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Allowing for the possibility of extra dimensions, there are two paradigms: either the extra dimensions are
hidden from observations by being compact and small as in Kaluza-Klein scenarios or the extra dimensions
are large/noncompact and undetectable due to a large warping as in the Randall-Sundrum scenario. In the
latter case, the five-dimensional background has a large curvature, and Isaacson’s construction of the
gravitational energy-momentum tensor, which relies on the assumption that the wavelength of the metric
fluctuations is much smaller than the curvature length of the background spacetime, cannot be used. In this
paper, we construct the gravitational energy-momentum tensor in a strongly curved background such as
Randall-Sundrum. We perform a scalar-vector-tensor decomposition of the metric fluctuations with respect
to the SOð1; 3Þ background isometry and construct the covariantly conserved gravitational energy-
momentum tensor out of the gauge-invariant metric fluctuations. We give a formula for the power radiated
by gravitational waves and verify it in known cases. In using the gauge-invariant metric fluctuations to
construct the gravitational energy-momentum tensor we follow previous work done in cosmology. Our
framework has applicability beyond the Randall-Sundrum model.
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I. INTRODUCTION

In this paper, we address the energy-momentum tensor of
the gravitational waves in the context of a strongly curved
background. Historically, gravitational waves were under-
stood as ripples across spacetime, with the wavelength of
the ripples much smaller than the curvature length of the
background. The most commonly used definition of the
energy-momentum tensor of the gravitational waves is due
to Isaacson [1,2]. In a couple of seminal papers, Isaacson
performed an expansion of the Einstein equations to the
lowest order in nonlinearities and interpreted the terms
quadratic in fluctuations as an energy-momentum source
due to the gravitational field, backreacting on the spacetime
geometry. With the image of ripples propagating across
spacetime implying a separation of scales between the
high-frequency gravitational waves and the large scale on
which the background is changing, Isaacson added an
averaging to his definition of the energy-momentum tensor

hTμνðxÞiI ¼
Z

ddx0
ffiffiffi
g

p
fðx; x0Þvμ0μ ðx; x0Þvν0ν ðx; x0ÞTμ0ν0 ðx0Þ;

ð1:1Þ

where the integration region is defined by the choice of the
compact support function fðx; x0Þ, centered at x, such that it
has a characteristic size smaller than the curvature scale of
the background, but larger than the wavelength of the
radiation. Furthermore, in order for the outcome of the

integration to be a tensor, the integrand Tμ0ν0 needs to be

contracted with the bitensors vμ
0

μ and vν
0
ν which transform as

vectors under coordinate transformations performed at
either x or x0. On the one hand, the small wavelength
assumption means that covariant derivatives commute.
On the other hand, the averaging (1.1) brings with it the
freedom to perform integration by parts.1 Together they
imply that the simplified expression of the (quasilocal)
energy-momentum tensor

hTμνiI ¼
1

4
hhρσ;μhρσ ;νiI ð1:2Þ

is background-covariantly conserved in vacuum, and gauge
invariant, which, of course, is a desired feature of any
definition of the energy-momentum tensor. Another defi-
nition of the gravitational field energy-momentum tensor
Tμν
LL which is due to Landau and Lifshitz [3] has the

advantage of being conserved ∂μT
μν
LL ¼ 0. However, it

suffers from two major drawbacks: it is not a tensor (hence
it is often referred to as the Landau-Lifshitz pseudotensor),
and it is not gauge invariant.
There is at least one situation of interest when the

approximations used by Isaacson are not applicable, that

1For example, hhμσ ;ρhνρ;σiI ¼ −hhμσhνρ;σρiI. After such inte-
grations by parts are performed, further simplifications arise as a
result of either applying a gauge fixing condition or using the
equations of motion.
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is, gravitational waves in extra dimensions. Gravitational
waves from binary black holes and neutron stars detected by
LIGOandVirgo have been used to test strong-field gravity in
various ways [4–9]. One such test is to probe the existence of
extra dimensions. For example, the presence of a large extra
dimension modifies how the gravitational wave amplitude
falls off as a function of the distance it traveled, so the
luminosity distance measured by gravitational waves would
be inconsistentwith those from electromagnetic counterparts
if one assumes four-dimensional (4D) general relativity (GR)
[10–12]. In [13]we studied a simpleKaluza-Kleinmodel and
showed that the luminosity of gravitational waves emitted
from a binary black hole is smaller than that of the 4D case,
leading to a relatively large phase shift that is inconsistent
with observations.
One paradigm of large extra dimensions is the Randall-

Sundrum model, with a 3-brane curving the five-
dimensional (5D) spacetime around it until it looks like
a slab of anti–de Sitter space [14].2 Matter sources are
localized on the brane. The background geometry has
SOð1; 3Þ isometry, and the fifth dimension is warped

ds2 ¼ expð−2κjyjÞdxμdxνημν þ dy2; ð1:3Þ

with κ proportional to the inverse curvature length. Gravity
is localized near the brane and deviations from the four-
dimensional Newtonian potential are parametrized in terms
of κ as [14,18]

VNðrÞ ¼ −
GM
r

�
1þ 2

3κ2r2

�
: ð1:4Þ

Given that the Newtonian potential has been probed by
Cavendish-type torsion scale experiments to micrometer
scale [19,20] this means that the curvature length of the
background must be smaller than this scale. We are thus
looking at a strongly curved background, where its curvature
length is smaller than the typical wavelength of the gravi-
tational waves generated by a black-hole binary source,
which is in the 102–104 km range. In this case, the under-
lying assumptions behind the well-known formula (1.2) are
no longer valid, and we need a new approach.
Our paper proposes a definition of the energy-momen-

tum tensor of the gravitational field which does not rely on
the semi-classical (WKB) approximation nor the spatial
averaging introduced by Isaacson, which cannot be used in
the case of strongly curved backgrounds.3 Instead, we are
constructing the energy-momentum tensor from gauge-
invariant metric fluctuations. Our procedure is similar to
[23], which dealt with the energy-momentum tensor for

