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The number of gravitational wave signals from the merger of compact binary systems detected in the
network of advanced LIGO and Virgo detectors is expected to increase considerably in the upcoming
science runs. Once a confident detection is made, it is crucial to reconstruct the source’s properties rapidly,
particularly the sky position and chirp mass, to follow up on these transient sources with telescopes
operating at different electromagnetic bands for multimessenger astronomy. In this context, we present a
rapid parameter estimation (PE) method aided by mesh-free approximations to accurately reconstruct
properties of compact binary sources from data gathered by a network of gravitational wave detectors. This
approach builds upon our previous algorithm [L. Pathak et al., Fast likelihood evaluation using meshfree
approximations for reconstructing compact binary sources, Phys. Rev. D 108, 064055 (2023)] to expedite
the evaluation of the likelihood function and extend it to enable coherent network PE in a ten-dimensional
parameter space, including sky position and polarization angle. Additionally, we propose an optimized
interpolation node placement strategy during the start-up stage to enhance the accuracy of the marginalized
posterior distributions. With this updated method, we can estimate the properties of binary neutron star
sources in approximately 2.4 (2.7) min for the TaylorF2 (IMRPhenomD) signal model by utilizing 64 CPU
cores on a shared memory architecture. Furthermore, our approach can be integrated into existing
parameter estimation pipelines, providing a valuable tool for the broader scientific community. We also
highlight some areas for improvements to this algorithm in the future, which includes overcoming the
limitations due to narrow prior bounds.
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I. INTRODUCTION

Gravitational wave (GW) signals emitted by compact
binary systems made of neutron stars and black holes are
expected to take up to a few minutes to sweep through the
sensitive band of the advanced LIGO and Virgo detectors,
leading up to the epoch of their eventual cataclysmic
merger. The merger of two neutron stars/neutron star–black
holes (NSBH) [1–5] can be followed by the emission of
electromagnetic (EM) radiation at different wavelengths that
fade over different timescales ranging from a few minutes to
several months, as seen in the fortuitous detection of the
binary neutron star (BNS) system GW170817 [6] by
the network of advanced LIGO-Virgo detectors [7–11] in
the second science run. This discovery resulted in the first

multiwavelength observation of postmerger EM emissions
from the merger of two neutron stars. The successful
localization and discovery, in this case, were primarily
due to the source’s fortunate proximity: GW170817 was
relatively close (about 40 Mpc), falling well within the
sky- and orientation-averaged ranges of the two LIGO
detectors, resulting in the loudest signal ever detected by a
GW network. The discovery of the EM counterpart of
GW170817 improved understanding of the physics of short
gamma-ray bursts [12], confirmed the formation of heavy
elements after themerger and other areas of new physics, and
provided invaluable opportunities to explore themysteries of
the Universe. Therefore, BNS systems are the prime targets
for multimessenger astronomy.
In upcoming observing runs, the LIGO-Virgo-KAGRA

detectors [7,9–11] are expected to be sensitive above 10 Hz,
enabling a more extensive exploration of cosmic volume
compared to their current versions.At design sensitivity [13],
these detectors are expected to have a BNS range of
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∼330 Mpc (advanced LIGO), ∼150–260 Mpc (advanced
Virgo) and ∼155 Mpc (KAGRA). Consequently, the detec-
tion rate is expected to increase to the point where signals
from compact binary mergers can be observed daily. It is
projected that there could be 10þ52

−10=1
þ91
−1 BNS/NSBH events

detected in the fourth observing run [13]. To efficiently
observe EM counterparts in the future, it will be crucial to
prioritize events based on their chirpmasses, as suggested by
Margalit and Metzger [14]. Furthermore, future GW events
could provide opportunities to study various physical proper-
ties of binary systems, such as those with eccentricity [15],
spin precession [16,17], and more. As such, prompt locali-
zation and source reconstruction would be vital for studying
EM counterparts of BNS or NSBH binary systems in the
future. Moreover, a fast parameter estimation (PE) technique
can facilitate the execution of extensive inference investiga-
tions [18], like population inference,within a reasonable time
frame, which could be impractical when employing conven-
tional brute-force PE methods.
The standard technique for PE uses Bayesian inference,

which involves calculating the likelihood of observing the
data under the hypothesis that an astrophysical signal (with
some model parameters) is embedded in additive Gaussian
noise with zero mean and unit variance. This likelihood
calculation involves two computationally expensive parts:
first, generating the model (template) waveforms [19–21] at
sample points proposed by the sampling algorithm and,
thereafter, determining the overlap between the data and
the waveform. Generating these templates is the most com-
putationally expensive part of the likelihood calculation,
especially for low-mass systems like BNSs. This computa-
tional burden is amplified by the improved sensitivity of
detectors, resulting in a larger number of waveform cycles
within the detectors’ sensitive band for BNS systems.
Additionally, incorporating physical effects into the wave-
form can further increase the computational cost of gen-
erating the waveform and sampling from the expanded
parameter space. Wherever possible, factorizing [22] the
log-likelihood function into pieces that exclusively depend
on the extrinsic and intrinsic parameters, respectively, can
lead to a significant reduction in the number of waveform
generation and thereby speed up the PE analysis. For
example, such factorizations can be made for nonprecess-
ing waveforms, as considered in this work.
In the current operational framework of the LIGO-Virgo-

KAGRA (LVK) Collaboration, the primary tool for rapid
sky localization is bayestar [23]—a Bayesian, non-
Markov chain Monte Carlo (MCMC) sky localization
algorithm. This method exhibits remarkable speed, furnish-
ing posterior probability density distributions across sky
coordinates within a few tens of seconds following the
detection of a gravitational wave signal from the merger
of a compact binary source. However, through a compre-
hensive Bayesian PE analysis encompassing both intrinsic
and extrinsicmodel parameters, Finstad andBrown [24] have
established that the accuracy of sky localization can be

significantly augmented, achieving an enhancement of
approximately 14 deg2 over those obtained from the
bayestar algorithm alone. Beyond the evident advantages
of sky location precision, a full PE analysis also furnishes a
highly accurate estimation of the chirp mass for compact
binary systems. This additional information plays a pivotal
role in making judicious decisions regarding EM follow-up
observations, which would be crucial in future observing
runs of the network of advanced detectors, further under-
scoring the merits of developing fast-PE algorithms. Deep-
learning-based sky localization tools (CBC-SkyNet [25])
have been recently developed that can obtain “premerger”
sky localization areas that are comparable in accuracy
to bayestar.
Numerous rapid-PE algorithms have surfaced in the

gravitational wave literature, which revolves around two
overarching concepts:

(i) Likelihood-based approaches: The first category in-
volves approaches that rapidly evaluate the likelihood
function. This set of methods encompasses various
methods such as reduced-order models [26–30],
heterodyning (or relative binning) [22,31,32], the
simple-PE [33] algorithm, and methods based on
Gaussian process regression (GPR) [34] like RIFT
[35]. Other techniques, such as adaptive frequency
resolution-based likelihood evaluation [36] andmass-
spin reparametrization-based rapid PE [37], have also
been proposed. Improved algorithms allowing for
more efficient reduced-order quadrature bases have
been recently proposed [38].

