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Allowing for the possibility of extra dimensions, there are two paradigms: either the extra dimensions are
hidden from observations by being compact and small as in Kaluza-Klein scenarios or the extra dimensions
are large/noncompact and undetectable due to a large warping as in the Randall-Sundrum scenario. In the
latter case, the five-dimensional background has a large curvature, and Isaacson’s construction of the
gravitational energy-momentum tensor, which relies on the assumption that the wavelength of the metric
fluctuations is much smaller than the curvature length of the background spacetime, cannot be used. In this
paper, we construct the gravitational energy-momentum tensor in a strongly curved background such as
Randall-Sundrum. We perform a scalar-vector-tensor decomposition of the metric fluctuations with respect
to the SO(1,3) background isometry and construct the covariantly conserved gravitational energy-
momentum tensor out of the gauge-invariant metric fluctuations. We give a formula for the power radiated
by gravitational waves and verify it in known cases. In using the gauge-invariant metric fluctuations to
construct the gravitational energy-momentum tensor we follow previous work done in cosmology. Our
framework has applicability beyond the Randall-Sundrum model.
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I. INTRODUCTION

In this paper, we address the energy-momentum tensor of
the gravitational waves in the context of a strongly curved
background. Historically, gravitational waves were under-
stood as ripples across spacetime, with the wavelength of
the ripples much smaller than the curvature length of the
background. The most commonly used definition of the
energy-momentum tensor of the gravitational waves is due
to Isaacson [1,2]. In a couple of seminal papers, Isaacson
performed an expansion of the Einstein equations to the
lowest order in nonlinearities and interpreted the terms
quadratic in fluctuations as an energy-momentum source
due to the gravitational field, backreacting on the spacetime
geometry. With the image of ripples propagating across
spacetime implying a separation of scales between the
high-frequency gravitational waves and the large scale on
which the background is changing, Isaacson added an
averaging to his definition of the energy-momentum tensor

(T (X)) = / dlx' /g f (. X )o (x, 3 )0 (. ) T (),
(1.1)

where the integration region is defined by the choice of the
compact support function f(x, x’), centered at x, such that it
has a characteristic size smaller than the curvature scale of
the background, but larger than the wavelength of the
radiation. Furthermore, in order for the outcome of the
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integration to be a tensor, the integrand 7,/ needs to be

contracted with the bitensors v}, and ¥ which transform as

vectors under coordinate transformations performed at
either x or x’. On the one hand, the small wavelength
assumption means that covariant derivatives commute.
On the other hand, the averaging (1.1) brings with it the
freedom to perform integration by parts.' Together they
imply that the simplified expression of the (quasilocal)
energy-momentum tensor

1

<T;w>l =7 <h/)r)—;ﬂhlm;u>l

: (1.2)

is background-covariantly conserved in vacuum, and gauge
invariant, which, of course, is a desired feature of any
definition of the energy-momentum tensor. Another defi-
nition of the gravitational field energy-momentum tensor
T{] which is due to Landau and Lifshitz [3] has the
advantage of being conserved d,7T}] = 0. However, it
suffers from two major drawbacks: it is not a tensor (hence
it is often referred to as the Landau-Lifshitz pseudotensor),
and it is not gauge invariant.

There is at least one situation of interest when the
approximations used by Isaacson are not applicable, that

'For example, (Mo, )y = —(h,eh,, )y, After such inte-
grations by parts are performed, further simplifications arise as a
result of either applying a gauge fixing condition or using the
equations of motion.
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is, gravitational waves in extra dimensions. Gravitational
waves from binary black holes and neutron stars detected by
LIGO and Virgo have been used to test strong-field gravity in
various ways [4-9]. One such test is to probe the existence of
extra dimensions. For example, the presence of a large extra
dimension modifies how the gravitational wave amplitude
falls off as a function of the distance it traveled, so the
luminosity distance measured by gravitational waves would
be inconsistent with those from electromagnetic counterparts
if one assumes four-dimensional (4D) general relativity (GR)
[10-12]. In [13] we studied a simple Kaluza-Klein model and
showed that the luminosity of gravitational waves emitted
from a binary black hole is smaller than that of the 4D case,
leading to a relatively large phase shift that is inconsistent
with observations.

One paradigm of large extra dimensions is the Randall-
Sundrum model, with a 3-brane curving the five-
dimensional (5D) spacetime around it until it looks like
a slab of anti-de Sitter space [14].2 Matter sources are
localized on the brane. The background geometry has
SO(1,3) isometry, and the fifth dimension is warped

ds? = exp(—2«|y|)dx*dx"n,, + dy*, (1.3)
with k proportional to the inverse curvature length. Gravity
is localized near the brane and deviations from the four-

dimensional Newtonian potential are parametrized in terms
of x as [14,18]

Va(r) = —¥ <1 +2).

322 (1.4)
Given that the Newtonian potential has been probed by
Cavendish-type torsion scale experiments to micrometer
scale [19,20] this means that the curvature length of the
background must be smaller than this scale. We are thus
looking at a strongly curved background, where its curvature
length is smaller than the typical wavelength of the gravi-
tational waves generated by a black-hole binary source,
which is in the 10>~10* km range. In this case, the under-
lying assumptions behind the well-known formula (1.2) are
no longer valid, and we need a new approach.

Our paper proposes a definition of the energy-momen-
tum tensor of the gravitational field which does not rely on
the semi-classical (WKB) approximation nor the spatial
averaging introduced by Isaacson, which cannot be used in
the case of strongly curved backgrounds.3 Instead, we are
constructing the energy-momentum tensor from gauge-
invariant metric fluctuations. Our procedure is similar to
[23], which dealt with the energy-momentum tensor for

?Other applications of gravitational waves in the Randall-
Sundrum model have been studied, e.g., in [15-17].

ISee, e.g., [21,22] for other works on computing the energy-
momentum tensor for gravitational waves in theories beyond
general relativity using the Isaacson averaging.

cosmological perturbations, though how one foliates the
spacetime and decomposes the metric fluctuations is differ-
ent. Namely, within the cosmological context, it is natural
to foliate the 4D spacetime with fixed-time 3D spatial
slices. Since we are interested in the case of the extra
dimensions, for one large extra dimension, y, we foliate the
5D spacetime with fixed-y 4D spacetime slices, and we
similarly decompose the metric fluctuations in scalar-
vector tensors (SVT) with respect to the SO(1, 3) isometry
group. The gravitational energy-momentum tensor is con-
structed out of the gauge-invariant fluctuations. The result-
ing expression is manifestly gauge invariant, and it is
background-covariantly conserved. Without the benefit of
the averaging procedure, the expression is quite involved.
Nonetheless, it can be simplified significantly when com-
puting the radiated power (radiated energy per unit time)
asymptotically, far away from the sources.

In studying physical problems in the Randall-Sundrum
model, a common approach is to use the reduced 4D
Einstein’s equation supplemented by Israel’s junction
condition. For example, in [24-29] the 5D effects are
encoded in various additional terms in the 4D reduced
Einstein’s equation, relative to the usual one, and the
additional junction condition. This method treats the brane
and the bulk differently, and it can be effective when
studying problems on the brane. However, separating the
brane from the bulk seems less appropriate when studying
the propagation of the gravitational waves, which propa-
gate equally on the brane and into the bulk. The physical
picture can be murky since the meaning of those additional
terms in the reduced equation is not very intuitive. In the
literature, in order to solve the reduced 4D equations,
various terms are dropped for practical purposes, though
the reason behind this is not often clear. Our work comes
directly from a 5D setup which treats the bulk and the brane
on an equal footing, and has a clear physical picture. The
gravitational energy-momentum tensor we calculated here
can be used in applications other than computing the
radiated power. Last, due to the gauge-invariant nature
of the method we used here, our work has a larger
applicability outside the Randall-Sundrum setup.

The paper is organized as follows. In Sec. II we give our
main formulas for the gravitational energy-momentum
tensor (2.24) and radiated power (2.18) and (2.19). In
Sec. III we discuss gravitational waves in a curved max-
imally symmetric spacetime such as anti—de Sitter and in
Randall-Sundrum geometry. In Sec. IV we perform various
SVT decompositions for the metric fluctuations in 4D and
5D flat spacetimes and in the 5D Randall-Sundrum (RS)
background. In each case, we construct the gravitational
energy-momentum tensor and give a formula for the radiated
power. As we will see, one of the main differences with
respect to previous results in the literature [30] is that the
radiated power is expressed not only in terms of the tensor
metric fluctuations. This is to be expected given how the
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graviton degrees of freedom are accounted for in the various
SVT decompositions. In Appendix F we are explicitly
verifying that our approach yields the expected result for
the power radiated by gravitational waves away from a
binary source in flat 4D spacetime. Appendix G deals with
a compact extra dimension flat 5D scenario and recovers a
previous result for the radiated power, using the approach
presented in Sec. II. Technical details are relegated to the
other Appendixes.

II. GRAVITATIONAL WAVE
ENERGY-MOMENTUM TENSOR
IN A CURVED BACKGROUND

We begin by considering a curved background g,,, with
a nonvanishing cosmological constant A, solution to the
source-free Einstein equations

_ . 1
G+ guN=R,, — Eg””(R —2A) =0. (2.1)
Next consider another metric,
g;w = g;w + huw (22)

which is a solution to the source-free Einstein equations
as well:

1
G+ guN=R,, — Eg,w(R —2A)=0. (2.3)
Note that (2.2) is exact, in other words A, represents the
difference between two spacetime metrics. Expanding in 4,

leads to the following definition of the energy-momentum
tensor 7  Of the gravitational field [31]

WG, + Ah,, =—(89G,, +5%G,, + O(h*))
=7

Hv

(2.4)

where 5(1)G/w is linear in the difference between the two
metrics h,,, 5(2)Gm, is quadratic, etc.
The linearized Einstein tensor evaluates to

1_ o 1_ - , 1 _
sVG,, =6VR,, - 5 9,0VR 77 + 3 9uRpch"” =S 1R
1 — . .
) (_Dhl“’ = Py + Py A Ry
_ = . 2N
- g;w(_ljh + hpa’p’(;) + m (gﬂl/h - dh;w)) s
(2.5)

where d is the number of spacetime dimension and we
used that

_ 2
—— ATy

R, = 2.
== 26)

Reshuffling the background-covariant derivatives and
using (2.6), one can show that

V¥ (WG, + Ahy,) =0, (2.7)
for any two-index symmetric tensor f,,.

This in turn implies that 7, is a background-conserved
tensor [31]

v*T,, =0. (2.8)

Not only that, but 7,, is invariant under background-
linearized gauge transformations 6h,, :vﬂéﬁrvy@l since
the left-hand side of (2.4) is invariant under these
transformations.

Furthermore, consider a background that admits a time-
like Killing vector (e.g., for the RS model, such a Killing
vector would be dy = k*9,)

V,k, +V,k, = 0. (2.9)
Then
Vi =THk, (2.10)
is a background-conserved vector
V, V¥ =0. (2.11)

This implies a conservation law:
0= / dix\/=gV Vi = / dixd,(v/=gV*).  (2.12)

The presence of sources alters slightly the previous
scenario. From

sWG,, +Ah,, =T,, - (896G, + 389G, + O(h*))
=T+ 7T, (2.13)

where T, is the matter energy-momentum tensor, using
(2.7) we find the conservation law obeyed by the total
(sources plus gravitational field) energy-momentum tensor

VH(T,, +T,) = 0. (2.14)

Given a timelike Killing vector k,, one can construct a
conserved current

VE=k(TW +T™),  V,V#=0. (2.15)
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The total energy in some region of space M is
E= / d=x\/—gV?°
M

= / A x/=k, (T% + T). (2.16)
M

The rate of change of the energy in this region of space

can be expressed in terms of the flux of V' through the
boundary:

dE
= | v
dt M

= —/wdd_lxﬁi(\/—_f]vi)

——/ d?=2x\/—gn;V',
oM

where n' is an outward pointing, unit vector on the boundary.

If there are no sources on the boundary of the spatial
region M, then the radiated power through the boundary
oM is given by

(2.17)

dE
dr

AM d™xy/=gn;k, TH.  (2.18)

Furthermore, assuming that the sources are generating
gravitational waves and that the period of the gravitational
waves is 7', we will compute the averaged radiated power
through the boundary 0M which we take to be asymptoti-
cally far away from all sources. Thus,

1 [T )
(P =7 /O dt AMde Gk, T, (2.19)

This expression is background gauge independent since
as we have already discussed 7 ,, is invariant under
background gauge transformations.

