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We derive new positivity bounds at finite momentum transfer, assuming a large separation between the
mass m of the lightest particle in the effective theory and the mass gap M to new heavy states. Massive
gravity parametrically violates these bounds unless the cutoff is within 1 order of magnitude of the graviton
mass M ≲Oð10Þm. Nongravitational effective theories of massive spin-2 particles are similarly bounded.
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I. INTRODUCTION

The principles of causality, unitarity, crossing symmetry,
and Lorentz invariance enforce nontrivial constraints on
otherwise healthy-looking effective field theories (EFTs),
which describe the emergent infrared (IR) dynamics
relevant to low energy observers. The simplest of these
constraints takes the form of inequalities among scattering
amplitudes, or Wilson coefficients, and are therefore known
as positivity bounds. These have found interesting appli-
cations in particle physics and cosmology, allowing to
discern EFTs that can have a consistent ultraviolet (UV)
description—the EFT landscape—from theories that do
not—the EFT swampland.
Positivity bounds shape the space of EFT amplitudes, by

constraining the structure of higher derivative interactions.
These have played a particularly important role in our
understanding of possible departures from Einstein gravity,
see, e.g., [1–25].
In this article, we turn our attention towards the theory of

massive gravity, focusing for concreteness on the de Rham-
Gabadadze-Tolley (dRGT) theory as well as on various
generalizations [26–28]. dRGT is a (generally covariant)
EFT of a single massive spin-2 particle, whose mass m is
experimentally constrained to be of the order of the smallest
energy scale in our Universe, the Hubble parameter: m ∼
H0 (see, e.g., [29] and references therein). Our goal is to
understand whether this EFT can be used to describe
physics at parametrically larger scales (distances much

shorter than the Hubble radius H−1
0 ), as relevant for any

practical and cosmological application.
Positivity has already been employed in this context

[30–32]. Bounds restricted to forward scattering imply that
the two free parameters of dRGT massive gravity, c3 and
d5, must live in a certain finite compact region [30] and that
the ultimate energy-cutoff M of the theory is smaller than
M ≪ ðm3mPlÞ1=4 [31,33], with mPl the reduced Planck
mass.1 This scale corresponds to distances M−1 roughly
larger than the size of our Solar System.
In this work we extend massive gravity positivity bounds

to regimes of large momentum transfer, jtj ≫ m2, exploit-
ing two basic observations. Firstly, inelastic matrix ele-
ments are bounded by elastic ones; so finite-t dispersive
integrals must be smaller than forward ones. Secondly, for
the unknown part of dispersive integrals with c.m. energy
squared, s ≥ M2 ≫ jtj, crossing symmetry is simple and
resembles near-forward or massless scattering.
The positivity bounds emerging from this analysis lead to

a much stronger condition on the regime of validity of dRGT.
We find that the cutoff of massive gravity is parametrically
close to its mass, and tied to it by the linear relation,

M ≲Oð10Þ m; ð1Þ

independently of all the other parameters in the theory. This
conclusion cannot be avoided by the mechanism of
Vainshtein screening [34–36], as all Vainshtein radii from
compact sources are smaller than the size of the Universe.
In Sec. II we lay out our assumptions and derive a simple

version of positivity constraints that is suitable to study
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1Since M is much smaller than the strong coupling scale for
longitudinal polarizations Λ3 ≡ ðm2mPlÞ1=3 in dRGT [26], the
new degrees of freedom must UV complete massive gravity in the
weakly coupled regime.
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massive higher-spin scattering. We apply these bounds to
dRGT in Sec. III. In Sec. IV we show that the bounds apply
also to general deformations from dRGT with higher-
derivative interactions, detuned potentials, and nongravita-
tional theories. Finally, in Sec. V we summarize our results
and discuss future directions. Appendices A, B, and C
report some technical aspects: the definition of the dRGT
theory (A), the bound on the error of certain approxima-
tions (B), and two-sided positivity bounds for the scalar-
vector EFT (C).
We work in the ημν ¼ diagð−;þ;þ;þÞmetric signature.

The Mandelstam invariants in the in-out convention are
−s¼ðp1þp2Þ2¼ðp3þp4Þ2, −t¼ðp1−p3Þ2¼ðp2−p4Þ2,
−u ¼ ðp1 − p4Þ2 ¼ ðp2 − p3Þ2 with sþ tþ u ¼ 4m2.
The angle j·i and square j·� brackets represent spinor-
helicity variables. The scattering amplitudesM are defined
by factoring out the momentum-conservation Dirac-delta
function, i.e., S ¼ I þ iT with, e.g., h3λ34λ4 jTj1λ12λ2i¼
ð2πÞ4δ4ðp1þp2−p3−p4Þh3λ34λ4 jMj1λ12λ2i for a 4-body
interaction. The helicity indices inside in the partial wave
states are treated as labels of the states, so that hλ1λ2j is the
“bra” vector dual to the “ket” jλ1λ2i, keeping, i.e., the same
ordering.

II. POSITIVITY

We study the 2 → 2 scattering of massive gravitons in
flat spacetime. In what follows we list our assumptions and
show how they can be efficiently employed to obtain
parametric bounds of the form of Eq. (1).

(i) Unitarity of the S-matrix reads as follows:

M −M†

i
¼ M†M ≽ 0; ð2Þ

for physical energies s ≥ 4m2. This equation, evalu-
ated on any complete set of states, is ultimately
responsible for positivity. In practical applications
only truncated sets of states can be considered (e.g.,
finite number of partial waves, states of definite
helicity, etc…), and each of these sets accesses
different partial information.
We work with generic initial j1λ12λ2i and final

j3λ34λ4i 2-particle states of arbitrary momentum and
helicity λi. Here j3λ34λ4i≡ RðθÞj1λ32λ4i is defined
by a rotation RðθÞ ¼ expð−iJ2θÞ of an initial state
with given helicity. Positivity of jMðj1λ12λ2i þ
eiαj3λ34λ4iÞj2 for all α, implies

2jh3λ34λ4 jM†Mj1λ12λ2ij ≤ h1λ12λ2 jM†Mj1λ12λ2i
þ h3λ34λ4 jM†Mj3λ34λ4i:

ð3Þ
This has a simple, but powerful, physical interpreta-
tion: inelasticM†Mmatrix elementsmust be smaller

than elastic ones.ByEq. (2) the same statement holds
for ðM −M†Þ=i. When reduced to equal helicities
ðλ1; λ2Þ ¼ ðλ3; λ4Þ, Eq. (3) implies that M†M in
nonforward scattering must be smaller than in the
forward one (generalizing [37,38] to all helicities).
When limited to the forward limit, instead, it implies
that scattering of inelastic helicity must be suppressed
with respect to the elastic one.