(ii) Likelihood-“free” approaches: The second category
consists of methods that bypass direct likelihood
evaluation and instead learn the posterior distribu-
tions using advanced machine-learning (ML) tech-
niques such as deep learning, normalizing flows, and
variational inference [39–42].

Hybrid techniques that combine likelihood heterodyning
with tools to enhance the convergence of gradient-based
MCMC samplers have also been proposed [43]. Other
techniques involving score-based diffusion models [44] to
learn an empirical noise distribution directly from the
detector data have also been proposed.
In this context, ourmesh-free approach alignswith the first

category of rapid-PE methods since it is designed to swiftly
assess the likelihood. Note that the RIFT [35] method also
interpolates the likelihood directly using GPR. In compari-
son, the mesh-free method first represents the likelihood
function on an orthonormal basis and then uses radial basis
functions to interpolate the coefficients. So, in spite of the
apparent similarity, the context in which the “interpolation”
technique is applied is completely different in the two
methods. The use of GPR (a supervised training method)
to “learn” the likelihood function at different points of the
parameter space is in the spirit of ML methods, in contrast
with the classical approach followed by the mesh-free
method.
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In our previous work [45], we introduced the mesh-free
method as a means of rapidly inferring parameters for
compact binary coalescence (CBC) sources for a single
detector by considering only six parameters: the two-
component masses, two aligned spins, luminosity distance,
and coalescence time. In this study, (a) we extend themethod
to include additional parameters such as sky location,
inclination, and polarization, thereby enabling a coherent
multidetector PE analysis. (b) Furthermore, we have modi-
fied the radial basis function (RBF) mesh-free interpolation
node placement scheme,which directly impacts the accuracy
of the PE results. In contrast to our previous work, which
utilized uniformly distributed nodes over the sample space,
we now employ a combination of multivariate Gaussian and
uniform distributions for efficient node placement. (c) Our
results demonstrate that,when run on32(64) cores, themesh-
free method can produce accurate marginalized posteriors
for the GW170817 event and locate it in the sky within
∼3.4ð2.4Þ min of detecting the event. The resulting poste-
riors obtained from the mesh-free method are statistically
indistinguishable from those obtained using the brute-force
method implemented in PyCBC [46]. Please note that the
brute-force method is not optimized and is used only as a
yardstick for accuracy.
The rest of the paper is structured into the following

sections: Sec. II introduces the PE basics, where we briefly
discuss the Bayesian approach for inferring GW parameters
from the data and define the coherent network likelihood.
Section III explains the start-up and online stages and
discusses the likelihood evaluation procedure using mesh-
free interpolation. Section IVA presents the results of a
detailed analysis of themesh-freemethod for theGW170817
BNS event. In Sec. IV B,we examine the effectiveness of our
method by testing it on simulated events covering a wide
range of signal-to-noise ratios (SNRs). Finally, we summa-
rize the results in Sec. V and discuss the limitations of the
current implementation (such as restricting the sampler over
narrowprior bounds).We suggest some ideas for overcoming
this limitation in follow-up studies.

II. PARAMETER ESTIMATION

A. Bayesian inference

Given a stretch of GW strain data d from detectors
containing a GW signal hðΛ⃗Þ, embedded in additive
Gaussian noise n, we want to estimate the posterior
distribution pðΛ⃗jdÞ over the source parameters Λ⃗. The
posterior distribution, in turn, is related to the likelihood
function LðdjΛ⃗Þ via the well-known Bayes theorem,

pðΛ⃗jdÞ ¼ LðdjΛ⃗ÞpðΛ⃗Þ
pðdÞ ; ð1Þ

where pðΛ⃗Þ is the prior distribution over model parameters
Λ⃗≡ fλ⃗; θ⃗; tcg. Here λ⃗ is a set of intrinsic parameters such as

the component masses m1;2 and dimensionless aligned

spins χ1z;2z, while θ⃗ represents the set of extrinsic param-
eters such as the source’s sky location, i.e., right ascension
(α) and declination (δ), the inclination (ι) of the orbital
plane of the binary with respect to the line of sight, the
polarization angle (ψ ), the luminosity distance (dL) of the
source from Earth, and the geocentric epoch of coales-
cence tc.
In principle, given a numerical prescription for calculat-

ing the likelihood function LðdjΛ⃗Þ under a waveform
model and assuming prior distributions over the model
parameters, we can evaluate the left-hand side of Eq. (1) at
any given point in the sample space up to an overall
normalization factor. However, with a large number of
parameters Λ⃗ (typically ∼15 parameters), evaluating
pðΛ⃗jdÞ on a fine grid over the sample space becomes
increasingly tedious and eventually intractable with finite
computational resources. Therefore, a more intelligent
strategy is employed where one uses stochastic sampling
techniques to estimate the posterior distribution pðΛ⃗jdÞ.
There are a number of schemes to sample the posterior
distribution, such as the MCMC scheme [47] and its
variants, nested sampling [48] algorithms, etc. In this
paper, we use DYNESTY [49,50], an extensively used
Python implementation of the nested sampling algorithm
for GW data analysis. In this work, we have only focused
on speeding up the PE algorithm by quickly evaluating
the likelihood function at any point proposed by the
sampling algorithm. Admittedly, another aspect of
designing a fast-PE algorithm would involve optimizing
the sampling algorithm itself—which is not considered
in this work. It is easy to see that such improvements to
the sampling algorithm can positively impact the perfor-
mance of many fast-PE methods (including ours). For
example, a significant improvement in computation time
has been demonstrated by efficiently populating the
parameter space as proposed by the VARAHA sampling
technique [51].