cosmological perturbations, though how one foliates the
spacetime and decomposes the metric fluctuations is differ-
ent. Namely, within the cosmological context, it is natural
to foliate the 4D spacetime with fixed-time 3D spatial
slices. Since we are interested in the case of the extra
dimensions, for one large extra dimension, y, we foliate the
5D spacetime with fixed-y 4D spacetime slices, and we
similarly decompose the metric fluctuations in scalar-
vector tensors (SVT) with respect to the SOð1; 3Þ isometry
group. The gravitational energy-momentum tensor is con-
structed out of the gauge-invariant fluctuations. The result-
ing expression is manifestly gauge invariant, and it is
background-covariantly conserved. Without the benefit of
the averaging procedure, the expression is quite involved.
Nonetheless, it can be simplified significantly when com-
puting the radiated power (radiated energy per unit time)
asymptotically, far away from the sources.
In studying physical problems in the Randall-Sundrum

model, a common approach is to use the reduced 4D
Einstein’s equation supplemented by Israel’s junction
condition. For example, in [24–29] the 5D effects are
encoded in various additional terms in the 4D reduced
Einstein’s equation, relative to the usual one, and the
additional junction condition. This method treats the brane
and the bulk differently, and it can be effective when
studying problems on the brane. However, separating the
brane from the bulk seems less appropriate when studying
the propagation of the gravitational waves, which propa-
gate equally on the brane and into the bulk. The physical
picture can be murky since the meaning of those additional
terms in the reduced equation is not very intuitive. In the
literature, in order to solve the reduced 4D equations,
various terms are dropped for practical purposes, though
the reason behind this is not often clear. Our work comes
directly from a 5D setup which treats the bulk and the brane
on an equal footing, and has a clear physical picture. The
gravitational energy-momentum tensor we calculated here
can be used in applications other than computing the
radiated power. Last, due to the gauge-invariant nature
of the method we used here, our work has a larger
applicability outside the Randall-Sundrum setup.
The paper is organized as follows. In Sec. II we give our

main formulas for the gravitational energy-momentum
tensor (2.24) and radiated power (2.18) and (2.19). In
Sec. III we discuss gravitational waves in a curved max-
imally symmetric spacetime such as anti–de Sitter and in
Randall-Sundrum geometry. In Sec. IV we perform various
SVT decompositions for the metric fluctuations in 4D and
5D flat spacetimes and in the 5D Randall-Sundrum (RS)
background. In each case, we construct the gravitational
energy-momentum tensor and give a formula for the radiated
power. As we will see, one of the main differences with
respect to previous results in the literature [30] is that the
radiated power is expressed not only in terms of the tensor
metric fluctuations. This is to be expected given how the

2Other applications of gravitational waves in the Randall-
Sundrum model have been studied, e.g., in [15–17].

3See, e.g., [21,22] for other works on computing the energy-
momentum tensor for gravitational waves in theories beyond
general relativity using the Isaacson averaging.
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graviton degrees of freedom are accounted for in the various
SVT decompositions. In Appendix F we are explicitly
verifying that our approach yields the expected result for
the power radiated by gravitational waves away from a
binary source in flat 4D spacetime. Appendix G deals with
a compact extra dimension flat 5D scenario and recovers a
previous result for the radiated power, using the approach
presented in Sec. II. Technical details are relegated to the
other Appendixes.

II. GRAVITATIONAL WAVE
ENERGY-MOMENTUM TENSOR
IN A CURVED BACKGROUND

We begin by considering a curved background ḡμν, with
a nonvanishing cosmological constant Λ, solution to the
source-free Einstein equations

Ḡμν þ ḡμνΛ≡ R̄μν −
1

2
ḡμνðR̄ − 2ΛÞ ¼ 0: ð2:1Þ

Next consider another metric,

gμν ¼ ḡμν þ hμν; ð2:2Þ

which is a solution to the source-free Einstein equations
as well:

Gμν þ gμνΛ≡ Rμν −
1

2
gμνðR − 2ΛÞ ¼ 0: ð2:3Þ

Note that (2.2) is exact, in other words hμν represents the
difference between two spacetimemetrics. Expanding in hμν
leads to the following definition of the energy-momentum
tensor T μν of the gravitational field [31]

δð1ÞGμν þ Λhμν ¼ −
�
δð2ÞGμν þ δð3ÞGμν þOðh4Þ�

≡ T μν; ð2:4Þ

where δð1ÞGμν is linear in the difference between the two
metrics hμν, δð2ÞGμν is quadratic, etc.
The linearized Einstein tensor evaluates to

δð1ÞGμν ¼ δð1ÞRμν −
1

2
ḡμνδð1ÞRρσ ḡρσ þ

1

2
ḡμνR̄ρσhρσ −

1

2
hμνR̄

¼ 1

2

�
−□hμν − h;μ;ν þ hρν;μ;ρ þ hρμ;ν;ρ

− ḡμνð−□̄hþ hρσ ;ρ;σÞ þ
2Λ
d− 2

ðḡμνh− dhμνÞ
�
;

ð2:5Þ

where d is the number of spacetime dimension and we
used that

R̄μν ¼
2

d − 2
Λḡμν: ð2:6Þ

Reshuffling the background-covariant derivatives and
using (2.6), one can show that

∇μðδð1ÞGμν þ ΛhμνÞ ¼ 0; ð2:7Þ

for any two-index symmetric tensor hμν.
This in turn implies that T μν is a background-conserved

tensor [31]

∇μT μν ¼ 0: ð2:8Þ

Not only that, but T μν is invariant under background-

linearized gauge transformations δhμν¼∇μξνþ∇νξμ since
the left-hand side of (2.4) is invariant under these
transformations.
Furthermore, consider a background that admits a time-

like Killing vector (e.g., for the RS model, such a Killing
vector would be ∂0 ¼ kμ∂μ)

∇μkν þ∇νkμ ¼ 0: ð2:9Þ

Then

Vμ ≡ T μνkν ð2:10Þ

is a background-conserved vector

∇μVμ ¼ 0: ð2:11Þ

This implies a conservation law:

0 ¼
Z

ddx
ffiffiffiffiffiffi
−ḡ

p ∇μVμ ¼
Z

ddx∂μð
ffiffiffiffiffiffi
−ḡ

p
VμÞ: ð2:12Þ

The presence of sources alters slightly the previous
scenario. From

δð1ÞGμν þ Λhμν ¼ Tμν −
�
δð2ÞGμν þ δð3ÞGμν þOðh4Þ�

≡ Tμν þ T μν; ð2:13Þ

where Tμν is the matter energy-momentum tensor, using
(2.7) we find the conservation law obeyed by the total
(sources plus gravitational field) energy-momentum tensor