1

In general, though, we are interested in problems where
the metric g,, is a small perturbation of some exact
background metric, due to sources and gravitational waves.
Then the metric g,, = g,, + h,, is typically solved in
perturbation theory, with g, an exact background, and
with &, expanded in a perturbative series

hy, = €hly) +hE) + -,

(2.20)
where e is some small expansion parameter (e.g., in
thinking about the gravitational waves sourced by a binary
the small parameter could be the post-Newtonian expansion
parameter, € = |7|/c, where ¥ is the velocity of binary
sources). Then, the Einstein equation can be solved order
by order in €. To the lowest orders in perturbation theory,
setting the sources to zero for clarity, we have

1/ — _ .
611Gy (V] = Anjy) == (<OhG) = W+ b + i
_g’w(_ihﬂ) +hl()16)§/720)> —A]’l/(;,)
=0, (2.21)
2
5NG,, [h®] = AhlY) = —6@G,,[hM). (2.22)

One way to interpret Eq. (2.22) is that the metric fluctuation

hf,ly), solution to the linearized equation of motion, back-
reacts on the background geometry, with the right-hand
side of (2.22) playing the role of an energy-momentum
tensor source:

T

Hv

= —e26@G,,[hV] + O(e). (2.23)
Using the results derived in Appendix A, to leading order in
€, the energy-momentum tensor of the gravitational field
takes the form*

T = W0 Wy Ky )+ 5005 50 1)
— RBP4 L) (HO 20 T, — 285
+ %gﬂy (hm"’ﬂ(h(l);a;/; + h((;};y - ZhE,Iy)” ;/;) _ %h“);ah(l)?“ _ 2h$});ah(1)ﬂy;y
+ 200 Ny — ) gy %hglﬁ{yhﬂw;r) . (2.24)

It is important that in solving for h,(,ly> we consistently keep all the terms of the same order in e. For example, in solving for

fluctuations sourced by a binary to leading order in the velocity expansion in [13], the spatial fluctuations h§}> received two
contributions, both of the same order in e: one contribution from the linearized Einstein equation sourced by the matter energy-

momentum tensor and a second contribution, from the backreaction of the Coulombic part of hég.
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Given that 7, is the right-hand side of (2.22), the same
argument of Abbott and Deser [31], which we reviewed
earlier, applies: the gravitational energy-momentum tensor
(2.24) is background-covariantly conserved. However, due
to the perturbative expansion we have just performed, this
expression is no longer invariant under background gauge
transformations. As noticed by [23], we can remedy this: by
using only the gauge-invariant pieces of the metric fluc-

(

tuation h,,p, the gravitational energy-momentum tensor
defined in (2.24) becomes manifestly gauge invariant.
We will elaborate on this in the next sections.

We can compare (2.24) with known expressions of the
energy-momentum tensor in flat space: replace all the
background-covariant derivatives with partial derivatives,
choose the Lorenz gauge (3ﬂh('>f‘” = 0, and fix the remain-
ing gauge freedom by setting A(!) = 0. If an averaging is
performed as in [2], then one can do integration by parts to
take advantage of the gauge choice. Last, using the
equation of motion of the linearized, gauge-fixed fluctua-

tions th}) = 0, the energy-momentum tensor simplifies to

o 1
le - <h(1)p ;ﬂh,ﬁ)ﬂ);l/>lv (225)

=

where the brackets denote the averaging done by
Isaacson [2].

If the background is curved, choose instead the de
Donder gauge V"h,(;,) = 0. Under the assumption that

the metric fluctuation varies on a scale 4 (e.g., V h ~
1/4), while the background metric varies on a scale L
(R ~1/L?, where L is a curvature scale) such that 1 < L,
then we can commute the background-covariant deriva-
tives, just as we would commute partial derivatives (since
the error made is of the order A2/L?). Note that the same
assumptions would render the cosmological constant term
ARM R jrrelevant to the order we are working because

V 1OV bW ~ 1722 while AhYA(M ~ 1/L2, and therefore
it is suppressed by 4?/L? relative to the former terms. If an
averaging is performed, as in [2], then we can integrate by
parts under the averaging sign and arrive at (2.25), where
the derivatives are background covariant.” [See, for exam-
ple, Egs. (5.37)-(5.39) in [32].]

If the curvature scale of the spacetime is small, the
wavelength of the gravitational waves must be even smaller
in order for the approximations and averaging performed
by Isaacson [2] (see also Chapter 35 in Misner et al. [33]) to
be applicable. This is certainly not the case for the Randall-
Sundrum background,

The boundary terms vanish because the averaging function is
chosen to vanish at the boundary of the integration region. Also,
equally important for the averaging procedure performed in
curved backgrounds are the bitensors which, when contracted
with TW, render the integrand a background scalar, and make
possible the integration by parts.

ds® = dy* + exp(—2«|y|)dx*dx*n,,. uw,v=0,1,2,3,

(2.26)

where R ~ k?, and where « is constrained by corrections to
Newton’s law to be such that kr > 1 for r~1 pm in a
Cavendish-type experiment. In this scenario, the curvature
scale is 1/k < 1 um, while for the gravitational waves
detected by LIGO the wavelength 1 ~ 10>~10* km is much
larger than the curvature scale.

Nonetheless, the formula derived earlier for the radiated
power (2.19), with the gravitational field energy-momentum
tensor given by (2.24), can still be used in a Randall-
Sundrum setup.

One of the goals for the next sections is to bring (2.24)
and (2.19) to a more manageable form.

III. GRAVITATIONAL WAVES IN A CURVED
SPACETIME: AdSs AND RANDALL-SUNDRUM

Consider a background g,,, perturbed by gravitational
waves h,(,p, and set matter sources to zero (7, =0).
Allowing for a nonvanishing cosmological constant, the

background satisfies the Einstein equations

I T _2d
Ru=30u(R=20)=0.  R=-"0A,

. (3.1)

where d is the number of spacetime dimensions. The
linearized Einstein equations can be written in a simpler
form in terms of

1
1 _
YV = hl<41/> -39

as

™ - \JP\/C \v/ava \v/ava 4A
Dl///w +gﬂl/v/ \% l///)o' -V v/ll///)l/ -V vl/l///)ﬂ +ﬁw;,w =0.

(3.3)
This can be further manipulated into

il///w + gﬂuvpvgv//m - v,uvpl//[w - vl/vﬂl/j[}ﬂ
- ZRJ(;W)/)W/)O— =0. (34)
Choosing the de Donder gauge (V”y/w = 0) leads to

il//lw - ZRU(MD>/)1///)6 =0. (35)
At this point one could follow Isaacson and use the WKB
approximation for the gravitational waves (assume that the
wavelength is much shorter than the background curvature
length) and drop the curvature term from (3.5) and

approximate (3.5) by Oy, & 70,0y, ~ 0.
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However, we are interested in cases when this approxi-
mation is invalid, and therefore we refrain from ignoring
the curvature and Christoffel contributions. For concrete-
ness let us consider a maximally symmetric background:

2A

Ropp = (Gl = Guully)- (3
wo = A= 1(d=2) (GosGpu = GuwGop)-  (3.6)
Substituting into (3.5) leads to
— 4N 4A
v, - G0 = 0.
Vi " d— )@= T a- 1=z
(3.7)

If, as we do in flat space, we fix the residual gauge freedom
by imposing tracelessness w), = 0, then the linearized
Einstein equation, in the now transverse (de Donder) and
traceless gauge, reads

— 4A

Dl//;w (d— 1)(61’—2)1//”” _0 (38)
Despite the apparent simplicity of this equation, the various
components of the metric fluctuation remain coupled. An
alternative approach which leads to decoupled equations of
motion starts by decomposing the metric in scalar, vector,
tensor fluctuations with respect to background isometries.
As a bonus, we will be able to extract the gauge-invariant
metric fluctuations and use them to construct the gravita-
tional energy-momentum tensor according to (2.24). We
will discuss this at length in Sec. IV.

In the remaining parts of this section we discuss plane
waves (vacuum gravitational wave solutions) in 5D anti—de
Sitter (AdS) and Randall-Sundrum geometries, and con-
struct spherical wave solutions relevant for gravitational
waves far away from sources.

A. Vacuum solutions (plane waves)

Consider the 5D metric fluctuations

RN dxMdxN = hY) ay? + 208 dydxr + b)) dxrdxr,  (3.9)
where M,N =0,1,2,3,5 while u,v=0,1,2,3 and
y = x°. The background AdS metric in the Poincaré patch
can be written as

GundxMdxN = dy* + e, dx*dx’, k>0, (3.10)
and the background Randall-Sundrum metric was given
earlier in (1.3): ganvdxMdxN = dy? + e 2Pldx#dx¥. Next
we decompose the metric fluctuations into scalar, vector,
and tensor fluctuations with respect to the 4D Lorentz
isometries:

hiydx"dxy = 2pdy? +2(0,B — S,)dxtdy
+(0,0,E + 21,y + 0,F, +0,F,

+ fiw)dxtdx?, (3.11)
where #*9,S,=0,n"9,F,=0,n"0,f,, =0, f.n"=0.

When performing a gauge transformation ééhl(vl,;\, =

Vuén + Vyéy we can decompose the gauge parameter
in a similar way & = (&) 4 9,&0), €), with 9,&7 = 0,
The tensor metric fluctuations are gauge invariant [34]:
8¢f = 0. Given a monochromatic plane wave exp(ik,x*),
with k* a timelike 4-vector (k> = k, k" <0), we can

define three spacelike vectors e,(f ), transverse to k, and to

each other

el(lp)kmﬂy —0. €,(4p>€£q)i1”” =6, p.g=1.273. (3.12)
The metric tensor fluctuations can be written as
fu = el el e fra(y), - fragre =0, (3.13)

where fP9 obey the following decoupled equations: for
(i) AdSs:

d2
[—2 —4x? — kzez"y} fPi(y) =0, (3.14)
dy
and for (ii) Randall-Sundrum [14,18]6:
d2
{F — 42 + 4 (y) — kZeZKIYI} fri(y) =0. (3.15)
y

Equation (3.14) admits two linearly independent solu-
tions, expressed in terms of Bessel functions:

fre=cPiJ, (e"y\/ —k2/1<2> + driy, (e"y\/—kz/lcz),

cP5,, =0,  dris,, = 0. (3.16)

This solution exhibits oscillatory (wavelike) behavior in y
as well, with an amplitude which decreases with y. Of the

two Bessel functions, only Y,(y/—k*/x*exp(xy)) blows
up in the interior of AdSs, for y — oo. If instead we were
solving in the WKB limit to leading order, we would begin
with the ansatz

®These authors did not perform an SVT decomposition; rather
they chose the so-called Randall-Sundrum gauge h,,=h,,=0,
h;=0,0,h**=0 which essentially projects onto the tensor fluctua-
tions. See also [35] regarding comments about the implementation
of the Randall-Sundrum gauge. Of note is that in order to reach this
gauge in general one needs to perform gauge transformations that
will change the position of the brane at y = 0.
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. d d?
f ~exp(iS), d_yS>>1’ d—yZS <1. (3.17)
Then Eq. (3.14) simplifies to
d 12
— S =+V kv, (3.18)
dy
The WKB phase is
v —=k?
S = texp(ky) . (3.19)
K

This captures the asymptotic (large argument) behavior of
the Bessel functions. The WKB solution is a good
approximation only deep in the interior of AdSs space,

as long as \/—k?/x? exp(ky) > 1. If k* = 0, the solutions
to (3.14), exp(42ky), blow up either at the boundary
y — —oo, or deep in the interior of AdSs. Consequently,
there are no normalizable zero modes in AdS, but there is
one discrete normalizable zero mode in Randall-Sundrum.
Similarly, for k% > 0 there are no normalizable solutions.
The solution to (3.15) takes a similar form to (3.16),

fri=cii, (eky\/ —kz/Kz) +d'Y, <€Ky \/?/Kz)

ch8,,=0, d"5,,=0, y>0,
fPa—cray, (e—m /-2 /K2> +driy, (e"‘y\ /K2 /K2> ,
cr45,,=0, d?45,,=0, y<O0, (3.20)
and satisfies the additional matching condition
d d
= fpa — = fra = —4xfP1(0). 3.21
5 Ly =) G

B. Retarded Green’s functions

The equation of motion of the tensor mode fluctuation is
related to the equation of motion of a massless, minimally
coupled scalar field ¢ in AdSs

d d
Osp.ags® = €™ | ——e™ — — k2e™ | g
dy dy

d? d
= |:d—yz+4l<'——k2€2’<y:|(ﬂ =0, (3'22)

dy

or Randall-Sundrum

Osp gsp = e |- Lot L _ 202401,
‘ dy dy

d? d
= |:d—y2—4KSign(y)d_y_k262Ky:|(p:0’ (323)

through the following scaling: ¢ = exp(2ky)f or ¢ =
exp(2«|y|)f, for AdSs or Randall-Sundrum, respectively,
where f is a placeholder for 7 in (3.14) or (3.15). In
writing the above equations, we have Fourier transformed
along the 4D x* coordinates. The scalar Green function
satisfies

DSD,AdS/RSGscalar(y’yl; k) = (‘Q)_l/z‘s()’ -y, (3.24)
where [lsp ags/rs refers to the scalar d’ Alembertian in the
curved geometries, and —g=—det(g) is exp(—8ky) for AdSs
and exp(—8k|y|) for Randall-Sundrum. The corresponding
Green function for the tensor mode metric fluctuations

G(y.y's k) = exp(=2k|y|) exp(=2«]y’|) Gecatar (v. Y's )
(3.25)

obeys

(02 — 4% — k2> PGy, ys k) = 8(y —y'),  (3.26)

for AdSs, and

(02 — 4K% + 4K(y) — K2 PG (y, y' k") = 3(y — ).
(3.27)

for Randall-Sundrum. There are several methods we can
use to construct the retarded propagator (or retarded
Green’s function). Starting from the Euclidean propagator,
we can arrive at the retarded propagator by analytical
continuation [36]. We can use (if known) the position-space
Euclidean propagator as follows. For example, in 4D flat
space, the Euclidean propagator is 1/(4z% (% + r?)), where
tr is the Euclidean time. Switching to the Minkowski
signature, the retarded propagator is obtained from
i0(1)/(4n*)(1/(—(t — ie)> + r*) = 1/(=(t + ie)* + r?)),
with € — 0 and where 6(t) is the Heaviside step function.
The ie prescription identifies the two terms as Wightman
two-point functions, with the retarded propagator written as
the difference of the two Wightman two-point functions
times the step-function (). The 4D flat spacetime retarded
propagator evaluates to 6(1)/(27%)e/(€* + (r? — £2)?)
which in the limit € — 0 yields (1/27)0(¢)5(f*> — r?) =
1/(4xr)0(1)6(t — r). Alternatively, we can start from the
momentum-space Euclidean propagator, which in 4D
flat space is 1/(k?), and obtain the momentum-space
retarded propagator by doing the analytical continuation

1/(—(k° + i) + k- k). Then we Fourier transform to
position space and arrive at the result quoted earlier,
1/(4zr)0(1)5(t — r). While the defining feature of the
4D flat space retarded propagator is its support on the
forward light cone, this feature is lost in flat odd-dimension
spacetimes, when the retarded propagator has support
inside the forward light cone (as expected, based on
causality arguments).
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The Euclidean boundary-to-bulk scalar propagator for
AdSs, from the boundary point (7 = 0,7 = 0,y’) with
e = ¢ < 1 to some point in the bulk (tg, 7,y), is given
by [37,38]

613 ey
- 4
Gsealar Eucl Ads = > £ (328)

7 (e® + 2(r? +12))*

Then the corresponding retarded propagator, derived as
described above, is (see also Appendix C in [36])

. 48K ee(e® + 12 (r? — 12))3
Gret,scalar,AdS = l‘lm 277 2xy Y% \\2 B 4‘5'4 (t)
=0 ((e™ + Kk (r = 7)) + €7)

(3.29)

This leads to the tensor mode boundary-to-bulk retarded
propagator

4813e™e(e® + k2 (r* — 17))?