B. The likelihood function

Let dðiÞ be the strain data recorded at the ith detector
containing an astrophysical GW signal h̃ðiÞðΛ⃗Þ. We pause to
remark that complex h̃ðiÞðΛ⃗Þ will denote the frequency-
domain Fourier transform of the signal hðiÞðΛ⃗Þ. Assuming
uncorrelated noise among the Nd detectors in the network,
the coherent log-likelihood [52] is given by

lnLðΛ⃗Þ ¼
XNd

i¼1

hdðiÞjh̃ðiÞðΛ⃗Þi

−
1

2

XNd

i¼1

�
kh̃ðiÞðΛ⃗Þk2 þ kdðiÞk2

�
: ð2Þ
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For a nonprecessing GW signal model, one can use the
relation h̃× ∝ −jh̃þ between the two polarization states to
express the signal at the ith detector as

h̃ðiÞðΛ⃗Þ≡ h̃ðΛ⃗; tðiÞÞ ¼ AðiÞh̃þðλ⃗; tðiÞÞ;
¼ AðiÞh̃þðλ⃗Þe−j2πftce−j2πfΔtðiÞ : ð3Þ

The complex amplitude of the signal AðiÞ depends only on
the extrinsic parameters θ⃗∈ Λ⃗ through the antenna pattern
functions, luminosity distance, and the inclination angle,

AðiÞ ¼ 1

dL

�
1þ cos2ι

2
FðiÞ
þ ðα;δ;ψÞ−jcos ιFðiÞ

× ðα;δ;ψÞ
�
; ð4Þ

where FðiÞ
þ ðα; δ;ψÞ and FðiÞ

× ðα; δ;ψÞ are, respectively, the
“plus” and “cross” antenna pattern functions of the ith
detector. The antenna pattern functions of a detector
describe the angular response of the detector to incoming
GW signals. It arises from contracting the position- and
geometry-dependent “detector tensor” [53] with the metric
perturbations (GW), thereby mapping the latter to a GW
strain amplitude hðiÞðΛ⃗Þ recorded at the detector.
As indicated by Eq. (3), the signal acquires an additional

phase difference during its projection from the geocentric
frame to the detector frame, which corresponds to a time
delay denoted by ΔtðiÞ. This temporal offset originates due
to the relative positioning of the ith detector in relation to
Earth’s center, and it can be expressed explicitly as follows:

ΔtðiÞ ≡ tðiÞ − tc ¼
x⃗ðiÞ · N̂ðα; δÞ

c
; ð5Þ

where x⃗ðiÞ is a vector pointing from Earth’s center to the
location of the ith detector, tðiÞ is the time at the ith detector,
and N̂ðα; δÞ is the direction of the GW propagation [54]. In
our analysis, we consider the log-likelihood function
marginalized over the coalescence phase [55] parameter,
which can be written as follows:

lnLðΛ⃗jdðiÞÞ
����
ϕc

¼ ln I0

�����
XNd

i¼1

hdðiÞjh̃ðiÞðΛ⃗Þi
����
�

−
1

2

XNd

i¼1

�
kh̃ðiÞðΛ⃗Þk2 þ kdðiÞk2

�
; ð6Þ

where I0ð·Þ is the modified Bessel function of the first kind.
By marginalizing over extrinsic parameters, we effectively
reduce the dimensionality of the problem, resulting in
accelerated likelihood calculations and enhanced sampling
convergence. Substituting Eq. (3) in the above equation,
we get

lnLðΛ⃗jdðiÞÞ
����
ϕc

¼ ln I0

�����
XNd

i¼1

AðiÞ�hdðiÞjh̃þðλ⃗; tðiÞÞi
����
�

−
1

2

XNd

i¼1

�����AðiÞ
����
2

σ2ðλ⃗ÞðiÞ þ kdðiÞk2
�
; ð7Þ

where hdðiÞjh̃þðλ⃗; tðiÞÞi is the complex overlap integral,
while σ2ðλ⃗ÞðiÞ ≡ hh̃þðλ⃗; tðiÞÞjh̃þðλ⃗; tðiÞÞi is the squared norm
of the template h̃þðλ⃗Þ. σ2ðλ⃗ÞðiÞ depends on the noise power
spectral density (PSD) of the ith detector. The squared
norm of the data vector kdðiÞk2 remains constant during the
PE analysis and, therefore, does not impact the overall
“shape” of the likelihood. As such, it can be excluded from
the subsequent analysis.

III. MESH-FREE LIKELIHOOD INTERPOLATION

As discussed in our previous work [45], the mesh-free
method comprises two distinct stages:
(1) Start-up stage: During this phase, we create RBF

interpolants for the pertinent quantities.
(2) Online stage: In this stage, we swiftly compute the

likelihood function at query points proposed by the
sampling algorithm.

Next, we will delve into the various stages that constitute
mesh-free interpolation.

A. Start-up stage

During the start-up stage, we generate RBF interpolants
for the relevant quantities, which enable rapid likelihood
calculations in the online stage. The start-up stage can be
further divided into the following parts:

(i) Placement of RBF nodes over the intrinsic para-
meter space, λ. These discrete nodes are denoted as
λ⃗n∶ n ¼ 1; 2;…; N.

Note that we set ΔtðiÞ ¼ 0 for all the detectors
while calculating z⃗ðiÞðλ⃗nÞ. Additional time delays
ΔtðiÞ for the signal to reach the ith detector depend-
ing on the source’s location in the sky can be taken
care of during the online stage while sampling the
posterior distribution over the sky location param-
eters, as explained later.

(ii) Singular value decomposition (SVD) of the complex
time-series matrix ZðiÞ at the ith detector, where the
nth row is defined as z⃗ðiÞðλ⃗nÞ.

(iii) Generation of RBF interpolating functions for the
SVD coefficients and the template norm square σ2

for each detector.
We now describe some of these steps in greater detail.

1. RBF nodes placement

The accurate construction of mesh-free RBF interpolants
relies significantly on the strategy of randomly distributing
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the RBF nodes, denoted as λ⃗n, across the sample space.
However, the task of finding an optimal set of nodes poses a
considerable challenge. Typically, a hypercube in the
sample space is selected around a reference point during
the sampling of the posterior distribution. This reference
point, commonly known as a trigger or best-matched
template λ⃗� and trigger time (geocentric) ttrig are derived
from an upstream search pipeline [56,57].
In our previous work, we opted for a uniform distribution

of nodes within the hypercube centered around the reference
point (injection in the case of a simulated BNS event). This
approach works well for events with low SNRs since the
corresponding likelihood function exhibited a relatively
flatter profile across the parameter space. However, for high
SNR events, where the likelihood profile exhibits a sharp
peak in certain regions of the parameter space, uniformly
distributing nodes within the hypercube may not adequately
cover the support of the posterior distribution, particularly in
areas where we seek higher accuracy in interpolated like-
lihood estimates. As a result, we adopted a combination of
nodes drawn from both a multivariate Gaussian distribution
and a uniform distribution across the sample spacewithin the
hypercube. The multivariate Gaussian distribution is defined
by a mean vector μ⃗ and a covariance matrix Σ, and its
expression is as follows:

pðλ⃗Þ ∝ exp
h
−ðλ⃗ − μ⃗ÞTΣ−1ðλ⃗ − μ⃗Þ

i
; ð8Þ

where μ can be selected as the trigger point λ⃗�, and Σ can be
computed using the inverse of the Fisher matrix Γ evaluated
at λ⃗�. While the distribution of nodes generated using the
Fisher matrix may not perfectly match the actual posterior
distribution across the sample space, it does exhibit signifi-
cant overlap with the true distribution, especially in the
vicinity of the likelihood peak.