Since much of our understanding of dispersion
relations relies on elastic scattering, Eq. (3) provides
an intuitive way of readily extending previous results
to inelastic scattering.

(ii) Causality/Analyticity The center of mass scattering
matrix elements

Mλ3λ4
λ1λ2

ðs; tÞ≡ h3λ34λ4 jMj1λ12λ2i ðc:m:Þ; ð4Þ

are analytic functions in the complex (Mandelstam)
s plane at fixed t ≤ 0, except for branch cuts and
poles located on the real axis (in fact, our results rely
only on analyticity for large enough jsj > RðtÞ with
jRðtÞj < M2 at small enough jtj < M2, as proven in
Ref. [39]). These discontinuities are associated with
physical thresholds (intermediate states exchanged
in the s or u channels) as well as kinematic
singularities. The latter, classified long ago [40],
originate either from the fact that helicity states are
ill-defined when the momenta vanish, at s ¼ 4m2 in
the c.m. frame, or from angular-momentum selec-
tion rules.2 For instance, the elastic-helicity scatter-
ing amplitude,

Mλ1λ2ðs; tÞ≡Mλ1λ2
λ1λ2

ðs; tÞ; ð5Þ

in the theory of a massive spin-2 particle, exhibits
only simple dynamical poles at s ¼ m2 and 3m2 − t
and a kinematic higher order pole at s ¼ 4m2,
see Fig. 1.

(iii) Crossing symmetry This is a simple relation between
amplitudes as functions of momenta and holds in
generic reference frames. In the forward or massless
limit, it involves exchanging any two legs of an
amplitude. At finite momentum exchange and mass,
however, an additional boost must be performed to
bring back the amplitude into the c.m. frame. In a
crossing transformation that takes one particle in the
in/out state into an antiparticle of the out/in state,
the resulting Wigner rotations generically mix all
helicities,

2By rotational invariance, in forward and backward scattering,
the amplitude must behave like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−t=ðs − 4m2Þ

p jλ12−λ34j andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−u=ðs − 4m2Þ

p jλ12þλ34j, respectively, where λij ≡ λi − λj. For
m ¼ 0 these are the only kinematic singularities and are encoded
in little-group scaling factors.
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Mλ3λ4
λ1λ2

ðs; tÞ ¼
XS
λ0i¼−S

X
λ0
1
λ0
2
λ0
3
λ0
4

λ1λ2λ3λ4
ðs; tÞMλ0

3
λ̄0
2

λ0
1
λ̄0
4

ðu; tÞ; ð6Þ

with S the spin of the particle and X the crossing matrix—
writable in terms of a string of Wigner-d matrices [40–43],
where for later convenience we have defined λ̄i ≡ −λi.
In this work, we exploit the fact that for large center of

mass energy m2;−t ≪ s, the structure of X greatly sim-
plifies,

X
λ0
1
λ0
2
λ0
3
λ0
4

λ1λ2λ3λ4
ðs; tÞ ∝

Y
i

� ffiffiffiffiffijtjp
m

s

�jλi−λ0ij
; ð7Þ

providing a
ffiffiffiffiffijtjp
m=s suppression for any helicity change

from the λ1λ̄4 → λ1λ̄2 (high-energy) configuration. So, for
elastic helicity, Eq. (6) becomes

Mλ1λ2ðu; tÞ ¼Mλ1 λ̄2
ðs; tÞ

þ
�
cλ1λ2λ0

1
λ0
2
λ0
3
λ0
4

ffiffiffiffiffijtjp
m

s
þO

�
tm2

su

��
M

λ0
3
λ0
4

λ0
1
λ0
2
ðs; tÞ;

ð8Þ

where in the first term of the second line we sum over the
eight inelastic amplitudes λ01λ

0
2λ

0
3λ

0
4 with only one �1

helicity change with respect to λ1λ̄2λ1λ̄2. Moreover, c’s
in (8) are all known and bounded, c ≤

ffiffiffi
6

p
for spin-2

particles. Notice that some of the inelastic amplitudes on
the rhs of Eq. (8) are further suppressed by powers of t due
to angular momentum conservation close to the forward
limit, see footnote 2.
(iv) Hermitian analyticity Amplitudes in the upper and

lower s-plane are related by complex conjugation,
e.g.,

Mλ3λ4
λ1λ2

ðsþ iϵ; tÞ ¼ Mλ1λ2�
λ3λ4

ðs − iϵ; tÞ ð9Þ

for s and t real.

(v) Polynomial boundedness The amplitude at fixed
t ≤ 0 is polynomially bounded in s; in particular,
the Froissart-Martin bound [44,45] for a gapped
theory implies that

lim
s→∞

Mλ1λ2ðs; tÞ=s2 → 0: ð10Þ

A similar bound has been extended recently to
massless gravity in various dimensions [46].

(vi) EFT separation of scales We assume we are dealing
with a relativistic EFT where m ≪ M, so that one
can systematically calculate amplitudes in the low
energy window,

m ≪ E ≪ M; ð11Þ

to any desired accuracy, provided one works at
sufficiently high loop order and includes operators
of sufficiently large dimension. In the context of
massive gravity, at sufficiently small energy, the EFT
is well described by a Lagrangian comprised of the
Einstein-Hilbert term and the dRGT potential.

Furthermore, because the theory is weakly
coupled all the way to the cutoff (see footnote 1),
we assume that it is possible to neglect the effects
of IR loops; these can systematically be taken into
account; see Refs. [37,47–51].

