× ðgμν −UμUνÞ ¼ 0: ð13Þ

In total, there are two sets of dynamical equations for
determing the metric gμν and aether Uμ: the modified
Einstein equations and the aether equations, given by
Eqs (9) and (13), respectively.
Let us now review existing bounds on the theory [17,20].

The propagation speed of tensor modes is given by
1=ð1 − cσÞ, whose deviation from the speed of light has
been constrained to be about 10−15 from the gravitational-
wave observation of GW170817 and its electromagnetic
counterpart [15,36]. A similar constraint arises from the
lack of observed gravitational Cherenkov radiation in high-
energy cosmic rays [17]. Both of these observations lead to
the requirement cσ ≲Oð10−15Þ. Constraints on ca and cθ
result mainly from bounds on the preferred frame param-
eters α1 and α2 in the parametrized Post-Newtonian (PPN)
expansion of the theory. In Einstein-aether theory, the
preferred frame parameters relate to the coupling constants
via [37]

α1 ¼ 4
cωðca − 2cσÞ þ cacσ
cωðcσ − 1Þ − cσ

;

α2 ¼
α1
2
þ 3ðca − 2cσÞðcθ þ caÞ

ð2 − caÞðcθ þ 2cσÞ
: ð14Þ

Solar system experiments combined with binary pulsar
observations bound jα1j≲ 10−5 and jα2j≲ 10−7 [2,17].
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These bounds translate into two viable parameter regions
for Einstein-aether theory [17,20,21]. The first region,
which we will call region I, comes from requiring that
jα1j ≲ 10−5 strictly, i.e., not jα1j ≪ 10−5. Combining the
constraint on cσ from tensor mode speed with the bounds
on α1 and α2 in region I, one is left with cσ ≲Oð10−15Þ,
ca ≲Oð10−5Þ, cθ ≈ 3ca½1þOð10−3Þ�, and cω uncon-
strained. The second region, which we will call region
II, is obtained by instead requiring jα1j ≪ 10−5 so that
the bound on jα2j is automatically satisfied (when cσ ≈ 0).
The parameter space for region II is then given by
cσ ≲Oð10−15Þ, jcaj≲Oð10−7Þ and ðcθ; cωÞ undetermined.
Though the PPN parameters do not constrain cθ in region
II, there is a separate constraint of jcθj≲ 0.3 from observed
light element production during big bang nucleosynthe-
sis [17,18].
To summarize, Einstein-aether theory has two viable

spaces for its coupling constants, regions I and II. Region I
can be approximated by the parameter space

Region I∶ ðca; cθ; cω; cσÞ ≈ ðca; 3ca; cω; 0Þ; ð15Þ

with ca ≲Oð10−5Þ and cω unconstrained. While one could
approximate ca ≈ 0 in Eq. (15) since it is relatively small,
we opt to keep ca non-zero because the ratio ca=cω could
be large (since cω is unconstrained) and thus have non-
negligible effects. If one uses ca ≈ 0, these effects would
not be captured. Next, region II can be approximated by the
effectively two-dimensional space

Region II∶ ðca; cθ; cω; cσÞ ≈ ð0; cθ; cω; 0Þ; ð16Þ

where jcθj≲ 0.3 and cω unconstrained. In the following
work, we refer to the approximations given in Eqs (15) and
(16) as region I and region II, respectively. We mainly study
the I-Love-Q relations in region I. As we will see later, the
I-Love-Q relations in region II are identical to those in GR.

III. METRIC, AETHER, AND MATTER
PERTURBATIONS

In the following sections, we describe neutron stars
perturbed by slow rotation and weak tidal deformation. We
first present the metric and aether field Ansätze, which can
be reduced to the slow rotation case or the tidal deformation
case by keeping the relevant free functions and spherical
harmonic modes for each case. We then describe the matter
stress-energy tensor.

A. Metric and aether Ansätz

We form our metric Ansätz by adding appropriate parity
perturbations in the Regge-Wheeler gauge [38,39] to a
generic, static and spherically symmetric background. The
metric Ansätz includes l ¼ 1 odd and l ¼ 2 even perturba-
tions and is given by [22]

ds2 ¼ eνðrÞ½1þ ε2κH0ðrÞY2mðθ;ϕÞ�dt̃2
− eμðrÞ½1 − ε2κH2ðrÞY2mðθ;ϕÞ�dr2
− r2½1 − ε2κKðrÞY2mðθ;ϕÞ�
× fdθ2 þ sin2θ½dϕ − ε½Ω⋆ − ωðrÞP0

1ðcos θÞ�dt̃�2g
þ 2ε2½κH̃1ðrÞY2mðθ;ϕÞ�dt̃drþOðε3Þ: ð17Þ

Here, ε is a book-keeping parameter denoting the order of
the perturbation, Y2mðθ;ϕÞ is the l ¼ 2 spherical harmonic
function, P0

1ðcos θÞ ¼ dP1ðcos θÞ=dðcos θÞ where P1 is the
first Legendre polynomial, Ω⋆ is the constant angular
velocity of the neutron star, and κ ¼ 2

ffiffiffiffiffiffiffiffi
π=5

p
[chosen so

that κY20ðθ;ϕÞ ¼ P2ðcos θÞ]. For aether perturbations, we
follow Eq. (13) in [40] to form our Ansätz

Uμdx̃μ ¼ eν=2f½1þ ε2κXðrÞY2mðθ;ϕÞ�dt̃
þ ε2 κW̃ðrÞY2mðθ;ϕÞdr
þ ε2 κVðrÞ∂θY2mðθ;ϕÞdθ þ ½ε SðrÞsin2θ
þ ε2 κVðrÞ∂ϕY2mðθ;ϕÞ�dϕg þOðε3Þ; ð18Þ

with x̃μ ¼ ðt̃; r; θ;ϕÞ. We only consider perturbative terms
up to quadratic order in ε in this paper. In the case of tidal
perturbations, we also use the above Ansätze but only
consider even parity perturbations; there is no tidal pertur-
bation at OðεÞ and the leading perturbation enters at
Oðε2Þ [22].
With initial metric and aether Ansätze in hand, we next

perform a coordinate transformation and enforce the aether
normalization condition UμUμ ¼ 1. First, we choose the
following coordinate transformation

t ¼ t̃þ ε2 κVðrÞY2mðθ;ϕÞ; ð19Þ

to slightly simplify the aether Ansätz. This coordinate
transformationwas also used in [30] in the context of neutron
stars in khronometric gravity, where the transformation was
motivated by a more significant simplification of the vector
field. Though the simplification is lesser in Einstein-aether
theory, implementing this transformationwill be useful when
comparing our results to those in khronometric gravity. After
performing the coordinate transformation, it will be conven-
ient to use the replacements

H1ðrÞ≡ H̃1ðrÞ − eν∂rVðrÞ;
WðrÞ≡ W̃ðrÞ − ∂rVðrÞ; ð20Þ

from here on. Next, using the UμUμ ¼ 1 constraint on the
aether field allows us to solve for XðrÞ in terms of other
functions in the Ansätz:

XðrÞ¼1

6

�
4SðrÞ½Ω⋆−ωðrÞ�− 2

r2
SðrÞ2eν−3H0ðrÞ

�
: ð21Þ
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After implementing the coordinate transformation, redefini-
tions, and solution for XðrÞ into the initial Ansätze in
Eqs. (17) and (18), we obtain the metric and aether
Ansätze which we will use for the rest of this work. The
final forms of the aether field and metric Ansätze are
given by

Uμdxμ ¼ eν=2f½1þ ε2κXðrÞY2mðθ;ϕÞ�dt
þ ε2κY2mðθ;ϕÞWðrÞdrþ εSðrÞsin2θdϕg
þOðε3Þ; ð22Þ

with XðrÞ given by Eq. (21), and

ds2 ¼ eνðrÞ½1þ ε2 κH0ðrÞY2mðθ;ϕÞ�dt2 − eμðrÞ½1 − ε2κH2ðrÞY2mðθ;ϕÞ�dr2
− r2½1 − ε2 κKðrÞY2mðθ;ϕÞ�fdθ2 þ sin2θ½dϕ − ε½Ω⋆ − ωðrÞP0

1ðcos θÞ�dt�2g
þ 2ε2 κfH1ðrÞY2mðθ;ϕÞdtdr − eνðrÞVðrÞ½∂θY2mðθ;ϕÞdtdθ þ ∂ϕY2mðθ;ϕÞdtdϕ�g þOðε3Þ: ð23Þ

Note that the aether has lost a θ component while the
metric has gained ðt; rÞ and ðt; θÞ components. Addition-
ally, the metric perturbation H0ðrÞ has mixed into the
aether, and the aether perturbation VðrÞ has mixed into the
metric.
We now summarize which field functions and spherical

harmonic modes are considered at each order of perturba-
tion in the slow rotation or tidal deformation case. At
Oðε0Þ, we have the radial functions ν and μ, while at OðεÞ
we have ω and S, and at Oðε2Þ we have H0, H1, H2, K,W,
and V. AtOðε2Þ, the functions can be split into two sectors:
the diagonal sector (as in the diagonal components of the
metric) consisting of H0, H2, and K, and the off-diagonal
sector, consisting ofH1, V, andW. For metric perturbations
due to slow rotation, only ðl; mÞ ¼ ð1; 0Þ modes are
included at OðεÞ while both ðl; mÞ ¼ ð2; 0Þ and ðl; mÞ ¼
ð0; 0Þ modes are included at Oðε2Þ. Tidal perturbations
only enter at Oðε2Þ with l ¼ 2 and all m modes, so we
neglect OðεÞ terms in the metric and aether when consid-
ering the tidal deformations. Hence, the free field functions
are fν; μ; ω; S; H0; H1; H2; K; V;Wg in the slow rotation
case and fν; μ; H0; H1; H2; K; V;Wg in the tidal deforma-
tion case.

