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Compact binaries with unequal masses and whose orbits are not aligned with the observer’s line of sight
are excellent probes of gravitational radiation beyond the quadrupole approximation. Among the compact
binaries observed so far, strong evidence of octupolar modes is seen in GW190412 and GW 190814, two
binary black holes observed during the first half of the third observing run of LIGO/Virgo observatories.
These two events, therefore, provide a unique opportunity to test the consistency of the octupolar modes
with the predictions of general relativity (GR). In the post-Newtonian (PN) approximation to GR, the
gravitational-wave phasing has known dependencies on different radiative multipole moments, including
the mass octupole. This permits the use of publicly released posteriors of the PN phase deformation
parameters for placing constraints on the deformations to the different PN components of the radiative mass
octupole denoted by Sus,. Combining the posteriors on dus, from these two events, we deduce a joint
bound (at 90% credibility) on the first three PN order terms in the radiative octupoles to be
Suzo = —0.077013, Suzy = 0.487973 and Suz; = —0.327)E], consistent with GR predictions. Among
these, the measurement of du33 for the first time confirms the well-known octupolar tail contribution, a
novel nonlinear effect due to the scattering of the octupolar radiation by the background spacetime, is
consistent with the predictions of GR. Detection of similar systems in the future observing runs should

further tighten these constraints.

DOI: 10.1103/PhysRevD.109.024050

I. INTRODUCTION

It is well known that the leading order gravitational wave
(GW) emission is quadrupolar according to general rela-
tivity. However, subdominant higher multipoles get turned
on if the binary has a mass asymmetry and when the line of
sight of the observer is not aligned with the orbital angular
momentum vector of the binary [1-9]. To date, the LIGO-
Virgo-KAGRA collaboration has reported ~90 confident
detections of compact binary mergers [10-13]. Among
these events, two compact binary mergers—GW190412
[14] and GW190814 [15]—have shown clear evidence of
the presence of octupolar (¢ = 3, m = 3) mode, the first
correction beyond the quadrupole. These two events,
therefore, should facilitate a test of the gravitational
octupolar structure of the compact binary dynamics.

The gravitational dynamics of a compact binary system is
typically divided into three stages of evolution: inspiral,
merger, and ringdown. While the post-Newtonian (PN)
approximation to general relativity (GR) [16] is employed
to model the adiabatic inspiral stage of a compact binary
coalescence, one requires numerical solutions to the Einstein
equations [17], and the black hole (BH) perturbation
theory [18] to describe the highly nonlinear merger stage,
and the ringdown phase, respectively. As numerical relativity
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simulations are computationally expensive, currently there
are two main modeling approaches towards producing the
complete gravitational waveform (i.e., a single waveform
that captures all three stages of binary evolution) for
parameter inference: effective one-body approach [19,20]
and phenomenological approach [21,22]. Both these meth-
ods make the best use of the analytical and numerical
understanding of compact binary dynamics.

The gravitational waveform from a coalescing com-
pact binary within GR, in the frequency domain, has the
following form:

4
W(fidoy) =D 3 Yo hen(f:7). (1)

22 m=—¢

where Y? " are spin-weighted spherical harmonics of spin
weight —2, (1, @) describes the location of the observer in
the binary’s sky and 7 denotes the intrinsic parameters (e.g.,
masses and spins) as well as other relevant extrinsic
parameters (e.g., luminosity distance (d; ), reference time
and reference phase) of the binary. Each GW mode (hyp)
has an amplitude, A, (f; Z) and a phase, y/gm(f;Z) (ie.,
By = Ap(fi2)e¥en(F2)) In alternative theories of grav-
ity, the gravitational dynamics of a compact binary could
differ from the prediction of GR during all the three
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stages and might modify the phase and amplitude in the
waveform.

There exist proposals in the literature to probe the
prediction of the harmonic structure of gravitational radi-
ation from binary black hole coalescence in GR [23-27].
Using GW190412 and GW190814, Ref. [28] tested the
consistency between the dominant and subdominant modes
and found the chirp mass estimated from the £ =3, m = 3
mode to be within 1% of the one estimated from the
quadrupolar £ = 2, m = 2 mode.