“A Rt &) e0(t),

Gret, AdS — 11—>m0 71'2 ( (eZKy + K.2<r2

(3.30)

which is proportional to 03 5(A), with A = e +x2(r? —12).

For the Randall-Sundrum background, the tensor mode
retarded propagator was derived by Garriga and Tanaka [18].
The idea behind their formula is that the Green function can
be written in terms of eigenfunctions of the corresponding
differential operator. For the Randall-Sundrum geometry we
have the following eigenvalue problem:

(=2 + 2019, (e~ 119 )| f 1y = =22 f (3.31)
or, equivalently,
Moy (e~ f i) = —a*f () (3.32)
|
d*k . /
Greirs (x”’ ys X, yl) = / (27[)4 et =) |:

—(K° +ie)* + k

where we defined ¢ = VA> — k*> and with —A%> being the
eigenvalues. The Euclidean signature Green function in
momentum (k-) space has the generic form

G(y,y) = If(q)(y)ﬁq)(y/) e~ 2kl g=2xly']

3.33
K+ ¢? (3:33)

q
where one sums over the discrete eigenvalues and integrates

over the continuum ones. The retarded Green function is
obtained by doing the analytic continuation

G N FayOW)fi,)0")
retrs(Y,)) = (—kO + ie)? + 2 e
q

g_zk‘y‘e_b(‘y/‘ .

(3.34)

The eigenvalue problem (3.32) has one discrete ¢ = 0 mode,
the bound state being f o) = V/k, and a continuum set of
modes for g > 0,

4 |y, (D Vo (L oxlyl
2K(1—|—(1%q>)e 2 Ke +agts Ke )

(3.35)

fa=

where a(,) = —J(q/x)/Y(q/x) was determined from the
matching condition at y = 0. These modes obey the nor-
malization conditions:

/_ ® dye Mo (0)f 0 () = 1.

o]

/_ " dye M f ) (0) =g —q).  (336)

[e5]

Putting everything together one arrives at the result of [18]

K
72

S 1
+/ dq =
o —(K+ie)+kE+ ¢

From a 4D perspective, the 5D bound state is a massless mode, while the 5D continuum states are massive modes.

F@W) ()| e e, (3.37)

C. Static, spherically symmetric solutions

If we consider a static source, pointlike and localized at the boundary, j(x') = M&*(¥')8(y' — (Ine)/x) with e < 1, the
tensor fluctuations in AdSs are of the form

) 4813 e®Ve(e® + k212 — k(1 = 1')?)?
/dsleret,AdS(xlax)](xl) = /dt’M (2 + k2 =2t = 1)) + &) e0(1 1)
152 ey )

e
271.2 (eZKy + K2r2)7/2

(3.38)
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Next, assume that a pointlike static source, localized at
y = 0 in the Randall-Sundrum geometry sources the tensor
modes equation (3.15). We are doing a similar calculation
to the one done earlier in AdS, but now we are using the
retarded propagator (3.37). First, the integral over ¢ sets

k® = 0. The integral over k results in an exponential
suppression factor exp(—qr).7 We were unable to perform
the last integral, over ¢, analytically. However, we come
close for large enough r. Then the exponential suppression
exp(—qr) factor localizes the integral over ¢ in the small
g-range. Using the small argument expansion of the Bessel
functions J,(g/x), Y(q/x), and performing the g-integral
results in the following solution:

/ dsx’GreL RS (x/’ x)j(x/)

V2 21212 4 32l
=K 8x(e>Pl + k2r2)3/2

1564KM ]()g(‘ /% + 1+ %)
167 (e 4 k252)7/2

2641 4+ 922 e bl — et bl
1677,'Kr(62"‘y\ + K2r2)3 )e K”] s (3.39)

+

where the zero-mode contribution was canceled by part of
the massive mode contribution.

We would like to point out that in using the Randall-
Sundrum geometry as a model for large extra dimensions,
we are already requiring that xr > 1. This is exactly the
regime when our small-argument approximation for
J1(g/x) and Y(gq/x) is applicable, since on the one hand
rk> 1 and on the other hand gr < O(1) due to the
exponential suppression factor. Put together this implies
that ¢/x < 1, thus justifying our small argument expansion
of the Bessel functions J,(q/x), Y(g/«). In evaluating the
integrals in (3.39) we did not make any further approx-
imations to the other two Bessel functions J,(ge ! /x)
and Y, (ge ! /x).

For y = 0, which would correspond to both source and
fluctuation on the brane, and to leading order in r this
approximates to Mx/(4zr)(1 + 1/(2x*r?)) [18].

Stripping off the factor of M from the expressions in
(3.38) and (3.39) we get the Green functions for the time-
independent Laplacian operators. This can be explicitly
verified. For example, we can show that the action of

0} + &> V7 — 4k on the right-hand side of (3.38) is zero
when y is not on the boundary, and the action of

Use that (1/222) [s° dksin(kr)k/(r(K> + ¢%)) = exp(—qr)/
(4zr). This expression is the familiar Yukawa-type static Green
function of massive modes in flat 4D space. This result is an
intermediate step in our 5D Randall-Sundrum calculation, where
the g-modes appear massive from a 4D perspective.

0; + eIV — 42 on the right-hand side of (3.39) is
zero for y # 0. We can also show by using Gauss’ theorem
that the delta-function source term in the Green function
equation is accounted for appropriately. Using (3.25)
together with (3.38) and (3.39) we find the static scalar
Green function G, of either AdSs or Randall-Sundrum
spacetimes, the solution to

1 _ - S
_gal( \% _ggIJaJ)Gscala.r<y’ rs yl = 07 P = 0)

_F ()
V=1

Then we can integrate over the spatial coordinates 7,y.
Using the analogy of cylindrical coordinates in flat space,
we compute the flux through the surface at infinity; there
are two regions: one at fixed, large r with y integrated over
(this is like integrating over the length of the 3D cylinder in
our analogy), and the other surface with r integrated over
and fixed, large |y| (this is like integrating over the two caps
of the cylinder). With an infinitely long cylinder we only
need to compute the flux through the sides of the cylinder.
For the Randall-Sundrum case, truncating to the leading-
order term in (3.39), the flux through the side of the
cylinder yields

ﬁ

1J=1,2.3,y. (3.40)

2.2 2Ky
2 0 —4ky 2 2Kyi (2K rm+3e™ )
2 X drx A dy {e ret 82(2 1 2P

r=R.
KR
= ® 3.41
(1+ R (3:41)

which, in the limit k7 > 1 when (3.39) is applicable, gives
the expected result.

D. Spherical waves

To illustrate the propagation of gravitational waves in
AdSs, assuming that a periodic source is at the boundary, we
consider solving the tensor modes equation, with a pointlike

periodic source j(x') = M& (X )5(y' — (Ing)/x)e":

/ dsx,Grct,AdS (', x)j(x')

48 3 ,2ky 2Ky 2,2 __ .2 t—t 2)\3
_/dt/MK3 2K ez e(ez 2+K2r K/ 5 2 )2)482‘9(f—ﬂ)
m*((e* +x*r* —k*(t—1)*)* 4 ¢%)

2 : 2.2 p3 3. -1
M 1 15¢*+ 15iRkw — 6R*w” — iR°w’k (=R /x) g2

22 8R7

(3.42)

where R = \/exp(2«y) + k*r?. If we were to perform a
WKB approximation, the leading-order WKB approxima-
tion would have captured only the ¢*“(""R/%) part of the exact
result (3.42).
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Similarly, a periodic, pointlike source localized at y = 0
which sources the tensor mode equation (3.15) yields the
following fluctuation:

/ &X' Gy rs (¥, %) j(x)
K2M [ 2Kk2F% + 3D iweD!
= 272 ((K2r2 + e2k\y\)3/2 K<K2r2 + 62”"))

X e—2K\y|eiaJ(I—\/ r2+e21 /k?)

(3.43)

under the same assumption that the distance r (measured
along the brane) from the source is sufficiently large such
that the g-integral is localized at small values of ¢, and
where we kept terms up to first order in .

IV. THE GRAVITATIONAL ENERGY-
MOMENTUM TENSOR AND THE RADIATED
POWER IN TERMS OF GAUGE-INVARIANT

FLUCTUATIONS

In this section we give explicit expressions for the
energy-momentum tensor of gravitational waves and for
the power radiated away from a source by gravitational
waves. Similar to the approach of [23], our expressions are
made manifestly gauge invariant by using the gauge-
invariant part of the metric fluctuations, which is found
through a SVT decomposition. We study three cases:
(A) 4D flat spacetime, (B) flat 5D spacetime with one
compact dimension, and (C) Randall-Sundrum. Further
checks on our results can be found in Appendixes F and G.

A. 4D flat spacetime

As we have seen, in general, the metric fluctuations obey
coupled equations of motion. One way to decouple them is
to use the symmetries of the background. In [23], Abramo
et al. considered the following scenario, which is relevant
for cosmological backgrounds:

Gudxtdx’ = —di* 4 a*(1)5;dx'dx’.

Given the rotational isometries of the background, they
decomposed the metric fluctuation 4, in components
which transform as scalars, vectors, and tensors under
the rotation group SO(3). For simplicity, we review and
adapt their analysis in the context of flat 4D spacetime and
set a(r) = 1.
A small difference between our paper and [23] is that we
set up the perturbative expansion
g=g+h" +h® ... (4.1)
with the background metric g an exact solution to the
Einstein equation, whereas for [23] the perturbative setup
has g = gy + 6g with the background defined to be the

homogeneous part of the metric gy = (¢) (the brackets
denote spatial averaging of the metric ¢ on a fixed time
slice). In their case, the background is only an approximate
solution of the Einstein equation, and it receives contribu-
tions from the backreaction due to the gravitational wave
fluctuations 6g. On the other hand, we simply work
perturbatively around the exact background g, and we
account for the backreaction of (") as a source term for the
h® equation of motion.

We begin by decomposing the metric fluctuations in
representations of the SO(3) rotation group:

, 2¢ 0;B+S;
W NOB+S; 298+ 0,0,E+ 0iF; + 0;F; + fi;)
(4.2)

where S;, F;, and f;; are transverse: 0,8’ = 0;F' =
0,fY =0, and f;; is traceless: f,;6Y = 0.

The following expressions @,¥,S;, f;; are gauge
invariant:

1
®:¢—00(B—500E>,
Y=y,

Si - S,»—@OF,-. (43)
This can be derived and explicitly verified by considering a
linearized gauge transformation &:h,, = d,¢, +9,&, and
substituting a similar SO(3) scalar-vector decomposition of
the gauge parameter & = (£, /&), with 9,7 = 0.
Starting from g=g+hl) + 1 +... we perform

gauge transformations
2)

~ - 1
g—g=-exp(Ls)g=7+ hé_f_ + h;,, +---

(4.4)
such that hf/,li). =L:g+ h) is expressed through the gauge-
invariant terms given in (4.3). For example, with

1,
E=B-3E (45)

Bl s = 2 o . (4.6)
HelgL S; 2T5ij+fij

This was referred to as a “longitudinal gauge” in [23].
There are other choices for the gauge parameter & which
lead to different ways of expressing the metric fluctuations
through the gauge-invariant fluctuations (4.3). We will
nonetheless use the longitudinal gauge in what follows.
Similarly, to second order in perturbations we arrange
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for hfizl) to be written in terms of gauge-invariant pieces.