B. Matter stress-energy

We next turn to the matter stress-energy tensor for the
neutron star. We model the neutron star as a uniformly
rotating perfect fluid with four velocity given by

uμ∂μ ¼ utð∂t þ εΩ⋆∂ϕÞ; ð24Þ

where Ω⋆ is the neutron star angular velocity. Using the
timelike normalization condition uμuμ ¼ 1, one finds

ut ¼ e
ν
2 þ ε2

2
e−

3ν
2 ½ðωr sin θÞ2 − κeνH0Y2m� þOðε3Þ: ð25Þ

With the neutron star four velocity uμ, we then have the
perfect fluid stress-energy tensor given by

TðmatÞ
μν ¼ ½ρ̃0 þ p̃0 þ ε2κðρ̃2 þ p̃2ÞY2m�uμuν

− ðp̃0 þ ε2κp̃2Y2mÞgμν þOðε3Þ; ð26Þ

where we have implemented our perturbation scheme by
introducing ρ̃i and p̃i, the ith order energy densities and
pressures, respectively. One can additionally rescale the
pressures and energy densities as

ρi ≡ 2 − ca
2

ρ̃i; pi ≡ 2 − ca
2

p̃i; ð27Þ

to absorb the overall factor introduced by Gbare ¼ 1 − ca=2
in Eq. (9). We will use these rescaled pressure and energy
density functions from here on.

IV. MOMENT OF INERTIA

In this and the subsequent two sections, we present
analytic arguments and numerical calculations for the I-
Love-Q relations in Einstein-aether theory. We focus on
region I as the relations in region II turn out to be the same
as in GR (see Appendix A for more details). We use the
metric and aether Ansätz presented in the previous section
and consider slowly rotating and weakly tidally deformed
neutron stars. We derive the field equations for the Ansätz
functions order by order and study the appropriate I-Love-
Q quantity at each order, namely, the moment of inertia at
first order in rotation, the quadrupole moment at second
order in rotation, and the tidal Love number at first order in
tidal deformation.

A. Background

We first consider the Oðε0Þ, or background, functions in
the Ansätz and stress-energy tensor: μ, ν, and p0. The
energy density ρ0 is determined from p0 via the neutron star
equation of state, which we leave general. Using the ε0

parts of the modified Einstein equations and the conserva-

tion of stress-energy, ∇μTðmatÞ
μν ¼ 0, we find the modified

TOV equations [16,41]
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dM
dr

¼ 4πρ0r2 þ
1

4rðr − 2MÞ f−M
2 − 8πMr3ð7p0

þ 2ρ0Þ − 8πr4ð2πp0
2 − 3p0 − ρ0Þgca þOðc2aÞ;

dν
dr

¼ 8πp0r3 þ 2M
rðr − 2MÞ −

ð4r3πp0 þMÞ2
2rðr − 2MÞ2 ca þOðc2aÞ;

dp0

dr
¼ −

ð16πp0r3 þMÞðp0 þ ρ0Þ
rðr − 2MÞ

þ ð4r3πp0 þMÞ2ðp0 þ ρ0Þ
4rðr − 2MÞ2 ca þOðc2aÞ; ð28Þ

where we have expanded in the small parameter ca and
introduced the function MðrÞ, defined by

MðrÞ≡ r
2
½1 − e−μðrÞ�; ð29Þ

which we will use in place of μðrÞ from here on. Note that
ca is the only parameter in these background equations and
that the leading parts of each equation correspond to the
TOVequations in GR [22]. The unexpanded modified TOV
equations and their numerical solutions are discussed in
Appendix B.

B. First order in spin

Next, we study the first-order rotational perturbations to
find the moment of inertia. This quantity can be derived
from the asymptotic behavior of the metric perturbation ω
far away from the star. The only other Ansätz function at
this order is S, which comes from the aether field. Using the
OðεÞ parts of the modified Einstein and aether equations,
we find coupled equations for S and ω from Etϕ ¼ 0 and
Æϕ ¼ 0:

d2ω
dr2

¼ β0 þ β1ca þOðc2aÞ; ð30Þ

d2S
dr2

¼ γ0 þ γ1ca þ γ2
ca
cω

þO
�
c2a;

c2a
cω

�
; ð31Þ

The coefficients βi and γi are functions of S, ω, and the
background functions and do not have an explicit depend-
ence on the parameters ca and cω. Their explicit expres-
sions are given by

β0 ¼
4πr3ðp0 þ ρ0Þ þ 8M − 4r

rðr − 2MÞ
dω
dr

þ 16πr2ðp0 þ ρ0Þω;

β1 ¼
8πr3

ðr − 2MÞ2
�
ρ0 þ 3p0

4
−
ðρ0 þ 4p0ÞM

2r
− πp2

0r
2

−
M2

16πr4

�
dω
dr

−
8eν

r3ðr − 2MÞ
��

πp0r3 þ
M
4

�
dS
dr

þ πr2ðρ0 þ 3p0ÞS
�
; ð32Þ

and

γ0 ¼
1

rðr − 2MÞ
�
ð4πr3ρ0 − 12πr3p0 − 4MÞ dS

dr
þ 2S

�
;

γ1 ¼
8πr3

ðr − 2MÞ2
�

M2

16πr4
−
ðρ0 þ 2p0ÞM

2r
þ ρ0 þ 3p0

4

þ πp2
0r

2

�
dS
dr

;

γ2 ¼ −
4ð4r3πp0 þMÞð4r3πp0 þ 3M − rÞ

ð−rþ 2MÞ2r2 S

−
2re−νð4πp0r3 þMÞ

r − 2M
dω
dr

: ð33Þ

We note that β0 corresponds to the field equation for ω in
GR [22]. We check in Appendix C that Eqs. (30) and (31)
correctly reduce to those in khronometric gravity after
taking the limit cω → ∞ and imposing appropriate boun-
dary conditions for neutron stars.
There are a few remarks to make here about Eqs. (30)

and (31). First, we have expanded both equations in small
ca,

1 with full equations presented in Appendix B. Second,
Eqs. (30) and (31) were derived assuming that cω is
nonvanishing, as the aether component Æϕ is proportional
to cω. The need to make this assumption to obtain Eq. (31)
is expected because S is undetermined in GR, and GR is the
limit of Einstein-aether theory when all coupling constants
are taken to zero. Third, the equation for S is the only one
with explicit dependence on cω [e.g., from the γ2 term in
Eq. (31)], and S first enters into the ω equation through the
β1 term. This means that the largest effect on ω due to cω
will be at most of the order of caS since β1 corresponds to
the OðcaÞ term in Eq. (30).
We now extract the moment of inertia from the asymp-

totic behavior of ω at large r. To do this, we solve Eqs. (30)
and (31) with a power series Ansätz in r in the exterior of
the neutron star. In this context, the exterior is defined by
vanishing pressure and energy density, i.e., setting p0 ¼
ρ0 ¼ 0 in Eqs. (30) and (31). Additionally, we impose that
the exterior solution is regular at r ¼ ∞. The exterior
behavior for S and ω are then given by

1No assumptions on the size of cω (relative to ca) were used
when calculating the series expansions in Eqs. (30) and (31).
To ensure that both series correctly include the leading terms
for different scales of cω, we substituted ca → caϵ and one
of the cases (i) cω → cωϵ−1 (ii) cω → cωϵ0 (iii) cω → cωϵ
(iv) cω → cωϵ2 into the equation for S00 (a prime denotes a
derivative with respect to the r-coordinate), where ϵ quantifies the
relative size between cω and ca, and each case (i)–(iv) corresponds
to a different relative size. For each case, we expanded the rhs
of S00 in ϵ and confirmed that the leading (and sometimes
sub-leading) terms are indeed correctly included in the rhs of
the S00 equations.
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SðextÞðrÞ ¼ C
r
þ M⋆

cωr2

�
ðca þ 2cωÞCþ 3

2
caD

�
þO

�
1

r3

�
;

ωðextÞðrÞ ¼ Ω⋆ þ D
r3

þ caCM⋆

2r4
þO

�
1

r5

�
; ð34Þ

with C and D being constants of integration, Ω⋆ the
angular velocity of the star, and M⋆ ≡MðrÞjr¼∞. The
moment of inertia I is then related to the 1=r3 coefficient in
ωðextÞ via [22]

I ≡ −
D

2Ω⋆
; ð35Þ

and its dimensionless version, Ī, is given by

Ī ≡ I
M3

⋆
: ð36Þ

The integration constants C and D are obtained by
imposing appropriate boundary conditions. However, we
can determine how I depends on the coupling constants
before explicitly calculating it from Eq. (35). Namely, since
I is determined from ω, the dependence of I on ca and cω
will be the same as that of ω.

