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Finite-energy particles in free fall can collide with diverging center-of-mass energy near rapidly rotating
black holes. What are the most salient observational signatures of this remarkable geometric effect? Here
we revisit the problem from the standpoint of the near-horizon extreme Kerr geometry, where these
collisions naturally take place. It is shown that the ingoing particle kinematics admits a simple, universal
form. Given a scattering cross section, determination of emission properties is reduced to evaluation of
particular integrals on the sky of a near-horizon orbiting particle. We subsequently apply this scheme to the
example of single-photon bremsstrahlung, substantiating past results which indicate that ejected particles
are observable, but their energies are bounded by the rest masses of the colliding particles. Our framework
is readily applicable for any scattering process.
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I. INTRODUCTION

The rapidly rotating, near-extreme Kerr geometry is a
remarkable family of solutions of Einstein’s equation
describing a neutral black hole (BH) with nearly maximal
angular momentum. If such near-extreme BHs exist in
nature, one of their notable properties, established in [1–4],
is that free-falling particles can collide with parametrically
large center-of-mass energy in their vicinity. From an
asymptotic viewpoint, such collisions require a particular
fine-tuning of the particles’ conserved energy and angular
momenta, naturally realized when one particle is a near-
horizon orbiter, while—importantly—these momenta are
kept finite. Since a sizable portion of astrophysical BHs are
believed to rotate quite rapidly [5,6], this effect sparks the
imagination as a possible avenue toward natural “celestial
particle accelerators.”
As the above-described collisions take place in the

region just outside the BH event horizon, it is natural to
question their detectability by an asymptotic observer;
possible obstructions include infall of ejecta into the hole
and parametrically large redshifts. Theoretical investigation
of the collisions’ observational signatures was pioneered
in [7–9], where a particular focus was put on the process of
inverse Compton scattering in a high-spin Kerr spacetime.
The maximal energy of escaping photons was found to be
of the order of the electron mass, i.e., in the gamma ray
regime. A related study [10] considered the signatures of

putative dark matter annihilation processes in the vicinity of
extreme Kerr. There, the fraction of escaping particles from
a single collision was analyzed for the particular case of
escape in the equatorial plane.
Since [11], it was understood that the near-horizon,

extremal Kerr (NHEK) limit is given by a simple, non-
degenerate, symmetry-enhanced geometry. This insight
inspired studies of possible implications for quantum BH
physics [12,13], as well as potential observational signa-
tures of high BH spin, e.g., [14–17]. It is no accident that
the same NHEK geometry describes the arena in which
such high-energy collisions take place. In this paper, we
revisit the problem of characterizing the collision signa-
tures by employing a purely NHEK perspective. Our goal is
to provide a simple, general framework to study the
emission properties for any choice of scattering process.
Interestingly, the NHEK limit yields a unique, universal
kinematic setup for ingoing particles which we derive in
Sec. II. We then develop the framework for computation of
properties of (massless) particles emitted to asymptotic
infinity in general scattering processes, working in the
frame of a NHEK orbiter in which relativistic effects of
escape/capture and red/blueshift are summarized by a
simple, nontrivial geometric picture on the orbiter’s sky
[18–21], reviewed in Sec. III. We provide tools for efficient
computation of the escape probabilities of ejecta and their
red/blueshift, and of the expected energy; they are pre-
sented in Sec. IV. Subsequently, in Sec. V, we consider a
particular example of a 2 → 3 process of single-photon
bremsstrahlung. We first use momentum conservation to
derive analytical bounds on the emitted and observed
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photon energies, and then use an approximate cross
section for proton-electron bremsstrahlung to compute
explicitly some characteristics of the emission in a par-
ticularly interesting range of collision energies.
Our results give a new perspective that corroborates the

picture established in [9,10,22–26]: signatures of NHEK
high-energy collisions are in principle observable; how-
ever, the energy of the escaping particles, in the processes
that have been considered, are bounded by the rest mass of
one of the colliding particles—namely, the NHEK orbiter.
It would be interesting to consider more general scattering
processes, especially with more particles involved, since
this reduces the ratio of momentum constraints to degrees
of freedom. Our formalism is suitable for the study of
arbitrary NHEK processes, so it could be useful for
contrasting different scattering cross sections and/or prov-
ing more general bounds. Herein we do not consider any
possible astrophysical bounds on BH spin [27,28] as we are
interested in understanding what is possible in principle, all
the way up to extremality.

II. HIGH-ENERGY PARTICLE COLLISIONS
NEAR EXTREMALITY

Neutral BHs of massM and angular momentum J ¼ aM
are described by the Kerr metric, given in Boyer-Lindquist
coordinates by1

ds2 ¼ −
Δ
Σ
ðdt − a sin2 θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2 θ
Σ

½ðr2 þ a2Þdϕ − adt�2; ð1Þ

where Δ ¼ r2 − 2Mrþ a2 and Σ ¼ r2 þ a2 cos2 θ.
Geodesic particle trajectories in the Kerr geometry admit
four independent integrals of motion which render geodesic
motion in Kerr integrable: the particle massm, its energy E,
azimuthal angular momentum L, and Carter constant
Q ¼ p2