Now the goal is to show for what values of the
ratio m=M the above assumptions are compatible
with each other, in the context of dRGT. Because of
the simple analytic structure and the simple behavior
under crossing discussed in (ii) and (iii) respectively,
we focus on elastic-helicity amplitudes. We intro-
duce the integral

Aλ1λ2ðtÞ ¼
1

2

I
C

ds
2πi

Mλ1λ2ðs; tÞ þMλ1 λ̄2
ðs; tÞ

ðs − 2m2 þ t=2Þ3 ; ð12Þ

along a contour C in s∈C running around the origin
at 4m2 ≪ jsj ≪ M2, so that it avoids the amplitude
poles while remaining within the region of validity
of the EFT, as shown in Fig. 1. Then, Aλ1λ2 can be
calculated explicitly in terms of the free parameters
of the EFT: c3 and d5 in the case of dRGT.3

Because of analyticity (ii), C can be deformed
to run along the branch cuts and a big circle at
infinity, which vanishes due to Eq. (10) in (v).
Hermitian analyticity (iv) puts Aλ1λ2 in the form
of a dispersive integral of ðM −M†Þ=i, and by
crossing symmetry (iii) it can be rewritten as a single

FIG. 1. Analytic structure of elastic-helicity amplitudes: IR
poles and subtraction points are schematically represented by
orange dots and are well within the contour C. UV branch cuts are
explicitly displayed, whereas IR ones are omitted.

3Aλ1λ2 is independent of the subtraction points since, in dRGT,
the leading amplitudes give ðMλ1λ2ðs; tÞ þMλ1 λ̄2

ðs; tÞÞ ∼ s2 at
fixed t, as opposed to s3, meaning that Aλ1λ2 can be computed as
the s → ∞ residue of the EFT amplitudes themselves.
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integral over the physical values of the Mandelstam
variable s.
The EFT scale separation (vi) allows us to work at

m2 ≪ jtj ≪ M2 so that crossing symmetry within
the integral in jsj ≥ M2 takes the simple approxi-
mate form (8). Using unitarity (i) we rewrite ðM −
M†Þ=i as in Eq. (2) to obtain the following UV
representation for Aλ1λ2,

Aλ1λ2ðtÞ ¼
Z

∞

M2

ds
2π

1

ðs − 2m2 þ t=2Þ3
×
�h3λ14λ2 jM†Mj1λ12λ2i

þ h3λ14λ̄2 jM†Mj1λ12λ̄2i�
þ

ffiffiffiffiffijtjp
m

M2
Δλ1λ2 ; ð13Þ

where Δλ1λ2 captures departures from elastic crossing
in Eq. (8), for s ≥ M2, and is bounded by a known
linear function of other Aλiλjð0Þ, see Appendix B.
The positivity bounds follow directly from the UV

representation of Aλ1λ2 in Eq. (13). In the forward
limit t → 0, j3λ4λ0 i → j1λ2λ0 i so that Aλ1λ2ðt → 0Þ is
a sum of squares, implying

Aλ1λ2ð0Þ ≥ 0; ð14Þ

with the equal sign obtained only in the free theory.
For t ≠ 0 instead, we use the fact that the matrix
elements of M†M are smaller than those at t ¼ 0,
see Eq. (3), and obtain

jAλ1λ2ðtÞj
Aλ1λ2ð0Þ

≤
1þO

� ffiffiffi
jtj

p
m

M2

�
�
1þ t=2

M2−2m2

�
3
: ð15Þ

The termOð ffiffiffiffiffijtjp
m=M2Þ stems fromΔλ1λ2 in Eq. (13)

and, as discussed in Appendix B, is bounded by
the sum of the eight known IR terms,
ð ffiffiffiffiffijtjp

m=M2Þc̄λ1λ2λ0
1
λ0
2
λ0
3
λ0
4
ðAλ0

1
λ0
2
ð0ÞþAλ0

3
λ0
4
ð0ÞÞ=2Aλ1λ2ð0Þ,

summed as described below Eq. (8), and where

we defined c̄λ1λ2λ0
1
λ0
2
λ0
3
λ0
4
≡ jcλ1λ2λ0

1
λ0
2
λ0
3
λ0
4
þ cλ1 λ̄2λ0

1
λ0
2
λ0
3
λ0
4
j=2. In this

way, Eq. (15) can be used to formulate positivity
bounds with complete control of terms of orderffiffiffiffiffijtjp

m=M2.
We remark that in the general case of scattering

identical massless particles of arbitrary spin, we can
write the exact inequality,

jAλ1λ2ðtÞj
Aλ1λ2ð0Þ

≤ ð1þ t=2M2Þ−3 ðm ¼ 0Þ; ð16Þ

similarly to the massless scalar case of Ref. [37].

The problem of finding all positivity constraints
for massive spin-2 particles is quite complex, since
crossing symmetry mixes hundreds of different
amplitudes with each other, producing a nested
network of positivity relations. These can, in
principle, be solved with the methods of, e.g.,
[10,37,47,48,52–54], but the advantage of working
at leading order in

ffiffiffiffiffijtjp
m=M2 is captured by the

simplicity of Eq. (15), which singles out six inde-
pendent inequalities for the elastic helicities 1λ12λ2 ¼
1020; 102þ; 1þ2þ; 1╪2╪; 1╪20; 1╪2þ (where we de-
note by 0, +, and ╪, the longitudinal, transverse, and
transverse-transverse helicities, with other elastic
configurations related to these ones by accidental
parity, time-reversal, and crossing in dRGT). The
inequalities in Eq. (15), via the IR representation
Eq. (12), will be sufficient to constrain the parameter
space of dRGT in the next section.