Since Einstein’s equations are gauge invariant, one can
easily verify that the linearized Einstein equation in the
absence of sources

5<1)G,,

b(h(l)) =0

can also be packaged, as expected, only in terms of the
gauge-invariant functions given in Eq. (4.3):

sVG

;w(h(l)|g.i.) =0. (47)

At second order, the Einstein equation can be written as

sWG ,,(h(z)) = _6@¢G

H H

LRV, ), (4.8)
While the Einstein equation is gauge invariant, when cast-
ing it in the form given in (4.8), with a nonvanishing
|

Gy — ( Goo
0,Gy” + Gy’

T — < Ty
0Ty + i)

The linearized equations of motion for the scalar gauge-
invariant fluctuations ® and ¥ come from the components

5(1)600,5(»(;((}), sOGM), and §WGEL),

WGy = —2670,0;¥ = Ty, (4.11)

sOGH = —20,9% = T, (4.12)

261GY) = —203¥ - 50,0, + 670,0,¥ =2TY),  (4.13)
SWGUILL) = @ — ¢ = T(LL), (4.14)

The equations of motion for the transverse-vector gauge-
invariant fluctuations S; come from the components

sWG\D and s GHD:

1 .

(4.16)

1

1
5(1>G(~LT> - —ansi - TI(LT).

The equations of motion for the transverse-traceless-tensor
(TT).

gauge-invariant fluctuations f;; come from G;;

26Ms; + 0,0,G0) + 0,6\ 4 9,61 + G

2TM5,; + 0,0, T + 0,T

right-hand-side quadratic in the linearized fluctuations, both
sides of the equation are gauge dependent. However, by using
the metric fluctuations |, ; both sides of the second-order
Einstein equation are now written in a gauge-invariant form,
601G, (h?],;) = =50G,, (K], hD],.).  (49)
This backreaction of the gauge-invariant linearized
fluctuations (i.e., gravitational waves) is interpreted as
the energy-momentum tensor of the gravitational waves.
And since it is expressed in terms of the gauge-invariant
fluctuations (4.3) it is gauge invariant by construction.
Consider next the Einstein equations in the presence of
matter sources:

Gy =T (4.10)

We perform the same SVT decomposition for both sides,

(L) | A1)
0,6y + Gl )

J i ij
o,y + Tl )
SRR St S

j

[

1 1
SWG =20 f;; =560, =T} . (4.17)

ij _E ij

We can quickly count the degrees of freedom by consid-
ering the equations of motion in vacuum:

§10,0¥ =0, 9¥=0, &=V,  (4.18)
511‘0}0,{8[ — 0, GOSi — 0, (419)

The scalar and vector fluctuations are not dynamical, unlike
the tensor modes f;;. Since the tensors are transverse
0,f" = 0 and traceless 6;;f"/ = 0, this matches the count-
ing of the degrees of freedom for a 4D graviton.

After fixing the gauge in (4.6), the gravitational energy-
momentum tensor can be computed from (2.24). Since
(2.24) is quadratic in the metric fluctuations which are now
in the gauge (4.6), we indicate which fluctuations are
contributing to the various terms in the energy-momentum
tensor as follows:

TW=Tw +TWw +Tiw + T +Ta +Tw".
(4.21)
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where T,(,,S,), Tﬁ,‘,,/), T,S? are terms involving scalar, vector,

(SV) (ST) (VT)
tensor modes only and 7, ', T, ', Ty ' are terms that
mix different modes. We will focus on 7 ; since it is needed

to compute the radiated power:
T = 2(0pW)0,® — 49y (Wo,¥),

1.

1, 1, 1 .
Tg) = Efjkaoakfij - Efjkaoaifjk - Zaofjkaif’k,
TEY) = —8,0000¥ — W0,0'S; — §/9,0,®
1 . 1 o
+ 5aj<1>(a,~SJ +0'S;) + 5aj‘P(aiSf -d'S;),

v ) 1 .
TéfT) = fi;000'¥ — anfijan) - zaof[jajlp’

1 . 1 .
T4 = =300(8100f ) + 5 (008))of
1 4
+ Ef.,-kaf(aisk - 0*S;)

1 . 1 .
—I—E(()JS")akf,-j —z(ajfik)afsk. (4.22)
As shown in Appendix B, the energy-momentum tensor for
gravitational waves will only receive contributions from the
tensor mode. Thus, we have

1 . 1 . 1 )
Ty = Efjkaoakfij - Efjkaoaifjk - Zaofjkaifjlv (4.23)

We can now compute the averaged radiated power

1 [T i
(P) =7 A dt / dQ,R2, RX—TO,., (4.24)

where T is the period of the gravitational waves and we
substituted the normal unit vector as n' = x'/R,. Far away
from the sources, the waves are spherical waves®

sinjo(t — Ry,)] '

K (4.25)

fijN

To leading order in 1/R, the spatial derivatives can be
replaced by

80ne may wonder if, indeed, the transverse-traceless tensor
modes f,, which are the result of applying a projector which is
local in momentum space and nonlocal in position space, are
indeed spherical waves asymptotically far from sources. In
Appendix C we solve the SO(1, 3) gauge-invariant fluctuations
due to a static source. In Appendix F we solve for the SO(1,2)
gauge-invariant fluctuations asymptotically far away from a
binary source. In either case the gauge-invariant fluctuations
retain the generic feature of falling off with 1/r, where r is the
distance to the source, and are spherical waves in the second case.

Xi Xi
0if jx ~ KaRmfjk ~ = anfjk- (4.26)
Next we note that 7 ; can be written as
1 " 1 &
Ty = Zaof] Oif jx — iai(fj of i)
1 .
+ Eak(fjkaofij)' (4.27)

Asymptotically far away from the sources, the last two
terms in (4.27) will average to zero as we will now show.
Consider one of those terms and start by trading off the
spatial derivative for a time derivative

T i )
/ dt / dQuR% =—0,(F00f 1)
0 0

=- / Lar / A% R3,00 (%00 f )+O<1> (4.28)
0 oo jk Roo . .

This vanishes since the integral in (4.28) is the integral of a
total derivative, and the integrand is a periodic function
with period 7. Therefore the averaged radiated power
simplifies to

1 [T 5 X1 "
<P>:? A dt szRooR—ZaofJ 0if jk

= l/T dt/szR%olaofjkaofﬂ‘. (4.29)

T Jo 4
This is a familiar result, which in the literature is obtained
after going to the transverse-traceless gauge (see [39] for
disambiguation regarding the various meanings of the
“transverse-traceless gauge”), as it is usually done for
4D flat spacetime gravitational waves, and performing
the Isaacson average discussed in Sec. I.

However, we have arrived at it in a different way: we
used only the gauge-invariant parts of the metric fluctuation
to turn (2.24) into a manifestly gauge-invariant expression,
and we only performed a time average over the period of
the gravitational waves.

For yet another take on the same problem, in Appendix E
we perform an SO(1,2) SVT decomposition of the metric
fluctuations, and in Appendix F we solve explicitly for the
gauge-invariant SVT components asymptotically far away
from a binary source. Then using the gauge-invariant
metric fluctuations in the gravitational energy-momentum
tensor (2.24) and the formula for the radiated power (2.19)
we recover the known expression for the radiated power.

B. 5D flat spacetime

Anticipating further applications to models of extra
dimensions such as Kaluza-Klein theories (small extra
dimensions) or the Randall-Sundrum model (large
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extra dimension), next we will decompose the metric
fluctuations about a 5D background into SVT components,
with respect to the SO(1, 3) Lorentz group. In this section
we have in mind a 5D flat spacetime, with one compact
dimension x> ~ x> + [; this breaks the isometry group from
SO(1,4) to SO(1,3). We proceed then with the following
SVT decomposition:

. (2wﬂb+aﬂayE+aﬂFy+abF,,+ fuw aﬂB+Sﬂ>
M= 9,B+S, 2 )
(4.30)

where we have introduced the 5D indices M,N = 0,1,2,3,5,
and 9,8 = 9,f*" = 9,F* =0 and f,n" = 0.

The gauge-invariant metric fluctuations are @, ¥, S, and
S w» Where
|

26", + 9,0,GH) 4 9,G")
Gun = (L) | A1)
9,G5” + Gl

27y, + 0,0,TH) +0,T)
TMN -

9,1 + 117

The equations of motion for the scalar fluctuations ® and ¥
arise from

8 Gss = 3n70,05¥ = Ts;s,
(L L)
sWGH = 30w = T,
260GY) = 3029 + 5%9,0,® + 21,0, ¥ = 2T,
sWGUIL) = —@ — 29 = TULD), (4.34)

The equations of motion for the transverse-vector fluctua-
tions S, arise from

1

sVGY = ~ 510,048, = T3, (4.35)
1

sSWGHD = 508, = T, (4.36)

Last, the equations of motion for the transverse-traceless
tensor fluctuations f,, come from 5(1)G$T):

1 1
6G" = =3 B = 31700y = T

: (4.37)

We can quickly count the degrees of freedom by consid-
ering the vacuum equations of motion

"We performed a similar decomposition in 4D noncompact flat
spacetime in Appendixes E and F.

(LT)

1
(D—¢—05<B—565E>,
Y=y,

S, =S8,—0sF,. (4.31)
We gauge fix such that the metric fluctuations contain only
these gauge-invariant components:

Y+ fuw S,
hMN|g,i. = < ! ! ) (4-32)

S, 20

Consider next the Einstein equations Gy =82GspT v

where Gsp is the 5D Newton constant. To streamline

our equations we adopt the same convention and set
87Gsp = 0. We perform the SVT decomposition

Gss

+0,G " + 6" 9,6 + G )

(LT) | o(TT) 5 (L) | ()
+o, 10 + 18" o1® 4 7t
! ! ’ ’ ) (4.33)
Tss.
[

n0,0,¥ =0, oW =0, =-2
n0,0,8, =0, 958, =0,
2 f 0y +10,05f = 0. (4.38)

When ¥ (and therefore @) is x5-independent, ¥ describes
a 4D massless scalar, which has 1 degree of freedom. For
x°-independent vector fluctuations, S ., describes a 4D mass-
less vector which has 2 degrees of freedom. The x’-inde-
pendent tensor [, describes a 4D massless graviton which
has 2 degrees of freedom. This is the scenario for Kaluza-
Klein reduction, when 5D gravity reduces to a 4D Einstein-
Maxwell-dilaton theory.lO Otherwise, for x’-dependent
fluctuations, only the tensor f,, is nonzero and describes a
4D massive graviton, which has 5 degrees of freedom.

Next, we construct the energy-momentum tensor of
gravitational waves. We follow the same procedure as in
the previously discussed 4D case. We write the energy-
momentum tensor for gravitational waves as

Tun =Ty + Tow +Toon + Toiw + Ty + T,
(4.39)

"°For a more careful analysis of the zero-mode case leading to
the same conclusion, see Appendix D.
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where 7 1(53\,, T ](‘},/,2,, T g,)v are terms involving scalar, vector,
tensor modes only and 7 55,‘\/,) T 55,{,) T%\T,) are terms that
mix different modes. Based on our earlier counting of

degrees of freedom, the massive modes contribute only to

T 1(‘2\, We will focus on 7 ; since it is needed to compute
the radiated power at infinity. We do not need 7 (5 due to
the periodicity of the fifth dimension:

T = —0)%0,® — 9,¥0)® + 9D, ® — 20,¥9,¥
— 20y (D0, @) — 40, (V9,¥),

1 1
Thy = =5 0u(S00°S:) + 5800,9°S,;

1
+ Eaa(sa(aosi +0;S))

1
+5008.0,8" = 0y

1
Ty = =5 (05(Foudsf5) + 0y Foud £2)

(Saaisa)?

1
— fou(050° + 050°) f¥) + Eaaaﬂ(fOﬂfia — fapfoi)
1
2 (f(l/f(a()f +af0))
1
ZaOfa/Jaf 4 __aO(faﬂaf 7).
— 05 (S()O‘P + Soai\P + (I)aiSO + (I)aosl)
(00S; + 9,S0)05(® + 2W),

74 -

1
2
1
59 05 (P05 fo;)

— S ®(050° + 0,0°) o

+ 3 0y (@O fo; — POy 7 — DO, f§)
+ 0%(fia00¥ + f0a0;¥ = f0:0,F).