Since the trigger originates from a search pipeline that
uses a discrete set of templates over a grid (also known as a
template bank) [58,59], we can select a reference point,
denoted as λ⃗ref , in close proximity to the trigger point (λ⃗�),
which may have a higher network SNR. We employ an
optimization strategy [60] aimed at maximizing the network
SNR in order to identify this reference point. Subsequently, a
portion of the interpolation nodes are generated from a
multivariate Gaussian distribution, N ðλ⃗ref ;ΣÞ, where Σ is
computed from the inverse of the Fisher matrix evaluated at
λ⃗ref , to adequately cover the region around the peak. For
regions of the sample spacewhereGaussian nodes are sparse
or possibly nonexistent, we spray a uniform distribution of
samples across the hypercube. This approach ensures high
accuracy in interpolated likelihood estimates throughout the
entire sample space.
For a visual representation illustrating the various com-

binations of Gaussian and uniform nodes, please refer to
Fig. 1. In particular, note that choosing a small fraction of
random RBF nodes from the multivariate Gaussian dis-
tribution leads to more accurate posterior distributions over
certain parameters (see Fig. 8 in Appendix A).

2. SVD of ZðiÞ and interpolant generation

After obtaining the appropriate RBF nodes λ⃗n, we can
efficiently compute the time series z⃗ðiÞðλ⃗nÞ≡ zðiÞðλ⃗n; tcÞ
using fast-Fourier-transform-based circular correlations,
where tc are the uniformly spaced discrete-time shifts
taken from a specified range around a reference coales-
cence time ttrig. Given that the predominant portion of
the posterior support originates from the vicinity of the
likelihood peak, we opt for tc ∈ ½ttrig � 0.15 s� as the
interval for sampling tc.
Similarly, we compute the template norm square

σ2ðλ⃗nÞðiÞ at all the RBF nodes λ⃗n.

FIG. 1. The figure displays randomly selected RBF interpolation nodes in the intrinsic parameter space with varying fractions from
Gaussian and uniform distributions (2D slice inM and q coordinates). Randomly placed nodes drawn from a Gaussian distribution are
denoted in red, while those from a uniform distribution are shown in gray. The covariance matrix of the Gaussian distribution can be
estimated semianalytically given the signal model. (a) Represents a choice with 100% (all) nodes drawn from a uniform distribution, and
(b)–(d) exhibit mixtures of different percentages of nodes from the uniform and Gaussian distributions. The center (marked as a black x)
of the sample space is determined through an optimization routine based on the highest network SNR. This search is guided by the best-
matched trigger obtained from the upstream search pipeline.
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Our objective is to identify the basis vectors capable of
spanning the space of z⃗ðiÞðλ⃗nÞ. This can be achieved by
stacking (row-wise) the time-series vectors z⃗ðiÞðλ⃗nÞ for each
λ⃗n, where n ¼ 1; 2;…; N. Subsequently, performing the
SVD on the resultant matrix ZðiÞ yields our desired basis
vectors u⃗μ. It can be shown that any vector z⃗ðiÞðλ⃗nÞ within
the specified parameter range can be expressed as a linear
combination of these basis vectors u⃗μ,

z⃗ðiÞðλ⃗nÞ ¼
XN
μ¼1

CnðiÞ
μ u⃗ðiÞμ ; ð9Þ

where CnðiÞ
μ ≡ CðiÞ

μ ðλ⃗nÞ, μ ¼ 1; 2;…; N are the N SVD

coefficients. These coefficients CnðiÞ
μ are characterized as

smooth functions over λ⃗n within a sufficiently narrow
boundary encompassing the posterior support. Therefore,
each of these N coefficients can be treated as a scalar-
valued smooth function over the d-dimensional intrinsic
parameter space and expressed as a linear combination of
the RBFs [61] ϕ centered at the interpolation nodes,

CqðiÞ
μ ¼

XN
n¼1

aðiÞn ϕðkλ⃗q − λ⃗nk2Þ þ
XM
j¼1

bðiÞj pjðλ⃗qÞ; ð10Þ

where ϕ is the RBF kernel centered at λ⃗n ∈Rd, and fpjg
denotes the monomials that span the space of polynomials
with a predetermined degree ν in d dimensions. The
inclusion of these monomial terms has been shown to
enhance the accuracy of RBF interpolation [62].
Similarly, we can also express σ2ðλ⃗qÞðiÞ in terms of theRBF

functions and monomials by treating it as a smoothly varying
scalar-valued function over the interpolation domain.
From Eq. (10), we find that there are a total of (N þM)

coefficients to be solved for each interpolating function.

The SVD coefficients CqðiÞ
μ and σ2ðλ⃗qÞðiÞ are known at each

of the N RBF nodes λ⃗n. These provide N interpolation
conditions. To uniquely determine the coefficients an and
bj, we impose M additional conditions of the formP

M
j¼1 a

ðiÞ
j pjðλ⃗qÞ ¼ 0. This leads to the following system

of N þM equations:
� Φ P

PT O

��
aðiÞ

bðiÞ

�
¼

�
CnðiÞ
μ

0

�
; ð11Þ

where the matrices Φ and P have components Φij ¼
ϕðkλ⃗i − λ⃗jk2Þ and Pij ¼ pjðλ⃗iÞ, respectively; OM×M is a
zero matrix and 0M×1 is a zero vector.
The additional M conditions arise due to the fact that Φ

needs to be a real, symmetric, and conditionally positive
definite matrix of order νþ 1, and the following theorem
(reproduced here from [61] for completeness) guarantees
the uniqueness of the solutions:

Theorem 1. Let A be a real symmetric N × N matrix
that is conditionally positive definite of order one, and let
B ¼ ½1;…; 1�T be an N × 1 matrix (column vector). Then,
the system of linear equations