∇μðT μν þ TμνÞ ¼ 0: ð2:14Þ

Given a timelike Killing vector kμ, one can construct a
conserved current

Vμ ≡ kνðTμν þ T μνÞ; ∇μVμ ¼ 0: ð2:15Þ
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The total energy in some region of space M is

E ¼
Z
M
dd−1x

ffiffiffiffiffiffi
−ḡ

p
V0

¼
Z
M
dd−1x

ffiffiffiffiffiffi
−ḡ

p
kμðT0μ þ T 0μÞ: ð2:16Þ

The rate of change of the energy in this region of space
can be expressed in terms of the flux of Vi through the
boundary:

dE
dt

¼
Z
M
dd−1x∂0ð

ffiffiffiffiffiffi
−ḡ

p
V0Þ

¼ −
Z
M
dd−1x∂ið

ffiffiffiffiffiffi
−ḡ

p
ViÞ

¼ −
Z
∂M

dd−2x
ffiffiffiffiffiffi
−ḡ

p
niVi; ð2:17Þ

where ni is an outward pointing, unit vector on the boundary.
If there are no sources on the boundary of the spatial

region M, then the radiated power through the boundary
∂M is given by

P ¼ −
dE
dt

¼
Z
∂M

dd−2x
ffiffiffiffiffiffi
−ḡ

p
nikμT μi: ð2:18Þ

Furthermore, assuming that the sources are generating
gravitational waves and that the period of the gravitational
waves is T, we will compute the averaged radiated power
through the boundary ∂M which we take to be asymptoti-
cally far away from all sources. Thus,

hPi ¼ 1

T

Z
T

0

dt
Z
∂M

dd−2x
ffiffiffiffiffiffi
−ḡ

p
nikμT μi: ð2:19Þ

This expression is background gauge independent since
as we have already discussed T μν is invariant under
background gauge transformations.

In general, though, we are interested in problems where
the metric gμν is a small perturbation of some exact
background metric, due to sources and gravitational waves.
Then the metric gμν ¼ ḡμν þ hμν is typically solved in
perturbation theory, with ḡμν an exact background, and
with hμν expanded in a perturbative series

hμν ¼ ϵhð1Þμν þ ϵ2hð2Þμν þ � � � ; ð2:20Þ

where ϵ is some small expansion parameter (e.g., in
thinking about the gravitational waves sourced by a binary
the small parameter could be the post-Newtonian expansion
parameter, ϵ ¼ jv⃗j=c, where v⃗ is the velocity of binary
sources). Then, the Einstein equation can be solved order
by order in ϵ. To the lowest orders in perturbation theory,
setting the sources to zero for clarity, we have

δð1ÞGμν½hð1Þ�−Λhð1Þμν ¼ 1

2

�
−□hð1Þμν − hð1Þ;μ;ν þ hð1Þρν;μ

;ρ þ hð1Þρμ;ν
;ρ

− ḡμνð−□hð1Þ þ hð1Þ;ρ;σρσ Þ
�
−Λhð1Þμν

¼ 0; ð2:21Þ

δð1ÞGμν½hð2Þ� − Λhð2Þμν ¼ −δð2ÞGμν½hð1Þ�: ð2:22Þ

One way to interpret Eq. (2.22) is that the metric fluctuation

hð1Þμν , solution to the linearized equation of motion, back-
reacts on the background geometry, with the right-hand
side of (2.22) playing the role of an energy-momentum
tensor source:

ϵ2T μν ¼ −ϵ2δð2ÞGμν½hð1Þ� þOðϵ3Þ: ð2:23Þ

Using the results derived in Appendix A, to leading order in
ϵ, the energy-momentum tensor of the gravitational field
takes the form4

T μν ¼ −
1

2
hð1Þαβðhð1Þμν;α;β − hð1Þνα;μ;β − hð1Þμα;ν;β þ hð1Þαβ;μ;νÞ þ

1

2
hð1Þνβ;αðhð1Þα;βμ − hð1Þβ;αμ Þ

−
1

4
hð1Þαβ;μh

ð1Þαβ
;ν −

1

4
ðhð1Þνα;μ þ hð1Þμα;νÞðhð1Þ;α − 2hð1Þα;ββ Þ þ 1

4
hð1Þ;αμν ðhð1Þ;α − 2hð1Þ;βαβ Þ

þ 1

4
ḡμν

�
hð1Þαβðhð1Þ;α;β þ hð1Þ;γαβ ;γ − 2hð1Þ;γαγ ;βÞ −

1

2
hð1Þ;αhð1Þ;α − 2hð1Þ;ααβ hð1Þβγ ;γ

þ 2hð1Þ;αhð1Þαβ ;β − hð1Þαγ;βh
ð1Þαβ;γ þ 3

2
hð1Þαβ;γh

ð1Þαβ;γ
�
: ð2:24Þ

4It is important that in solving for hð1Þμν we consistently keep all the terms of the same order in ϵ. For example, in solving for
fluctuations sourced by a binary to leading order in the velocity expansion in [13], the spatial fluctuations hð1ÞIJ received two
contributions, both of the same order in ϵ: one contribution from the linearized Einstein equation sourced by the matter energy-
momentum tensor and a second contribution, from the backreaction of the Coulombic part of hð1Þ00 .
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Given that T μν is the right-hand side of (2.22), the same
argument of Abbott and Deser [31], which we reviewed
earlier, applies: the gravitational energy-momentum tensor
(2.24) is background-covariantly conserved. However, due
to the perturbative expansion we have just performed, this
expression is no longer invariant under background gauge
transformations. As noticed by [23], we can remedy this: by
using only the gauge-invariant pieces of the metric fluc-

tuation hð1Þμν , the gravitational energy-momentum tensor
defined in (2.24) becomes manifestly gauge invariant.
We will elaborate on this in the next sections.
We can compare (2.24) with known expressions of the

energy-momentum tensor in flat space: replace all the
background-covariant derivatives with partial derivatives,
choose the Lorenz gauge ∂μhð1Þμν ¼ 0, and fix the remain-
ing gauge freedom by setting hð1Þ ¼ 0. If an averaging is
performed as in [2], then one can do integration by parts to
take advantage of the gauge choice. Last, using the
equation of motion of the linearized, gauge-fixed fluctua-

tions□hð1Þμν ¼ 0, the energy-momentum tensor simplifies to

T μν ¼
1

4
hhð1Þρσ ;μhð1Þρσ;νiI; ð2:25Þ

where the brackets denote the averaging done by
Isaacson [2].
If the background is curved, choose instead the de