1
Toi" = =0"(Su0sfor) + 5 05(Sudoff + Su0if%)

_aa(SOa5fi(1 + SianOa -

/ dt/dx /dngz lTol

fOiaSSa)' (440)

F=Re

~ ’ﬂ\'—'ﬂ\

+?/0 dt/dxs/dnggo (Zdofaﬂﬁrf“ﬂ

massive)

i 1 1
/ dt / dx’ / dQ,RY, -~ * (—ao'yaicp = 0,%0,® + )P0, ® ~ 200¥0,¥ + 5 4,98 + oS up0; f“”)

/ dt / dQ,R%, (680‘{’00‘P+ I N aofaﬁao fo

These expressions can be greatly simplified under certain
conditions. For example, let us assume that all the source
terms have compact support and are localized at x> = 0. We
will extract all the parts of 7; that give a nonvanishing
contribution when computing the radiated power. Since the
sources have compact support and are localized at x> = 0, at
spatial infinity the fluctuations will take the following form, to
leading order in 1/r: (i) spherical waves for the zero modes,
and (ii) exponentially suppressed with r for the massive
modes. For a binary source this behavior is as follows:
(i) exp(2iQ(t — r))/r, where Q is the frequency of the binary
sources, for the zero modes, and (ii) exponentially suppressed
exp(2iQt) exp(i2znx’/1) exp(—r\/(2zn/1)? — 4Q2)/r,
where [ is the periodicity of the fifth dimension and 7 is an
integer for the massive modes [13]. Because the fifth
dimension is periodic, and we integrate over x° in computing
the radiated power, we can drop any term that has only one
derivative with respect to x°. Furthermore, because we
compute the power at spatial 1nﬁn1ty we only need the leading
order in 1/r for any fluctuation. As a consequence, we can
trade 0, for n;d, for the zero modes just as in Sec. [VA. Even
though the massive modes do not depend on time through the
combination ¢ — r, given that the d, derivative must act on the
exponential or else it will give a contribution which vanishes at
spatial infinity, we can still trade d, for d, (appropriately
multiplied by a frequency and n dependent numerical factor).
Under time averaging, any term that is a total derivative with
respect to time drops out. We are left with

T — —0,%0,® — 9,¥0,® + 9D, ® — 20,¥0,¥V,

1
T(()‘l/) - ans(laisa’

1
T(()f) iy a()f a/}aif aﬂ’

’T(l LN 0,
7 =0
7" > 0. (4.41)

Combining all the parts, the formula for the radiated power
simplifies to

r=R,

o0

massless> ‘ r=R.,

, (4.42)

r=R
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where we have highlighted the contributions of the massless
and massive sectors and we have used that asymptotically far
from the sources the scalars are related by the vacuum
equation @ + 2¥ = (. Due to the exponential suppression
with r in the massive mode sector for source frequencies
Q > 27/l it is reasonable to approximate (4.42) by keeping
only the massless sector contribution. We complete the check
of the formula for the radiated power in Appendix G by
concretely solving for the gauge-invariant fluctuations and
computing the luminosity of a binary source. We show that
we reproduce previous results in the literature.

C. Randall-Sundrum model

For the Randall-Sundrum model we start with Einstein’s
equation,

1 1 —det(*g,,)
Ryn —= R —=2A) + - A — T 50 547G, 0
MN 29MN( ) ) —det(garn) ON GuS(y)

where Ty are the matter sources, *g,, is the pullback of
the bulk metric to the 3-brane located at y = 0, and where
the brane tension A and the cosmological constant A are
tuned such that

J

A=—-6x* and 1= 12. (4.44)

Given the SO(1,3) isometry of the background metric,
ds? = dy* + 7>y, dx*dx’, we start by decomposing
the metric perturbation into scalar-vector-tensor fluctua-
tions as follows:

. <2wnﬂy+aﬂayE+aﬂFp+aDF,l+ fuw aﬂB+s,,>
M- 0,B+S, 2 )
(4.45)

The gauge-invariant fluctuations are @, ¥, S,, and f,,,
where

1
D=¢-0, (B -3 e‘2’<|Y|0y(ezKY|E)> ,

1 1
Y =y-— 5 (aye—2f<b'\) <B -5 e—ZKI_vay<62K|yE)> ,

S, =S, — e 2Dlg (eXDIF,). (4.46)
Next we perform the same SVT decomposition on the left-
hand side of Einstein’s equation (4.43) which we denote
here by Eyy

LT LT T L T
B <25<Y>;7,w +0,0,EEL 40,687 40, 1 L) 9,80 + £
MN —

0.6 + &l

) , (4.47)
gyy

and to the matter sources on the right-hand side of (4.43) (note that we included the brane contribution in £,y)

r <2T(Y)71,4u +9,0,74) + 0,10 0,1y 4 1) 9,1 4 1 ) (4.48)
MN — ' |
();,T§;L> + T Tyy

Then we expand in fluctuations and write the linearized equations of motion for the gauge-invariant fluctuations. The

linearized equations of motion for the scalars @ and ¥ arise from the components §&,,, SWER  sDEW) and sWELL),

8

2
sE,, = b [3e2f<}'l,7alfaaaﬁ 126l (e bl 9, — 12621 ((e= 1Y )2 4 debl(e )" + 225() + 5 A] ¥

3

n [_ 2 160y) — % A = 122D1((e=<blY)2 — 4o (e—xbr)u} @

3

= e*PI[3e2D1n?9,05 — 12k sign(y)d, — 24x*|¥ — 12*® =T,

SMEL) = [=36219, + 63| (eI Y|P 4 3exbl (e=*bl YD =

1
26 elY) — [ze%ynaﬁaaaﬂ + 3@3 — 4el<\y|(e—'<\y\)” + 3,15(),)

e*P[-30, — 6 sign(y)]¥ — 3k sign(y)® = T\,

4
—A|¥Y
+3}

1 2
4 e 2yl {naﬂaaaﬂ =+ 645(),) + §A — 2D (e D1y — GVl ((eI1Y)2 — 3e’(|»‘"(e"“Y|)’ay 1)

= 221y 0,05 + 302 — 12k + 12x8(y)]¥ + e~ >P[y%9,0, + 3k sign(y)a, — 12x* + 6x8(y)]|® = 2TV,

SWELL) — _@ — 2Py = T(LL)

(4.49)

024049-15



YUCHEN DU, DIANA VAMAN, and KENT YAGI

PHYS. REV. D 109, 024049 (2024)

where we used primes to denote differentiation with respect to y. The linearized equations of the vector fluctuation S, come

from the components ()& and sV ELT:

2

1 2
sWED = _Ee%ly\”aﬂaaaﬂ — eKly (&K1 = 3026l ((exv1)1)2 -3 25(y)—=A|S

1

1
ST = 10, — e (e""y)’] S, — [an —Ksign(y)] )

The tensor f,, equation of motion is

1

3 H

1
_ _EeZKIy\,,aﬁaaaﬁ - 61«3()})] S, = T,g),

(4.50)

2

| e
5(1)51(4? = {_Eeklylna/faaaﬁ —— Eaf - 615();) - §A — 2l ((e~xI¥))2 fou

1 1
= {—Eez"b"n“ﬂaaaﬁ - 503 + 26> = 2k6(y) | fr = T,(Z)

and originates in 5(1)& - In the absence of matter sources
we recognize here our earlier Eq. (3.15).
In vacuum, the set of equations obeyed by the gauge-

invariant fluctuations reduces to

n%0,0,¥=0, 0,¥=0, @+22V¥=0,

1
e*Py9,04S, = —12x8(y)S,., [an —Ksign(y)] S, =0,

1 1
—§e2 Yy 0,05 —503 +2K% — 21<5(y)] fuw=0. (452

The linearized vector vacuum equations admit no solution
due to the delta function present on the right-hand side of
|

(4.51)

|
Eq. (4.52) and the absence of any d, derivatives, which
imply that S, vanishes on the brane. The tensor equation,
however, does not suffer from this problem and admits
solutions. The scalar equations admit solutions for null
4-momenta, but the ¥ scalar metric fluctuations are |y|-
independent, and the @ fluctuations are growing with |y|.
Both fluctuations are non-normalizable, exponentially
growing with |y| relative to the background metric.

We are now turning our attention to constructing the
gravitational energy-momentum tensor 7 ,,. It is quadratic
in fluctuations: we denote the scalar, vector, and tensor

contributions by 7 ﬁ,‘f,), T %), T ,()? and the mixed contribu-

tions by 7 f,f,v), for the mixed scalar-vector contribution, etc.
We give each one of these expressions below:

T = 1| —Ae™ 0 (e DY DA, D — 4erbl (e D) Wo, B + 60,W, D — de| (e~ Do, ® — 1202 ((e=1))2
— 82D ((e7*h 1)) 2DW + B I((e71) )22 — 8exll(e7<P1) Do, ¥ — 30,0, ¥ + 165V (e7P1) Do, ¥
— 83 (e7*D1) o W — 4o~ DI (e7P1) @2 — 83Vl (e ) W2 + 20,0, W + 4e*1 W0, 0, W + 179, DI; P
— >0, DY + 31y 9, W, W + D0, D + > Py W40,® + 4e* P W40, Y] — 9,00, P

1
— 21(0,%0,® + 9,®9,'¥) — 6e*P19,¥0,¥ — 200,0,P — 4e*1¥1¥9,0,¥, —1,,A5(y) [Z @2+ 3q>\11} ,

(4.53)

T = Moo | — % IS, S ((e*b1))2 = 3exbl(e=xblYS0, S, - % IS, S (e~ Dy + % DInt19,8%9,8,

1 1 1 1 1
+3 e PyfrS,0,0,8% — a M9, SP9,S* — 5/15()7)3’“5“ +5 e*MISe9, (0,8, + 9,S,) — 3 e*Py"9,8S,0,S,

1 ) a
-5 e*9,8%9,8, — *'S,0,0,87,
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T 3 K|y —K Q 3 K| Y| 12 K 3 K K Q K —K|y Q
Ty = o {—Eé P& F0y fap + 5 P00y f a0y f e + G € P70, f PO fag + €PN (€P1) ) f

1 N 1 — 1 y 1 2
4 1 e2xly \faﬂagfaﬂ -5 e3K|y|faﬂfaﬂ(g Ky - i el \faﬂnyKaK()yfaﬂ -7 e4r<b|aﬂfayayfaﬁ

) 1 )| 12 K —K a
+ e3x\y|(e—xl>|)/(f6a S+ 1 yfn'a) _ Eezlcm” ﬁayf/)aayfo'ﬁ — 2% \y\((e \yl)/)zfmf{r

) 1 a 1 (0 1 a 1 a 1 a
+ e4Kb| |:§ aafoﬂaﬂfp - Ef ﬁaﬁaafpa + Efaﬂaﬁapfa + Efaﬂaﬁanfp - E'lﬁyaﬁfp ayf(m

1 1 1
- Z /)faﬂacfa[)’ - Efa/iao-a/)faﬂ - Zﬂpaié(y)fa/)’faﬂv

TRV = 2bly,8%9,0,% + e*Dlyby 0,80,V

+ 2e3Dl(e~ Py Wo,S , — e*P1o, W0,S, + e*P19,S,0,'P,

2

(4.54)
1
+ @©0,0,S, + ¢*1S,0,0,¥ + ®9,0,S, + ¢*V1S,0,0,¥ + 59,®9,8, + 2eP (e=P) ®o,S,
1
+ 23l (e YWo S, — e21¥0, W0, S, + e*110,S,0,¥ + 50,®9S, + 2e| (e~ ) D9,S,
(4.55)
760 — L oivipary 9,00 + Lo 0o Oy f 0, @ — 4> DI((e= DY 2 f D
po _ze f npaﬂa +§ y yfpa_ yfpay —ae ((6 ))fpa
1
— 8eklyl ((e—KIyI)')2fpa\p & 43kl (e"“y‘)’fpgay‘l‘ _ q)ayayfpa + 3 eZK‘yW‘/’aa(I)aﬁfl,g
) 1 ) a
- 64K‘y‘naﬂ6aqjaﬁfpa - e4K‘y‘77aﬂlPaﬁaafp0 - 5 eZK‘ylaaq)apfna + e4K‘y|fﬁ apaalP
1 1
= ezx\ylaaq)adfpa + 64K\y\fpaagaa‘1’ + /Ié(y)fpl, [E(I) + 2‘1’] , (4.56)
TV — 2] ! 1o 0,8% — S%0,0 ! Py 0,04 1S“0 0
po =€ _571/)577 yfaﬂy - yafpzr_if Mys0y0p a+§ ypfzm
1
+ _Saayaaf/)a + eK‘y|<e_K‘y‘)/Sa()af/m - eKM (e_Kly‘),f(;”aaSp - eKly‘ (e_Klyl)/fpaaaSa
1 af ! aff 1 ap ! a ! «
— Er] 0ySa04f po + En 0yf5a0pS, + 517 0y f pa9pSs + 3 0,8,0,f" + 3 0,S.0,f,% | (4.57)

where the 4D indices @ and f on the vector and tensor
fluctuations have been raised with the Minkowski metric,
e.g., 8% = n“ﬂSﬂ. The delta-function terms arise due to the
presence of the brane.

Under the same assumption that all sources have
compact support, let us extract those parts in 7 ,, which
are relevant for computing the radiated power. For kr > 1
we derived in Sec. III D the profile of spherical waves in the
Randall-Sundrum background. We see that the same argu-
ments we have been using earlier still apply. First, for the
radiated power we only need 7, if we chose to compute
the rate of the energy flux through the surface of an
infinitely long cylinder (we are thus keeping r = R, large
and fixed and integrating over y). This is merely a

convenient choice of the surface enclosing the sources,
and keeping with our assumption that we are measuring the
radiated power far away from the sources. Second, the
relevant terms in 7; which contribute to the averaged
radiated power can be found by (i) dropping all total o;

derivatives [since these can be turned in (x'/r)0, in T(({?) and

T(()Y); the 0, derivative must act on the phase of the spherical
wave; otherwise, it will lead to a flux which vanishes
asymptotically far away (r = R, — o0); at this point 0,
can be converted into d;; last, the time average will set this
term to zero)]; similarly, total derivatives can be dropped
from Tg); and (ii) dropping all the terms which are odd in y
such as single d, derivatives. What is left is
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T = 0)®0,® — 26419, W0, W — 21 (3)W0,® + 9, D, P).

1 1
TG - 2 Soe* P 0,0,8; + 2 e*1908,0,8°,
1

T 1 —ZK|y K K|y a K|V (04 ] K|V Qy
Téi) - —Ee : May(ez ‘y‘fm)ay(e2 Mfi) —264 ly‘fODMD)fia +4—164 MaOfa/)’aif ’,

75" =0,

1 , 1
Tgf” = 0,09, fo; — 0, f0:0,® — 4K ;D — 82>V £, ¥ — di sign(y)e* P f,0, ¥ — PR f; + 3 Py, D0, f o,

2

1 1
= Dl 0, 0y fo; — NP 0,9 fo = 5 V10, + 1000, = 3 10,0, + eV f0,0,

+ <2‘Pfo, + ;chOz> j'5()))’

TéYT) - 0.