III. POSITIVITY IN dRGT

Scattering amplitudes in dRGT massive gravity are sup-
pressed by m2 in the forward limit and, for some helicities,
grow rapidly at large jtj. For jtj ≫ m2 this behavior is
incompatible with Eq. (15), for jtj=M2 small enough.
Of the six elastic-helicity configurations at our disposal,

the strongest bounds will come from λ1λ2 ¼ 00; 0þ;þþ,
which give (from the dRGT action reported in
Appendix A),

A00 ⟶
m2≪jtj

t
6Λ6

3

ð1 − 4c3 þ 36c23 þ 64d5Þ ð17Þ

A0þ ⟶
m2≪jtj

t
96Λ6

3

ð1þ 24c3 þ 144c23 þ 384d5Þ ð18Þ

Aþþ ⟶
m2≪jtj

9t
64Λ6

3

ð1 − 4c3Þ2; ð19Þ

while amplitudes involving the transverse polarizations do
not grow with jtj. This has to be contrasted with the values
in the forward limit,

A00 ⟶
t¼0

2m2

9Λ6
3

ð7 − 6c3 − 18c23 þ 48d5Þ ð20Þ

A0þ ⟶
t¼0

m2

48Λ6
3

ð91 − 312c3 þ 432c23 þ 384d5Þ ð21Þ

Aþþ ⟶
t¼0

m2

8Λ6
3

ð7 − 24c23 þ 48d5Þ: ð22Þ

Now, an EFT with a large range of validity can, by
definition, be used at energies much larger than the particle
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mass, m2 ≪ jtj ≪ M2. In this limit, the bounds from
applying Eqs. (15)–(22) would converge to three lines in
the ðc3; d5Þ plane, corresponding to the vanishing of
(17)–(19). These three lines have no common intersection,
as illustrated in the left panel of Fig. 2.
This implies that in dRGT massive gravity, the cutoff of

the theory cannot be arbitrarily large compared to the mass.
To quantify this, we run a bootstrap algorithm for the ratio
m2=M2, assuming only the existence of a range jtj ≪ M2

for which dRGT is a valid description of massive spin-2
scattering. For each value of m2=M2, we determine the set
of points ðc3; d5Þ that are compatible with the finite-t bound
in Eq. (15); if the set is not empty, then we lower m2=M2

and repeat; if the set is empty, then the value is inconsistent
with the assumptions (i)–(vi) and is discarded. The results
of this algorithm are illustrated in the right panel of Fig. 2.
In this way, we find that the cutoff scales linearly with

the mass and is limited to being parametrically close to it,

M ≤ 30 m ×

�
0.1

−t=M2

�
1=2

: ð23Þ

We have presented the bound in this way to highlight the
fact that it becomes stronger as the theory is evaluated at
larger energies jtj=M2, closer and closer to the cutoff, while
still being described by dRGT. Since m2=M2 is small, for
−t=M2 ≤ 0.1 it implies m

ffiffiffiffiffi
−t

p
=M2 ≤ 0.01, and we have

checked that the error described below Eq. (15) is indeed
negligible.

IV. BEYOND dRGT: HIGHER ORDERS
IN THE ENERGY EXPANSION

In the previous section we have assumed that dRGT
accurately describes massive spin-2 scattering within the
EFT. In general, there might be terms of higher order in
the energy expansion, beyond those of dRGT, that also
contribute to the scattering amplitudes via terms with more
powers of the energy. These enterAλ1λ2ðtÞ as higher powers
in t. As long as these terms are suppressed by powers ofM,
and are controlled by coefficients ∼Oð1Þ with respect to
dRGT, our arguments are modified only by higher powers
of the small ratio jtj=M2. In this section, we relax this
assumption and study the possibility that above some
intermediate scale E�, with m ≪ E� < M, dRGT transi-
tions into a different theory, controlled by the most general
higher-derivative EFT. Can such a theory exist?
If such a theory is dominated by large coefficients in

just a few terms of higher-order in the energy expansion,
then we could apply the same arguments as in Sec. III
to Aλ1λ2ðE2� ≪ jtj ≪ M2Þ=Aλ1λ2ð0Þ (and to the generaliza-
tions of Aλ1λ2ðtÞ to more subtractions) and exclude it,
since a fixed order polynomial in t=E2� would quickly
exceed 1 in (15).

A. Detuned potential

An example of such a theory is provided by detuning the
graviton potential from its dRGT values, i.e., of all the
dRGT relations in Appendix Awe only keep the Fierz-Pauli
mass tuning b1 ¼ −b2. Then the 2-to-2 amplitudes depend

FIG. 2. The ðc3; d5Þ parameter space of dRGT massive gravity and a comparison with the forward-only positivity bounds from
Ref. [30], which carve the region inside the closed black line. Left: in the jtj ≫ m2 limit, each elastic helicity reduces the parameter space
to a line (corresponding to the vanishing of (17) in blue, (18) in green, and (19) in orange). In this limit, the lines do not intersect, and the
theory is ruled out. Right: a close-up of the same figure, for finite values of jtj=m2 (we have used the exact amplitudes, rather than the
ones expanded at large jtj=m reported in the main text). Different shadings correspond to the allowed parameter space for different
values of M=m, represented at fixed jtj=M2 ¼ 0.1. As the ratio between the cutoff and the mass increases, the parameter space shrinks
and eventually disappears, hence providing Eq. (23).
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on four parameters, ðc1; c2; d1; d3Þ, which we can constrain
as follows.
The amplitude for λ1λ2 ¼ 00 at zeroth order in the mass

grows as ∝ ðc2 þ 3c1=2 − 1=4Þs4t. We can therefore define

the analog of Eq. (12) with four subtractions Að4Þ
λ1λ2

(i.e.,
exponent 5 at the denominator), that also satisfies Eq. (15),
and implies at jtj ≫ m2 that c2 ¼ −3c1=2þ 1=4þ
Oðm2=M2Þ. Moreover, at t ¼ 0, Aλ1λ2 ≥ Að4Þ

λ1λ2
ðM2 −

2m2Þ2, see Ref. [47], implying d3¼−d1=2þ3=32þ
Oðm2=M2Þ (after imposing the c2 tuning). These are
the dRGT relations spanned by ðc1; d1Þ and deliver the
Λ3-theory, reproducing Ref. [32] and further showing that
detuned massive gravity is also incompatible with positivity
bounds as soon asm2 andM2 are parametrically separated.4