1. Analytic scaling

We wish to find how the moment of inertia, I, and ω
depend on ca and cω, specifically, how these coupling
constants modify I and ω relative to GR. To see this, it is
useful to distinguish between the “homogeneous” and
“particular” parts of the solution for ω.2 The former comes
from the homogeneous part of the ω field equation in
Eq. (30), i.e., the β0 term and the dω=dr term in β1 in
Eq. (32). The homogeneous solution for ω will have a
(largest) modification of OðcaÞ due to the β1 term in
Eq. (30) and the OðcaÞ modifications in the background
quantities p0, ρ0, and M. The particular solution comes
from the “source” terms, i.e., the S and dS=dr terms in β1 in
Eq. (32). Thus to study the modification of the particular
solution, which is OðcaSÞ, we must first estimate how the
solution to S depends on the coupling constants. To
summarize, the leading modification to the moment of
inertia and ω is either OðcaÞ, from the homogeneous part,
or OðcaSÞ, from the particular part.
In the following, we argue that the leading modification

to I is at most OðcaÞ. To do this, we consider three limits:
(1) cω ≫ ca, (2) cω ∼ ca, and (3) cω ≪ ca, with ca ≪ 1 in
each case, as is appropriate for region I. Since the leading
modification is either OðcaÞ or OðcaSÞ, all that is left is to
estimate the coupling constant dependence of S in each

case. The scalings for S and the leading modification to I
are summarized in Table I.
We first consider case (1), where cω ≫ ca. In this limit,

the field equation for S in Eq. (31) can be approximated as

S00ðrÞ ≈ γ0 þ γ1ca: ð37Þ

This equation is homogeneous and linear, so we can
express the general interior and exterior solutions to S as

SðintÞ ¼ C1s1ðrÞ; SðextÞ ¼ C1s2ðrÞ; ð38Þ
where C1 and C2 are constants, and where s1ðrÞ and s2ðrÞ
are two distinct solutions of Eq. (37). Imposing regularity at
the neutron star center and infinity allows us to have just
one integration constant in SðintÞ and SðextÞ, respectively. To
obtain the full solution to Eq. (37), we then match SðintÞ and
SðextÞ and their first derivative at the neutron star radius R⋆:

C1s1ðR⋆Þ ¼ C2s2ðR⋆Þ;
C1s01ðR⋆Þ ¼ C2s02ðR⋆Þ: ð39Þ

Solving this system yields C1 ¼ C2 ¼ 0, and hence we
find that S ≈ 0 to the order kept in Eq. (37). Thus, to find
nonvanishing contributions to S, we must go one order
higher and include γ2 from Eq. (31), which has a nonho-
mogeneous part. This leads to the coupling constant scaling
S ¼ Oðca=cωÞ, meaning that the modification to I from the
particular part of ω is OðcaSÞ ¼ Oðc2a=cωÞ. However, this
is smaller than the OðcaÞ homogeneous contribution to ω,
and hence the leading correction to I for this case is OðcaÞ.
We next consider case (2): cω ∼ ca. Here, we can

approximate the field equation for S as

S00ðrÞ ≈ γ0 þ γ2 þ γ1ca þOðcaÞ: ð40Þ

Notice that the “source” term in γ2 is now Oð1Þ (with
respect to the coupling constants), meaning that S will have
a non-vanishing Oð1Þ part. Thus, OðcaSÞ ¼ OðcaÞ, the
same order as the homogeneous contribution to I, and the
dominant modification to ω and I is alsoOðcaÞ in this case.
Lastly, we consider case (3): cω ≪ ca. To solve Eq. (31)

in this limit, let us first consider the following toy model:

d2y
dx2

¼ −yþ 1

ϵ
ðy − xÞ; ð41Þ

TABLE I. Leading contribution to S and the leading modifi-
cation to moment of inertia δI. For δI, we choose the modification
that is larger between OðcaÞ and OðcaSÞ.

cω ≫ ca cω ∼ ca cω ≪ ca

S Oðca=cωÞ Oð1Þ Oð1Þ
δI OðcaÞ OðcaÞ OðcaÞ

2Strictly speaking, S also depends on ω, so Eqs. (30) and (31)
form a set of homogeneous equations and there is no source term.
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where ϵ ≪ 1 is a small constant. The solution to this
equation is

yðxÞ ¼ x
1− ϵ

þC1 exp

�
x

ffiffiffiffiffiffiffiffiffiffi
1− ϵ

p
ffiffiffi
ϵ

p
�
þC2 exp

�
−
x

ffiffiffiffiffiffiffiffiffiffi
1− ϵ

p
ffiffiffi
ϵ

p
�
:

ð42Þ

Taking the small ϵ limit of the solution yðxÞ gives

yϵðxÞ ¼ xþ C1 exp

�
xffiffiffi
ϵ

p
�
þ C2 exp

�
−

xffiffiffi
ϵ

p
�
: ð43Þ

Note that one can also obtain the solution yϵ by first
taking the appropriate limits in Eq. (41) and solving those
equations. Namely, the first term in Eq. (42) (corresponding
to the particular solution) is obtained by taking the ϵ → 0
limit in Eq. (41):

0 ¼ 1

ϵ
ðy − xÞ; ð44Þ

and then solving for y. The other two terms in Eq. (42)
(corresponding to the homogeneous solutions) are obtained
by taking the small ϵ limit of the homogeneous part Eq. (41):

d2y
dx2

¼ 1

ϵ
y: ð45Þ

Now, we apply this procedure from the toy model to the
field equation for S in case (3) with cω acting as the small
parameter ϵ. First, we take the cω → 0 limit in Eq. (31) to
obtain γ2 ¼ 0. This equation for γ2 gives us the algebraic
solution

SðrÞ ¼ e−νr3ðr − 2MÞ
8πp0r3 þ 6M − 2r

dω
dr

: ð46Þ

This solution is continuous and smooth at the neutron star
radius, so we do not need to impose any additional
conditions. Next, we solve the homogeneous part of the
S field equation. However, from an identical calculation as
done in case (1) (imposing regularity and matching the
exterior and interior solutions), we find that the homo-
geneous solutions vanish. Hence, Eq. (46) is the full
solution for S in this case, leading to S ¼ Oð1Þ and
OðcaSÞ ¼ OðcaÞ. So, as in the other cases, we find that
the leading modification to I scales as OðcaÞ.

2. Numerical results

In this section, we solve S and ω numerically to confirm
that the leading modification to the moment of inertia, δI,
scales as OðcaÞ. For the numerical calculation, we use an
adaptive 4th-order Runge-Kutta algorithm and begin solv-
ing near the neutron star center. By imposing regularity at
r ¼ 0, we find the behavior of S and ω near the center:

SðintÞðrÞ ¼ Ar2 þ 2πAr4

5

�
2ρc
3

− 6pc þ
�
pc þ

ρc
3

�
ca

þ 4

�
pc þ

ρc
3

�
ca
cω

�
þOðr5Þ;

ωðintÞðrÞ ¼ Bþ r2
�
8πBðpc þ ρcÞ

5
−
4πcaeνcBðρc þ 3pcÞ

3

�

þOðr4Þ: ð47Þ

where A and B are integration constants. The constants pc,
ρc, and νc are the values of pðrÞ, ρðrÞ, and νðrÞ evaluated at
the center (see Appendix B for more detail). To determine
the integration constants A, B, C, andD, whereC andD are
from the exterior solutions in Eq. (34), one can require that
S and ω are continuous and differentiable at the neutron star
surface. These conditions are imposed via the matchings

SðintÞðR⋆Þ ¼ SðextÞðR⋆Þ; ωðintÞðR⋆Þ ¼ωðextÞðR⋆Þ;
S0ðintÞðR⋆Þ ¼ S0ðextÞðR⋆Þ; ω0ðintÞðR⋆Þ ¼ω0ðextÞðR⋆Þ; ð48Þ

where R⋆ is the neutron star radius.
For the numerical calculation, we employ a slightly

different scheme described in Ref. [16]. We begin
by choosing two sets of arbitrary values for ðA;BÞ in
Eq. (47). For each of these two sets of initial conditions, we
numerically solve the field equations for Eqs. (30) and (31)
from a small radius near the center to the neutron star
surface at R⋆. Then, we evaluate these interior solutions at
the surface and use them as initial conditions for numeri-
cally finding the exterior solutions. After this process, we

have two sets of solutions Zð1Þ
i and Zð2Þ

i , where Zi ≡ ðS;ωÞ.
Since Eqs. (30) and (31) are linear and homogeneous in S
and ω, we can write the general solution Zi as the linear
combination