θ − cos2 θ½a2ðp2
t −m2Þ − p2

ϕ csc
2 θ�, where pν is

the four-momentum. Conservation of E and L is guaranteed
by stationarity and axisymmetry, respectively, and that ofQ
derives from the existence of a rank-two Killing tensor. In
terms of these conserved quantities, the momentum of a
geodesic particle in the Kerr geometry is given by

pνdxν ¼ −Edt�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp
ΔðrÞ dr�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ þ Ldϕ; ð2Þ

where

RðrÞ ¼
h
Eðr2 þ a2Þ − aL

i
2

− ΔðrÞ
h
Qþ ðL − aEÞ2 þm2r2

i
; ð3Þ

ΘðθÞ ¼ Qþ a2ðE2 −m2Þ cos2 θ − L2 cot2 θ; ð4Þ
play the role of effective potentials for radial and polar
motion, respectively.
It is well known [1–3] that near-extremal, rapidly

rotating Kerr BHs with a ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p
where κ ≪ 1, act

as “natural particle accelerators”: finite-energy geodesic
particles can collide with arbitrarily large center-of-mass
energy near the BH horizon rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
¼

Mð1þ κÞ when their angular momentum is properly tuned.
The effect is naturally explained in terms of the near-
horizon geometry [11,29,30]. In order to faithfully describe
the latter, it is instrumental to introduce a 1-parameter
family of coordinate transformations [11,14]

t ¼ 2MT
κp

; r ¼ rþð1þ κpRÞ; ϕ ¼ Φþ T
κp

; ð5Þ

and take κ → 0 in (1). This procedure shows that at
extremality the near-horizon region assumes a nondegen-
erate geometry with enhanced symmetry. For 0 < p < 1, it
yields the NHEK geometry

ds2

2M2Γ
¼ −R2dT2 þ dR2

R2
þ dθ2 þ Λ2ðdΦþ RdTÞ2;

Γ ¼ 1þ cos2θ
2

; Λ ¼ 2 sin θ
1þ cos2θ

; ð6Þ

while for p ¼ 1, the so-called near-NHEK metric [31] is
obtained. p determines the rate of scaling into the near-
horizon region as the κ → 0 limit is taken. For example, the
innermost stable circular orbit (ISCO) radius scales with
p ¼ 2=3 when κ → 0, while the innermost (unstable)
spherical photon orbit radius scales with p ¼ 1.
Notably, timelike geodesics which are tuned to the

superradiant bound E ¼ ΩHL, where ΩH ¼ 1=ð2MÞ þ
OðκÞ is the horizon’s angular velocity, can spend a long
proper time in the NHEK, and are at parametrically large
boost with respect to generic, nontuned geodesics which
promptly traverse the NHEK. This geometric feature is
responsible for the high-energy collisions under discussion.
It seems plausible that such fine-tuning could naturally
arise in an accretion disk that includes quasicircular orbiters
and extends into the NHEK. Here we consider, for
simplicity, only equatorial particles, thought of as part of
an equatorial, geometrically thin accretion disk.
Therefore, we consider two types of massive particles:

type I particles which circularly orbit deep in the NHEK
with near-superradiant bound momentum [17],

pI ≈
2Mffiffiffi
3

p mIdΦ; ð7Þ
1We use natural units GN ¼ c ¼ 1.
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where mI is the mass of the particle, to leading order in κ,
and type II “generic” particles which decouple from the
average accretion flow at larger radii, and carry nontuned
angular momentum. As they plunge through the NHEK, to
leading order in κ, their momentum becomes2

pII ≈ −
2ME − L

κp
d
�
T −

1

R

�
: ð8Þ

The momenta pðI=IIÞ are “attractors” in the sense that,
without artificial fine-tuning and before taking collisions
into account, particle momentum in the throat can natu-
rally tend to one of the values (7), (8). Furthermore, the
invariant collision energy pI · pII ∼ κ−p generically
diverges as κ → 0. Indeed, the rest frames of particles I
and II are related by a large boost. Therefore, to under-
stand the observable effects of these high-energy colli-
sions in the NHEK, we will consider the universal
kinematics defined by (7), (8) as ingoing momenta for
the colliding particles. It will be convenient to analyze the
collision in the frame of the circular orbiter [21], particle I,
and use the differential cross section for particle produc-
tion to answer various questions on the observability of
the process. For concreteness, in Sec. V we focus on
single-photon production in collisions of two such incom-
ing particles.

III. UNIVERSAL KINEMATICS OF COLLISION
IN THE SKY OF A NHEK ORBITER

We will analyze the collision in the frame of particle I,
the circular orbiter. An especially useful concept for the
present analysis is the orbiter’s sky: a 2-sphere parametriz-
ing spatial directions of emission/arrival of (null) geodesics
at the orbiter’s rest frame. The exact map between the sky
of a general circular orbiter in Kerr and the integrals of
motion L=E,Q=E2 of the corresponding (null) geodesics is
reviewed in Appendix A. Points on the sky are labeled by
Ψ∈ ½0; π�, the polar angle measured from the orbiter’s
direction of motion, and ϒ∈ ð−π; π�, the azimuthal angle
measured from the frame axis parallel to the BH spin axis,
as illustrated in Fig. 1.
To deduce the properties of potentially observable

photons produced by the collisions, we need to compute
a few special objects and properties of the sky of particle I.
First, using (8) and (A9) in the near-horizon, near-extremal
limit, the sky angle corresponding to the direction of
motion of the incoming particle II is