(4.58)

The luminosity (radiated power) of the gravitational waves is obtained by substituting the expressions in (4.58)

into (2.19)

1 T 0
(P) =7 / dt / dye= D / dLRL T + TV + 70 + 757 + 70" + T3],
0 —o0

(4.59)

Last, this expression can be further simplified: since we are asymptotically far away from sources, we will use the vacuum
relations satisfied by the scalars @ + 2 exp(2«|y|)¥ = 0, and we ignored the vector contribution since it does not couple to

matter on the brane:

1 T ) ..
Py =1+ / dr / dye= / (0, R 25 [6@4”‘1"1’
0 -0

X
4kly|

+ et 2

2

(s

1 y )| o 1 Uy U 1 a
<__ e_6Kb‘ay(ezKly‘fO(l)ay(ezkb|fi ) - Efo’?” aﬂal/fi{l + ZaOfa/}aif ﬂ)

Dl (10, (> )a, oy + 1 (~20,¥0y fo; = 0,0, )

o0

+ 1%0,0;(Pfop) + 2e P02 £, — dicsign(y)e 2P f,0, ¥ + 12x5(y) ¥ fo,.)} .

V. CONCLUSIONS

In this paper we constructed the gravitational-wave
energy-momentum tensor in a strongly curved background.
The main takeaway is that the quasilocal expression
ubiquitous in the literature (T,,); = (1/4)(h,5, 0% )1,
where the subscript “I” denotes an averaging procedure
devised by Isaacson, is valid when the background metric
satisfies certain conditions and those conditions fail to
hold in a strongly curved background. The expression

(4.60)

(T,)1 = (1/4)(h,s,,h"°.,); assumes the integration (i.e.,
averaging) over a region of spacetime, smaller in size than
the curvature length of the background R ~ 1/L? and larger
than the wavelength 4 of the gravitational fluctuation £,,.
These assumptions imply that L > A, inside the averaging
region the metric is almost flat, curvature effects are
negligible, and background-covariant derivatives commute.
Then the gravitational radiation backreaction on the back-
ground geometry which is given by
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T

v

) (1)
- _Eh( ) ﬂ(hﬂv;a;ﬁ - hva;ﬂ;ﬁ Hasy;

L) (e
_Zha/i;uh( ) ﬁ;y

4

.3 :
+2h) h(ab hgy)ﬁhmaﬁ,y + Ehf(l}f) h(l)aﬂ,y)

in the de Donder gauge h,(,lp);”

where it is given by

= 0, simplifies to the point

Lo e
(T = 3 (o7, (5.2)
after integration by parts (e.g., (hf;{a;ﬂh(l)“ﬁ)l =

—(h,(,},);ah“)"/j;ﬁh) and use of the linearized equations of

motion obeyed by hftly). The other advantage of Isaacson’s

averaging is that the resulting expression is manifestly

gauge invariant. This can be seen by substituting the gauge-

transformed fluctuations 5h,(,1y) = &(uy) In (5.2), integrating

by parts, and using the linearized equations of motion.
Of course, one of the main conditions for defining a
good gravitational-wave energy-momentum tensor is gauge
independence.

However, if the background geometry varies on scales
shorter than the wavelength of the radiation, we cannot rely
on the averaging procedure of Isaacson. This is the case, in
particular, for the Randall-Sundrum model of large extra
dimensions. The background curvature length must be
smaller than pm in order to confine gravity near the brane
and hide any deviations from Newton’s law at sub-pm
scales. A similar situation arises in a cosmological scenario
[23] when the curvature scale is smaller than the wave-
length of the gravitational fluctuations.

Without the benefit of the averaging, not only can we not
simplify the expression in (5.1) further, but we are looking
at a gauge-dependent quantity. Our resolution to the
problem of defining a gauge-invariant gravitational-wave
energy-momentum tensor in a strongly curved background
mirrors that of Abramo et al. [23]. Namely, we use only the

gauge-invariant parts of the linearized fluctuations h,(,p in
the expression (5.1). This definition can be used in any
background geometry that invalidates the assumptions
made by Isaacson, and it does reduce to the usual
expression (5.2) in flat backgrounds. To drive the message
home, take, for example, flat space as a background, and
consider the linearized fluctuations hw as we did in
Sec. IVA. We further decompose the metric fluctuations
according to how they transform under the rotation group,
SO(3), i.e., scalars, vectors, tensors, as in Eq. (4.2). This is

1 1 I a
S )y b

Da; 1)fpa
apu (h/(l o h!(‘ ’ )

21/;{1

1 1 1 @ e, 1 1) 1);
= 3 Ok + B ) (R = 2007) 2 () — 20

b 4

1

1_ , . ) «
+ 79w <h<1)aﬁ(h(1);a;ﬂ + hgz,]; Ty = 2ht(xly) Tp) = Eh(l);ah(l)’a - Zh‘(x]ﬁ)’ h(l)ﬁ}';y

(5.1)

B4

|
known as performing a SVT decomposition of the linear-
ized metric fluctuations. The linear combinations given in
Eq. (4.3) are gauge invariant. As expected, the linearized
Einstein equation (2.5) constrains only these gauge-
invariant fluctuations. Anything else is a gauge degree of
freedom. We next cast the metric in the form given in
Eq. (4.6) in terms of the gauge-invariant fluctuations. This
is further substituted in the gravitational energy-momentum
tensor (5.1). The radiated power (radiated energy per unit
time) through a region M whose boundary is asymptoti-
cally far away from sources can be computed using

dE
dr

= AM d=x/=gn;k, TH, (5.3)

where k, is a timelike background Killing vector and n'isa
unit vector transverse to the boundary oM. Furthermore,
assuming that the sources are generating gravitational
waves and that the period of the gravitational waves is
T, we defined the averaged radiated power through the
boundary oM:

1 [T )
<P> = ?/0' dt AM dd_zx —gnikﬂT’”. (54)

We verified that the radiated power reduces to the known
expression in Eq. (4.29). In Appendix F we also verified
that had we performed a different SVT decomposition, with
respect to the SO(1, 2) isometry subgroup, we would arrive
at the same expression for the power radiated away by a
binary source as with the previous SO(3) SVT decom-
position. In Sec. IV B, we further checked that the same
procedure of retaining only the gauge-invariant linearized
fluctuations of the 5D metric, with a flat background
R¥!' x 8" and a compact fifth dimension, yields the
expected results. We decomposed the metric with respect
to the isometry group SO(1, 3) and retained only the gauge-
invariant fluctuations as in Eq. (4.32). We simplified the
formula for the power radiated by a binary located at the
same position along the fifth dimension (the binary sources
are on the same brane) and further evaluated the expression
in (4.42). In Appendix G, we reproduced once more known
results.
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After having tested our proposal for the gravitational-wave
energy-momentum tensor and our ability to perform the
calculation of the radiated power starting from the gauge-
invariant fluctuations in a variety of setups, we turned our
attention to the Randall-Sundrum large extra-dimension
scenario in Sec. IV C. We performed the SVT decomposition
of the linearized metric fluctuations with respect to the
SO(1,3) background isometry group, and we wrote the
equations which constrain their dynamics, by analyzing
the linearized Einstein equations. Using these gauge-invariant
fluctuations we arrived at the expression for the gravitational-
wave energy-momentum tensor in Egs. (4.53)—(4.57). In
Sec. III, after reviewing the construction of various Green’s
functions in flat and AdS backgrounds, we derived the profile
of the gravitational waves, which propagate in the Randall-
Sundrum geometry, when sourced by a localized periodic
signal. From the form of Green’s function (3.43) we inferred
that the gauge-invariant fluctuations are spherical waves. This
allowed us to evaluate the gravitational-wave energy-momen-
tum tensor expressions 7'y; used in the computation of the
radiated power and arrive at the simplified expressions (4.58).
A complete evaluation of the radiated power (4.60) is
forthcoming.
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APPENDIX A: THE SECOND-ORDER
EXPANSION OF THE RICCI TENSOR

In this appendix we perform explicitly the second-order
expansion of the Einstein equations, given a metric g, which
differs from a background metric g, by a small fluctuation

(A1)

the inverse

guv = g;w + h;w'
Expanding order-by-order in the fluctuation 4
metric and Christoffel symbols are

Hvs

g;u/ — 9"” — h" + [hz]”” _ [h3]ﬂl/ 4o,
5, =%, + 601, + 619, + - - -

1_
s, = 59”"(—%;6 + Moy 4 Pyuoy)s

1
5(2)Fﬁu = - Ehpg(_h;w;a + hﬁl/;ﬂ + h/m;u)’ (AZ)

where (R} = h*’h*°g,,, etc., and all the indices are raised
and lowered with the background metric. Consequently, the
Ricci tensor and Ricci scalar, expanded to second order in the

fluctuation A, are

R, = R/w + 5(1)RW + 5(2)le 4o,
_ - 1 , : :
5(1)RW - Vp(s(l)r‘ﬁy - Vﬂé(l)rﬁy -2 (g™ = Py + Mg + ).
8WR,, =V,821), - V,6010, + 61,6017, — 10,6019,

1 1
sultpow Ehp (hau;y;p + h/w;u;p - h/w;op) - Ehp ;p(hﬂb;ﬂ + h/m;u - h;w;a)

1— — 1
— Zvuvu(h” hpo‘) - Z hP ]’l -
1 ; R 1,0 1 0
- 5 (h;m’phpv’ - h/w’ph u;p) + Zh (hzﬂ/;/t + h;m;z/ - hm/;a)’

R=¢"R,, =R+6WR+6@R+ ...,
SWR = —1"R,, — h,,” + h,,"7,
@R = [’}*R,, — *6R,, + ¢*6PR,,,

where i = h,, g and the background-covariant derivatives

are denoted either through Vﬂ or are implied by an index
preceded by a semicolon (; p).

APPENDIX B: THE CONTRIBUTION OF THE
SCALAR AND VECTOR MODES TO THE
RADIATED POWER IN 4D FLAT SPACE,
WITH AN SO(3) SVT DECOMPOSITION

First, consider the scalar mode W which satisfies the
equations

(A3)

|
Gop = —28Y0;0;¥ = =2V?¥ = Ty, (BI)
G\ = —20,9 =T (B2)

Due to the compact support of the source, Eq. (B1) tells us
that far away from the source, ¥ is at most of order O(1/r)
with its phase depending on time ¢ instead of retarded time
(t = r). Thus, 9;¥ will be at most of order O(1/r?), which
means any term in 7, that contains 0;% will not contribute
to the calculation of radiated power.
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Let us now move on to Eq. (B2). T(()L) can be solved as

ai
70

0o T T;. (B3)

Since the source has compact support, at large distance r,

we can see that TE)L) will be at most of O(1/r?), which
means any term in 7, that contains 0, will not contribute
to the calculation of radiated power.

Next, consider the scalar mode @ which relates to ¥ by
the equation

G =@ - = 7L, (B4)
T(LL) can be solved as
3 9o/ |
(LL) ZEWTU_W(SJTU, (B5)

which means when far away from the source, similar to P,
TUL) will also be at most of order O(1/r) with its phase
depending on time ¢ instead of retarded time (¢ — r). Thus,
any term in 7 ; that contains 9;,® will not contribute to the
calculation of radiated power.

The analysis for the vector mode S; is the same as that for
W, which leads to the conclusion that any term that contains
9;S; or 9,S; will not contribute to the calculation of
radiated power.

In addition, since we need to take a time averaging over
the period of the gravitational wave to compute the radiated
power, any term in 7 ; that is a total derivative of time will
not give any contribution.

Therefore none of the terms in (4.22) that involve any of
the scalar modes, @ and ¥, or the vector mode, S; will
contribute to the calculation of radiated power.

APPENDIX C: THE NONLOCALITY
OF THE SVT DECOMPOSITION

Whenever we perform a decomposition of SVT type, the
resulting metric components are extracted with projectors
that are nonlocal in position space. The same operators
when applied to a delta function localized energy-momen-
tum source will also result in a nonlocal set of SVT T,
components. To gain a better understanding of the action of
the nonlocal projectors and the consequences of a nonlocal
energy-momentum source we consider a flat background
and a static source and perform an SO(1,3) SVT decom-
position for both the metric and the Einstein equations. Let
us begin with the metric fluctuations:

(L

By =1, Y+ 0,0 +0,h") +9,0,h 0 4L (C1)

LT) . T
where h,(, ) is a transverse vector and hﬁw )

traceless tensor,

1S a transverse-

9 h(LT)M =0, nﬂph/(ZT) =0,

, 0,hTT =0,

(€2)

The indices are raised with the background (Minkowski)
metric.

Given h,, we can solve for each of g, pLL) Bk,
(TT).
and A,
2,0, 1 h
L N
d—]Dh +d—1’ (C3)
where h = h,, ",
d 0,0 1 1
hLL) — RV puv —h C4
-1 @-nor  (©
1 0°0°
pLTw — 5 <aﬂh/4 -0 ﬁh/w) (C5)

and where d = 4 here. Last, h,gT) is obtained substituting
the previous expressions into (C1). While a bit more
cumbersome than the usual SO(3) SVT decomposition,
this SO(1, 3) decomposition arises naturally in the context
of a 5D spacetime that has 4D Lorentz symmetry.