Zi ¼ A0Zð1Þ
i þ B0Zð2Þ

i ; ð49Þ

where A0 and B0 are new constants. These new constants,
along with C and D from Eq. (34), are determined by
requiring that the solutions Zi match the r ¼ ∞ asymptotic
behavior of S and ω at some large radius rb ≫ R⋆:

SðrbÞ ¼ SðextÞðrbÞ; ωðrbÞ ¼ ωðextÞðrbÞ;
S0ðrbÞ ¼ S0ðextÞðrbÞ; ω0ðrbÞ ¼ ω0ðextÞðrbÞ: ð50Þ

After fixing the integration constants with the above
matching, we have the full solutions for S and ω and
can calculate the moment of inertia using Eq. (35).
Figure 1 shows the relative fractional difference between

Ī in GR and Einstein-aether theory as a function of stellar
compactness, C ¼ M⋆=R⋆, for various combinations of cω
and ca in the cω ≪ ca regime. We used the APR equation
of state (EoS) [42] for the calculations presented here.
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For the results in the left panel, we fixed cω ¼ 10−7 and
numerically calculate Ī for three cases3: ca ¼ 10−1, 10−2,
and 10−3. For a given choice of ðca; cωÞ, the modification to
GR can be represented through the fractional relative
difference, and we find that the latter scales close to
linearly with ca in the left panel. In the right panel, we
fixed ca ¼ 10−2 and calculated Ī for cω ¼ 10−6, 10−7, and
10−8. Unlike the cases in which the value of ca was varied,
changes in the fractional relative difference due to cω have
no effect. In addition to the ca ≪ cω regime, we completed
similar calculations for the ca ∼ cω and ca ≫ cω regimes
and confirm identical scalings to the ones presented in
Fig. 1. These findings confirm that this leading modifica-
tion to I always scales as OðcaÞ, in accordance with the
analytic results in Table I.

V. QUADRUPOLE MOMENT

We next study second-order rotational perturbations of
neutron stars and the spin-induced quadrupole moment.
The quadrupole moment is encoded in the ðt; tÞ component
of the metric at large radius r, which is, in turn, determined
by H0 at this order.

The function H0 is one of three functions that control
the diagonal metric perturbations: fH0; H2; Kg. Together,
their field equations form a closed system. To find these
equations, we use the Oðε2Þ parts of the modified Einstein
equations. We first algebraically solve forH2ðrÞ in terms of
H0ðrÞ from Eϕϕ − Eθθ ¼ 0. We then substitute this equa-
tion for H2ðrÞ into Erθ ¼ 0 and Err ¼ 0 to obtain the
following field equations for H0 and K:

dH0

dr
¼ ξ0 þ ξ1ca þ ξ2cω þOðc2aÞ; ð51Þ

dK
dr

¼ ζ0 þ ζ1ca þ ζ2cω þOðc2aÞ: ð52Þ

Here, we have expanded both equations in small ca,
4 and

have used the abbreviations ξi and ζi in the same way as in
the first-order equations. The unexpanded equations are
given in Appendix B. Note that the cω dependence in both
equations is strictly linear, while ca enters at both linear and
higher orders. The terms ξ0 and ξ2 in Eq. (51), and the terms
ζ0 and ζ2 in Eq. (52) are given by

ξ0 ¼
1

6rðr − 2MÞð4r3πp0 þMÞ
�
12H0M2 þ 32e−νr3

�
ðr − 2MÞ

�
M2

16
þ πp0Mr3

2
þMr

16
þ π22p2

0r
6 −

r2

32

��
dω
dr

�
2

þ 16πr

�
M2

16
þ πp0Mr3

2
−
Mr
16

þ π2p2
0r

6 þ r2

32

�
ðp0 þ ρ0Þω2

�
− 144Mr

�
πp0H0r2 þ

πρ0H0r2

3
þ K

6
−
H0

12

�

− 192r2
�
π2p2

0H0r4 −
πðp0 þ ρ0ÞH0r2

8
−

K
16

þH0

16

��
;

FIG. 1. The normalized relative difference between Ī, defined in Eq. (36), in GR and Einstein-aether theory in region I (ĪGR and ĪÆ,
respectively). We either fix cω and vary ca (left) or fix ca and vary cω (right). Values for ca chosen here are beyond the current constraint
and are used only for demonstration purposes. These plots show that the correction to Ī is independent of cω while it scales linearly
with ca.

3Although these values are larger than the constraint on ca, they are enough to demonstrate the scaling of the modification.
4To ensure that Eqs. (51) and (52) are correct regardless of the size of cω, we repeated the same check done at first order, described in

and confirm that the series give the correct leading order and next-to-leading order expressions.
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ξ2 ¼
16eν

12πp0r5 þ 3Mr2

��
M2

16
þ πp0Mr3

2
−
Mr
16

þ π2p2
0r

6 þ r2

32

��
dS
dr

�
2

þ
�
πp0r3 þ

r
4
−
M
4

�
S
2

dS
dr

þ S2

8

�
;

ζ0 ¼
1

24πp0r4 þ 6Mr

�
−8e−νr3

�
ðr − 2MÞ

�
πp0r3 þ

r
8
þM

4

��
dω
dr

�
2

þ 16πrðp0 þ ρ0Þ
�
πp0r3 −

r
8
þM

4

�
ω2

�

þ 24πp0H0r3 − 12H0M þ 24r

�
πρ0H0r2 þ

K
2
−
H0

2

��
;

ζ2 ¼
8eν

24πp0r5 þ 6Mr2

�
ðr − 2MÞ

�
πp0r3 −

r
8
þM

4

��
dS
dr

�
2

− ðr − 2MÞ S
2

dS
dr

−
S2

2

�
: ð53Þ

We forego presenting the expressions for ξ1 and ζ1 as they
are lengthy and their exact forms are unimportant for our
analysis of the quadrupole moment. Note that ξ2 and ζ2, the
terms that control the cω dependence in Eqs. (51) and (52),
are both quadratic in S and S0. We also note that the
expressions for ξ0 and ζ0 correspond to the GR parts of H0

0

and K0 [22].
With the field equations in hand, we can now derive the

quadrupole moment from the asymptotic behavior ofH0 far
away from the star. As done at first order in Eq. (34), we
solve Eqs. (51) and (52) for the exterior behavior ofH0 and
K by using a power-series Ansätz that is regular at r ¼ ∞.
We find

HðextÞ
0 ðrÞ ¼ F

r3
þ 1

r4

�ððcω − 4ÞC2 − 6CD − 3D2Þca
6

þ cωC2

3
þ 3FM⋆ −D2

�
þO

�
1

r5

�
;

KðextÞðrÞ ¼ F
r3

þ 1

r4

��ðcω − 4ÞC2

6
− CDþ FM⋆

4

�
ca

−
caD2

2
þ cωC2

4
þ 5FM⋆

2
−
D2

4

�
þO

�
1

r5

�
;

ð54Þ

where F is an integration constant and C and D are the
integration constants that arise from the solutions to the
first-order analysis in Eq. (34). The quadrupole moment Q
is the coefficient of the P2ðcos θÞ=r3 term in the Newtonian
potential [43], which in our case is

Q ¼ −
F
2
: ð55Þ

As with the moment of inertia, it is convenient to define the
dimensionless quadrupole moment

Q̄ ¼ −
QM⋆

ðΩ⋆IÞ2
; ð56Þ

where I is the moment of inertia.

A. Analytic scaling

As was done with the moment of inertia, we can first
study how H0, or Eq. (51), depends on ca and cω before
explicitly calculating Q using Eq. (55). Understanding the
coupling constant dependence of H0 will then allow us to
estimate that of Q. Similar to the moment of inertia case,
the leading modifications are either of OðcaÞ coming from
ξ0 (due to modifications of the background functions) and
ξ1, or of OðcωS2Þ arising from ξ2. The latter type of
modification comes from the fact that ξ2 is quadratic in S
and S0. Additional modifications could come from K, since
it couples to H0 starting with the ξ0 term. However, the
leading modifications to K are also either OðcaÞ or
OðcωS2Þ, since the field equation for K has the same
coupling-constant dependence and form as H0, as seen in
Eqs. (51)–(53).
We now argue that the leading-order modification toQ is

at most OðcaÞ. To do so, we consider separately case
(1) cω ≫ ca, case (2) cω ∼ ca, and case (3) cω ≪ ca and
assume ca ≪ 1 in each. Since the leading modification is
either OðcaÞ or OðcωS2Þ, we just need to find the leading
modification to S in each case. To this end, we use the
behavior for S found in the previous section, which is
presented in Table I. The results for the quadrupole moment
are summarized in Table II.