Donder gauge ∇μhð1Þμν ¼ 0. Under the assumption that
the metric fluctuation varies on a scale λ (e.g., ∇:hð1Þ:: ∼
1=λ), while the background metric varies on a scale L
(R̄ ∼ 1=L2, where L is a curvature scale) such that λ ≪ L,
then we can commute the background-covariant deriva-
tives, just as we would commute partial derivatives (since
the error made is of the order λ2=L2). Note that the same
assumptions would render the cosmological constant term
Λhð1Þ:: hð1Þ:: irrelevant to the order we are working because
∇:hð1Þ:: ∇:hð1Þ:: ∼ 1=λ2 while Λhð1Þ:: hð1Þ:: ∼ 1=L2, and therefore
it is suppressed by λ2=L2 relative to the former terms. If an
averaging is performed, as in [2], then we can integrate by
parts under the averaging sign and arrive at (2.25), where
the derivatives are background covariant.5 [See, for exam-
ple, Eqs. (5.37)–(5.39) in [32].]
If the curvature scale of the spacetime is small, the

wavelength of the gravitational waves must be even smaller
in order for the approximations and averaging performed
by Isaacson [2] (see also Chapter 35 in Misner et al. [33]) to
be applicable. This is certainly not the case for the Randall-
Sundrum background,

ds2 ¼ dy2 þ expð−2κjyjÞdxμdxνημν; μ; ν ¼ 0; 1; 2; 3;

ð2:26Þ

where R̄ ∼ κ2, and where κ is constrained by corrections to
Newton’s law to be such that κr ≫ 1 for r ∼ 1 μm in a
Cavendish-type experiment. In this scenario, the curvature
scale is 1=κ ≪ 1 μm, while for the gravitational waves
detected by LIGO the wavelength λ ∼ 102–104 km is much
larger than the curvature scale.
Nonetheless, the formula derived earlier for the radiated

power (2.19), with the gravitational field energy-momentum
tensor given by (2.24), can still be used in a Randall-
Sundrum setup.
One of the goals for the next sections is to bring (2.24)

and (2.19) to a more manageable form.

III. GRAVITATIONAL WAVES IN A CURVED
SPACETIME: AdS5 AND RANDALL-SUNDRUM

Consider a background ḡμν, perturbed by gravitational

waves hð1Þμν , and set matter sources to zero (Tμν ¼ 0).
Allowing for a nonvanishing cosmological constant, the
background satisfies the Einstein equations

R̄μν −
1

2
ḡμνðR̄ − 2ΛÞ ¼ 0; R̄ ¼ 2d

d − 2
Λ; ð3:1Þ

where d is the number of spacetime dimensions. The
linearized Einstein equations can be written in a simpler
form in terms of

ψμν ≡ hð1Þμν −
1

2
ḡμνhð1Þ ð3:2Þ

as

□ψμνþ ḡμν∇ρ∇σψρσ−∇ρ∇μψρν−∇ρ∇νψρμþ
4Λ
d−2

ψμν¼0:

ð3:3Þ

This can be further manipulated into

□ψμν þ ḡμν∇ρ∇σψρσ −∇μ∇ρψρν −∇ν∇ρψρμ

− 2R̄σðμνÞρψρσ ¼ 0: ð3:4Þ

Choosing the de Donder gauge (∇μψμν ¼ 0) leads to

□ψμν − 2R̄σðμνÞρψρσ ¼ 0: ð3:5Þ

At this point one could follow Isaacson and use the WKB
approximation for the gravitational waves (assume that the
wavelength is much shorter than the background curvature
length) and drop the curvature term from (3.5) and
approximate (3.5) by □ψμν ≈ ḡρσ∂ρ∂σψμν ≈ 0.

5The boundary terms vanish because the averaging function is
chosen to vanish at the boundary of the integration region. Also,
equally important for the averaging procedure performed in
curved backgrounds are the bitensors which, when contracted
with T μν, render the integrand a background scalar, and make
possible the integration by parts.
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However, we are interested in cases when this approxi-
mation is invalid, and therefore we refrain from ignoring
the curvature and Christoffel contributions. For concrete-
ness let us consider a maximally symmetric background:

R̄σμνρ ¼
2Λ

ðd − 1Þðd − 2Þ ðḡσνḡρμ − ḡμνḡσρÞ: ð3:6Þ

Substituting into (3.5) leads to

□ψμν −
4Λ

ðd − 1Þðd − 2Þψμν þ
4Λ

ðd − 1Þðd − 2Þ ḡμνψ
ρ
ρ ¼ 0:

ð3:7Þ

If, as we do in flat space, we fix the residual gauge freedom
by imposing tracelessness ψρ

ρ ¼ 0, then the linearized
Einstein equation, in the now transverse (de Donder) and
traceless gauge, reads

□ψμν −
4Λ

ðd − 1Þðd − 2Þψμν ¼ 0: ð3:8Þ

Despite the apparent simplicity of this equation, the various
components of the metric fluctuation remain coupled. An
alternative approach which leads to decoupled equations of
motion starts by decomposing the metric in scalar, vector,
tensor fluctuations with respect to background isometries.
As a bonus, we will be able to extract the gauge-invariant
metric fluctuations and use them to construct the gravita-
tional energy-momentum tensor according to (2.24). We
will discuss this at length in Sec. IV.
In the remaining parts of this section we discuss plane

waves (vacuum gravitational wave solutions) in 5D anti–de
Sitter (AdS) and Randall-Sundrum geometries, and con-
struct spherical wave solutions relevant for gravitational
waves far away from sources.