ðΨII;ϒIIÞ ¼
�
2π

3
;−

π

2

�
: ð9Þ

The cross section is invariant under rotations which
leave (9) fixed. The angle θ between (9) and any direc-
tion to which an outgoing photon is emitted ðΨ;ϒÞ is
given by

cos θ ¼ −
ffiffiffi
3

p

2
sinΨ sinϒ −

1

2
cosΨ: ð10Þ

Second, we need the critical curve, a closed curve on the
sky which delineates the directions of capture inside the BH
from those of escape to asymptotic infinity for emitted
massless particles. Remarkably, in the near-horizon, near-
extremal limit, the curve assumes a simple, universal fixed-
point value, which is independent of the orbiter’s NHEK
radius and is given by ðΨ̃ðϒÞ;ϒÞ, with

cos Ψ̃ðϒÞ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3þcos2ϒÞcos2ϒ
p

−2
4þcos2ϒ 0 ≤ ϒ ≤ π;

0 −π ≤ ϒ ≤ 0:
ð11Þ

Computing (11) requires a novel type of near-horizon
triple-scaling limit where one keeps track of the rates at
which: (a) the BH tends to extremality; and both (b) the
orbiter, and (c) the photon shell radii (A12) scale close to
the horizon [21]. The resulting critical curve is shown in
Fig. 2. We will denote by E the region of the sky for which
cosΨ > cos Ψ̃, corresponding to photon escape. E covers
≈54.64% of the directions in the sky.

FIG. 1. Angles parametrizing the orbiter sky. Ψ is measured
from the orbiter’s direction of travel, i.e., the forward direction
e½ϕ�. ϒ is measured from the direction perpendicular to the
equatorial plane e½θ�, in the plane perpendicular to the forward
direction. e½r� is the final (outwards) direction in the orbiter’s
orthnormal frame (A4).

2Here the angular momentum is bounded by 2ME > L.
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Third, we need the red/blueshift that escaping photons
suffer/enjoy as they travel to the asymptotic region.3 In
terms of the emission angle, the red/blueshift factor is given
by [21]

gðΨÞ ¼ 1ffiffiffi
3

p ð1þ 2 cosΨÞ: ð12Þ

For example,maximal blueshift occurs for forward emission,
gðΨ¼0Þ¼ ffiffiffi

3
p

; critical emission, with cosΨ∈½−1=2;0�, has
g∈ ½0; 1= ffiffiffi

3
p �. We denote by B the sky region with

cosΨ > ð ffiffiffi
3

p
− 1Þ=2, illustrated in Fig. 2. B corresponds

to the blueshifted emission directions, all ofwhich escape the
BH; it covers ≈31.70% of the sky.

IV. ESCAPE EMISSION PROPERTIES FROM
A GENERAL SCATTERING PROCESS

With the universal kinematics and shape of the critical
curve at hand, we can analyze properties of collision
processes with photon emission as a function of their

differential cross sections. In this paper we consider doubly
differential cross sections dσ=ðdkdΩÞ only for single-
photon emission, and integrate over all final states of the
other outgoing particles. By symmetry, this cross section
will be a function only of k, the photon energy/momentum
in the rest frame of particle I, and of cos θ (10), the photon
emission angle with respect to the direction of travel of
particle II. The probability of a photon to reach asymptotic
null infinity given that it has energy k, the specific escape
probability, is given by

PEðkÞ ¼
�
dσ
dk

�
−1 Z

E
dΩ

dσ
dkdΩ

ðk; cos θÞ; ð13Þ

where E is the region of escape, and

dσ
dk

¼
Z
S2
dΩ

dσ
dkdΩ

; ð14Þ

is the total cross section at energy k. Similarly, the
probability of a photon with energy k to escape and reach
infinity with g > 1, the blueshifted specific escape prob-
ability, is given by

PBðkÞ ¼
�
dσ
dk

�
−1 Z

B
dΩ

dσ
dkdΩ

; ð15Þ

where B is the region of blueshifted emission. The expect-
ation value of the emitted energy per collision to infinity by
a photon with energy k, the specific expected escape
energy, is given by

FEðkÞ ¼
�
dσ
dk

�
−1 Z

E
dΩ

dσ
dkdΩ

gðΨÞk: ð16Þ

In general, momentum conservation does not allow for
photon emission in all directions θ∈ ½0; π� at any photon
energy k. Instead, for certain values of k, the differential
cross section is nonzero only for θ < θmaxðkÞ, where 0 ≤
θmaxðkÞ ≤ π depends on the process being considered. The
consequences may be simply understood geometrically, as
described below and illustrated in Fig. 2.
We partition the sky of particle I into regions corre-

sponding to different ranges of values taken by θðΨ;ϒÞ.
θmaxðkÞ then determines which of these regions are acces-
sible for photons produced with energy k, and therefore has
implications for the escape probabilities, as follows:

(i) cos θmax ≥
ffiffi
3

p
2
⇒ PE ¼ 0,

(ii)
ffiffi
3

p
2
> cos θmax ≥ 1−

ffiffi
3

p þ ffiffi
2

p
33=4

4
⇒ PE > PB ¼ 0,

(iii) 1−
ffiffi
3

p þ ffiffi
2

p
33=4

4
> cos θmax ⇒ PE > PB > 0.