�
A B

BT O

��
c

d

�
¼

�
y

0

�

is uniquely solvable.
Although Theorem 1 is applicable for cases where ν ¼ 0,

it can be generalized to polynomials of higher degrees (for a
proof, refer to Theorem 7.2 in [61]).
Now, the set of equations (11) can be uniquely solved for

the unknown coefficients aðiÞ and bðiÞ to determine the
mesh-free interpolating functions corresponding to the

coefficients CðiÞ
μ . From the sharply decreasing spectrum

of eigenvalues shown in Fig. 2, it is clear that only the “top-
few” basis vectors are sufficient to reconstruct z⃗ðiÞðλ⃗qÞ at
minimal reconstruction error; we generate only top-lmesh-

free interpolants of CqðiÞ
μ where μ ¼ 1;…;l. Note that l is

chosen based on the spectrum of eigenvalues of the matrix
ZðiÞ. We have chosen l ¼ 20 where the normalized
eigenvalues fall (see Fig. 2) to ∼10−12. However, this is
a subjective choice.
In a similar way, we generate the mesh-free interpolants

for the scalar-valued function σ2ðλ⃗qÞðiÞ as well.
Note that, to optimize computational efficiency, we need

to generate a minimum number of RBF nodes λ⃗n given the
degree (ν) of the polynomial and dimension (d) of the
intrinsic parameter space, and it is given by Nmin ¼ ðνþd

ν Þ.
Increasing the number of nodes increases not only the

FIG. 2. The figure shows the profile of the singular values
normalized by the highest singular value. Notably, there is a sharp
decline in the singular values (indicated by a black dashed line)
due to the large correlation between the time series z⃗ðiÞðλ⃗nÞ at
different RBF interpolation nodes, revealing that only the linear
combination of the top-few singular vectors (around 20) is
sufficient for effectively reconstructing the time series z⃗ðiÞðλ⃗qÞ
with minimal reconstruction error. The 3.5 PN TaylorF2 post-
Newtonian signal model is assumed.
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computational cost of generating the interpolants but also
their evaluation cost during the online stage, which is

evident from Eq. (10) as the number of coefficients aðiÞn
increase linearly with the number of RBF nodes N. In our
study, we empirically choose at least twice (or more) the
minimum number of required nodes.
At the end of the start-up stage, we thus have uniquely

determined (lþ 1) interpolating functions.

B. Online stage

Once we have the mesh-free interpolants ready, we
can evaluate the mesh-free interpolated values of CqðiÞ

μ

and σ2ðλ⃗qÞðiÞ at any query point λ⃗q rapidly. We then

combine the interpolated values of the coefficients CqðiÞ
μ

with the corresponding basis vectors u⃗μ according to
Eq. (9), restricting the summation to the first l terms.
In the start-up stage (Sec. III A), we set ΔtðiÞ ¼ 0 while

calculating z⃗ðiÞðλ⃗nÞ and did not include the time delay
relative to Earth’s center, which depends on the sky
location. Now, we incorporate it while reconstructing the
interpolated time series z⃗ðiÞðλ⃗qÞ. Moreover, we focus on
constructing only z⃗ðiÞðλ⃗qÞ at approximately ten time sam-
ples centered around query time tqðiÞ [Eq. (5)]. To ensure
subsample accuracy, we fit these samples with a cubic
spline, which incurs negligible computational cost.
Subsequently, we calculate z⃗ðiÞðλ⃗qÞ at the query tqðiÞ using
the cubic-spline interpolant. Similarly, we evaluate the
interpolated value of σ2ðλ⃗qÞðiÞ. Finally, combining z⃗ðiÞðλ⃗qÞ
and σ2ðλ⃗qÞðiÞ with coefficients dependent on extrinsic
parameters θ⃗, as exemplified in Eq. (7), enables the compu-
tation of lnLRBF.

IV. NUMERICAL EXPERIMENTS

A. GW170817 event

We conducted a Bayesian PE study on the GW170817
BNS event to test our method. The strain data from the
two advanced-LIGO and Virgo detectors were obtained
from the open archival datasets available from the
Gravitational Wave Open Science Center [63]. We used
a 360 s data segment that was cleaned with a fourth-order
high-pass filter, with a cutoff frequency of 18 Hz. The
seismic cutoff frequency was set to 20 Hz. The TaylorF2
waveform model [64–67] was employed to recover the
source parameters. The noise PSD was estimated from the
strain data using overlapping segments of length 2 s, using
the median-mean PSD estimation method by applying a
Hann window as implemented in PyCBC. Subsequently, we
generated N ¼ 800 RBF nodes using the node placement
algorithm described in Sec. III A.
Out of total RBF nodes, Ng ¼ 200 nodes (number of

Gaussian nodes) are selected from a multivariate Gaussian

distribution N ðλ⃗ref ;ΣÞ, where the mean is set as λ⃗ref , and
the covariance matrix Σ is estimated by evaluating the
inverse of the Fisher matrix Γ [68] at the reference point λ⃗ref
(see Sec. III A 1). We utilize the GWFAST [69] Python

package to calculate the covariance matrix. The remaining
nodes Nu ¼ 600 are uniformly sampled from the ranges
specified in Table I. For generating the RBF interpolants,
we employ the publicly available RBF Python package [70].
A Gaussian RBF kernel ϕ ¼ expð−εr2Þ is used as the basis
function, where ε serves as the shape parameter. We set
ε ¼ 10 through trial and error, but it can be optimized using
the leave-one-out cross-validation [71] method. The degree
of themonomials is chosen as ν ¼ 7, andwe retain the top 20
basis vectors (l ¼ 20) for the reconstruction of z⃗ðiÞðλ⃗qÞ.
To sample the ten-dimensional parameter space Λ⃗,

we utilize nested sampling implemented in the DYNESTY

Python package. The likelihood function used for the
analysis is lnLRBF. The prior distributions and their
boundaries for all sampling parameters are provided
in Table I. The sampler configuration is outlined as
follows: nlive ¼ 500, walks ¼ 100, sample ¼ rwalk,
and dlogz ¼ 0.1. These parameters crucially determine
the accuracy and time taken by the nested sampling
algorithm. Here, nlive represents the number of live points.
Opting for a larger number of nlive points results in a
more finely sampled posterior (and consequently, evi-
dence), albeit at the expense of requiring more iterations
for convergence. Walks denotes the minimum number of
points needed before proposing a new live point, sample
indicates the chosen sampling approach for generating
samples, and dlogz signifies the proportion of the remain-
ing prior volume’s contribution to the total evidence,
which functions as a stopping criterion for terminating
the sampling process. Further details on DYNESTY’s nested
sampling algorithm and its implementation can be found
in [49,50]. For comparison, we also employ the direct
marginalized phase likelihood implemented in PyCBC with
the DYNESTY sampler, using the same sampler configura-
tion mentioned above.