Consider next a static source and solve for the linearized
fluctuation in the usual fashion (define the trace-reversed
metric fluctuations, impose the Lorentz gauge, and solve
the resulting decoupled equations):

Ty = M&*(F),

2MG 2MG
dr* + 6

r r

dxidx/.

hydxtdx” = (C6)

Then we can extract the SVT metric components by
applying the nonlocal projectors as above:

2MG MG
¥ = . R =2 B — g,
3r 3 d
SMG
prn _8MG - any
00 3r 0i
T 2MG
hl('j )= 35 (5ij + ”inj)7 (C7)

where n' = % The matter energy-momentum tensor is
decomposed in a similar fashion:

Ty =, T 40,77 4 9,1

+0,0,T) 4+ T, (C8)
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with
MG MG
T = ——— 537, TeLL) = ——
3 (%) 127r

LT m  2MG
=0 1) =578,

ar) _ 2MG MG
Tij = Tég(r)élj - W<5i! - 3”,’7’1]) <C9)

As a check, we verify that the SVT fluctuations obey
decoupled linearized Einstein equations'’

O¥ = —8zGTW),  Oh" = —16zGTE".  (C10)

There is one more linearized Einstein equation that
involves ¥:

0,0,¥ = —81G0,0,T\L). (C11)

However, this equation is satisfied due to the transversality
of T, which implies that OT*H 4+ 7M™ =0 and

T — .
Notice also that the Einstein equations constrain only the
gauge-independent fluctuations, ¥ and hf;r). The other

two fluctuations hﬁLT) and h('L) are pure gauge. Given the

expressions for ¥ and h,(,ZT) in (C7) and the SVT energy-
momentum tensor components in (C9), we can proceed to
verify that Eq. (C10) are satisfied.

We can now take stock of what we have learned. While
source terms for Eq. (C10) obeyed by the decoupled SVT
fluctuations are nonlocal, the only consequence of this
nonlocality is that the linearized SVT metric fluctuations,
which still fall off as 1/r, acquire a dependence on n;n;.

APPENDIX D: ZERO-MODE SECTOR
1. Maxwell field

The SVT decomposition requires a slight modification
in the case of null eigenvectors of the d’Alembertian.
As a warm-up we consider first the Maxwell field in a
d-dimensional flat space. The scalar-vector (SV) decom-
position with respect to the SO(1,d — 1) Lorentz group

A, =0,AL) 4 A (D1)

vy AT _
. v, A =0,

or in terms of Fourier modes,

"Use that Ol = —428°(7),0"% =

d—1

A, = ikﬂA(L) + e,gp)Ap, elP) k= n””e,(,p)k,, =0,
p=1
elP) . eld) = §pa, (D2)
maps the d components of the vector field into a longi-
tudinal vector ()ﬂA(L) and a d — 1 component transverse
vector A,(,T). The latter components are gauge invariant.
However, this breaks down when A() is a null eigenvector
of the d’Alembertian, i.e., JAL) = 0, since in this case
G”A(L) is transverse (or, in Fourier space, k, is null). In this

case, we proceed with

d-2
A, = ika+ika+ Y el ar,
p=1
k, = (ko k). k, = (ko.—k),
kik=k-k=eP k=er) k=0,
e) . ¢l = gpa (D3)
The gauge-invariant components are & and AP.

Furthermore, Maxwell’s equations set @ = 0. For an on-
shell gauge field, we can write then

A, =0,A0 4 A0, (D4)

where the gauge-invariant components are transverse
AT = (0,47, V. AT =,
Next, let us consider a Maxwell field in d + 1 dimen-

sions and perform an SV decomposition with respect to the
SO(1,d — 1) Lorentz group

Ay = Ay Agtr) (Ds)

A, =0, AW A" oAl =0, (D)
where M isad+ 1 index and y =0,1,2,...,d — 1. Such
an expansion would be appropriate if we are working with
one compact dimension, x4t In terms of Fourier modes
exp(ik,x*) (scalar eigenfunctions of the d-dimensional

d’Alembertian) we can write

d-1
Ay = (ikuA(L) + Z€£]7>Ap’Ad+1)’

p=1

e?) k=il = 0. (D7)
This assumes that k - k = n**k,k, # 0. The gauge-invariant
components are Ay, —d, A and AT). Furthermore,
Maxwell’s equations set the scalar gauge-invariant
combination A, | —d, HA(L) to zero and require that
(=k -k + 95, )AP = 0.
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If the Fourier momenta are null (k- k = 0), then we
proceed as we did earlier, with

d=2

= ika+ik,a+ Y el A» (D)
p=1

with the polarlzatlon vectors e,(l ") transverse to both null

vectors k, and kﬂ. Maxwell’s equations set @ =0 and
require that the scalar gauge-invariant combinations
Agy1 — 04, 1a and AP be independent of x4*!. To conclude,
for an on-shell Maxwell field we can write

A, =0,AL) + A, (DY)

where ALT) satisfies a”A,(lT) = 0 if the Fourier momentum is

not null, or AL = (0.A7) with V-AT =0 if the
Fourier momentum is null. The additional physical degree
of freedom is the scalar A, | — d, a.

2. GR

For concreteness, we begin by considering 4D GR in a
flat background and perform an SVT decomposition
with respect to the Lorentz isometry group SO(1,3). We
decompose the metric fluctuations in terms of eigenvectors
of the 4D d’ Alembertian and focus on the zero eigenvalues
sector (e.g., the scalar eigenvectors satisfy [lype’** =0,
etc.). After Fourier transforming, the metric fluctuations are
decomposed as

rqn

h, =2y, — kk,E — (kk, + kk,)E

1%
+i(k,F, +k,F,) +i(k,F,+kF )+qu, (D10)

where p,v =0,1,2,3, the momenta k, and I~<ﬂ are null:
k-k=Fk-k=0, and where F —Zp 126,(,’J>F”, F,=
Zp 12€I4 F f/w qu 12€ﬂ qu Zp:l,prp:O’
and €( D — ( Pir =0, e .e( ) — 5P4.
invariant ﬂuctuations are y/, f L, F s E. The rest are gauge
dependent: 6F, = &L, 6E = 2¢,5E = &, where we decom-
posed the gauge parameter in a similar way: §, =

Ty | - T E with 2T (P) gp )
Su’ +ik,& +ik,E, with &0 =3 ,€: &P The equa
tions of motion set £ = 0, F » = 0, = 0. The 2 degrees of

freedom of the on-shell graviton are contained in the
transverse and traceless tensor f’“’.12 Of course, there are

The gauge-

(p)

2Since the vectors €, ' are transverse to both kﬂ and l}ﬂ, this

means that e( P = = (0, e(l’)). So the nonzero components of the
tensor f,, are purely spatial, and as a result, f, is transverse with

respect to the 3D gradient V

no solutions to the equations of motion for non-null
momenta.

We consider next a 4D flat background with one compact
dimension, and we perform the SVT decomposition with
respect to the SO(1,2) Lorentz isometry group. This is
the same scenario we will discuss further in Appendix E.
Here we focus only on the zero-mode sector of the
three-dimensional (3D) d’Alembertian. After Fourier
transforming and restricting to null 3D momenta
(k- k =n"k,k, = 0) we proceed with

hy = 2y, — k,kE — (k, k, + kk k E

WE
+i(k,F, +kJF,) +ik,F,+kF,),
hy, = ik,B+ik,B+S,.  hy =24, (D11)
where p,v=0,1.2, S,=¢,S, F,=e¢,F, F,=¢,F,
€, k=¢," k =0, and we recall that k - k = 0. Note that
there is no transverse-traceless tensor contribution f,, since
in 3D there is only one vector €,, perpendicular to both k,
and I}ﬂ. The six gauge-invariant combinations are y, ® =
¢ —03(B—03E/2),S, =S, - 0sF,, F,,E,B=B-0;E.
The vacuum linearized equations of motion impose the
following conditions: E =0, F =0, oy =0, 0;B =0,
403y + (k-k)B =0, ® = 0, 0;S, = 0. The 2 degrees of
freedom of the 4D graviton are contained in the scalar y
and the transverse gauge-invariant vector S,, which are
both null eigenvectors of the 3D d’Alembertian and x>
independent.
Similarly, for the case of a d + 1 flat background with
one compact dimension and d > 3 we make the decom-
position

h, = 2yn,, — k,k,E — (kk, + k,k,)E — k,k,E
+i(k,F, + k,F,) +i(k,F, +k,F,) + fo.
hdJrl/l lk B + lk B + S hd+1d+l = 2¢, (D12)

where p,v=0,1.2.....d~1, S, = Y42 ¢l)sr, F, =

S5 B~ SR, k==

eP).eld) =§pa, fuw = ;l—qz:l €I(lp)€£q)qu’ —2 frr =0,

and k-k=k-k=0. .
The gauge-invariant fluctuations are y, E, F,

D= d) - ad+l(B - ad+1E/2)’ B = E - adJrlE’ Sﬂ = SM -
0441 F, and f w- The vacuum linearized equations of
motion set £=0, ® =—(d-2)y, F=0, &,y =0,
ad+lB =0, 2(d=1)0g11y + (k- k>B 0, 94418, =0,
0441fw = 0. The (d — 1)(d —2)/2 — 1 degrees of freedom
of the (d + 1)-dimensional graviton are parametrized by the

transverse [in a (d — 1)-spatial sense since e( = (0, e( )]
and traceless tensor f,,, the transverse vector S, and the
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scalar y, all of which are independent of the compact
coordinate x4*!. This is what we expect to see when
performing a Kaluza-Klein reduction of d + 1 gravity in
the massless sector.

Thus, in the zero-mode sector, for the on-shell linearized
fluctuation, we can reach a gauge where all the gauge-
dependent terms are zero and write

h/wlg.i. = 21/”7;”/ + fﬂl/’

haiiulg.i. = Sy hatiasilg: =2®,  (D13)
which is of the form used in (E3). The one caveat is that the
transverse tensors f,, are transverse in a d — 1 sense for the
zero modes, while for the massive modes (k;,; # 0 which
implies k - k # 0) the tensor fluctuations are transverse in a

d-sense (and the scalar and vector fluctuations are zero).

APPENDIX E: THE SO(1,2) SVT
DECOMPOSITION OF THE METRIC
FLUCTUATIONS ABOUT A 4D FLAT

BACKGROUND

In this appendix we want to use the familiarity of 4D
gravity to study a less standard way to decompose the
metric fluctuations, namely using the SO(1,2) background
isometry rather than the rotational isometry SO(3). As we
will see, unlike the SO(3) case analyzed in Sec. IV A, the
tensor modes are not the only dynamical ones, and both

|

o <2G<Y>nw + 0,0,G*Y) + 9,G
w =
9,6y +GY

Hv

_ <2T(Y)17W + 0,0,TE) + 9, T

The linearized equations of motion for the scalar fluctua-
tions ® and ¥ come from the components 5(") G5, 5(1)GgL>,

5(1>G(Y), and s(WG(LL).

261Gy = 2477 0,05¥ = 2T,
L L
VG = —20,9 = T,
260G =203 + 1 0,05® + 00,05 ¥ = 2TV,
sSWGULL) = —p - = TLL), (E6)

The equations of motion for the transverse vector S; come

from the components 5(‘>Gg) and 6(1)G}4LT>:

v

L T
9,7 + 1)

scalar and vector modes contribute together with the tensor
modes to the gravitational energy-momentum tensor.
We begin by writing the metric perturbation as

h pr—

nw

0B+ S5 2¢ ’
(E1)
where we denote the 4D indices by u,v =0, 1,2, 3, while

i, v =0,1,2. The gauge-invariant pieces are ®, 'V, S, and
fap» where

1
(I) :¢—63<B—563E>,
Y=y,
S; = Sz — 0;F,. (E2)

Asin [23] we can restrict to the gauge-invariant fluctuations
by going to the gauge

20+ far Se
h;w|g.i. = < ! ! > (E3)

S 20

We apply the same SVT SO(1,2) decomposition to the
Einstein equations G, = T,

+0,GY + G 0,6 + Gl
2Gs;,
+ 0,74 10D g1 4 7l
. (ES)
[
n _ 1 5 _ (1)
WG = —5n $0:058; = T;3 .
1
G =2 0s8; = T, (E7)

Last, the equation of motion for the transverse-traceless

tensor f 7o comes from 6(1)G£-,TDT),

1 L .3
WGy = =2 R f s — 30" 0adpf o = Ty (E8)

3%

Next, we count the degrees of freedom by considering the
vacuum equations of motion:
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10,05 =0, 0¥ = 0, O =-9,

a%fﬁi/ + ﬂ(l/}aaaf)’fﬁz: =0. (E9)
Due to the constraints 0;'¥ = 0 and 0;S; = 0, it is natural
to separately consider the case p; = 0 and the case p3 # 0.
When p; = 0: ¥ describes a 3D massless scalar, which has
1 degree of freedom; S;, describes a 3D massless vector,
which has 1 degree of freedom; f;; describes a 3D
massless graviton, which has 0 degrees of freedom. When
p3 # 0: ¥ has no solution; hence its degree of freedom is 0;
S; has no solution, and its degree of freedom is 0; f;;
describes a 3D massive graviton, which has 2 degrees of
freedom. This again adds up to the correct number of
degrees of freedom of the 4D graviton. However, our
analysis was not rigorous. If p; = 0, then the equations of
motion require that the 3-momentum p, is null
(n"¥ pzpy = 0) which means that the SVT decomposition
starting point (E1) is invalid. Nonetheless, as we showed in
Appendix D, the conclusion reached here stands: the
2 degrees of freedom of the 4D graviton are the massless
scalar ¥ and the massless vector Sj.