B. General higher derivative terms

Rather than a normal EFTwith a finite number of leading
higher-energy terms, we can even address the case of a
theory with a tower of infinitely many higher derivative
terms with large coefficients, arranged such that their
contributions to Aλ1λ2 resum to a small function of t=M.
To answer this question we provide an alternative deriva-
tion of the bound that led to the nonintersecting lines in the
left panel of Fig. 2 (for which we used jtj ≫ m2 in Sec. III).
In this derivation we will not assume that Aλ1λ2 is at most
linear in t, as in dRGT, but allow for arbitrary powers of t
with arbitrary coefficients. On the other hand, in this
derivation, we will work at zeroth order in m, keeping
Λ3 fixed (this is known as the decoupling limit, in which the
transverse polarizations decouple).
At this order, besides the simplification of crossing

symmetry discussed in (iii), the EFT amplitudes also
simplify because the theory effectively reduces to that of
a massless shift-symmetric scalar, a photon, and a graviton.
At high energy we are thus able to write all-orders Ansätze,
the relevant ones being,

h3040jMj1020i ¼ Hðs; tÞ; ð24Þ

h3þ4−jMj1þ2−i ¼ h32i2½14�2Gþ−ðs; tÞ; ð25Þ

h304þjMj102þi ¼ h41i2½12�2G0þðs; tÞ; ð26Þ

where we have factored out little group scalings, and H
and Gλ1λ2 are functions that contain only dynamical

singularities. Moreover, within the decoupling limit and
within the EFT range of validity, they are also analytic
functions since none of the three-point functions between
one neutral Goldstone boson and the gauge boson give
rise to on-shell poles. Crossing symmetry implies that
G0þðs; tÞ ¼ G0þðu; tÞ, Gþ−ðs;tÞ¼Gþ−ðt;sÞ, while H is
fully s−t−u crossing symmetric. Therefore, their most
general tree-level low-energy expressions are

Hðs; tÞ ¼ h0ðs2 þ t2 þ u2Þ=2þ h1stuþ… ð27Þ

Gþ−ðs; tÞ ¼ f0 þ f1ðsþ tÞ þ f2ðs2 þ t2Þ þ… ð28Þ

G0þðs; tÞ ¼ g0 þ g1tþ g2ðs2 þ u2Þ þ g02suþ…: ð29Þ

References [10,47,52,53] have derived bounds for all the
coefficients in the most general EFT for scalars. These can
be readily applied to the ratios hi=h0, constraining them
from above and below in appropriate units of M, inde-
pendently of the value of all the other coefficients.
Similarly, Refs. [19,55,56] derived two-sided bounds for
spin-1 particles, which can be read in terms of fi=f0.
In Appendix C we perform a similar analysis, for

amplitudes involving both spin-1 and spin-0 particles. We
exploit the fact that, again because of crossing symmetry, the
form factors in Eqs. (24)–(26) also control other ampli-
tudes, namely, h3−4þjMj1020i ¼ h41i2½13�2G0þðt; sÞ and
h3þ4þjMj1þ2þi ¼ h34i2½12�2Gþ−ðu; tÞ. This allows us to
study inelastic channels to find lower and upper bounds
on the gi’s.
A simple—albeit nonoptimal—subset of these bounds

reads,

−8h0 ≤ h1M2 ≤
3

2
h0; ð30Þ

−f0 ≤ f1M2 ≤ f0; ð31Þ

−
5

2
g0 ≤ g1M2 ≤

1

3
ð10g0 þ 4h0 þ 7f0Þ; ð32Þ

and holds regardless of higher derivative terms, which are
also similarly bounded.
In a theory that reduces to dRGT at low energies,

and departs from it only by higher derivative terms, the
most relevant terms h0;1, f0;1, and g0;1 must match with
dRGT, i.e.,

−h1t¼A00ðjtj≫m2Þ; g1t¼A0þðjtj≫m2Þ;
3

2
f1t¼Aþþðjtj≫m2Þ;

where the expressions on the rhs are given by (17), (18),
and (19). The coefficients h0, g0, and f0 are mass sup-
pressed and thus vanish at the order Oðm0Þ that we assume

4Further, using Aλ1λ2 with λ1λ2 ¼ 00, 0þ, þþ reduces this
theory parameter space to three lines, 128d1 − 43þ 36c1 −
108c21 ¼ 0, 16d1−6c1−9c21¼0 and c1 ¼ 1, up to Oðm2=M2Þ.
Interestingly, including finite m2=M2 effects, we find that in
detuned massive gravity the bound on M=m is exactly as in
dRGT: M ≲ 30m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.1M2=jtj

p
, with error controlled by the

chosen ratio jtj=M2.
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in this section. Therefore, combining these explicit expres-
sions with the bounds in Eqs. (30)–(32) leads to exactly the
same situation as in the left panel of Fig. 2, but this time,
independently of all higher derivative terms. This holds
also for detuned massive gravity with higher energy terms,
here with different expressions for h1, g1, f1 in terms
of ðc1; d1Þ.

C. Nongravitational spin-2 theories

It is interesting to extend our bounds to nongravitational
massive spin-2 theories, i.e., theories without diffeomor-
phism invariance, that would describe the dynamics of, e.g.,
glueballs in gauge theories. One practical way to define
these theories is by starting with a gravitational theory such
as massive gravity with a generic potential (but keeping the
Fierz-Pauli mass tuning) and then add diffeomorphism
hard-breaking terms. The lowest-dimensional hard-breaking
interaction for a parity even massive spin-2 particle corre-
sponds to a single on-shell three-point function with two
momentum insertions, schematically ∂

2h3, different from
the one in the Einstein-Hilbert term. This new vertex can be
chosen to be [57–59]

δL ¼ ζ
m2

Pl

2
ϵμνρσϵαβγδhσδ∂ρhμα∂γhνβ ð33Þ

(parity odd spin-2 particles admit another trilinear with
an ϵ tensor [57]). Restricting to parity even for simplicity,
the new trilinear dramatically changes the m ≪ E ≪ M
behavior of scattering amplitudes.5 In particular, for the
transverse-transverse polarizations (denoted ╪ and ¼) the
leading energy behavior m ≪ E ≪ M reads, e.g.,