TABLE I. Prior parameter space over the ten-dimensional
parameter space Λ⃗.

Parameters Range Prior distribution

M ½Mcent � 0.0002� ∝ M
q ½qcent � 0.07� ∝ ½ð1þ qÞ=q3�2=5
χ1z;2z ½χ1zcent � 0.0025� Uniform
dL [10, 60] Uniform in volume
tc ttrig � 0.12 Uniform
α ½0; 2π� Uniform
δ �π=2 sin−1 ½Uniform½−1; 1��
ι ½0; π� Uniform in cos ι
ψ ½0; 2π� Uniform angle
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The PE run with the mesh-free likelihood (for
TaylorF2) completed in ∼3.4 min (including the start-
up and sampling stages) when run on 32 cores. In a similar
analysis with the IMRPhenomD [72] waveform model, we
found good agreement between the posterior distributions
obtained from the mesh-free and PyCBC likelihood meth-
ods, and these results are broadly consistent with the LVK
analysis of the same event. In this case, the mesh-free
method generated the posterior in ∼3.6 min utilizing
32 cores.

As shown in Fig. 3, the posterior distributions esti-
mated using the mesh-free method and standard PyCBC

likelihood exhibit good agreement. Additionally, sky maps
for GW170817 were generated using the LIGO-SKYMAP [73]
utility for two methods, further demonstrating the effective-
ness of the mesh-free method in reconstructing source
parameters. For the same analysis using 64 cores, the number
of likelihood evaluations for mesh-free PE (standard PyCBC

PE) is 1396388 (1404588), whereas the number of posterior
samples collected during sampling is 3633 (3546).

FIG. 3. The corner plot shows the posterior distributions over a ten-dimensional parameter space using both the mesh-free method and
the standard PyCBC likelihood. The seismic cutoff frequency is set to 20 Hz, assuming the TaylorF2 waveform model. The estimated
distributions from both methods exhibit good agreement, as indicated by the median values in the title of the 1D marginalized posterior
plots along the diagonal. The mesh-free likelihood-based PE process was completed in ∼3.4 min when performed on 32 cores. A sky
map (inset) is also generated for both methods where the star denotes the actual location of the galaxy from which GW170817 is
believed to have originated and is in agreement with [74].
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To estimate the speed-up achieved by using the mesh-
free likelihood compared to the PyCBC likelihood, we
generated 104 random query points from the prior distri-
bution specified in Table I. Subsequently, we calculated the
log-likelihood at these points using both the mesh-free and
PyCBC likelihood methods. The results show a speed-up of
∼49 over standard PyCBC likelihood, as shown in Fig. 4. In
the case of IMRPhenomD, we observed a relative speed-up
of ∼498 over standard PyCBC likelihood. This difference in
speed-up can be attributed to the difference in time taken
to generate the template in the two different waveform
models: TaylorF2 waveforms are far less computationally
expensive to generate than IMRPhenomD model wave-
forms. The corresponding error plots are shown in
Appendix C.
Furthermore, we investigated the scaling behavior of

PE run times (start − upþ online) using the mesh-free
method with respect to the number of cores employed.
For the TaylorF2 analysis of the GW170817 event, we
performed the ten-dimensional PE analysis with varying
core counts ranging from 8 to 64. Our study indicates that
the analysis can be completed in ∼2.4 min using 64 cores.
Furthermore, we found that the current implementation
scales linearly with the number of live points (keeping
dlogz fixed). It is worth noting that further reductions in
estimation times are expected if the number of cores is
increased, as the scaling does not saturate at 64 cores.
However, as depicted in Fig. 5, the rate at which the
estimation times decrease diminishes as the number of
cores continues to increase, which may eventually result in
run time saturation beyond a certain number of cores.
The total time shown in Fig. 5 includes the time taken by

both the start-up and online stages of the mesh-free
algorithm, in addition to the time required for the dynamic

nested sampling algorithm to compute the evidence integral
up to a desired level of accuracy. To clarify further: (a) The
start-up stage of the mesh-free method benefits from the
availability of many CPU cores as it can be performed in
parallel. (b) Conversely, the online stage is not designed
for parallel processing. This is because estimating the
likelihood is a relatively fast operation, typically taking
∼Oð1Þ ms, achieved by evaluating the interpolating func-
tions. This part of the computational cost remains nearly

FIG. 5. The run times of the mesh-free method have been
plotted with varying the number of cores. We choose the
GW170817 event for this specific example, and the TaylorF2
waveform model is taken for obtaining the posteriors. The plot
shows a notable decrease in mesh-free run times as the number of
cores increased. We anticipate significant reductions in run times
can be achieved with an even higher number of cores, though the
gains will eventually saturate as we increase the number of cores.

FIG. 4. The plots compare the speed-up of the mesh-free likelihood evaluation with PyCBC likelihood for two waveform models,
(a) TaylorF2 and (b) IMRPhenomD. The mesh-free method is around 49 times faster for TaylorF2 and approximately 498 times
faster for IMRPhenomD (compared to the standard calculation). The median absolute error is approximately Oð10−2Þ for both cases
(see Fig. 9 in Appendix B). In the proposed mesh-free method, one can trade off speed in favor of better accuracy by retaining a larger
number of SVD basis vectors [see Eq. (9)] and vice versa. The optimal subjective choice is made from the spectrum of eigenvalues (Fig. 2).
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constant regardless of the specific sample point being
processed. As a result, the runtime scaling, as depicted
in Fig. 5, effectively combines the time consumed by the
DYNESTY sampler and the start-up stage of our method.