In a more recent work [29], the consistency of the
amplitudes of the /,; and h33 modes of the GW spectrum
with GR predictions was investigated using these two
events and found no evidence for any violation of GR.
This test assumes the phases of subdominant harmonics
(W ¢m:r>2) follow GR and investigates whether the ampli-
tudes of subdominant harmonics (A,,.,~,) are consistent
with the GR prediction.

In this paper, we argue that if a signal contains non-
quadrupolar modes, apart from the amplitude, the phase
evolution will also carry their unique imprints [1,25,26,30].
As GW detectors are more sensitive to phase evolution, this
could be used to test GR, complementing the approach
of [29]. However, we will focus only on the inspiral phase
in this work, which is well-modeled by PN approximation
to GR, and discuss constraints on the PN structure of
octupolar emission in GR. For this, we will make use of the
unique map between the mass-type octupole coefficients at
different PN orders and the bounds on the 1PN, 2PN, and
2.5PN logarithmic phasing deformation parameters for
these two events in the parametrized tests of GW phasing
reported in [31,32]. Further, we will consider only the
leading order appearance of the octupole coefficients in the
GW phase for this mapping.

The remainder of the paper is organized as follows. In
Sec. I, we briefly review the parametrized tests of GW
phasing. In Sec. III, we introduce the octupolar para-
metrization. We derive the relations between different
PN pieces in the mass-type octupole moment and different
PN phasing terms in Sec. IV. In Sec. V, we describe the
Bayesian framework to infer the octupole parameters. Our
results and conclusions are presented in Sec. VI.

II. PARAMETRIZED TESTS OF GW PHASING

The frequency domain GW phase from the inspiral part
of the waveform (computed using the stationary phase
approximation [33,34]) for the leading quadrupolar har-
monic [4,35] takes the form

LP(f) = 27zftc _¢c

i=7
s | @ dame)e 06| @

where v = (zGM f/c3)'/3 is the PN expansion parameter, M
is the binary’s redshifted total mass, v is the symmetric mass
ratio of the binary, ¢; and ¢;; denote the nonlogarithmic and
logarithmic PN phasing coefficients, respectively.

Due to the lack of accurate waveforms in alternative
theories of gravity, “theory-agnostic” approaches are often
adopted to test GR with GW data. These “null tests” of GR
make use of our best knowledge of compact binary dynamics
in GR and look for possible deviations from GR without
reference to specific alternatives (see Refs. [31,32,36,37] for
more details.). One of the most generic tests of GR that has
been routinely performed with LIGO/Virgo data is the
parametrized test of GW phasing [38-46].

The parametrized tests rely on measuring any deviations
in the PN coefficients ¢; and ¢;; in the GW phasing, which
are uniquely predicted by GR, from compact binary
mergers. A parametrized waveform model introduces addi-
tional degrees of freedom to capture signatures of possible
GR violation by modifying the phasing coefficients as

by, = $SR(1 + 6y, (3)

(b =1i,il) (see Sec. VA of Refs. [31,32] for more details).
In GR, these phenomenological dimensionless deviation
parameters (5¢,,) are identically zero, whereas in alternative
theories of gravity, one or more of these parameters could
be different from zero. Combining data from different GW
events detected during the first, second, and third observing
runs of LIGO/Virgo, the current bound on the PN deviation
parameters are found to be consistent with GR (see Figs. 6
and 7 of Ref. [32]).

For the two asymmetric binary events, GW190412
and GW190814, we will use the results of the para-
metrized tests, obtained by applying parametrized
IMRPhenomPv3HM (denoted as “Phenom” in this paper)
[8] and SEOBNRv4HM ROM (denoted as “SEOB”) [9]
waveform approximant to the data. Phenom waveform is a
frequency-domain phenomenological waveform model that
includes the effects of two-spin precession along with higher
multipole moments [8], whereas SEOB is a frequency-
domain nonprecessing reduced-order effective one-body
model that incorporates the higher order modes [9]. In
the current LIGO—VirAgo—KAGRA analyses [31,32,37], the
reported bounds on d¢);, come from the fractional deviations
applied to the nonspinning portion of the phase (see Sec. VA
of Refs. [31,32] for detailed discussions).