Note that whenever cos θmax ≤ −1=2, emission with maxi-
mal blueshift g ¼ ffiffiffi

3
p

can reach asymptotic null infinity.
We also define the total escape probability and the total

expected escape energy at infinity from a single collision,

FIG. 2. Sky of a NHEKorbiter, particle I, shown from above the
e½θ� axis and marked by the direction of motion of particle II (9)
(green arrow), lines of constant photon emission angle θ (10)
(dashed blue lines), the critical curve (red line) delineating
directions of photon escape E (above) and capture S2nE (below),
and directions of redshift factor unity (purple line)—above which
lie directions of blueshifted escape B. The sky is partitioned into
regions according to the value of θ. θmax in the gray region
implies the emitted photon cannot escape the BH; for θmax in the
pink region, emitted photons may escape but only with g < 1;
when θmax is in the light blue or violet regions, photons may
escape with g > 1. When θmax lies in the violet region, the photon
may escape with maximal blueshift g ¼ ffiffiffi

3
p

.

3This quantity is well defined for all null geodesics, including
those that fall into the horizon.
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P̄E ¼ 1

σ

Z
k�

0

dk
dσ
dk

PEðkÞ ¼
1

σ

Z
k�

0

dk
Z
E
dΩ

dσ
dkdΩ

; ð17Þ

F̄ E ¼
1

σ

Z
k�

0

dk
dσ
dk

FEðkÞ¼
1

σ

Z
k�

0

dk
Z
E
dΩ

dσ
dkdΩ

gk; ð18Þ

respectively, wherein

σ ¼
Z

∞

0

dk
dσ
dk

¼
Z

∞

0

dk
Z
S2
dΩ

dσ
dkdΩ

; ð19Þ

is the total cross section area, and k� is the maximal photon
escape energy defined via cos θmaxðk�Þ ¼

ffiffiffi
3

p
=2.

Another interesting quantity we define is the specific
expected observed energy per collision, integrated over all
observation angles, fðkobsÞ. Exchanging the order of
integration in (18), and using (12) and g ¼ kobs=k where
kobs is the observed energy at infinity, we can write

σF̄ E ¼
Z ffiffi

3
p

k�

0

dkobs

Z
k�

kobs=
ffiffi
3

p dkFðk; kobsÞ

¼
Z

dkobsfðkobsÞ; ð20Þ

where

Fðk; kobsÞ ¼
ffiffiffi
3

p
kobs
2k

Z
ϒþ

g ðkobs=kÞ

ϒ−
g ðkobs=kÞ

dϒ
dσ

dkdΩ
; ð21Þ

and

ϒ�
g ðgÞ¼

8<
:
arccos

�
� 2gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2g=
ffiffi
3

p
−g2

p
�
; 0<g< 1ffiffi

3
p ;

�π; 1ffiffi
3

p <g<
ffiffiffi
3

p
:

ð22Þ

V. EXAMPLE: BREMSSTRAHLUNG

As a concrete demonstration, we will apply the general
prescription outlined above to single-photon emission from
bremsstrahlung. First we will use momentum conservation
to derive general constraints on the observed emission, and
then specialize to proton-electron bremsstrahlung (PEB)4 in
the no-recoil approximation and explicitly compute proper-
ties of the emitted radiation. Recall that we idealize to a
geometrically thin, equatorial accretion disk of orbiting
plasma composed of free electrons and nuclei, the lightest
of which originate from ionized hydrogen and constitute a
single proton.

For single-photon bremsstrahlung, momentum conser-
vation implies

k ¼ mIϵþ p0
I · p

0
II

ϵþmI − cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

II

p ; ð23Þ

where mI=II are the masses of particles I/II, ϵ ¼ p½t�
II is the

energy of particle II in the rest frame of particle I, and p0
I=II

are the momenta of the outgoing particles I/II. Since
p0
I · p

0
II ≤ −mImII, (23) yields a maximal scattering angle

for fixed k

cos θmaxðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 −m2
II

p �
ϵþmI −

mIðϵ −mIIÞ
k

�
: ð24Þ

When cos θmax < −1 emission is allowed to all sky
directions. In the ultrarelativistic limit ϵ ≫ mII,

cos θmax ≈ 1 −
mI

k
: ð25Þ

Thus, in high-energy single-photon bremsstrahlung, high-
energy photons k ≫ mI are always beamed forward with
θmax ≈ 0, while photons of k ∼mI may be emitted with
larger deflection angles. Figure 3 graphically summarizes
the momentum conservation constraints in the case of
single-photon PEB.

FIG. 3. Momentum constraints on single-photon PEB between
a NHEK orbiter, particle I, and an ingoing particle with “generic,”
untuned momentum, particle II. We partition the plot into regions
where emission is disallowed (black), allowed to all directions in
the orbiter sky (white), and allowed for θ < θmax (grey, pink, light
blue, violet, in accordance with the color scheme described in
Fig. 2). The bulk of the plot shows the constrains when the orbiter
is the proton; the inset in red shows the constraints when the
orbiter is the electron.