B. Simulated data

To assess the performance of our method across a range
of SNRs, we generated simulated datasets with different
source parameters that mimic BNS systems with network-
matched filter SNRs spanning from 10 to 100. In our
approach, the number of Gaussian nodes, denoted as Ng,
for a given source is intricately tied to its SNR. Specifically,
the likelihood profile for events with lower SNRs exhibits a
relatively broader spread over the parameter space com-
pared to the more sharply peaked likelihood profiles
observed for high SNR events. Consequently, for higher
SNR events, we select a larger number of nodes from the
Gaussian distribution in contrast to lower SNR events.
Thus, we opt for different values ofNg based on the SNR of
each source. We will now detail the distribution of source
parameters.
The component masses were uniformly drawn from

the interval ½1.2; 2.35�M⊙, while the magnitude of the
dimensionless component spins (aligned with the orbital
angular momentum) was uniformly drawn from the
interval ½−0.05; 0.05�. The sources were uniformly dis-
tributed in sky location and followed a uniform dis-
tribution with dL ranging from 10 to 200 Mpc. The
inclination angle ι of the binary’s plane with respect to
the line of sight was chosen to be uniformly distributed
in cos ι. The tidal deformability parameter Λtide of the
neutron stars was set to zero for all signals. These
signals were simulated using the TaylorF2 waveform
approximant, and the noise PSD was chosen from
aLIGOZeroDetHighPower [75] for the Livingston and
Hanford detectors, and AdvVirgo [76] for the Virgo
detector, as implemented in PyCBC.
It is important to recognize that the distribution of

injection parameters we have chosen may not hold any
astrophysical relevance. These choices have been made
solely for the purpose of testing our method across various
SNR scenarios, as our node placement algorithm is
intricately linked to the SNRs of these events.
At this point, we employ both the mesh-free technique

and the relative-binning method (RelBin) for estimating
the BNS source parameters. In an ideal scenario, we
would select the brute-force likelihood method for com-
parison, but opting for such an approach might result in
extended PE run times. Given that RelBin is a well-
established and widely used fast-PE algorithm within the
GW community, recognized for its combination of speed
and accuracy, we have opted for this alternative over the
standard approach.
For all the simulated events, we chose N ¼ 800 RBF

nodes. However, Ng was empirically chosen depending on

the SNR of the events. Heuristically, we found that, for
SNR ≥ 50, Ng ∈ ½0.4; 0.6� was a suitable choice, while for
events with SNR ≤ 50, Ng was chosen from [0, 0.2]. There
were a few exceptions to this prescription as well.
For the RelBin method, we set ϵ ¼ 0.000198, which

determines the number of frequency bins in the RelBin
method (for more details, refer to [31,32]). This parameter
determines the accuracy and run time of the relative-
binning method. We choose the reference parameters (or
“fiducial point” in the case of RelBin) to be the injection
parameters of each simulated event, even though in a
realistic scenario, it would have been obtained by an
optimization process starting from the best-matched search
template.
The prior distributions over the extrinsic parameters

ðα; δ; ι;ψ ; dLÞ used in the PE are the same as those used
for the GW170817 event in the earlier section. As for the
intrinsic parameters, we select them according to the
following distributions: (i) uniform distribution in compo-
nent masses ðm1; m2Þ such that M∈Mref � 0.0002 and
q∈ qref � 0.07,1 and (ii) uniformly in dimensionless com-
ponent spins from the interval χ1z=2z ∈ χ1z=2zref � 0.0025,
where Mref , qref , and χ1z=2zref are chirp mass, mass ratio,
and aligned spin components, respectively, corresponding
to the reference point found by the optimizing the network
SNR starting from the best-matched template. The prior
over the time of coalescence tc is chosen to be uniform

FIG. 6. 90% credible interval (CI) sky area as a function of SNR
are shown. We compared the accuracy of the mesh-free method
with the RelBin method. The scattered points lie along the
positive slope (dashed straight line), implying that the mesh-free
method has similar accuracy as RelBin in estimating these
parameters, i.e., sky location. It is observed that estimating these
parameters with high SNR events is more accurate than with low
SNR events. Note that there are some points that are away from
the straight line. This is due to the fact that posteriors corre-
sponding to those points are multimodal, giving rise to higher
areas for one method in comparison to the other method.

1In cases where qref − 0.07 < 1, we sample from q∈ ½1; 1.14�.
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from the interval tref � 0.12, where tref is the geocentric
time of the trigger.
As can be seen from the 90% CI sky-area distribution in

Fig. 6, the mesh-free method accurately recovers the
sky location with a similar level of accuracy as RelBin.
The timing results for the simulated signals, shown in
Fig. 7, illustrate that the run time increases with the SNR
since signals with higher SNRs exhibit a more sharply
peaked likelihood function that requires a longer time to
accumulate a sufficient number of posterior samples to
evaluate the evidence integral up to the desired accuracy.
All the tests were performed on AMD EPYC 7542

CPU@2.90 GHz processors.

V. CONCLUSION AND OUTLOOK

This work extends our previously prescribed mesh-free
method [45] to perform parameter estimation on a ten-
dimensional parameter space for aligned spin waveform
models using data from a multidetector network frame-
work. In the previous version of our method, we
demonstrated its effectiveness on a simulated BNS event,
as seen in a single detector, where we directly chose the
injection parameters as our center for placing uniformly
distributed RBF nodes. In this work, we start from the
best-matched template parameters and optimize the net-
work SNR to reach a nearby point with a higher network
SNR value, which acts as a guide for placing RBF nodes.

This node placement algorithm incorporates a blend of
nodes from both multivariate Gaussian and uniform
distributions. It enhances the accuracy of likelihood
reconstruction (see Appendix A for a study of margin-
alized posterior profiles on different fractions of random
interpolation nodes drawn from a multivariate Gaussian
distribution).
We tested our method for several simulated BNS

events with varying SNRs and found good agreement
between the mesh-free and the relative-binning methods.
Further, we have demonstrated that our mesh-free method
can rapidly estimate the posteriors of the GW170817
BNS event and efficiently locate the EM counterpart in
the sky within ∼2.4 (3.4) min after detection using
64 (32) CPU cores.
These run times quoted above need to be put in the

context of other fast-PE algorithms for which we chose
the relative-binning method. Note that the time taken by
the relative-binning algorithm crucially depends on the
choice of the ϵ parameter, which sets the frequency-
bin resolution in the heterodyning process. We set
ϵ ¼ 0.000198, for which the time taken by the relative-
binning method was found to take ∼20 min on 32 cores to
analyze the GW170817 event using data from a three-
detector (Hanford-Livingston-Virgo) network. This choice
of ϵ was taken to match the PE run times claimed by
Finstad and Brown [24]. The sampler parameters were
kept identical for both methods. Since we do not have the
hardware (nor know the parameters) used by Finstad and
Brown, this ad hoc procedure was used to arrive at this
reference time. As such, it would not be prudent to arrive at
any definite comparative conclusion based on these timing
results. Nevertheless, we will continue to tune the mesh-
free method to explore further optimizations for speeding
up the PE analysis.
Note that the run time quoted here does not include the

time spent in finding the center using optimization,
which, when run on a single core, took ∼32 s.
However, it can be sped up by running in parallel over
multiple CPU cores using multiprocessor versions of the
optimization algorithm. For example, see the parallel
version of the scipy.optimize [77,78] Python routine.
We also used our method for the NSBH event