A. Vacuum solutions (plane waves)

Consider the 5D metric fluctuations

hð1ÞMNdx
MdxN ¼ hð1Þyy dy2þ2hð1Þyμ dydxμþhð1Þμν dxμdxν; ð3:9Þ

where M;N ¼ 0; 1; 2; 3; 5 while μ; ν ¼ 0; 1; 2; 3 and
y≡ x5. The background AdS metric in the Poincaré patch
can be written as

ḡMNdxMdxN ¼ dy2 þ e−2κyημνdxμdxν; κ > 0; ð3:10Þ

and the background Randall-Sundrum metric was given
earlier in (1.3): ḡMNdxMdxN ¼ dy2 þ e−2κjyjdxμdxν. Next
we decompose the metric fluctuations into scalar, vector,
and tensor fluctuations with respect to the 4D Lorentz
isometries:

hð1ÞMNdx
MdxN ¼ 2ϕdy2 þ 2ð∂μB − SμÞdxμdy

þ ð∂μ∂νEþ 2ημνψ þ ∂μFν þ ∂νFμ

þ fμνÞdxμdxν; ð3:11Þ

where ημν∂μSν ¼ 0;ημν∂μFν ¼ 0;ημν∂μfνρ ¼ 0; fμνημν ¼ 0.

When performing a gauge transformation δξh
ð1Þ
MN ¼

∇MξN þ∇NξM we can decompose the gauge parameter

in a similar way ξM ¼ ðξðTÞμ þ ∂μξ
ðLÞ; ξÞ, with ∂μξ

ðTÞμ ¼ 0.
The tensor metric fluctuations are gauge invariant [34]:
δξfμν ¼ 0. Given a monochromatic plane wave expðikμxμÞ,
with kμ a timelike 4-vector (k2 ¼ kμkνημν < 0), we can

define three spacelike vectors ϵðpÞμ , transverse to kμ and to
each other

ϵðpÞμ kνημν ¼ 0; ϵðpÞμ ϵðqÞν ημν ¼ δpq; p;q¼ 1;2;3: ð3:12Þ

The metric tensor fluctuations can be written as

fμν ¼ ϵðpÞμ ϵðqÞν eikλx
λ
fpqðyÞ; fpqδpq ¼ 0; ð3:13Þ

where fpq obey the following decoupled equations: for
(i) AdS5: 	

d2

dy2
− 4κ2 − k2e2κy



fpqðyÞ ¼ 0; ð3:14Þ

and for (ii) Randall-Sundrum [14,18]6:

	
d2

dy2
− 4κ2 þ 4κδðyÞ − k2e2κjyj



fpqðyÞ ¼ 0: ð3:15Þ

Equation (3.14) admits two linearly independent solu-
tions, expressed in terms of Bessel functions:

fpq ¼ cpqJ2
�
eκy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

q �
þ dpqY2

�
eκy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

q �
;

cpqδpq ¼ 0; dpqδpq ¼ 0: ð3:16Þ

This solution exhibits oscillatory (wavelike) behavior in y
as well, with an amplitude which decreases with y. Of the
two Bessel functions, only Y2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

p
expðκyÞÞ blows

up in the interior of AdS5, for y → ∞. If instead we were
solving in the WKB limit to leading order, we would begin
with the ansatz

6These authors did not perform an SVT decomposition; rather
they chose the so-called Randall-Sundrum gauge hyy¼hμy¼0;
hμμ¼0;∂μhμν¼0 which essentially projects onto the tensor fluctua-
tions. See also [35] regarding comments about the implementation
of the Randall-Sundrum gauge. Of note is that in order to reach this
gauge in general one needs to perform gauge transformations that
will change the position of the brane at y ¼ 0.
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f ∼ expðiSÞ; d
dy

S ≫ 1;
d2

dy2
S ≪ 1: ð3:17Þ

Then Eq. (3.14) simplifies to

d
dy

S ¼ �
ffiffiffiffiffiffiffiffi
−k2

p
eκy: ð3:18Þ

The WKB phase is

S ¼ � expðκyÞ
ffiffiffiffiffiffiffiffi
−k2

p

κ
: ð3:19Þ

This captures the asymptotic (large argument) behavior of
the Bessel functions. The WKB solution is a good
approximation only deep in the interior of AdS5 space,
as long as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

p
expðκyÞ ≫ 1. If k2 ¼ 0, the solutions

to (3.14), expð�2κyÞ, blow up either at the boundary
y → −∞, or deep in the interior of AdS5. Consequently,
there are no normalizable zero modes in AdS, but there is
one discrete normalizable zero mode in Randall-Sundrum.
Similarly, for k2 > 0 there are no normalizable solutions.
The solution to (3.15) takes a similar form to (3.16),

fpq¼ cpqþ J2
�
eκy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

q �
þdpqþ Y2

�
eκy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

q �
;

cpqþ δpq¼ 0; dpqþ δpq ¼ 0; y > 0;

fpq¼ cpq− J2
�
e−κy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

q �
þdpq− Y2

�
e−κy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2=κ2

q �
;

cpq− δpq¼ 0; dpq− δpq ¼ 0; y < 0; ð3:20Þ

and satisfies the additional matching condition

d
dy

fpq
���
y→0þ

−
d
dy

fpq
���
y→0−

¼ −4κfpqð0Þ: ð3:21Þ

B. Retarded Green’s functions

The equation of motion of the tensor mode fluctuation is
related to the equation of motion of a massless, minimally
coupled scalar field φ in AdS5

□5D;AdSφ ¼ e4κy
	
d
dy

e−4κy
d
dy

− k2e−2κy


φ

¼
	
d2

dy2
þ 4κ

d
dy

− k2e2κy


φ ¼ 0; ð3:22Þ

or Randall-Sundrum

□5D;RSφ¼e4κjyj
	
d
dy

e−4κjyj
d
dy

−k2e−2κjyj


φ

¼
	
d2

dy2
−4κsignðyÞ d

dy
−k2e2κjyj



φ¼0; ð3:23Þ

through the following scaling: φ ¼ expð2κyÞf or φ ¼
expð2κjyjÞf, for AdS5 or Randall-Sundrum, respectively,
where f is a placeholder for fpq in (3.14) or (3.15). In
writing the above equations, we have Fourier transformed
along the 4D xμ coordinates. The scalar Green function
satisfies

□5D;AdS=RSGscalarðy; y0; kμÞ ¼ ð−ḡÞ−1=2δðy − y0Þ; ð3:24Þ

where □5D;AdS=RS refers to the scalar d’Alembertian in the
curved geometries, and−ḡ¼−detðḡÞ is expð−8κyÞ for AdS5
and expð−8κjyjÞ for Randall-Sundrum. The corresponding
Green function for the tensor mode metric fluctuations