M╪╪ ¼ −
8

3
ζ2

s3

Λ6
3

; M╪¼ ¼ 8

3
ζ2

ðsþ tÞ3
Λ6
3

; ð34Þ

and likewise for the mixed transverse-longitudinal, e.g.,
M╪þ ¼ −s2ðsþ tÞζ2=Λ6

3, or for only longitudinal modes,

M0þ ¼ ζst2ðsþ tÞ=6Λ6
3m

2;…, [after the scalar-sector tun-
ing as required by positivity c2 ¼ −3c1=2þ 1=4þ
oðm2=M2Þ and d3 ¼ 3=32 − d1=2þ oðm2=M2Þ].
Scattering with such a fast leading-energy scaling is in

fact inconsistent with (15) (and as well as with the results of
Ref. [15]) unless ζ is strongly suppressed or the cutoff is
parametrically close to the mass. Indeed, for jtj ≫ m2

we have

A╪╪ ¼ 4t
ζ2

Λ6
3

; A╪− ¼ t
2

ζ2

Λ6
3

; A0╪ ¼ 2t
3

ζð1− 4ζÞ
Λ6
3

;

whereas the values in the forward limits are mass
suppressed: after enforcing the scalar-sector tuning,
A╪╪ð0Þ ¼ ð1 − 8c1ζ þ 32ζ2Þm2=Λ6

3, A╪− ¼ ð4 − 4ζ −
6ζ2 þ c1ð−3þ 6ζÞm2=Λ6

3, and A0╪ ¼ ð1 − 4ζÞð4 − 3c1þ
8ζÞ2m2=3Λ6

3. Analogously for the scalar-vector, where
A0þðjtj ≫ m2Þ ¼ t2ζ=6Λ6

3m
2, whereas the forward arc

A0þð0Þ is mass suppressed, thus demanding again jζj ≪ 1.
However, as soon as jζj ≪ 1, e.g., by setting ζ ¼

ζ̄m2=M2 for a finite ζ̄, this new coupling essentially drops
out from the constraints (15) for the longitudinal-only
polarizations λ1λ2 ¼ 00;þþ. It survives in the 0þ but only
proportionally to a t=M2 factor, which is of the same order
of other higher derivative corrections, hence irrelevant.
Indeed, the bounds (30), (31), and (32) still apply on the h1,
f1, and g1, regardless of the higher orders in t that affect
instead ðh; f; gÞi≥2. All in all, for such a small ζ, we simply
recover the same gravitational constraints for the longi-
tudinal modes that we have already studied. See them
explicitly in footnote 4.
In conclusion, theories of massive spin-2 particles cannot

have a parametric separation of scalesM=m, independently
of how they are modified at high energy.

V. CONCLUSIONS AND OUTLOOK

The EFTof massless gravitons is a priori consistent from
the smallest energy scale in the Universe H0 ∼ 10−42 GeV,
to the largest one mPl ∼ 1018 GeV, i.e., over about 60
orders of magnitude. The results presented in this paper
show that consistency of the EFT of a massive graviton is
instead confined into a narrow energy window, spanning
from the graviton mass by at most 1 order of magnitude.
This constitutes an improvement of 15 orders of magnitude
with respect to previous bounds.
We devised new and simple positivity bounds based on

an approximate crossing symmetry that is valid in weakly
coupled EFTs with a hierarchy between mass m and cutoff
M. The simple relations we obtain can be employed within
dispersion relations (based on unitarity and causality) to
study complex problems, such as massive higher-spin
scattering. They lead to Eq. (15), which bounds the energy
growth of elastic-helicity amplitudes to lie within a certain
envelop. With this, we found that massive gravity cannot
sustain a parametrically large mass hierarchy, see Eq. (23)
and Fig. 2, as it would fail our positivity bounds. This
conclusion is robust with respect to the inclusion of an
arbitrary number of higher derivative terms, as well as
higher order corrections to our version of simplified
crossing symmetry. A similar conclusion holds for non-
gravitational massive spin-2 particles.
While our results exclude massive gravity with just the

graviton and nothing else in the spectrum below Oð10Þm,

5An interesting limit is obtained by decoupling the Einstein-
Hilbert term, mPl → ∞, while keeping the other interactions
ζ=mPl, ci=mPl, and di=m2

Pl finite, and where the strong-coupling
scale of longitudinal modes is raised to Λ3 by performing the
aforementioned limit of the dRGT tunings. In this corner of
parameter space the theory becomes invariant under linear
diffeomorphisms [58], and its (in)consistency has been already
studied in Ref. [60].
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they do not exclude theories with no parametrically large
separation of scales, such as Kaluza-Klein (KK) gravitons
gravitons that arise from the compactification of extra
dimensions, or theories that do not fulfil our assumptions
(i)–(vi). Moreover, the quantitative bound in Eq. (23)
becomes inaccurate if one pushes it to the regime
m2 ∼ t ∼M2, where it seems to become stronger. In the
context of gravity, however, more stringent bounds would
be incompatible with the inherently flat-space formulation
of the dispersive approach, as curvature corrections can no
longer be neglected for M ∼m ∼H0. The extension of
positivity bounds to theories in nonflat backgrounds is very
interesting [61,62], albeit rather subtle [63].
It would be interesting to apply the techniques developed

in this paper to theories with massive higher spin J ≥ 3
states, along the lines of [64]. It was shown there that,
contrary to massive gravity [30], forward-only positivity
bounds were already sufficient to rule out theories domi-
nated by the most relevant interactions, but did not exclude
the possibility that an EFT with a parametric separation
betweenm andM could exist, if dominated by less relevant
interactions. The all-derivative order argument presented in
Sec. IV should be sufficient to close this door and exclude
any EFT for a single massive higher-spin particle.
Another interesting direction is to extend the analysis

beyond our approximation and derive a version of Eq. (23)
that remains valid even for m ∼M [65]. While this is not
motivated in the framework of massive gravity, as dis-
cussed above, it would teach us about the properties of
spin-2 resonances, such as glueballs in gauge theories
and QCD.
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APPENDIX A: dRGT

For an on-shell formulation of massive gravity and
dRGT see, e.g., [66]. For the original off-shell formulation,
consider the effective Lagrangian [27,28]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 	
m2

Pl

2
R −

m2
Plm

2

8
Vðg; hÞ



; ðA1Þ

where Vðg; hÞ ¼ V2 þ V3 þ V4 is expressed in terms of an
auxiliary metric gμν ≡ ημν þ hμν as V2 ¼ b1hh2i þ b2hhi2,
V3¼c1hh3iþc2hh2ihhiþc3hhi3, V4¼d1hh4iþd2hh3i×
hhiþd3hh2i2þd4hh2ihhi2þd5hhi4, with hhi≡ hμνgμν,

hh2i≡gμνhνρgρσhσμ, etc. The coefficients depend on c3 and
d5, after imposing the ghost-free conditions b1 ¼ 1 ¼ −b2,
c1 ¼ 2c3 þ 1=2, c2 ¼ −3c3 − 1=2, d1 ¼ −6d5 þ 3c3=2þ
5=16, d2 ¼ 8d5 − 3c3=2 − 1=4, d3 ¼ 3d5 − 3c3=4 − 1=16,
and d4 ¼ −6d5 þ 3c3=4. These terms correspond to the
leading effects in the energy expansion.