The point to be made is that unlike the SO(3) SVT
decomposition, where only the SO(3)-tensor fluctuation is
dynamical, when performing an SO(1, 2) decomposition all

|

;100

=

- 1 ~ _nlilll - ’lzilu
Py = hyy = 11 hoy = ~ 3
" oW “ —nihyy —nyhy

0

where 71,,,, is the so-called trace-reversed metric fluctuation
and n; = x'/r are the Cartesian components of a radial
pointing, unit vector 7i = 7/r. In writing (F1) we have used
that for the binary solution fzw =0 and Ay + hy = 0.
Note that the x* direction is perpendicular to the plane of
the binary. This metric perturbation satisfies the harmonic
gauge nﬂ”dﬂizvp =0, which implies that /, can be written as
hoo = (n1)*hyy + 2n1n3hy; + (n3)hoy. (F2)

Each of the components fzoo, hyy, hyp, oy are in the form of
spherical waves. For example, /1, = pur3,Q%sin(2Q(t—r))/
(2zr), where p is the reduced binary mass, ry, is the
separation distance between the binary components, € is
the angular frequency of the binary, and we set 8zG = 1.
Next let us consider the SO(1,2) decomposition of the
perturbation (E1) and the gauge-invariant fluctuations
given in (E2). We recall that i, v = 0, 1, 2. Later we will

types of fluctuations (scalar, vector, and tensor) are dynami-
cal. Thus, the energy-momentum tensor can receive con-
tributions from all three types of fluctuations. If the x?
dimension were compact, the Fourier spectrum along x* is
discrete, and indeed all three types of fluctuations do
contribute, with the scalar and vector modes part of the
massless sector of a Kaluza-Klein reduction. If, on the other
hand, the x* dimension is noncompact, the Fourier spectrum
along x3 is continuous, and only the tensor modes contribute
to the radiated power as we will see in Appendix F.

APPENDIX F: THE SO(1,2) SVT MODES
SOURCED BY A BINARY IN 4D FLAT SPACE
AND THE LUMINOSITY OF THE
GRAVITATIONAL WAVES

In this appendix we derive concrete expressions for the
SO(1,2) SVT modes in 4D flat space, asymptotically far
away from sources, and verify that we correctly reproduce
known results for the radiated power using the results
from Sec. II.

We begin with a known form of the 4D metric pertur-
bation far away from a binary source [see, for example,
Eq. (5.24) in [13] ]. Keeping only the time-dependent parts,
h,,,, which are the relevant pieces for the computation of the
radiated power, we write

—'117111 —”2i112 _nlil12 —nzilzz 0
hiy +%iloo hi 0 (F1)
hi ha + 3 g o |
0 0 Lo

also use indices i, j = 1,2. From (F1), we can see that
B = 0and §; = 0. In terms of the SVT decomposed fields,

the harmonic gauge condition 9,7 = 9;h"" = 9,(h"? +
(1/2)7"%h) = 0 becomes
05 (OspE +2¥ —2¢) + OspFy =0, (F3)

where (3 = —(0g)? + (9;)? + (9,)%. We also used that

1- - - -
20 = Ehom h = hﬂﬂl’” = —hgy. (F4)
By tracing h;; with #*¥ we learn
CapE + 6% = 26, (F5)

From (F3) and (F5) we infer that [l;pF; = 40,¥, which
given the transversality of F; implies ;¥ = 0. However,
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given the spherical symmetry of the problem we are led to
conclude ¥ =0 and F; = 0.
Thus, the SO(1,2) decomposition becomes

 (O0E+ fu O
By = ( 0 2¢>. (F6)

Next we solve for E and f; by further assuming E is in the
form of a spherical wave. We can verify our assumption
later by checking the consistency of our solution. This
method works when the solution is supposed to be unique.
With this assumption for E and keeping everything to
leading order in 1/r, we have

1.
|:|3DE >~ (n3)2a)2E ~ 5 hoo. (F7)

Thus, to leading order in 1/7,

E=—hy.
2(n3)?w? "
n

— h. —0,0,E = h ey F8
Sfav = hpp — 0,0, E = ,w'i‘m 005 (F8)

where we have defined

ng = (=1,ny,ny). (F9)

Since (n;)? + (n,)* + (n3)?> = 1, we have

(F10)

”ﬁﬁnﬁnﬂ = _(”3)2-

We are now checking that the gauge-invariant tensor
fluctuation f7; is indeed transverse and traceless. For
tracelessness, we have

o - ' ngng -
P ——) N
n fﬂ n o 2(]’13)2 00
1- 1~
5700 =5 ho0 =0 (F11)
For transversality,
Ffo = Fh + P2 G,
f/u‘/ [w+2(n3)2 00
. nany =
= —nfh. - — HV ip
e 2(”3)2 %
. -, 1 =
= —ho; —n'hip + Enahoo (F12)

must vanish. Substituting o = 0 in (F12) yields

_ . -, 1 =
#fro = —hoo — n'hy + E”ohoo

1»14 g 1.:.
= —Ehoo — n'hy; —Ehoo =0, (F13)

where in the last step we used the transversality of iz”,, and
the spherical wave nature of the fluctuations. Similarly, if
v = j, we find

_ . - 1 =
Ffrj = —hoj = n"hij +5n;5hoo

k3 [ 2 1 2 1 o
= —hoj -n' (h;; +25;j/’l00> + 5”]’1100 =0. (F14)

This concludes the check on our asymptotic solution
for f75.

We compute next the gauge-invariant scalar ®. We find
that it vanishes

D =¢—0, (B—%(%E) = ¢+%(03)2E =0. (F15)

We see that the relation which the two gauge-invariant
scalars obey in vacuum @ = -V is satisfied by our
asymptotic solution. The vanishing of scalar and vector
modes may not be a coincidence but could be a general
feature of uncompactified flat spacetime. Since in the
analysis performed in this appendix the extra dimension
(x*) is noncompact, the spectrum of Fourier modes of the
gauge-invariant fluctuations is continuous. Because the
scalar and vector modes consist of only zero modes of
the 3D d’Alembertian, they vanish in such cases.

At last, we can compute the radiated power, substituting
the gauge-invariant fluctuations in the formula for the
gravitational energy-momentum tensor. We need 7 ; and
T o3 which can easily be extracted from (2.24) substituting

(F16)

To compute the radiated power we start by integrating over
a 3D sphere as in (2.19) and use the same simplifications of
turning spatial derivatives into time derivatives (to leading
order in 1/r) when acting on spherical waves at spatial
infinity. Explicitly, we write
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1 (T .
:?/) dt/dQZR%oanOiL”:Rw
1/Tdt/dQR2 lf Vi
_T 0 2 004 %

1 (T

. n;n; : \2
— | ar / dQ0R2 iy + = hoo
47 ), M 2( 3)?
1 T o ﬂnl/ 2
dt | dO,R: ( hyy += ﬂwhoo + 52 oo
i 2ns)
1 T < oipp o 3= 1= A nﬁnl_/ i T Ly s
- 0 dl‘/szR%o (hﬁl—,hﬂ 4h00h00+4h00h00+77 “hg hoo (n3)2 h,;,—,hoo—ihoohoo)
= — dl‘/ sz ( hOOhOO - 2h01h01 + il;]il;]>
0
<h—-iz ) = 26205 (r)* 1)
2OG ’ 5 2

where we used the transversality of fzw and that the

fluctuations are spherical waves to set n/_‘ﬁﬁ 5 = 0. In the
last step we reintroduced the dependence on Newton’s
constant (recall that we have been working with 82G = 1).
We have thus recovered a well-known 4D result [see, for
example, footnote 10, with D =4, leading further to
Eq. (6.11) in [13]].

APPENDIX G: THE SO(1, 3) SVT MODES
SOURCED BY A BINARY IN 5D FLAT SPACE
WITH COMPACT x° AND THE LUMINOSITY

OF THE GRAVITATIONAL WAVES

In this appendix we aim to recover the power radiated
away by gravitational waves in a 5D flat space, with one
compact dimension x> ~ x>+ 1[13]. As discussed in [13],
for a small extra dimension, the contribution from the 5D
graviton modes with ps # 0 can be safely ignored far away
from the sources, since it is exponentially suppressed. This
fact can easily be understood from a 4D perspective where
these modes appear massive, with the 4D mass proportional
to the ps momentum. Thus, the radiated power receives its
dominant contribution from 5D graviton modes with
ps = 0. This translates in 5D fluctuations which are
independent of x°. Far away from a binary source, the
metric fluctuations are given in Eq. (5.24) in [13], and the
radiated power, which was computed using Isaacson’s
averaging scheme, is given in Egs. (6.8) and (6.10) in [13].

Given the symmetry of the problem, we proceed with
performing an SO(1,3) SVT decomposition of the metric
fluctuations

hﬂv = 21//’7;w + aﬂaUE + aﬂFV + a”Fﬂ + f’“”
hﬂs - aﬂB + S'u’

The analog of the 4D trace-reversed fluctuations in 5D is
I,y where

EMN = hyn — EWMth h= hMNﬂMN (GZ)
hyy = i;lMN - g’?MNil’ h= ilMN”]MN (G3)
The 5D solution in [13] is of the form
B h, O\ 3[R o
(s DA ) e
MN < o 0o/ 4\ 0 o (G4)

where we used the squiggle line to indicate that we only
take into account components that are explicitly time
dependent and drop the static (Coulombic) metric fluc-
tuation, just as we did in the previous Appendix F. The
time-independent terms are irrelevant in the computation of
the radiated power.
Assuming no x°
gauge condition

-coordinate dependence, the harmonic

Mhyy =0 (G5)

reduces to

i
~9,h.

h >

w o

(Go)

After comparing (G1) with the solution in [13] we
identify

®=¢ h. (G7)

1 1
2" =g

The harmonic gauge condition becomes
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1 1
9, <§ LspE — > hss

Next, while remaining in the harmonic gauge, we use the
residual gauge freedom to set L;pE to be 0. We use the
gauge parameter

éM = (50’ 0’ 0’ 0’ 0)

Since the harmonic gauge constrains ¥ by [ynéY = 0,
then far away from the sources we take with &, to be of the
form of a (4D) spherical wave. After performing this gauge
transformation, the new metric is hjy:

(G9)

h(new) = hyn + ouéy + Inéu- (G10)

We consider the trace of the 4D part of the metric
perturbation
P

=n"h,, —20pE) =8y ™Y + O,pECY),  (G11)

and we require that CJE(™Y) = 0. We recall that since y is
gauge independent, then y(™%) =y =¥. We use the

vacuum equations for the scalar fluctuations to relate ¥
and ®: ¥ = —(1/2)® and solve for the gauge parameter
from (G11)

200&) =1, +2hss =n*h,, +2hss—2h=~h.  (G12)

IR%, [T SV
(P) :TA dt/d92<6‘1"1’+1f,wf”)

We proceed to compute the gauge-transformed metric
perturbation:

new 2
hine™) —h00+200§0_h00—§h

hiy™ = hoy+ & = hoy + 3 h.

(new) 7 -
hi; ™" = hij = hy; —3 iih,
i =0
new 1 7
W) = hgs = ~3h (G13)
Now, we have the gauge-invariant pieces
1. 1.
(I):—gh:ghoo, (G14)
1 - 1 -
YV=—h=—-— 1
12 12h00’ (G 5)
S, =0, (G16)
wew) -
f/u/ = /(weW) gh’/llw (G17)

We can exp1101tly check that f,, is indeed transverse and
traceless." Fmally we can compute the power radiated by
gravitational waves far away, at a distance R, from a
binary source using (4.42):

(G18)

le . B 1= B 12
/ /d92{<144 hooh()o) + (hoo—i )(hoo —§h>
2 n; z 2 1 2 2 1 2
= 2(hoi + 5 hoi + 2h hij =583 ) ( hyj =5 81jh
lR2
/ dt / dgz{ ( . 4>h00h00

+ (_2];01‘;101' - 2ilooiloo - 5’%0%0) (h hl] + hoohoo)]

1R2 Lo
dt dd, hoohoo - 2h01h01 + hijhi;

191R§o

~ 360G5p Chighij)

(G19)

BSince we are looking at zero modes, i.e. gravitational waves with a null 4-momentum, the results of Appendix D apply. The tensor
mode f,, given in (G17) contains a 4D transverse-traceless gauge-dependent term d,F, + d,F,, with F,, such that [y, = 0 which
follows from (G8). To obtain the gauge-invariant tensor, which is transverse and traceless in a 3D sense as explained in Appendix D, we
ought to remove this term. Nonetheless in computing the radiated power such terms are harmless and yield no contribution, so we are

free to leave them packaged in f,, given in (G17).
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where we recall that [ is the length of the compact dimension
and where in the last step we have restored the dependence on
the 5D gravitational constant Gsp, and used the transversality
of the trace-reversed metric & - After accounting for an
overall negative sign which we introduced in our earlier

definition of the radiated power (2.19), we have thus
recovered the previous 5D result given in Eq. (6.8) in
[13]. We also notice that the contributions from scalar
and tensor fluctuations match the corresponding parts in
Einstein-Maxwell-dilaton theory, respectively [40].
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