Gðy; y0; kμÞ ¼ expð−2κjyjÞ expð−2κjy0jÞGscalarðy; y0; kμÞ
ð3:25Þ

obeys

½∂2y − 4κ2 − k2e2κjyj�Gðy; y0; kμÞ ¼ δðy − y0Þ; ð3:26Þ
for AdS5, and

½∂2y − 4κ2 þ 4κδðyÞ − k2e2κjyj�Gðy; y0; kμÞ ¼ δðy − y0Þ;
ð3:27Þ

for Randall-Sundrum. There are several methods we can
use to construct the retarded propagator (or retarded
Green’s function). Starting from the Euclidean propagator,
we can arrive at the retarded propagator by analytical
continuation [36]. We can use (if known) the position-space
Euclidean propagator as follows. For example, in 4D flat
space, the Euclidean propagator is 1=ð4π2ðt2E þ r2ÞÞ, where
tE is the Euclidean time. Switching to the Minkowski
signature, the retarded propagator is obtained from
iθðtÞ=ð4π2Þð1=ð−ðt − iϵÞ2 þ r2Þ − 1=ð−ðt þ iϵÞ2 þ r2ÞÞ,
with ϵ → 0 and where θðtÞ is the Heaviside step function.
The iϵ prescription identifies the two terms as Wightman
two-point functions, with the retarded propagator written as
the difference of the two Wightman two-point functions
times the step-function θðtÞ. The 4D flat spacetime retarded
propagator evaluates to θðtÞ=ð2π2Þϵ=ðϵ2 þ ðr2 − t2Þ2Þ
which in the limit ϵ → 0 yields ð1=2πÞθðtÞδðt2 − r2Þ ¼
1=ð4πrÞθðtÞδðt − rÞ. Alternatively, we can start from the
momentum-space Euclidean propagator, which in 4D
flat space is 1=ðk2Þ, and obtain the momentum-space
retarded propagator by doing the analytical continuation
1=ð−ðk0 þ iϵÞ2 þ k⃗ · k⃗Þ. Then we Fourier transform to
position space and arrive at the result quoted earlier,
1=ð4πrÞθðtÞδðt − rÞ. While the defining feature of the
4D flat space retarded propagator is its support on the
forward light cone, this feature is lost in flat odd-dimension
spacetimes, when the retarded propagator has support
inside the forward light cone (as expected, based on
causality arguments).
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The Euclidean boundary-to-bulk scalar propagator for
AdS5, from the boundary point ðt0E ¼ 0; r⃗0 ¼ 0; y0Þ with
eκy

0 ¼ ε ≪ 1 to some point in the bulk ðtE; r⃗; yÞ, is given
by [37,38]

Gscalar;EuclAdS ¼ 6κ3e4κy

π2ðe2κy þ κ2ðr2 þ t2EÞÞ4
ε4: ð3:28Þ

Then the corresponding retarded propagator, derived as
described above, is (see also Appendix C in [36])

Gret; scalar;AdS ¼ lim
ϵ→0

48κ3e4κyϵðe2κy þ κ2ðr2 − t2ÞÞ3
π2ððe2κy þ κ2ðr2 − t2ÞÞ2 þ ϵ2Þ4 ε

4θðtÞ:

ð3:29Þ

This leads to the tensor mode boundary-to-bulk retarded
propagator

Gret;AdS ¼ lim
ϵ→0

48κ3e2κyϵðe2κy þ κ2ðr2 − t2ÞÞ3
π2ððe2κy þ κ2ðr2 − t2ÞÞ2 þ ϵ2Þ4 ε

2θðtÞ;

ð3:30Þ

which is proportional to ∂3ΔδðΔÞ, withΔ¼e2κyþκ2ðr2−t2Þ.
For the Randall-Sundrum background, the tensor mode

retarded propagator was derived byGarriga and Tanaka [18].
The idea behind their formula is that the Green function can
be written in terms of eigenfunctions of the corresponding
differential operator. For the Randall-Sundrum geometry we
have the following eigenvalue problem:

½−k2 þ e2κjyj∂yðe−4κjyj∂yÞ�fðλÞ ¼ −λ2fðλÞ ð3:31Þ

or, equivalently,

e2κjyj∂yðe−4κjyj∂yÞfðqÞ ¼ −q2fðqÞ; ð3:32Þ

where we defined q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − k2

p
and with −λ2 being the

eigenvalues. The Euclidean signature Green function in
momentum (k-) space has the generic form

Gðy; y0Þ ¼
XZ
q

fðqÞðyÞf�ðqÞðy0Þ
k2 þ q2

e−2κjyje−2κjy0j; ð3:33Þ

where one sums over the discrete eigenvalues and integrates
over the continuum ones. The retarded Green function is
obtained by doing the analytic continuation

Gret;RSðy; y0Þ ¼
XZ
q

fðqÞðyÞf�ðqÞðy0Þ
ð−k0 þ iϵÞ2 þ k⃗2 þ q2

e−2κjyje−2κjy0j:

ð3:34Þ
The eigenvalue problem (3.32) has one discrete q ¼ 0mode,
the bound state being fð0Þ ¼

ffiffiffi
κ

p
, and a continuum set of

modes for q > 0,

fðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
2κð1þα2ðqÞÞ

s
e2κjyj

	
J2

�
q
κ
eκjyj

�
þαðqÞY2

�
q
κ
eκjyj

�

;

ð3:35Þ

where αðqÞ ¼ −J1ðq=κÞ=Y1ðq=κÞ was determined from the
matching condition at y ¼ 0. These modes obey the nor-
malization conditions:Z

∞

−∞
dye−2κjyjfð0ÞðyÞfð0ÞðyÞ ¼ 1;Z

∞

−∞
dye−2κjyjfðqÞðyÞfðq0ÞðyÞ ¼ δðq − q0Þ: ð3:36Þ

Putting everything together one arrives at the result of [18]

Gret;RSðxμ; y; x0μ; y0Þ ¼
Z

d4k
ð2πÞ4 e

ik·ðx−x0Þ
	

κ

−ðk0 þ iϵÞ2 þ k⃗2

þ
Z

∞

0

dq
1

−ðk0 þ iϵÞ2 þ k⃗2 þ q2
fðqÞðyÞfðqÞðy0Þ



e−2κjyje−2κjy0j: ð3:37Þ

From a 4D perspective, the 5D bound state is a massless mode, while the 5D continuum states are massive modes.