APPENDIX B: BOUNDING THE ERROR

In this appendix we show how the error in the last line
of (13) is bounded by known quantities. Using crossing,
Hermitian analyticity and renaming dummy indices, it can
be written as,

ffiffiffiffiffijtjp
m

M2
Δλ1λ2 ≡

Z
∞

M2

ds=2π
ðs−2m2þ t=2Þ3

h
δX

λ0
1
λ̄0
4
λ0
3
λ̄0
2

λ1λ2λ1λ2

þδX
λ0
1
λ̄0
4
λ0
3
λ̄0
2

λ1 λ̄2λ1 λ̄2

i
× h3λ034λ04 jM†Mj1λ012λ02i; ðB1Þ

where, from Eq. (8), δX ≡ XðtÞ − Xð0Þ inside (B1) can be

expanded at leading order in m;−t ≪ s as δX
λ0
1
λ̄0
4
λ0
3
λ̄0
2

λ1λ2λ1λ2
¼ffiffiffiffiffi

−t
p

m
s c

λ1λ2
λ0
1
λ0
2
λ0
3
λ0
4
þOðtm2=M4Þ. Using Eq. (3) we can bound

the discontinuities in the UV in terms of the elastic and
forward ones,

2jh3λ034λ04 jM†Mj1λ012λ02ij
≤h1λ012λ02 jM†Mj1λ012λ02iþh1λ012λ̄02 jM†Mj1λ012λ̄02i
þh3λ034λ04 jM†Mj3λ034λ04iþh3λ034λ̄04 jM†Mj3λ034λ̄04i; ðB2Þ

that enter in Eq. (13) at t ¼ 0. The error (B1) is thus
bounded as

jΔλ1λ2 j ≤
ðAλ0

1
λ0
2
ð0Þ þAλ0

3
λ0
4
ð0ÞÞjcλ1λ2λ0

1
λ0
2
λ0
3
λ0
4
þ cλ1 λ̄2λ0

1
λ0
2
λ0
3
λ0
4
j

4ð1þ t=2
M2−2m2Þ3

to leading order in the expansion of δX, where we have also
used that s ≥ M2 in (B1). Importantly, this is written in
terms of the IR expression for A at t ¼ 0, which are
calculable within the EFT, rather than in terms of unknown
UV quantities. The expansion of X is also known, and its
coefficients are bounded, for instance, jcj ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þp
with j ¼ 2, the spin of the scattered states. Moreover, only
a finite number of them enter to any order in the expansion
of X—see discussion below Eq. (8)—and only up to eight
entries enter at leading order, as relevant for the c’s. Higher
order contributions in the expansion of δX are also bounded
in this way.
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APPENDIX C: TWO-SIDED BOUNDS
FROM MOMENTS

In this section we prove the two-sided bounds (30), (31),
and (32). Contrary to Sec. III, here we exploit the expansion
of dispersion relations at t ≈ 0, order by order in t. There
are many implementations of this idea, that differ by how
they extract information from the UV integrals: using
positive geometry [48], semidefinite optimization, e.g.,
[10,52,67,68], or moment theory [37,47,54]. Here we
use the latter, which allows to easily derive analytic bounds.
We define s-channel dispersion relations for amplitudes

stripped from their little group scalings [L.G.]

n
Ãλ3λ4

λ1λ2
ðtÞ ¼ 1

2iπ

I
C

ds
snþ3

Mλ3λ4
λ1λ2

ðs; tÞ
½L:G:� ; ðC1Þ

where [L.G.] is h32i2½14�2=s2 for ðþ− → þ−Þ and
h41i2½12�2=s2 for ð0þ → 0þÞ, …, while it is 1 for
ð00 → 00Þ. We first focus on elastic scattering

n
Ãλ1λ2

λ1λ2
ðtÞ≡ Ãn

λ1λ2ðtÞ. The direct evaluation of Eq. (C1)
provides an IR representation in terms of the Wilson
coefficients defined in Eqs. (27)–(29), e.g.,

Ãn
00ðtÞ ¼

8>><
>>:

h0 − h1tþ h2t2 þ… n ¼ 0
2
3
h2tþ… n ¼ 1

1
3
h2 þ… n ¼ 2

ðC2Þ

etc., while Ã0
0þðtÞ ¼ g0 þ tg1 þ � � �, Ã0

−þðtÞ þ Ã0
þþðtÞ ¼

2f0 þ f1tþ � � �, and Ã0
−þðtÞ − Ã0

þþðtÞ ¼ f1tþ � � �, and
so on.
The Ãn

λ1λ2 admit also a UV representation, from
deforming the contour along the branch cuts. Further
expanding in partial waves, the Ãn