GW200115 [79] (see Fig. 10 in Appendix C) and obtained
a reasonably good match of posterior samples between our
method and PyCBC standard likelihood.
While our mesh-free framework has the potential to

contribute to future LIGO low-latency PE efforts, it is
also essential to acknowledge some limitations of the
current implementation: First, the RBF mesh-free inter-
polating functions are seen to be accurate only over a
relatively narrow domain in the intrinsic parameter space,
which leads to using narrow prior boundaries to carry
out the PE analysis. This constraint restricts the flexibility
of the mesh-free PE analysis compared to standard

FIG. 7. We present the run times for reconstructing a number of
simulated BNS events injected in Gaussian noise (Sec. IV B)
using the mesh-free method. Higher SNR injections took longer
to reconstruct due to their narrowly peaked likelihood. The
analysis utilized 32 (64) cores, represented by blue dots (red
circles). The black (green) star shows the GW170817 event’s run
time on 32 (64) cores for reference. With 64 cores, the median run
time decreased to around ∼2.6 min compared to ∼3.9 min with
32 cores. For the RelBin method, using ϵ ¼ 0.000198, the
median run time is ∼22 min on 32 cores. The RelBin PE run
times crucially depend on the value ϵ, and taking higher values of
ϵ can result in lower run times.
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approaches. A potential solution to overcome this issue
could be to divide the intrinsic parameter space into
smaller “patches” and generate interpolants for each
patch independently [80].
In the present implementation, the prior bounds (albeit

narrow) were obtained from the best-matched template as
explained in Sec. III A 1. Since the PE pipeline is
expected to be triggered by an upstream search pipeline,
we have used the most significant trigger parameters (λ⃗�)
as the starting point. Using a suitable optimization
algorithm, this point ultimately leads us to a nearby
reference point (λ⃗ref ), which serves as the center of the
hyperrectangle from which the samples are drawn. The
dimensions of this hyperrectangle along the different
directions are heuristically set to get good accuracy in
the likelihood reconstruction (i.e., we do not use the LVK
results a priori to determine the prior bounds). In the
future, we would like to explore an automated way of
determining the dimensions of this hyperrectangle from
the size of the 90% overlap ellipsoid calculated at λ⃗ref .
Such an idea has been mooted in Pankow et al. [81].
However, since the axes of the overlap ellipsoid do not
necessarily align with the eigendirections of the data-
driven covariance matrix, such an implementation would
require careful thought.
Second, it is worth noting that, despite improvements in

the placement of nodes compared to our previous work, it
still needs investigation for a more generic prescription that
can be applied to any CBC system. Incorporating an
adaptive strategy [82] to identify significant nodes could
enhance interpolation accuracy and strengthen the node
placement strategy.
In this analysis, we have focused exclusively on non-

precessing signal models (TaylorF2 and IMRPhenomD),
with a particular emphasis on the dominant harmonic of
the GW signal. These models do not incorporate tidal
terms [83,84]. Since the tidal deformability parameters
corresponding to the binary components are intrinsic in
nature, we need to include them as interpolating param-
eters in our method, which increases the dimensionality
of the intrinsic parameter space to six. Additionally, a
greater number of nodes are required to ensure an
accurate interpolation of the SVD coefficients and tem-
plate norm square. We will explore these ideas in future
follow-ups of this work.
Although we anticipate that extending our method to

include higher-order harmonics should be relatively
straightforward, it may result in increased start-up costs.
In the case of precessing-spin waveform models [85,86], a
mesh-free framework is particularly suitable since the
number of RBF nodes does not exponentially increase
with the dimensionality of the parameter space. In this
regard, the relative-binning algorithm has been recently
implemented for gravitational wave parameter estimation
with higher-order modes and precession [87]. In the future,

we would like to overcome these limitations by enhancing
the node placement algorithm further, expanding the
boundaries of the sample space, and incorporating models
that account for in plane spins [85].

Codes used in this analysis are publicly available in the
following Github repository [88].
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APPENDIX A: EFFECT OF DIFFERENT
CHOICES OF GAUSSIAN DISTRIBUTED NODES

ON THE POSTERIORS

The distribution of input nodes plays an important role in
the mesh-free PE algorithm as described in Sec. III A 1.
One would like to place nodes intelligently so as to pro-
vide good coverage near the support of the log-likelihood
function, which falls very steeply around its mode.
Here, we show the effect of node placement on the
posteriors obtained. We choose a certain fraction of RBF
nodes (Ng) from a normal (Gaussian) distribution described
by the covariance matrix. The remaining nodes are dis-
tributed uniformly over the sample space. We find that the
overall accuracy increases as we choose a higher fraction of
Gaussian distributed nodes (particularly on the ι and dL

parameters). Although, the estimations of α, δ, and M are
quite robust against different choices of Ng.

APPENDIX B: GW200115: AN NSBH EVENT

We present the results of reconstructing the
GW200115 NSBH event using the mesh-free and the
standard PyCBC likelihood (for reference). The seismic
cutoff frequency is set to 20 Hz, assuming the
IMRPhenomD waveform model. We used a 64 s data
segment around the GW200115 NSBH event, and PSD
was generated using the same data with median-mean
estimation. The center of the sample space was chosen as
the maximum a posteriori probability values of the PE
samples obtained by previous LIGO analysis [90].

FIG. 8. The effect of choosing different values of Ng (fraction of Gaussian nodes) on the reconstructed parameters.
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The parameters for RBF interpolation are as follows:
N¼1100, NGauss¼110, ν¼10, ϕ¼ expð−ϵr2Þ, and ϵ¼20.
The sampling parameters for DYNESTY nested sampler
were the following: (i) nlive ¼ 2500, (ii) walks ¼ 350,
(iii) sample ¼ rwalk, and (iv) dlogz ¼ 0.1.
The mesh-free likelihood-based PE process was com-

pleted in ∼16 min when performed on 64 cores. The sky
maps are broadly in agreement with results published by
the LVK Collaboration [91].

APPENDIX C: LIKELIHOOD ERRORS

To assess the accuracy of the mesh-free method to
approximate the likelihood, we generated 104 random
query points from the prior distribution specified in
Table I. Then, we calculated the likelihood using both
the mesh-free and PyCBC likelihood methods. The median
absolute error for both TaylorF2 and IMRPhenomD wave-
form models was found to be Oð10−2Þ.

FIG. 9. The corner plot shows the posterior distributions of ten-dimensional parameters using two different methods: the mesh-free
method and the standard PyCBC likelihood. The estimated distributions from both methods exhibit good agreement, as indicated by the
median values in the marginalized posterior titles. In the inset, the sky maps are also shown, which are in agreement with results
published by the LVK Collaboration [91].
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