4Some sources in the literature distinguish PEB from electron-
proton bremsstrahlung based on the kinematics—the second of
the two listed particles is taken to be initially at rest. Here we refer
to these processes, which are related by a boost, by the same term.
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For fixed θ, (23) yields a maximal photon energy kmax,

kmaxðθÞ ¼
mIðϵ −mIIÞ

ϵþmI − cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

II

p ; ð26Þ

which is bounded above by the high-energy limit,

k̄ðθÞ ¼ lim
ϵ→∞

kmaxðθÞ ¼
mI

1 − cos θ
: ð27Þ

Thus, the mass of particle II sets the maximal photon
energy, while the particles’ mass ratio controls the rate of
approach of kmax to k̄. The maximal energy with which an
escaping photon can be emitted in the process under
consideration is k� ¼ k̄ðπ=6Þ ≈ 7.46mI. A disparate attrib-
ute is the maximal observed energy of an escaping photon
kobs ¼ gk, which is given by

max
ðΨ;ϒÞ∈ E

fgðΨ;ϒÞk̄½θðΨ;ϒÞ�g: ð28Þ

It turns out that the maximum in (28) is obtained precisely
on the critical curve at ðΨ;ϒÞ ¼ ðπ=2;−π=2Þ, and thus the
observed photon energy is bounded by

kmax
obs ¼ k�ffiffiffi

3
p ¼ 2

�
1þ 2ffiffiffi

3
p

�
mI: ð29Þ

Keeping these general momentum constraints in mind,
we now focus on the particular setup of single-photon PEB
in the limit of negligible recoil. The no-recoil regime we
focus on here exists thanks to the large mass ratio between
electron and nucleus, which for ionized hydrogen is
mp=me ≈ 2 × 103. In this range an especially simple
analytic expression for the cross section is available,
through use of the leading Born approximation, which
was computed by Bethe and Heitler, and Sauter in 1934
[32,33]. The explicit formula in the proton frame is given in
Appendix C; cf. [34,35] for more details. Note that while
we have focused on PEB in the present paper, proton-
proton and electron-electron scattering are perfectly viable
processes to consider as well. When considering emission
of energetic photons produced by such processes, recoil
must be taken into account already for mildly relativistic
collisions.
Working in the rest frame of the orbiter, particle I, we

explicitly compute the emission properties discussed in
Sec. IV for the process e−pþ → e−pþγ using the simple
analytical expressions of [32,33]; see Fig. 4 for results. The
energy range we focus on in the numerical evaluation of the
emission characteristics is 1 ≪ γ ≪ mp=me, which is
ultrarelativistic on one hand, but allows us to neglect the
nucleus’ recoil, or momentum transfer, on the other hand.
We therefore consider γ ∈ ½2; 200� in our computations. At
even higher energies, the no-recoil approximation we use

here breaks down. We expect radiation in that case to be
significantly more beamed towards directions of capture
because of recoil, suppressing emission probabilities.
Still, we calculate also the high-energy (γ → ∞) limiting
result (black solid curves in Fig. 4); while outside the
no-recoil approximation for PEB, it provides a formal
bound which heavier nuclei substituted for the proton can
come closer to saturating. Another noteworthy point is
that for cos θmax > −1, the no-recoil approximation
breaks down for θ⪆θmaxðkÞ even in the energy range
under consideration, since precise equality occurs when
p0
p ·p0

e¼−mImII, implying significant momentum transfer.5

Nevertheless, for simplicity, we use the no-recoil approxi-
mation all the way up to θmaxðkÞ, and for larger angles
we directly enforce the vanishing of the cross section
by multiplying it with a Heaviside theta function,
dσ=ðdkdΩÞ ∝ Θ½cos θ − cos θmaxðkÞ�.
Concisely, we summarize our results for single-photon

PEB in the no-recoil regime as follows. We find significant
specific escape probability for photon emission at all
energies up to a sizable fraction of k�, corresponding to
energies ∼me, deep in the gamma ray regime. Typically, the
electron-as-orbiter case is more observable than the proton-
as-orbiter case; often exhibiting comparable or larger
specific escape probability and specific expected energy.
When the electron is the orbiter, we observe a kinklike
transition in the specific escape probability and specific
expected energy that occurs when cos θmaxðkÞ ¼ −1; the
kink becomes increasingly sharper in the ϵ ≫ mp regime.
We now provide more details on the behavior of particular
observables.

A. Specific escape probability and blueshifted
specific escape probability

When the NHEK orbiter (particle I) is a proton hit by an
incoming electron (particle II), the escape probabilities for
γ ¼ 2 are PE ≲ 0.2 and PB ≲ 0.1, respectively. As dictated
by the momentum constraints, the maximal energy of the
emitted photon is ∼me. The probabilities are nearly k
independent, but as may be expected, they rapidly approach
zero as γ is increased due to relativistic beaming. On the
other hand, when the NHEK orbiter is an electron hit by an
incoming proton, we find a significant probability of escape
(sizable portion of unity) for photon emission at all energies
up to a large fraction of k� even in the 1 ≪ γ limit. In fact,
0.3≲ PE ≲ 0.5 and 0.15≲ PB ≲ 0.3 for k=k� ≲ 0.1. As
mentioned above, we observe an interesting feature, a
kinklike transition, in the escape probability that occurs
when cos θmaxðkÞ ¼ −1; this kink becomes increasingly
sharp in the 1 ≪ γ regime. For photon energies larger than

5Note that the PEB cross section in the approximation
employed here is inapplicable, giving ill-defined results, for
0.5≲ k=k� when γ ≲ 7 in the electron-as-orbiter case; we exclude
this range in Fig. 4.
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the kink energy, escape probabilities decrease rapidly
with increasing k, as the escape region ðΨ;ϒÞ∈ E for
which cos θ > cos θmax shrinks. (See first and second rows
of Fig. 4.)