C. Static, spherically symmetric solutions

If we consider a static source, pointlike and localized at the boundary, jðx0Þ ¼ Mδ3ðx⃗0Þδðy0 − ðln εÞ=κÞ with ε ≪ 1, the
tensor fluctuations in AdS5 are of the form

Z
d5x0Gret;AdSðx0; xÞjðx0Þ ¼

Z
dt0M

48κ3e2κyϵðe2κy þ κ2r2 − κ2ðt − t0Þ2Þ3
π2ððe2κy þ κ2r2 − κ2ðt − t0Þ2Þ2 þ ϵ2Þ4 ε

2θðt − t0Þ

¼ M
15κ2

2π2
e2κy

ðe2κy þ κ2r2Þ7=2 ε
2: ð3:38Þ
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Next, assume that a pointlike static source, localized at
y ¼ 0 in the Randall-Sundrum geometry sources the tensor
modes equation (3.15). We are doing a similar calculation
to the one done earlier in AdS, but now we are using the
retarded propagator (3.37). First, the integral over t0 sets
k0 ¼ 0. The integral over k⃗ results in an exponential
suppression factor expð−qrÞ.7 We were unable to perform
the last integral, over q, analytically. However, we come
close for large enough r. Then the exponential suppression
expð−qrÞ factor localizes the integral over q in the small
q-range. Using the small argument expansion of the Bessel
functions J1ðq=κÞ, Y1ðq=κÞ, and performing the q-integral
results in the following solution:

Z
d5x0Gret;RSðx0; xÞjðx0Þ

≃Mκ2
	�

2κ2r2 þ 3e2κjyj

8πðe2κjyj þ κ2r2Þ3=2

þ
15e4κjyj log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2r2

e2κjyj þ 1
q

þ κr
eκjyj

�
16πðe2κjyj þ κ2r2Þ7=2

þ 2κ4r4 þ 9κ2r2e2κjyj − 8e4κjyj

16πκrðe2κjyj þ κ2r2Þ3
�
e−2κjyj



; ð3:39Þ

where the zero-mode contribution was canceled by part of
the massive mode contribution.
We would like to point out that in using the Randall-

Sundrum geometry as a model for large extra dimensions,
we are already requiring that κr ≫ 1. This is exactly the
regime when our small-argument approximation for
J1ðq=κÞ and Y1ðq=κÞ is applicable, since on the one hand
rκ ≫ 1 and on the other hand qr < Oð1Þ due to the
exponential suppression factor. Put together this implies
that q=κ ≪ 1, thus justifying our small argument expansion
of the Bessel functions J1ðq=κÞ, Y1ðq=κÞ. In evaluating the
integrals in (3.39) we did not make any further approx-
imations to the other two Bessel functions J2ðqeκjyj=κÞ
and Y2ðqeκjyj=κÞ.
For y ¼ 0, which would correspond to both source and

fluctuation on the brane, and to leading order in r this
approximates to Mκ=ð4πrÞð1þ 1=ð2κ2r2ÞÞ [18].
Stripping off the factor of M from the expressions in

(3.38) and (3.39) we get the Green functions for the time-
independent Laplacian operators. This can be explicitly
verified. For example, we can show that the action of

∂
2
y þ e2κy∇!2 − 4κ2 on the right-hand side of (3.38) is zero
when y is not on the boundary, and the action of

∂
2
y þ e2κjyj∇!2 − 4κ2 on the right-hand side of (3.39) is
zero for y ≠ 0. We can also show by using Gauss’ theorem
that the delta-function source term in the Green function
equation is accounted for appropriately. Using (3.25)
together with (3.38) and (3.39) we find the static scalar
Green function Gscalar of either AdS5 or Randall-Sundrum
spacetimes, the solution to

1ffiffiffiffiffiffi
−ḡ

p ∂Ið
ffiffiffiffiffiffi
−ḡ

p
gIJ∂JÞGscalarðy; r⃗; y0 ¼ 0; r⃗0 ¼ 0Þ

¼ δ3ðr⃗ÞδðyÞffiffiffiffiffiffi
−ḡ

p ; I; J ¼ 1; 2; 3; y: ð3:40Þ

Then we can integrate over the spatial coordinates r⃗; y.
Using the analogy of cylindrical coordinates in flat space,
we compute the flux through the surface at infinity; there
are two regions: one at fixed, large r with y integrated over
(this is like integrating over the length of the 3D cylinder in
our analogy), and the other surface with r integrated over
and fixed, large jyj (this is like integrating over the two caps
of the cylinder). With an infinitely long cylinder we only
need to compute the flux through the sides of the cylinder.
For the Randall-Sundrum case, truncating to the leading-
order term in (3.39), the flux through the side of the
cylinder yields

2 × 4πκ2
Z

∞

0

dy

	
e−4κyr2e2κy

∂

∂r
ð2κ2r2 þ 3e2κyÞ
8πðe2κy þ r2Þ3=2


����
r¼R∞

¼ κ3R3
∞

ð1þ κ2R2
∞Þ3=2

; ð3:41Þ

which, in the limit κr ≫ 1 when (3.39) is applicable, gives
the expected result.

D. Spherical waves

To illustrate the propagation of gravitational waves in
AdS5, assuming that a periodic source is at the boundary, we
consider solving the tensor modes equation, with a pointlike
periodic source jðx0Þ ¼ Mδ3ðx⃗0Þδðy0 − ðln εÞ=κÞeiωt0 :Z

d5x0Gret;AdSðx0;xÞjðx0Þ

¼
Z

dt0Mκ3
48κ3e2κyϵðe2κyþ κ2r2− κ2ðt− t0Þ2Þ3
π2ððe2κyþ κ2r2−κ2ðt− t0Þ2Þ2þ ϵ2Þ4 ε

2θðt− t0Þ

¼M
1

2π2
15κ2þ15iRκω−6R2ω2− iR3ω3κ−1

8R7
eiωðt−R=κÞε2;

ð3:42Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð2κyÞ þ κ2r2

p
. If we were to perform a

WKB approximation, the leading-order WKB approxima-
tion would have captured only the eiωðt−R=κÞ part of the exact
result (3.42).