00 and Ãn
0þ take the form

X
l

8ð2lþ 1Þ
Z

∞

M2

dsKn
λ1λ2

ðs; tÞPð0;2jλ12jÞ
l−jλ12j

�
1þ 2t

s

�
; ðC3Þ

where Pða;bÞ
l ðxÞ are Jacobi polynomials and the kernels

Kn
λ1λ2

are given by,

Kn
00 ¼

�
1

snþ3
þ ð−1Þn 1

ðsþ tÞnþ3

�
ImMl

00 ðC4Þ

Kn
0þ ¼

�
1

snþ1
þ ð−1Þn 1

ðsþ tÞnþ1

�
ImMl

0þ
s2

: ðC5Þ

A similar but longer expression holds for Ã0
−þ � Ã0

þþ.
Expanding in powers of t, defining J2 ≡ lðlþ 1Þ, and

using P0;2λ
l−λð1þ ϵÞ ¼ 1þ ½J2 − λð1þ λÞÞ�ϵþOðϵ2Þ, we

can write Eq. (C3) in terms of moments,

μ
λiλj
n;m ¼

X0

J

Z
∞

M2

ds
snþ3

J2mImMJ2
λiλj

ðsÞ ≥ 0 ðC6Þ

of the two-dimensional positive measures ImMJ2
λiλj

ðsÞ.6
Matching powers of t between the IR and UV representa-
tions, Eqs. (C2) and (C3), we can write Wilson coefficients
in terms of moments,

h0 ¼ 2μ000;0; h1 ¼ 3μ001;0 − 2μ001;1; ðC7Þ

g0 ¼ 2μþ0
0;0; g1 ¼ −5μþ0

1;0 þ 2μþ0
1;1; ðC8Þ

f0 ¼ μ−þ0;0 þ μþþ
0;0 ; f1 ¼ μ−þ1;0 − μþþ

1;0 : ðC9Þ

Considering Ãn
λ1λ2 with n > 0 reveals that Wilson coef-

ficients admit more than one representation in terms of
moments—a consequence of crossing symmetry. For
instance, h2 appears in n¼0 as well as in n¼2 of (C2),
while f1 appears in both Ã0

−þ � Ã0
þþ. This leads to sum

rules among moments, or null constraints [52,53]. For our
purpose it will be enough to use the simplest ones,

8μ002;1 ¼ μ002;2;

7μ−þ1;0 ¼ μ−þ1;1 þ μþþ
1;1 ; ðC10Þ

which connect moments in J2 to moments in 1=s.
All positivity relations satisfied by moments can be

obtained by integrating positive polynomials in J2 and 1=s,
see, e.g., [37,54]. From positive monomials, it follows
that all moments are positive, which directly leads to
g0; h0; f0 ≥ 0. Instead, from the polynomial ð1 −M2=sÞ
(positive because the measure is supported for s ≥ M2), we
find that moments in 1=s are monotonically decreasing,

μ
λiλj
n;m ≥ M2μ

λiλj
nþ1;m: ðC11Þ

Finally, from the positive quadratic polynomial ðaþbJ2=sÞ2,
we find positive definiteness of the Hankel matrix,

det

 
μ
λiλj
0;0 μ

λiλj
1;1

μ
λiλj
1;1 μ

λiλj
2;2

!
> 0: ðC12Þ

These positive relations, possibly supplemented by null
constraints Eq. (C10), lead to lower and upper bounds for
all coefficients in units of the lowest ones. Indeed, the

6These are defined by the following partial wave expansion:
Mλ3λ4

λ1λ2
¼ 8π

P
lð2lþ 1Þdlλ12λ34ðθÞMlλ3λ4

λ1λ2
ðsÞ, with MJ2

λiλj
ðsÞ≡

MlðJÞλiλj
λiλj

ðsÞ, and PJ
0 ¼PJ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4J2

p
¼Pl 8ð2lþ 1Þ with

l ≥ jλi − λjj. We expand in partial waves for identical massive
particles and take the massless limit afterwards—this removes
factors of 2 from our expressions.
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conditions (C11) and (C12) for 00-scattering combined with
(C10) give μ001;1M

2 ≤ 8μ0;00;0, and therefore, M2h1=h0 ≤
3M2μ001;0=2μ

00
0;0 ≤ 3=2 and M2h1=h0≥−M2μ001;1=μ

00
0;0≥−8,

proving Eq. (30). Likewise, it is easy to prove (31) and
the lower bound of (32). Although not optimized, these
relations are conservative.
For the upper bound of g1 in (32) we must instead

consider inelastic channels M−þ
00 and M00

−þ. As discussed
above Eq. (30), these are controlled by the same function
G0þ in (29) and lead to another representation of g1,

g1 ¼
1

2
ð1Ã−þ

00 þ 1Ã
00
−þÞ
���
t¼0

¼ −
1

4

X0

J

J2
Z

∞

M2

ds
s4

×

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − 2

p

J
ðð ¯ImM−þ

00 ÞJ2 þ ð ¯ImM00
−þÞJ2Þ

þ ðð ¯ImMþ0
0þÞJ2 þ ð ¯ImM0þ

þ0ÞJ2Þ


; ðC13Þ

where ðImMλ3λ4
λ1λ2

ÞJ2 ≡ hλ3λ4jðM†MÞljλ1λ2i=2.
Now, a bound on g1 emerges from inequalities between

elastic and inelastic partial waves implied by unitarity.
Positivity of the norm for the partial wave amplitudes

Mðj00i þ j−þiÞ and Mðjþ0i þ j0þiÞ, analogous to
Eq. (3), with ðJ2 − 2Þ1=2=J ≤ 1, puts Eq. (C13) in the form,

g1 ≤
X0

J

J2

4

Z
∞

M2

ds
s4

½ImMJ2
00 þ ImMJ2

−þ þ 2ImMJ2
þ0�:

Using (C8) and observing that
P0

J in (C13) runs over a
restricted set of J-values with respect to (C6), gives

6μþ0
1;1 ≤ 20μþ0

1;0 þ μ001;1 þ μ−þ1;1 : ðC14Þ

This upper bound, together with (C7), (C8), (C9), the null
constraints (C10), and the constraints (C11) and (C12),
implies (32). Repeating this analysis for higher moments
one can bound higher order coefficients as well, e.g.,
0 ≤ f2M4 ≤ f0, etc….
In the decoupling limit discussed here, transverse modes

are decoupled and, moreover, they have no impact on
bounds. Beyond this limit, at finite m, they can be included
back in the analysis by extending the EFTanalytic structure
of the form factors to include their poles. Extra poles are
best addressed via the functional approach of [10,15,69]
and produce relative corrections Oðm2=M2 logM2=m2Þ, as
estimated in the eikonal limit [18] of the functionals.
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