B. Specific expected escape energy

When the NHEK orbiter is a proton, the expected energy
grows as ∼k2. The maximal expected escape energy is
FE ≈ 0.2me, achieved when γ ∼Oð1Þ and k ∼ k�, and the

FIG. 4. Escaped emission properties of single-photon PEB between a NHEK orbiter, particle I, and a generic plunger, particle II, in the
no-recoil approximation. We compare the proton-as-orbiter (left column) and the electron-as-orbiter (middle column) cases. The specific
escape probability (top row), blueshifted specific escape probability (second row), and specific expected escape energy (third row) are
presented as a function of k=k� at fixed γ ∈ ½2; 200� (colored curves with explicit values shown on the right column). In the middle
column the large γ limit is indicated by the black curves. The fourth row is a recreation of Fig. 3 in the region where emission may
escape, upon which the region of interest γ ∈ ½2; 200� is marked by red dashed lines. In this region, emission is kinematically allowed to
(almost) all sky directions in the proton-as-orbiter case; nevertheless the radiation is significantly beamed towards directions of capture
in the large γ limit. In the electron-as-orbiter case, a significant range of photon emission energies k have a kinematic cutoff on the sky
emission angle θmax < π. Notable regions where θ < θmax are shaded using the color scheme established in Fig. 2. For all γ, emission is
allowed to the whole sky in the region left of the black line, and can reach infinity with maximal redshift factor g ¼ ffiffiffi

3
p

to the left of the
violet line. Despite having a lower maximal escape photon energy k� and often less orbiter sky directions available, the electron-as-
orbiter case generally has higher specific escape probabilities and expected escape energy, including nonzero values in the large γ limit.
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expected escape energy decreases with increasing γ.
When the NHEK orbiter is an electron, we find OðmeÞ
expected escape energy for a significant portion of photon
energies k. The kink transition is also visible in expected
escape energy, with FE growing as ∼k2 prior to the kink
energy, peaking in the region where −1=2 < cos θmax <
ð1 − ffiffiffi

3
p þ ffiffiffi

2
p

33=4Þ=4, and finally going to zero as k
approaches k�. The peak in FE appears after the kink,
as the shrinkage of allowed escape directions competes
with the photon energy increase. (See third row of Fig. 4.)
We conclude that, as in [9,10,22–26], single-photon PEB

signatures of high-energy collisions can make it out to
asymptotic infinity, but only with bounded-energy photons
of ∼me.
It is instructive to note that the center-of-mass collision

energy between an ISCO orbiter and an equatorial plunging
particle is ∼κ−1=3 [3]. Therefore, for ionized hydrogen the
no-recoil approximation should hold up to κ ∼ 10−9. Note
also that we have not discussed neither the angular
distribution of the radiation nor its optical appearance.
The former would require a considerably more complicated
analysis since the map between emission angle in the rest
frame of particle I and angle of arrival at the celestial sphere
is highly oscillatory for a NHEK emitter [21]. Regarding
the latter, we do know that a sufficiently inclined asymp-
totic observer will see most of the emitted photons
showing up parametrically close to the NHEK line [15].
An exception is the neighborhood of the emission direction
ð2π=3; π=2Þ which can show up far from the NHEK line,
see Appendix B.
Finally we note that it would be interesting to investigate

more general processes using our formalism. In particular,
it seems conceivable that processes involving more emitted
particles may sustain more freedom under the momentum
constraints and be able to emit more energetic particles to
infinity. The question of whether this is the case, or there
exists a general bound on the energy of emitted particles, is
left for future investigation.
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APPENDIX A: FRAME AND SKY OF A
PARTICLE ORBITING A KERR BH

Here we describe the collision in the frame of the circular
equatorial NHEK orbiter, particle I, which has Kerr energy
E ¼ m=

ffiffiffi
3

p
, azimuthal angular momentum L ¼ 2Mm=

ffiffiffi
3

p
,

and Carter constant Q ¼ 0. In order to describe the
universal kinematics of the collision in that frame, we

define the orbiter’s frame and emission angles in the
subextremal case, before taking the NHEK limit.
A Kerr circular orbiter at radius r obeys Θðπ=2Þ ¼

Θ0ðπ=2Þ ¼ 0 and RðrÞ ¼ R0ðrÞ ¼ 0. Solving these equa-
tions for its conserved quantities yields Q ¼ 0, and

E ¼ m
r3=2 − 2M

ffiffiffi
r

p � a
ffiffiffiffiffi
M

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 � 2a

ffiffiffiffiffi
M

p
r3=2

p ; ðA1aÞ

L ¼ �m
ffiffiffiffiffi
M

p r2 ∓ 2a
ffiffiffiffiffiffiffi
Mr

p þ a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 � 2a

ffiffiffiffiffi
M

p
r3=2

p ; ðA1bÞ

where the upper/lower sign corresponds to prograde/retro-
grade orbits, respectively. These orbiters have four-velocity

u ¼ p=m ¼ ðr3=2 � a
ffiffiffiffiffi
M

p Þ∂t �
ffiffiffiffiffi
M

p
∂ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3 − 3Mr2 � 2a
ffiffiffiffiffi
M

p
r3=2

p ; ðA2Þ

and angular velocity Ω ¼ uϕ=ut. Circular orbits are stable
[R00ðrÞ < 0] down to the ISCO radius

r�isco ¼ M
h
3þ Z2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p i
; ðA3aÞ