B. Numerical results

We now present numerical calculations of Q to show
explicitly that δQ indeed scales as OðcaÞ, confirming our
analytic scaling arguments. To do this, we numerically
solve Eqs. (51) and (52) in a similar fashion as done for the
first order functions. We begin by finding the behavior of
H0 and K near the center:

TABLE II. Leading contribution to S and the leading modifi-
cation to moment of inertia δQ. For δQ, we choose the
modification that is larger between OðcaÞ and OðcaS2Þ.

cω ≫ ca cω ∼ ca cω ≪ ca

S Oðca=cωÞ Oð1Þ Oð1Þ
δQ OðcaÞ OðcaÞ OðcaÞ
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HðintÞ
0 ¼

�
4cωeνcA2

3
þG

�
r2 þOðr4Þ;

KðintÞ ¼ Gr2 þOðr4Þ: ð57Þ

Here, G is an integration constant (not to be confused with
a gravitational coupling constant) and A is the constant
that arises from the first-order solution in our analysis
of Eq. (47).
Now, since Eqs. (51) and (52) both have homogeneous

terms and source terms, we can write their general solutions
as the sum of a particular solution and an undetermined
constant times a homogeneous solution:

Zi ¼ Zpart;i þ C0Zhom;i; ð58Þ

where Zi ≡ ðH0; KÞ here. We first find a particular solution
by choosing an arbitrary value for G in Eq. (57) and
numerically solving in the interior. With the interior
solution as initial data, we then numerically solve from
the star surface outward to find the exterior solution. For the
homogeneous solution, we choose an arbitrary test value
for G and follow the same procedure. To complete our
solution for Zi, we must impose boundary conditions and
find C0 and F, the exterior integration constant from
Eq. (54). As in the moment of inertia case, we require
that our solutions Zi match the asymptotic exterior behav-
ior, Eq. (54), at a large radius rb ≫ R⋆:

H0ðrbÞ ¼ HðextÞ
0 ðrbÞ; KðrbÞ ¼ KðextÞðrbÞ: ð59Þ

After imposing the above boundary conditions, we have a
solution for F and can now calculate the quadrupole
moment using Eq. (55).
Figure 2 shows the relative fractional difference between

Q̄ in GR and Einstein-aether theory as a function of
compactness for various combinations of cω and ca in

the cω ≪ ca regime. We investigate the relative fractional
difference when cω is fixed and ca is varied. As in the
numerical results for Ī, we use the APR EoS for the
numerical calculations presented here. We find the same
scaling behavior as in the moment of inertia case, namely,
the curves scale about linearly with ca. In addition to the
results presented in Fig. 2, we confirm that δQ̄ is inde-
pendent of cω and these scalings hold for the ca ∼ cω and
ca ≫ cω regimes. These findings confirm that the leading
modification to Q always scales as OðcaÞ, in accordance
with the analytic results of Table II.

VI. TIDAL LOVE NUMBER

We finish our study of the I-Love-Q trio with the tidal
Love number. Like the quadrupole moment, the Love
number is derived from the behavior of H0. However,
unlike the quadrupole moment, the Love number is
determined from the asymptotic behavior in a region called
the buffer zone. This zone is characterized by the neutron
star radius and the source of the tidal perturbation (the
companion); namely, it is the radial region defined by
R⋆ ≪ r ≪ R, where R⋆ is the neutron star radius andR is
the curvature radius of the source causing the tidal
perturbation. Another difference is that the leading-order
tidal perturbation enters at Oðε2Þ. This means that we can
ignore OðεÞ contributions to the metric and aether in the
tidal case.
To find the field equations for H0 and K in the tidal case,

we can use the equations found for spin perturbations,
Eqs. (51) and (52), but with the OðεÞ contributions set to
zero, i.e., setting S ¼ ω ¼ 0. We then have a homogeneous
system for H0

0 and K0, which we can further decouple to
obtain separate equations for H00

0 and K00. Since the Love
number is derived from H0, we just focus on the H00

0

equation, given by

d2H0

dr2
¼ φ0 þ φ1ca þOðc2aÞ: ð60Þ

We leave the expressions for φ0 and φ1 to Appendix B.
Notice that, unlike in the rotation case, H0 now obeys a
homogeneous equation and is completely independent of
cω. This is expected since cω always couples to S in that
case, and we have set S ¼ 0 here. Hence, the leading-order
modification to H0, and thus the tidal Love number, is at
most OðcaÞ.
To determine the scaling of the leading modification, we

next define the Love number and calculate it using
numerical methods. First, we find the behavior of H0 in
the buffer zone, which is done by using a power series
Ansätz for Eq. (60) in the exterior. Unlike the case for
rotational perturbation, we do not require that the growing
modes vanish since we expand only at r ≫ R⋆ and not
r ¼ ∞. The behavior of H0 in the buffer zone is then
given by

FIG. 2. Similar to the left panel of Fig. 1 but for the normalized
quadrupole moment Q̄. The correction to Q̄ scales linearly
with ca.
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HðbufÞ
0 ¼ C̃

�
r2− 2M⋆r−

caM3
⋆

6r
−
caM4

⋆

3r2

�
þ D̃
r3
þO

�
1

r4

�
;

ð61Þ

where C̃ and D̃ are integration constants. The tidal
Love number is then extracted from the buffer zone
behavior of the Newtonian potential. The latter can be
written as [22,44]

1 − gtt
2

¼ O
�
r3

R3

�
þ 1

3
EðtidÞP2ðcos θÞr2 þ…

−
P2ðcos θÞ

r3
QðtidÞ þO

�
R4
⋆

r4

�
; ð62Þ

where the coefficients EðtidÞ and QðtidÞ are the tidal potential
and tidally induced quadrupole moment, respectively.
We have only included l ¼ 2 modes in Eq. (62), as is
appropriate for the tidal perturbations we consider. The
tidal Love number (more commonly called the tidal
deformability in the context of gravitational waves) is then
defined as the ratio

λ≡ −
QðtidÞ

EðtidÞ : ð63Þ

Using Eqs. (23) and (61), we find that the Love number in
our case is

λ ¼ 1

3

D̃

C̃
−
caM5

⋆

80

�
ca −

176

9

�
: ð64Þ

We note that the second terms in Eq. (64) come from the

multiplication of eν and HðbufÞ
0 [Eqs. (61) and (B4)] in gtt.

As usual, there is also a dimensionless Love number,
defined by

λ̄ ¼ λ

M5
⋆
: ð65Þ

We now present explicit calculations for the Love
number. To do so, we solve Eq. (60) numerically by
following a similar procedure as outlined for the cases at
first and second order in spin. We first need the interior
behavior of H0, which we can find from Eq. (57) in the
second-order spin case. As noted previously, we can map
the second-order-spin case to the first-order-tidal case by
setting quantities related to S and ω to zero. In Eq. (57), this
mapping is achieved by setting A, the integration constant
from SðintÞ, to zero. We thus find the interior behavior for
H0 in the tidal case to be

HðintÞ
0 ¼ G̃r2 þOðr4Þ; ð66Þ

where we have renamed the integration constant from G to
G̃ to distinguish it from that used in the spin case.
One may be worried that we have three integration

constants in our setup, fC̃; D̃; G̃g, but only two boundary
conditions from matching,

HðintÞ
0 ðR⋆Þ ¼ HðbufÞ

0 ðR⋆Þ;
HðintÞ

0 0ðR⋆Þ ¼ HðbufÞ
0 0ðR⋆Þ: ð67Þ

However, this is not a problem if we are only interested in
calculating λ. To see why, we first note that since Eq. (60) is

homogeneous, HðintÞ
0 in Eq. (66) is proportional to G̃. This

means that changing G̃ will only change the interior
solution by an overall factor, and hence C̃ and D̃, obtained
from solving Eq. (67), will both have the same prefactor of
G̃. Since λ only depends on the ratio D̃=C̃ in Eq. (63), the
factors of G̃ will cancel, and G̃ will have no effect on λ.
We are now ready to solve Eq. (60). As in the previous

cases, we begin by numerically solving in the interior with
initial conditions near the center, given by Eq. (66).
Following the previous discussion, we choose an arbitrary
value of G̃. We then evaluate the interior solution at R⋆, the
surface, and use the boundary conditions in Eq. (67) to
solve for C̃ and D̃. With solutions for C̃ and D̃ in hand, we
then use Eq. (63) to calculate the Love number. Figure 3
shows the relative fractional difference between λ̄ in GR
and Einstein-aether theory for several values of ca. As
expected, the modification to λ̄ scales as OðcaÞ and is
independent of cω as this coupling constant does not enter
the tidal field equation for H0.
Figure 4 shows the I-Love and Q-Love relations in GR

and Einstein-aether theory for ðcω; caÞ ¼ ð10−5; 10−5Þ and
ðcω; caÞ ¼ ð10−7; 10−1Þ. For both of these parameter
choices, the Einstein-aether I-Love relation has no dis-
cernible difference from the one in GR. Although the
Q-Love relation for ðcω; caÞ ¼ ð10−5; 10−5Þ is also similar to

FIG. 3. Similar to the left panel of Fig. 1 but for the normalized
tidal deformability λ̄. The tidal deformability is independent of cω
in region I, and the modification scales as OðcaÞ.
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GR, the Q-Love relation for ðcω; caÞ ¼ ð10−7; 10−1Þ notice-
ably deviates from GR. This aligns with the observation that
Q̄ has larger deviations fromGR than Ī, which can be seen by
comparing Fig. 1 and 2.
Although the tidal Love number closely follows its

behavior in GR, it is still possible that tidally deformed
neutron stars have noticeable deviations in Einstein-aether
theory. Such deviations could come from the off-diagonal
perturbations fH1; V;Wg, which are not relevant for the
I-Love-Q quantities but which may be used to define non-
GR Love numbers as done in khronometric gravity [30].
We briefly investigate these perturbations in Appendix D.