III. PARAMETRIZED MULTIPOLAR
GRAVITATIONAL WAVEFORMS

The radiative multipole moments of a compact binary
system contain information about source physics (masses
[16,30,47], spins [4,16,48-60], tidal deformability [61-67],
spin induced quadrupole moment [51,68-71] etc.) and
account for various nonlinear interactions and physical
effects (such as “tail” effects [30,72,73], tails of tails [74],
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tail square [75], memory effects [76—79], spin-orbit effects
[48,80], spin-spin effects [48,59] etc.) that occur at different
PN orders in GR. In alternative theories of gravity, one or
more radiative multipole moments of a compact binary
could be different from those in GR (see for instance
Refs. [81-83]). One can put constraints on such theories by
studying the multipolar structure of asymmetric compact
binary systems like GW190412 and GW190814.

References [25,26] came up with a novel theory-agnostic
method to test the multipolar structure of the gravitational
field radiated from an inspiralling compact binary. Using the
multipolar post-Minkowskian formalism [30,47,72,84-92],
Ref. [25] derived the parametrized multipolar gravitational
wave phasing up to 3.5PN order for nonspinning binaries and
Ref. [26] extended it for nonprecessing binaries. The
multipolar post-Minkowskian formalism relates the radiation
content in the far zone, encoded in the mass- and current-type
radiative multipole moments {U;, V }, to the stress-energy
tensor of the source. In order to model possible deviations
in the multipole structure, Refs. [25,26] adopted the follow-
ing parametrization for radiative multipole moments:
Uy, - wU;,V; — €V,.By construction, the phenomeno-
logical multipole parameters 4, €; are equal to unity in GR.
With this parametrization, the contributions from various
radiative multipole moments to the GW phasing can be
tracked separately, thereby facilitating tests of the multipolar
structure of the PN approximation to GR.

In this work, we go one step further and probe the
different PN orders in the radiative mass octupole moment
of a compact binary as it evolves through the adiabatic
inspiral phase. We propose the parametrization

1 1).GR
Uijk - Zyﬂangﬂz ) (4

~—

where U,j, is the mass-type radiative octupole moment,
U fjnk) OR is the (n/2)th PN correction to U, in GR and y3,, is
the corresponding octupole coefficient. Note that there is no
1/c (i.e., 0.5PN) contribution in the mass octupole moment in
GR. The 1.5PN correction term in the octupole moment
arises due to the tail effect, caused by the scattering of the
outgoing octupolar wave off the background spacetime
associated with the total [Arnowitt-Deser-Misner (ADM)]
mass of the source [30,72—75]. By definition y3,, is unity in
GR and appears at different PN orders in the phasing formula.
For instance, p5 first appears at 1PN, p3, at 2PN and p55 at
2.5PN (logarithmic) order. We next discuss how the existing
bounds on the PN deformation coefficients 5¢,, based on the
parametrization in Eq. (3), reported in [31,32] can be mapped
to the bounds on y3,, in the parametrization derived above.

IV. MAPPING THE PN BOUNDS TO THE
OCTUPOLE PARAMETERS

Each of the parameters 3, appears at multiple PN orders
in the GW phasing. For example, ys, appears at 1PN, 2PN,

2.5PN (logarithmic), and 3.5PN orders. Therefore if there is
a deviation from GR in one of the ps,, it will result in a
dephasing of each of the PN phasing coefficients at the
order in which this octupole parameter contributes.' Here
we neglect the modification to all PN orders except the
leading order at which they first appear. This is a reasonable
assumption to make because if there is a deviation in any of
the us,, the leading order at which they appear would be
most sensitive to such a deviation.

Therefore, the goal now will be to obtain constraints on
30, H32, and 33 using the bounds on 1PN, 2PN, and 2.5PN
logarithmic phase deformation parameters, respectively,
along with other relevant intrinsic binary parameters for
particular GW events. Further, while estimating bounds on
one of the p3,, we assume all other mass-type octupole
parameters as well as rest of the multipole parameters to
take their values in GR (i.e., p3,yzn = ppyzz =€, =1)
in the spirit of a single-parameter test, i.e., varying one
deformation parameter at a time.

The expression for 1PN phasing coefficient in the
parametrized multipolar GW phase [see Eq. (2.16) of

Ref. [25]] is given by
_ (1510 130 U\ 2/ 6835 6835
¢2_<189 21 ”)+<ﬂ2> 2268 " 5677
L (e 2/ 5 +20
2) (24220,
U 81 81
2
anel ()
Ha

where
QGR = (%—F%u) (6a)
K10) - (e -S20). (6b)
K0 = (g-51): (6¢)

and u, and €, are the mass and current quadrupole param-
eters, respectively.