Z1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

3

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a⋆

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a⋆

3
p �

; ðA3bÞ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2⋆ þ Z2

1

q
; a⋆ ¼ a=M: ðA3cÞ

We take the following local orthonormal frame for a
circular orbiter:

e½t� ¼ u; ðA4aÞ

e½r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

þ a2

r2

r
∂r; ðA4bÞ

e½θ� ¼
1

r
∂θ; ðA4cÞ

e½ϕ� ¼ vutð∂t þ ω∂ϕÞ þ γ

ffiffiffiffiffiffiffiffiffiffi
ωr
2aM

r
∂ϕ; ðA4dÞ

where

ω ¼ −
gtϕ
gϕϕ

¼ 2aMr
ðr2 þ a2Þ2 − a2Δ

; ðA5Þ

is the so-called “frame dragging” angular velocity induced
by the BH’s rotation, and

v ¼ ðr2 þ a2Þ2 − a2Δ
r2

ffiffiffiffi
Δ

p ðΩ − ωÞ; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ðA6Þ
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are the velocity and Lorentz factor of the orbiter relative to a
locally nonrotating frame. The frame (A4) obeys

gμνe
μ
½a�e

ν
½b� ¼ η½a�½b�; η½a�½b�eμ½a�e

ν
½b� ¼ gμν; ðA7Þ

where η½a�½b� ¼ diagð−1; 1; 1; 1Þ. Frame components of
four-vectors Vμ are given by

V ½a� ¼ η½a�½b�eμ½b�Vμ: ðA8Þ

Spatial directions at fixed time in the frame of the orbiter,
the orbiter sky, can be parametrized by angles Ψ∈ ½0; π�,
measured from the orbiter’s direction of motion e½ϕ�, and
ϒ∈ ð−π; π�, measured from the frame axis parallel to the
BH spin axis e½θ�, in the plane perpendicular to the direction
of motion. See Fig. 1. Emission angles of particles in the
orbiter frame are thus given by

Ψ ¼ arccos
p½ϕ�

p½t� ; ðA9aÞ

ϒ ¼ �r arccos

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos2 Ψ
p p½θ�

p½t�

�
; ðA9bÞ

where the orbiter-frame rescaled momenta are

p½ϕ�

p½t� ¼
1

1−Ωλ

�
γrλ

ut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2Þ2−a2Δ

p −vð1−ωλÞ
�
; ðA10aÞ

p½θ�

p½t� ¼ �θ

ffiffiffi
η

p
rutð1 − ΩλÞ : ðA10bÞ

Here, λ ¼ L=E and η ¼ Q=E2 are the particle’s energy-
rescaled azimuthal angular momentum and Carter constant.
For impinging (opposed to emitted) particles, their direction
of arrival to the orbiter is antipoldal to that defined by (A9),
i.e. it can be found by taking ðΨ ↦ π −Ψ;ϒ ↦ ϒþ πÞ
or ðp½ϕ� ↦ −p½ϕ�; p½θ� ↦ −p½θ�Þ.
The sky of any local observer in a single-BH geometry

naturally divides into two parts by the behavior of null
geodesics intersecting the observer. Photons emitted into
the patch of the sky which includes the “direction to the BH
center”

ðΨ•;ϒ•Þ ¼
�
arccosð−vsÞ;−

π

2

�
; ðA11Þ

defined by λ ¼ η ¼ 0 with �r ¼ −1, will be captured by
the BH while those with direction of travel in the com-
plementary patch will escape to infinity. Points precisely on
the critical curve correspond to a special one-parameter
family of ðλ; ηÞ values for which a photon can orbit the
BH indefinitely at a fixed radius, known as spherical or
(unstably) bound photon orbits [36,37]. The spherical

photon orbits exist at the photon shell region [38] given
by r̃∈ ½r̃−; r̃þ� where

r̃� ¼ 2M

�
1þ cos

�
2

3
arccos

�
� a
M

���
: ðA12Þ

The conserved quantities ðλ; ηÞ of the spherical orbits are
given by the critical values

λ̃ðr̃Þ ¼ aþ r̃
a

�
r̃ −

2Δðr̃Þ
r̃ −M

�
; ðA13aÞ

η̃ðr̃Þ ¼ r̃3

a2

�
4MΔðr̃Þ
ðr̃ −MÞ2 − r̃

�
: ðA13bÞ

The shape of the critical curve is determined by mapping
the locus of spherical photon orbits in ðλ; ηÞ space onto the
orbiter sky via (A9), (A10), giving the closed curve