VII. CONCLUSION AND DISCUSSION

We have derived the I-Love-Q quantities in Einstein-
aether theory. Although the parameter cω appears in the field
equations relevant to the moment of inertia and quadrupole
moment, we find these contributions are at most OðcaÞ ≈
Oð10−5Þ in region I. Similarly, we find that the Love number
has no dependence on cω. Hence, it would be difficult to use
the I-Love-Q relations in Einstein-aether theory to constrain
cω. However, since the deviations from GR are small or
vanishing, this means that the relations remain universal in
Einstein-aether theory. Additionally, combining with the
results found in khronometric gravity [30], our findings
may give further indications that the I-Love-Q relations are
also insensitive to Lorentz-violating effects.
To obtain these results, we began by perturbatively

constructing slowly rotating and weakly tidally deformed
neutron stars in Einstein-aether theory via Ansätze for the
metric and aether fields. From there, we derived the neutron
star field equations and studied their solutions in both the
rotating and tidal cases. We focused on the parameter space
denoted as region I. At first order in rotation, we found that
the perturbation functions depended on both cω and ca, but

that the dependence on cω was controlled solely by the
first-order perturbation function SðrÞ, which originates
from the ϕ-component of the aether. Through an analysis
of the SðrÞ field equation, we showed that the modifications
to the GR moment of inertia due to cω are at mostOðcaÞ for
any size of cω. Similarly, at second order in rotation, we
found that the cω dependence in the field equations was
proportional to SðrÞ or S0ðrÞ, and that, again, the mod-
ifications to the quadrupole moment were at mostOðcaÞ for
any size of cω. At first order in tidal deformations, we found
that the cω dependence drops out due to SðrÞ vanishing in
this case. To confirm these analyses, we numerically solved
the neutron star field equations and found that the dominant
modification and scaling for all three I-Love-Q quantities
was OðcaÞ in region I. In region II, we found that field
equations relevant to I-Love-Q are independent of the
coupling constants and hence reduce to GR exactly.
Reference [21] argued that the remaining viable param-

eter space of Einstein-aether theory (regions I and II) admit
weak-field solutions in which the coupling constants cω
and cθ are large but have a small effect on the gravitational
dynamics. The authors also found that Einstein-aether
rotating black holes in regions I and II display similar
behavior in which cω and cθ can be large, but the twist and
expansion of the aether field remain small enough to make
deviations from GR of OðcaÞ. Our results lead to similar
conclusions for slowly rotating and weakly tidally
deformed neutron stars, where cω may be large, but its
effects on gravity are highly suppressed due to the relevant
part of the twist, SðrÞ (see Appendix C), being small.
There are several ways in which this work may be

extended. In our study, we only considered time-independent
perturbations. One possibly interesting route for future work
would be to introduce time-dependent perturbations for
modeling stellar oscillation frequencies. In this case, it is
possible that cω could enter other components of the field

FIG. 4. The I-Love (left) and Q-Love (right) relations in GR and Einstein-aether theory (using the normalized I-Love-Q quantities).
The Q-Love relation is very close to GR for ðcω; caÞ ¼ ð10−5; 10−5Þ, while the ðcω; caÞ ¼ ð10−1; 10−7Þ relation illustrates how Einstein-
aether theory could deviate noticeably from GR. This value for ca is larger than the current constraint, however. On the other hand, the
I-Love relation is close to GR for both parameter choices.
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equations and affect observables like the fundamental-
mode frequency that is known to have universal relations
with the Love number in GR [45]. Another avenue is to
remove the ambiguity in the definition of the Love number
that is known to exist with the method adopted in this paper

[46,47]. In particular, the growing mode inHðbufÞ
0 in Eq. (61)

does not terminate at a finite order, which indicates that the
way we separate growing and decaying modes is not unique
unless we provide a prescription. For example, one can
compute the Love number for black holes in Einstein-aether
theory and use that as a reference to remove the ambiguity as
proposed in GR [46], or one may use the wave scattering
technique to determine the Love number in a unique
way [48].
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APPENDIX A: I-LOVE-Q IN REGION II

In this appendix, we focus on the I-Love-Q quantities in
region II, which is characterized by the coupling constants
cθ and cω [Eq. (16)]. We find that cθ does not enter any of
the relevant equations for the I-Love-Q trio while cω enters
the equations for the quadrupole moment. Despite this
latter point, we find that the I-Love-Q relations in region II
are identical to those in GR. To show this, we follow the
same procedure as outlined in the main text.
Let us first study the background equations. Using

the Oðε0Þ parts of the modified Einstein equations and

the conservation of stress-energy,∇μTðmatÞ
μν ¼ 0, we find the

TOV equations to be identical to the GR ones [22]. Hence,
neither of the coupling constants enter into the background
quantities, and thus these quantities will not provide any
modifications to the I-Love-Q trio, unlike in region I.
Next, we look at first order in spin. From the components

Etϕ ¼ 0 and Æϕ ¼ 0, we find the following uncoupled
field equations for S and ω:

d2S
dr2

¼ γ0; ðA1Þ

d2ω
dr2

¼ β0; ðA2Þ

where γ0 and β0 are the same functions defined earlier in
Eqs. (32) and (33). As with the background quantities, we
find that S and ω are unaffected by the coupling constants,
and hence the moment of inertia is the same as in GR.
Further, we can show that S vanishes by following the
argument given in case (1) in Sec. IV B 1. Namely, we can
use the fact that Eq. (A1) is homogeneous and then impose
boundary conditions to find that S ¼ 0.
We next find the Oðε2Þ equations for H0 and K. We find

dH0

dr
¼ ξ0 þ ξ2cω;

dK
dr

¼ ζ0 þ ζ2cω; ðA3Þ

where the ξi and ζi are the same functions as defined
previously in Eq. (53) (for tidally deformed neutron stars,
we set ω ¼ 0 and S ¼ 0). However, as noted previously, ξ2
and ζ2 are proportional to S and S0, meaning that ξ2 ¼
ζ2 ¼ 0 per our finding that S ¼ 0 in region II. It then
follows that H0 and K are independent of the coupling
constants. In turn, this means that the quadrupole moment
and tidal Love number are also independent of the coupling
constants and hence are the same as in GR.

APPENDIX B: NEUTRON STAR
FIELD EQUATIONS

In this section, we present the full, unexpanded neutron
star field equations relevant to the moment of inertia,
quadrupole moment, and tidal Love number in region I.
We also study the interior and exterior behavior of the
background functions.

1. Background

We first look at the modified TOV equations for the
background quantities p, ν, andM. They are obtained from
the Oðε0Þ parts of the Eθθ, Err, and Ett components of the
modified Einstein equations as well as the ∇μTμr compo-
nent of the stress-energy conservation equation. We find

dM
dr

¼−2ðca− 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r− 2M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðca − 2ÞMþ 4πp0car3þ r

p
−8πp0car3ð2ca− 1Þþ ð6ca − c2a − 8ÞM− 8πρ0car3− 2rðca − 2Þ
ðca − 2Þcar

;

dν
dr

¼ −4
ðr− 2MÞcar

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r− 2M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðca − 2ÞMþ 4πp0car3þ r

q
þ 2M− r

o
;

dp0

dr
¼ 2

ðr− 2MÞcar
�h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r− 2M
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðca − 2ÞMþ 4πp0car3þ r
q

þ 2M− r
i
ðp0þ ρ0Þ

�
; ðB1Þ
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and ρ0ðrÞ is found from the equation of state. Expanding
these equations in small ca gives the series in Eq. (28). We
next find the interior and exterior behaviors of the back-
ground quantities. These behaviors are used when deriving
the appropriate interior and exterior behaviors for the OðεÞ
and Oðε2Þ functions (i.e., SðintÞ, SðextÞ, HðintÞ

0 , etc.). For the
interior, we have

MðintÞðrÞ ¼ 4πð3capc þ 2ρcÞ
3ðca − 2Þ r3 þOðr5Þ;

νðintÞðrÞ ¼ νc −
8πðρc þ 3pcÞ
3ðca − 2Þ r2 þOðr4Þ;

pðintÞ
0 ðrÞ ¼ pc þ

4πðρ2c þ 4ρcpc þ 3p2
cÞ

3ðca − 2Þ r2 þOðr4Þ;

ρðintÞ0 ðrÞ ¼ ρc þ ρ2r2 þOðr4Þ: ðB2Þ

The constants νc, pc, and ρc are the respective function
evaluated at the neutron star center, r ¼ 0, while the
constant ρ2 can be expressed in terms of pc and ρc by

using the pðintÞ
0 equation and the neutron star EoS.