'"We assume the corrections to the radiative mass-type quadru-
pole moment x,, follows GR. This is a reasonable assumption
confirmed by the previous tests of GR performed on GW events
of nearly equal mass systems for which all PN deformation
parameters are fully functions of different y,,,.
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Comparing the parametrized PN phasing of Eq. (3) to
Eq. (5) we have the following relation between 6¢b, and 5:

i, W= ()] ;[l -@ee

In the spirit of null tests, we find it more convenient to
employ octupole deformation parameters dus, defined for
mass octupole by imposing s, = 1 + dus,, for the different
PN pieces. The aim now would be to derive bounds on
Op3p, OH3y, and Opss using GW observations assuming
Hiix3 = €1 = 1 and 5/'4371’;11’;&11 =07’

With the above assumption we can express djsq in terms
of 5&52 as

GR

1 -8, Kf(y). (8)

Opzo = —1 £

Among the two solutions, we will adopt the one which
respects the GR limit (i.e., duso vanishes when 5(}52 - 0).
Similarly, we also obtain the expressions for dpu3, and Sps3
as (see Sec. I of the Supplemental Material [93] for a
derivation):

PSR4
Oy — ———-— 9
32 K, (y) ( )
 P5Rops
6)“33 - K4 (IJ) (10)

The expressions of ¢$R, K;3(v), ¢SR, and K,(v) are
provided in Sec. I of the Supplemental Material [93].

Having obtained the mapping, now the problem essen-
tially amounts to using the posterior samples of {5¢,.v}
for any event and computing the corresponding posteriors
on {dus, } using the above equations. The exact procedure
followed is discussed next.

V. INFERRING OCTUPOLE PARAMETERS

Given the LIGO/Virgo data, d, we are interested in
deriving P(Sus,|d, H), the posterior probability distribu-
tion on dus,, for a flat prior on us, (here H denotes the
hypothesis, which is the parametric model we employ.).
Towards this, we use Eqgs. (8)—(10), along with the two-
dimensional posterior distribution P(8¢,v|d, H), for dif-
ferent GW events. For example, to derive P(us|d, H) we

>This would amount to assuming, for instance, du3y = 0 at all
orders except at 1PN where it first appears. This is justified only if
the posterior on du3, derived from 1PN is consistent with GR,
which is exactly what we find in this work. The same argument
would apply to all higher-order dus, that we deal with in this
work.

will use Eq. (8) and P(8¢h,,v|d,H). The probability
distribution P(8¢b,,v|d, H) is computed for flat priors on
5(2),, and mass ratio. Therefore in the Bayesian framework
the samples of &y3,,, derived from P(8¢y.v|d. H), need to

be reweighted to obtain posterior P(Sus,|d, H) that assume
flat priors on Sus, as

P(6syld. H) [ [ vy PGl 0

[1(Sp3,|H)

x P(8¢y.v —
( ¢b H(5,u3n‘H)

d, H)] X (11)

In the above equation, the tilde denotes flat priors or
posteriors derived assuming flat prior on the corresponding
parameters. Hence I1(8u3,|H) denotes flat prior on dus,, and
P(&ng, v|d, H) denote posterior assuming flat priors on 5q§b
and mass ratio. The prior distribution, IT(8us,|H), is chosen
to be uniform between [—30, 30]. While P(8us,|5¢),. v. H)
takes care of the coordinate transformation between (¢, )
to Sus, [using Egs. (8)—(10)], I1(dus,|H) in the above
equation is simply P(8us,|8¢,.v, H) for the flat prior on

54317 and mass ratio. A detailed derivation of the above
equation is provided in Sec. II of the Supplemental
Material [93].

As GW190814 and GW190412 are the only two events
for which a confident detection of higher modes was
possible, we will restrict to these two events for our
purposes. We use the parameter estimation samples for
5(?);, and symmetric mass ratio (v) from the GWTC-3 Data
Release [94] for these two events, analyzed with different
waveform approximants, and estimate the bounds on the
parameters Jus, following this procedure.