C ¼
n
ðΨðλ̃Þ;ϒðλ̃; η̃ÞÞjr̃− ≤ r̃ ≤ r̃þ

o
; ðA14Þ

where �r ¼ signðr̃ − rÞ along the critical curve. Finally,
the redshift factor is given by

g ¼ E

p½t� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 � 2a

ffiffiffiffiffi
M

p
r3=2

p
r3=2 � ffiffiffiffiffi

M
p ða − λÞ : ðA15Þ

APPENDIX B: SUPERRADIANT EMISSION
IN THE SKY OF A NHEK ORBITER

Here we elaborate on the relation between the scaling of
particles to the superradiant bound, and the angle in which
they are emitted or arrive at the NHEK orbiter. To this end,
we consider the triple-scaling limit

a ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p
; 0 < κ ≪ 1; ðB1aÞ

r ¼ rþð1þ κpRÞ; 0 < p < 1; ðB1bÞ
λ ¼ Mð2þ κqlÞ; 0 < q ≤ 1: ðB1cÞ

For example, the ISCO is p ¼ 2=3, R ¼ 21=3, as rþisco ¼
rþð1þ 21=3κ2=3 þOðκÞÞ for κ ≪ 1. Taking the limit
κ → 0, we find a relation between how particles tune to
the superradiant bound, and the range of angles with which
they can be emitted from the orbiter,

ðcosΨ;cosϒÞ¼

8>>>>><
>>>>>:

�
−1

2
;0
�
; q<p;�

l
3R−2l ;�θ

signð3R−2lÞ ffiffi
η

p
R

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3R2−4lRþl2

p
�
; q¼p;�

0;�θ

ffiffi
η

pffiffi
3

p
M

�
; q>p:

ðB2Þ

Thus, particles which tend to the superradiant bound at
the same rate as the orbiter radius tends to r ¼ M, ðq ¼ pÞ,
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can leave or enter the orbiter sky from any direction. On the
other hand, particles which tend to the superradiant bound
faster then the orbiter radius tends to r ¼ M, ðq > pÞ, can
only enter or leave the sky on the curve delineating the
forwards and backwards hemispheres. Finally, particles
which tend to the superradiant bound at a slower rate than
the orbiter radius tends to r ¼ M, ðq < pÞ—including
generic particles—can only enter the sky in the equatorial
plane at the two directions with Ψ ¼ π=3 and leave the sky
equatorially at the two directions with Ψ ¼ 2π=3.
In the case of the collisions considered in this paper,

particle I is the NHEK orbiter and particle II is a plunging,
generic particle, i.e., �r ¼ −1 and angular momentum
L≈2M in the extremal limit. Therefore, particle II must
have ðΨII;ϒIIÞ ¼ ð2π=3;−π=2Þ. Note that both ϒ ¼ �π=2
correspond to generic, nonsuperradiant particles; however,
ϒ ¼ π=2 corresponds to an outgoing particle with �r ¼ 1,
which would need to be emitted by some process deeper in
the NHEK. This seems like a less probable situation, as
most directions in the NHEK orbiter sky correspond to
superradiant emission. The latter fact also implies that the
image of most of the NHEK orbiter’s emission will appear
near the NHEK line, for sufficiently inclined observers that
have access to it [15].

APPENDIX C: BETHE-HEITLER
BREMSSTRAHLUNG DIFFERENTIAL

CROSS SECTION

Here we present the Bethe-Heitler bremsstrahlung differ-
ential cross section in the orbiter (particle I) rest frame,
when the orbiter is the electron and the plunger is the
proton. The reciprocal case is related to the presented one
by a boost [35]. Defining

jpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p

q
; ðC1Þ

X ¼ kðϵ − jpj cos θÞ
me

; ðC2Þ

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ X2 − 2ϵX

q
; ðC3Þ

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ 2k

m2
p

me

s
; ðC4Þ

the cross section is

dσ
dkdΩ

¼ αr2e
2πme

	
Yðjpj− ϵcosθÞ

jpj2 þY½ðk−meÞjpj−kϵcosθ�
kZ2

þ meY
kjpj3

�
ϵ2þkm2

pϵ

Xme
−2ð2ϵ2þm2

pÞcos2θ
�

−
2m2

p

jpjX ln

�
ϵþY −X

mp

�
þ Am2

p

kjpjmeZ3
ln

�
ZþY
Z−Y

�

þ B
k3jpj4 ln

�jpjðjpjþYÞ
mpX

−
ϵ

mp

�

; ðC5Þ

where

A ¼ −3k2m2
p þ kme

h
4m2

p − ðX − 2ϵÞðX − ϵÞ
i
þm2

eY2;

ðC6Þ

B ¼ −k3m2
p

h
m2

p þ ðX − 2ϵÞϵ
i

− k2mem2
p

h
jpj2 − XðX þ ϵ − 6ϵ cos2 θÞ

i
þ 2k2me

h
ϵ3ðϵ − XÞ þ jpj2ðX2 − Xϵþ ϵ2Þ

i
þ 4km2

eϵ
2XðX − ϵÞ − 2m3

eX2ϵðX − ϵÞ; ðC7Þ

α is the fine structure constant, and re is the classical
electron radius. Note that this cross section has an emission
direction cutoff θmaxðkÞ (24), which does not appear in
the no-recoil approximation but can be enforced in eval-
uations of the emission properties of Sec. IV by taking
dσ=ðdkdΩÞ ∝ Θ½cos θ − cos θmaxðkÞ�, as described in
Sec. V. Lastly, in the high-energy limit ϵ ≫ mp, the cross
section (C5) is, to leading order,

dσ
dkdΩ

¼ αr2e
πme

ln

�
ϵ

mp

�
C

C ¼ ð1 − cos θÞ2 k
me

− ð1þ cos2 θÞð1 − cos θÞ

þ ð1þ cos2 θÞme

k
: ðC8Þ
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