When solving the modified TOVequation in the interior,
we specify the central pressure ρc by hand and then use it
with the EoS to find pc. The value for νc is determined by
boundary conditions. Next, the exterior behaviors are found
to be

MðextÞðrÞ ¼ M⋆ þ caM2
⋆

4r
þ caM3

⋆

4r2

þ caM4
⋆

3r3
þ caðca þ 48ÞM5

⋆

96r4
þO

�
1

r5

�
; ðB3Þ

eν
ðextÞðrÞ ¼ 1 −

2M⋆

r
−
caM3

⋆

6r3
−
caM4

⋆

3r4

−
�
3c2a
80

þ 3ca
5

�
M5

⋆

r5
þO

�
1

r6

�
; ðB4Þ

whereM⋆ ≡MðrÞjr¼∞ ¼ GNMobs is the neutron star mass
observed by a Keplerian experiment. In Eq. (B4), we have
used the fact that ν0 is shift-invariant to fix the constant term
to unity. Eqs. (B3) and (B4) also describe the respective
buffer zone behaviors of MðrÞ and νðrÞ.
As done with the higher-order functions, we numeri-

cally solve the background quantities by beginning with
the initial conditions in Eq. (B2) and solving Eq. (B1)
outward. For the functions that are non-vanishing in the
exterior, M and ν, we then use the interior solutions
evaluated at the star surface as initial conditions for
solving Eq. (B1) in the exterior. At a large radius we
match these numerical solutions to Eqs. (B3) and (B4) to
find M⋆ and νc.

2. First order in rotation

Next, we present the full OðεÞ equations. From the
Einstein-aether field equations Etϕ ¼ 0 and Æϕ ¼ 0, we
find

d2S
dr2

¼ 1

a0

�
a1

dS
dr

þ a1Sþ a3
dω
dr

�
; ðB5Þ

where

a0¼ cωcaðca−2Þðr−2MÞr2;

a1¼ 2cωr

�
2rðca−2Þ−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−2M

p
ðca−2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca−2Þþ4r3πp0caþ r

q
−4πcar3½ρ0þp0ð2ca−1Þ�þð−c2a−2caþ8ÞM

�
;

a2¼ 8ðca−2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r−2M
p

ðcaþ4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca−2Þþ4r3πp0caþ r

q
−8r3πp0caþ8Mþ

�
cω
4
−1

�
rca−4r

�
;

a3¼ 4

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−2M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca−2Þþ4r3πp0caþ r

q
þ r−2M

�
e−νðca−2Þcar3; ðB6Þ

and

d2ω
dr2

¼ 1

b0

�
b1

dω
dr

þ b2ωþ b3
dS
dr

þ b4S
�
; ðB7Þ

with
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b0 ¼ ðr − 2MÞr3caðca − 2Þ;

b1 ¼ 4r2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r − 2M
p

ðca − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca − 2Þ þ 4r3πp0ca þ r

q
− 4πca

�
ca −

1

2

�
r3p0 þ

�
3

2
c2a − ca − 4

�
M

− rð2πρ0car2 þ c2a − ca − 2Þ
�
;

b2 ¼ 16caπr4ðp0 þ ρ0Þðca − 2Þ;
b3 ¼ 4caeνðca − 2Þð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca − 2Þ þ 4r3πp0ca þ r

q
þ r − 2MÞ;

b4 ¼ 16c2aπðρ0 þ 3p0Þeνr2: ðB8Þ

3. Second order in rotation

For the quadrupole moment, we consider theOðε2Þ diagonal perturbation functionsH0,H2, andK. From Eθθ − Eϕϕ ¼ 0,
we first find an algebraic equation for H2:

H2ðrÞ ¼
1

3r2ðca − 2Þ
�
ð2 − caÞe−νr5

�
ðr − 2MÞ

�
dω
dr

�
2

þ rω2πðp0 þ ρ0Þ
�
− reνcωðca − 2Þðr − 2MÞ

�
dS
dr

�
2

− 4eνðca − 2ÞSðr − 2MÞ
� ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð−4þ 2caÞM þ 8r3πp0ca þ 2r
r − 2M

r
− 2

�
dS
dr

þ 16r2
�
S2πcaðρ0 þ 3p0Þeν

þ 3H0ðca − 2Þ
16

��
: ðB9Þ

From Err ¼ 0 and Erθ ¼ 0, we find H0 and K equations given by

dK
dr

¼ 1

3car3

�
−3

ffiffiffi
2

p �
2eνS2ca

3
þ r2ðca − 1ÞH0 − r2H2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−4þ 2caÞM þ 8r3πp0ca þ 2r

r − 2M

r
þ 3car3

�
dH0

dr

�

− 2eνS
�
dS
dr

�
cωrca þ 4eνS2ca þ 3r2ðca − 2ÞðH0 þH2Þ

�
; ðB10Þ

dH0

dr
¼ 1

6car3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca − 2Þ þ 4r3πp0ca þ r

p
�
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p �
2Scar3

3

dω
dr

þ r3
�
dK
dr

�
−
2eνS2ðca þ 4Þ

3

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca − 2Þ þ 4r3πp0ca þ r

q
−
�
ð2M − rÞ

�
dω
dr

�
2

þ 16πrω2ðp0 þ ρ0Þ
�
r6cae−ν − 8r3caSðr − 2MÞ

�
dω
dr

�

þ 6ðca − 2Þr3ðr − 2MÞ
�
dK
dr

�
− eνcacωr2ðr − 2MÞ

�
dS
dr

�
2

þ 64S2eν
�
−M þ r3πp0ca þ

r
2
þ
�
−
cω
16

þ 1

8

�
car

�

− 24r3
�
πr2ðH0 þ 2H2Þp0 þ r2πH0ρ0 −

3H0

4
þH2

4
þ K

2

�
ca

�
: ðB11Þ

To obtain the unexpanded H0 and K equations from which
Eqs. (51) and (52) are derived, one just needs to substitute
Eq. (B9) into Eqs. (B10) and (B11) and disentangle K0 and
H0

0 with some algebra.

4. First order in tidal deformation

First-order tidal deformations enter atOðε2Þ. This means
that we may use the second-order rotation equations of the

previous subsection but with all OðεÞ quantities, namely S
and ω, set to zero. It is also convenient to decouple the K0
and H0

0 and just consider the resulting equation for H00
0.

Decoupling Eqs. (B10) and (B11) and substitutingH2 from
Eq. (B9), we find

d2H0

dr2
¼ 1

c0

�
c1

dH0

dr
þ c2H0

�
; ðB12Þ
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where

c0 ¼ −r2ðr − 2MÞc2aðca − 2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðca − 2Þ þ 4r3πp0ca þ r
q

ððca − 4ÞM þ 4r3πp0ca þ 2rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p

−
r − 2M

2

��
ca
4
−
1

2

�
M þ r3πp0ca þ

r
4

��
;

c1 ¼ 64rc2a

��
−
ca
8
þ 1

4

�
M þ r

�
πcar2 −

πp0r2

2
þ πρ0r2

2
þ ca

8
−
1

4

���
−2ðr − 2MÞ

��
ca
4
−
1

2

�
M þ r3πp0ca þ

r
4

�

þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca − 2Þ þ 4r3πp0ca þ r

q
ððca − 4ÞM þ 4r3πp0ca þ 2rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p �
;

c2 ¼ 128
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p �ðc2a − 16ca þ 32Þðca − 2Þ2M2

16
−
πc3ar4ðr − 2MÞ

32

dρ0
dr

þ rM
2

�
πp0car2

�
c3a −

105

8
c2a þ

81

2
ca − 32

�

−
5

8

�
πρ0c2ar2 þ

3ðca − 8Þðca − 8
3
Þðca − 2Þ

20

�
ðca − 4Þ

�
þ r2

�
π2c2ar4

�
c2a −

25

4
ca þ 4

�
p2
0 −

5r2caπp0

4

�
πρ0c2ar2

þ 3

20
c3a −

19

10
c2a þ

73

10
ca −

32

5

�
− 2ca −

3c3a
32

þ 11c2a
16

−
5πρ0c2ar2

8
þ 2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca − 2Þ þ 4r3πp0ca þ r

q

þ 16ðr − 2MÞ
��

ca
4
−
1

2

�
M þ r3πp0ca þ

r
4

��
r4πc3a

�
dρ0
dr

�
− 8ðca − 4Þðca − 2Þ2M

− 32r

�
r2πp0ca

�
c2a −

41

8
ca þ 4

�
− 2ca −

3c3a
32

þ 11c2a
16

−
5πρ0c2ar2

8
þ 2

��
: ðB13Þ

The term dρ0=dr is calculated by using the solution for p0ðrÞ and an EoS. With Eq. (B12) in hand, we can now find its
expansion in small ca. This gives the following expressions for φ0 and φ1 in Eq. (60):

φ0 ¼
1

r2ð4r3πp0 þMÞðr − 2MÞ2
�
−16

�
r3πp0 − πr3ρ0 þ

1

2
r −

1

2
M

��
r3πp0 þ

M
4

�
rðr − 2MÞ

�
dH0

dr

�

þ 64H0

�
r4πðr − 2MÞ2

16

dρ0
dr

þ ð4r3πp0 þMÞ
�
M2

16
þ 13r3πp0M

8
þ 5πr3ρ0M

8
−
3rM
16

þ r2
�
π2p2

0r
4 −

9

16
πp0r2

−
5

16
πρ0r2 þ

3

32

����
;