While estimating the posterior probability distribution of
Opsg, we need to ensure that the values of dusz, obtained
from a pair of (8¢,,v) should be real by imposing the
condition [see Eq. (8)],

K, (v)

ox -
2N

In order to realize this, we discard those samples of S5
which do not meet the above condition. If we need to
remove relatively large number of samples, that means the
event is uninformative. We find that for events except
GW190814 and GW190412, majority of the samples do
not meet this condition. This simply is a reflection of the
fact that we are trying to test deviation in octupole moment
when its presence is barely there in the signal.

5, <

(12)

VI. RESULTS AND CONCLUSIONS

The posteriors of the leading and two subleading
octupole deformation parameters Sus, O3y, and Sus; for
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GW190412 and GWI190814 obtained by the above-
mentioned procedure are shown in Fig. 1. Among the
detected events, GW190814 provides the tightest con-
straints on all the octupole parameters. This is expected
as GW190814 is the most unequal mass binary (mass ratio,
q=0.1 121”8_'883) among the GW events in the GWTC-3 and
asymmetric systems get stronger contributions from non-
quadrupolar moments.

In addition to the individual event analysis in Fig. 1, we
have also obtained the combined bounds on du3,, using data
from multiple events under the assumption that the same
value of dus, is shared across all the events. The joint

constraints on these parameters are obtained by multiplying
the individual likelihoods from the events, GW 190412 and
GW190814, analyzed with Phenom and SEOB waveforms.
In the joint analysis the most tightly constrained parameter is
Op3o and the most weakly constrained parameter is du33. The
posterior on higher-order mass octupole deformation param-
eters, such as dps,4, are mostly uninformative and not shown
here. Detections of unequal mass binaries in the future with a
larger signal-to-noise ratio will enable us to probe higher PN
pieces in the mass octupole moment.

Bounds from the two different kinds of waveform
approximants show excellent agreement with each other.

—— IMRPhenomPv3HM  —— SEOBNRv4HM_ROM
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FIG. 1. Bounds on dus, for GW190412 and GW190814 analyzed with Phenom (in red color) and SEOB (in blue color) waveform

approximants are shown. Left-most panels show the bounds for GW 190412, whereas the middle panels show the result for GW190814.
The combined bounds are shown in the rightmost panels. The colored vertical dashed lines mark the 90% credible intervals and
median values. The gray dashed vertical lines indicate the GR prediction (Su3, = 0). The posterior distributions of dus, show

consistency with GR.
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On all occasions the posterior distributions on Jdus, are
statistically consistent with dusz, = 0 within 90% credible
interval. This is the first reported bound on the different
PN pieces in mass-type octupole moment of compact
binary complementing the previous consistency tests in
Refs. [28,29]. It is interesting that the bounds on du33 also
confirm the consistency of the octupolar tail radiation with
the predictions of GR.

The posterior distributions on current quadrupole defor-
mation parameters are also largely uninformative and not
reported here. In the future, the detections of high mass
ratio and highly spinning binaries with larger signal-to-
noise ratio will enhance the contribution of the current
quadrupole to the flux making its measurement with good
precision possible.

Last, it is instructive to ask if the GR violations in the 5&517
posteriors can be captured by the mapping proposed in this
work. This is examined in Fig. 1 of the Supplemental Material
(see the texts in Sec. III of the Supplemental Material [93] for
more details). We consider a GW190814-like system and
simulate GR violations with different ¢ values in the 5&517
posteriors. We find that the derived posteriors on o3,
through this mapping, will be able to detect deviations at
different ¢ values in the 5(}51, posteriors from GR.

To conclude, the parametrized multipolar waveforms
could play a pivotal role in testing GR with current and
next-generation GW detectors. The next-generation GW
detectors will observe more diverse classes of compact
binaries, thereby allowing us to probe even higher multi-
poles of compact binaries, and the parametrization intro-
duced here will be crucial in such scenarios. Development
of an infrastructure that can directly sample over the
multipole parameters is planned for future work which
should be able to probe the multipole structure without
relying on the approximate mapping we have invoked here.
The direct inference of multipole parameters from the GW
data could provide even more stringent constraints as one

will potentially gain information from multiple PN coef-
ficients in the phase. Moreover, the inclusion of multipole
parameters in the amplitude will likely play a critical role in
this framework.
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