φ1 ¼ −24πr4
�
p0 þ

ρ0
3

��
r3πp0 þ

M
4

�
ðr − 2MÞ2

�
dH0

dr

�
þ 512H0

�
−
r4πðr − 2MÞ2

128

�
r3πp0 þ

1

2
r −

3

4
M

�
dρ0
dr

þ
�
−
M3

64
þ
�
1

2
r3πp0 þ

5

16
πr3ρ0 þ

1

64
r

�
M2 þ r4πM

4

�
πp2

0r
2 −

7

4
p0 −

5

4
ρ0

�

þ r5π

�
r4π2p3

0 þ
1

4
πp2

0r
2 þ 9

64
p0 þ

5

64
ρ0

��
×

�
r3πp0 þ

M
4

��
: ðB14Þ

APPENDIX C: KHRONOMETRIC
GRAVITY LIMIT

Khronometric gravity is another vector-tensor gravity
theory that can be thought of as Einstein-aether theory with
the additional restriction, at the level of the action, that the
aether is hypersurface orthogonal [12]. Even after varying
the action, khronometric gravity can be reached from
Einstein-aether theory by taking a certain limit in the
Einstein-aether coupling constants [49]. In this appendix,

we check our region I neutron star field equations by taking
this limit and comparing them with the known field
equations in khronometric gravity [30]. To be more
specific, we first take the limit cω → ∞ (holding everything
else constant) in the aether equations, Eq. (13), and impose
appropriate boundary conditions to obtain a set of con-
straints. To maintain regular solutions, taking this limit is
equivalent to setting terms proportional to cω to zero.
Let us first return to the modified Einstein equations.

To obtain Eq. (9) from the action in Eq. (1), Uμ was kept

I-LOVE-Q RELATIONS IN EINSTEIN-AETHER THEORY PHYS. REV. D 109, 024054 (2024)

024054-17



constant while varying with respect to the metric. To
successfully take the khronometric gravity limit, however,
it is necessary to use the modified Einstein equations where
Uμ was kept constant during variation [50]. This leads to an
additional term in Eq. (9):

Eμν − 2ÆðμUνÞ ¼ 0: ðC1Þ

With this in mind, we next substitute the constraints
obtained from the aether equations into Eq. (C1) and then
take cω → ∞. The field equations one obtains from this
limit are the khronometric gravity field equations.
We next discuss the constraint equation from the aether

equations. At first order in spin, we take the cω → ∞ limit
in Æϕ ¼ 0, which gives

d2S
dr2

¼ 1

rðca − 2Þcað2M − rÞ
�
4ðca − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðca − 2Þ þ 4r3πp0ca þ r

q �
dS
dr

�

þ
�
16πp0car3

�
ca −

1

2

�
þ ð2c2a þ 4ca − 16ÞM þ 8r3πρ0ca − 4ðca − 2Þr

�
dS
dr

− 2caðca − 2ÞS
�
: ðC2Þ

As we show below, the relevant solution is S ¼ 0 (i.e. the
one in khronometric gravity) by imposing appropriate
boundary conditions for neutron stars.5 To do so while
keeping our analysis analytically tractable, we work in the
post-Minkowskian (weak-field) approximation and con-
sider the exterior and interior regions of neutron stars
separately. We impose asymptotic flatness and regularity at
the center in the exterior and interior, respectively, and then
match the solutions at the surface order by order.
Now, we shall describe the details of this analysis

and show that S vanishes by induction. To carry this
out, we expand the field in orders of stellar compactness
C ¼ M⋆=R⋆, where M⋆ is the stellar mass and R⋆ is the
stellar radius. This gives the expansion

S ¼
X
i¼0

siðrÞC0i: ðC3Þ

Here, C0 is a book-keeping parameter that denotes order of
compactness. We note that the background fields enter at
the following orders of compactness:

MðrÞ ¼ OðC0Þ; νðrÞ ¼ OðC0Þ; p0 ¼ OðC02Þ: ðC4Þ

Let us first study the leading order. Using the above
Ansätz, we find that the field equation atOðC00Þ for both the
interior and exterior is given by

s000 ¼
2s0
r

; ðC5Þ

which yields the general solution

s0ðrÞ ¼
A0

r
þ B0r2; ðC6Þ

for some integration constants A0 and B0. Imposing
regularity at the center for the interior and asymptotic
flatness in the exterior yields the solution

sðintÞ0 ðrÞ ¼ B0r2; sðextÞ0 ðrÞ ¼ A0

r
: ðC7Þ

We also impose that this function is continuous and
smooth, giving the conditions

sðintÞ0 ðR⋆Þ ¼ sðextÞ0 ðR⋆Þ; s0ðintÞ0 ðR⋆Þ ¼ s0ðextÞ0 ðR⋆Þ; ðC8Þ

yielding A0 ¼ B0 ¼ 0.
We will now carry out a proof by induction to conclude

that S vanishes in the khronometric limit. Above, we
showed the base case of i ¼ 0, so now we assume that
this holds for i ≤ n − 1. Then, at OðC0nÞ we find the
solutions and boundary conditions

sðintÞn ðrÞ ¼ Bnr2; sðextÞn ðrÞ ¼ An

r
: ðC9Þ

sðintÞn ðR⋆Þ ¼ sðextÞn ðR⋆Þ; s0ðintÞn ðR⋆Þ ¼ s0ðextÞn ðR⋆Þ: ðC10Þ

Upon imposing the boundary conditions, we find
Bn ¼ An ¼ 0. Therefore, S ¼ 0 by induction. We note that
no equation of state was needed since the matter terms
couple to lower orders of si in the field equations at each
order. Thus, each order was described by a homogeneous
equation whose only solution is si ¼ 0. This proves that the
relevant solution for us is S ¼ 0.
We note that the condition S ¼ 0 comes from the extra

constraint in khronometric gravity that the aether must be
hypersurface orthogonal, which is equivalent to requiring
that the twist, defined in Eq. (5), vanishes [49]. Using our
aether and metric forms defined in Eqs. (22) and (23)
[which were also used for khronometric gravity in [30] up
to the redefinition ofW in Eq. (20)], the twist up toOðε2Þ is
linear in either S or W, meaning that vanishing twist is

5This is similar to the example of the rotating black hole in
[49], where the correct khronometric limit was recovered only
after imposing the correct boundary condition (asymptotic flat-
ness).
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equivalent to S ¼ 0 andW ¼ 0. By simply setting S ¼ 0 in
Eqs. (B7), (B9), (B10), and (B11), we recover the correct
equations for ω, H2, K, and H0 in khronometric grav-
ity [30].
Since S vanishes in region II, the field equations in

region II (Appendix A) also reach khronometric gravity in
the cω → ∞ limit.

APPENDIX D: OFF-DIAGONAL
PERTURBATIONS

In this appendix, we briefly study the Oðε2Þ, off-
diagonal perturbations fW;V;H1g in region I in the tidal
case. Although this sector is not relevant for the I-Love-Q
quantities, these perturbations may be used to define shift
and vector Love numbers in Einstein-aether theory in a
similar fashion as done in khronometric gravity [30].
FromEtr ¼ 0, we first find an algebraic equation forWðrÞ:

WðrÞ ¼ 1

cωr

�
re−νH1 þ 4V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðca − 2ÞM þ 4πp0car3 þ r

r − 2M

r

− 4V þ r
dV
dr

�
: ðD1Þ

Substituting this equation for WðrÞ into Æθ ¼ 0 and
Ær ¼ 0 allows us to then find coupled, second-order

equations for H1ðrÞ and VðrÞ. These equations are given in
a supplemental Mathematica notebook [51].
We find the behavior near r ¼ 0 in the usual way:

HðintÞ
1 ¼ Arþ Br3 þ ψ5ðA;BÞr5 þOðr7Þ; ðD2Þ

VðintÞ ¼ χ2ðAÞr2 þ χ4ðA;BÞr4 þOðr6Þ; ðD3Þ

where A and B are integration constants. The coefficients
ψ5, χ2, and χ4 are functions of A and B and are given in the
supplemental Mathematica notebook [51]. For the buffer
zone, we find the solutions using series Ansätze in M⋆:

HðbufÞ
1 ¼ η0 þ η1M⋆ þ η2M2

⋆ þOðM3
⋆Þ; ðD4Þ

VðbufÞ ¼ λ0 þ λ1M⋆ þ λ2M2
⋆ þOðM3

⋆Þ: ðD5Þ

Expressions for a few orders of ηi and λi are also given in
the supplemental notebook. We note that the λi here are
simply expansion coefficients, not to be confused with the
tidal Love number studied in the main text. The exterior
integration constants fC;D; F;Gg can be summarized
from λ0:

λ0 ¼ Cr4 þDr2 þ F
r
þ G
r3

: ðD6Þ
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