7Use that ð1=2π2Þ R∞0 dk sinðkrÞk=ðrðk2 þ q2ÞÞ ¼ expð−qrÞ=
ð4πrÞ. This expression is the familiar Yukawa-type static Green
function of massive modes in flat 4D space. This result is an
intermediate step in our 5D Randall-Sundrum calculation, where
the q-modes appear massive from a 4D perspective.
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Similarly, a periodic, pointlike source localized at y ¼ 0
which sources the tensor mode equation (3.15) yields the
following fluctuation:Z

d5x0Gret;RSðx0; xÞjðx0Þ

≃
κ2M
2π2

�
2κ2r2 þ 3e2κjyj

ðκ2r2 þ e2κjyjÞ3=2 þ
iωe2κjyj

κðκ2r2 þ e2κjyjÞ

�

× e−2κjyjeiωðt−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þe2κjyj=κ2

p
Þ ð3:43Þ

under the same assumption that the distance r (measured
along the brane) from the source is sufficiently large such
that the q-integral is localized at small values of q, and
where we kept terms up to first order in ω.

IV. THE GRAVITATIONAL ENERGY-
MOMENTUM TENSOR AND THE RADIATED
POWER IN TERMS OF GAUGE-INVARIANT

FLUCTUATIONS

In this section we give explicit expressions for the
energy-momentum tensor of gravitational waves and for
the power radiated away from a source by gravitational
waves. Similar to the approach of [23], our expressions are
made manifestly gauge invariant by using the gauge-
invariant part of the metric fluctuations, which is found
through a SVT decomposition. We study three cases:
(A) 4D flat spacetime, (B) flat 5D spacetime with one
compact dimension, and (C) Randall-Sundrum. Further
checks on our results can be found in Appendixes F and G.

A. 4D flat spacetime

As we have seen, in general, the metric fluctuations obey
coupled equations of motion. One way to decouple them is
to use the symmetries of the background. In [23], Abramo
et al. considered the following scenario, which is relevant
for cosmological backgrounds:

ḡμνdxμdxν ¼ −dt2 þ a2ðtÞδijdxidxj:

Given the rotational isometries of the background, they
decomposed the metric fluctuation hμν in components
which transform as scalars, vectors, and tensors under
the rotation group SOð3Þ. For simplicity, we review and
adapt their analysis in the context of flat 4D spacetime and
set aðtÞ ¼ 1.
A small difference between our paper and [23] is that we

set up the perturbative expansion

g ¼ ḡþ hð1Þ þ hð2Þ þ � � � ð4:1Þ

with the background metric ḡ an exact solution to the
Einstein equation, whereas for [23] the perturbative setup
has q ¼ q0 þ δq with the background defined to be the

homogeneous part of the metric q0 ¼ hqi (the brackets
denote spatial averaging of the metric q on a fixed time
slice). In their case, the background is only an approximate
solution of the Einstein equation, and it receives contribu-
tions from the backreaction due to the gravitational wave
fluctuations δq. On the other hand, we simply work
perturbatively around the exact background ḡ, and we
account for the backreaction of hð1Þ as a source term for the
hð2Þ equation of motion.
We begin by decomposing the metric fluctuations in

representations of the SOð3Þ rotation group:

hμν ¼
�

2ϕ ∂jBþ Sj
∂iBþ Si 2ψδij þ ∂i∂jEþ ∂iFj þ ∂jFi þ fij

�
;

ð4:2Þ

where Si, Fi, and fij are transverse: ∂iSi ¼ ∂iFi ¼
∂ifij ¼ 0, and fij is traceless: fijδij ¼ 0.
The following expressions Φ;Ψ;Si; fij are gauge

invariant:

Φ ¼ ϕ − ∂0

�
B −

1

2
∂0E

�
;

Ψ ¼ ψ ;

Si ¼ Si − ∂0Fi: ð4:3Þ

This can be derived and explicitly verified by considering a
linearized gauge transformation δξhμν ¼ ∂μξν þ ∂νξμ and
substituting a similar SOð3Þ scalar-vector decomposition of
the gauge parameter ξμ¼ðξ;ξðTÞiþ∂

iξðLÞÞ, with ∂iξðTÞi ¼ 0.
Starting from g ¼ ḡþ hð1Þ þ hð2Þ þ � � � we perform

gauge transformations

g → g̃ ¼ expðLξÞg ¼ ḡþ hð1Þg:i: þ hð2Þg:i: þ � � � ð4:4Þ

such that hð1Þg:i: ¼ Lξḡþ hð1Þ is expressed through the gauge-
invariant terms given in (4.3). For example, with

ξðLÞ ¼ −
1

2
E; ξðTÞi ¼ −Fi; ξ ¼ B −

1

2
Ė ð4:5Þ

we have

hμνjg:i: ¼
�
2Φ Sj

Si 2Ψδij þ fij

�
: ð4:6Þ

This was referred to as a “longitudinal gauge” in [23].
There are other choices for the gauge parameter ξμ which
lead to different ways of expressing the metric fluctuations
through the gauge-invariant fluctuations (4.3). We will
nonetheless use the longitudinal gauge in what follows.
Similarly, to second order in perturbations we arrange
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for hð2Þg:i: to be written in terms of gauge-invariant pieces.
Since Einstein’s equations are gauge invariant, one can
easily verify that the linearized Einstein equation in the
absence of sources

δð1ÞGμνðhð1ÞÞ ¼ 0

can also be packaged, as expected, only in terms of the
gauge-invariant functions given in Eq. (4.3):

δð1ÞGμνðhð1Þjg:i:Þ ¼ 0: ð4:7Þ

At second order, the Einstein equation can be written as

δð1ÞGμνðhð2ÞÞ ¼ −δð2ÞGμνðhð1Þ; hð1ÞÞ: ð4:8Þ

While the Einstein equation is gauge invariant, when cast-
ing it in the form given in (4.8), with a nonvanishing

right-hand-side quadratic in the linearized fluctuations, both
sides of the equation are gauge dependent. However, by using
the metric fluctuations hjg:i: both sides of the second-order
Einstein equation are now written in a gauge-invariant form,

δð1ÞGμνðhð2Þjg:i:Þ ¼ −δð2ÞGμνðhð1Þjg:i:; hð1Þjg:i:Þ: ð4:9Þ

This backreaction of the gauge-invariant linearized
fluctuations (i.e., gravitational waves) is interpreted as
the energy-momentum tensor of the gravitational waves.
And since it is expressed in terms of the gauge-invariant
fluctuations (4.3) it is gauge invariant by construction.
Consider next the Einstein equations in the presence of

matter sources:

Gμν ¼ Tμν: ð4:10Þ

We perform the same SVT decomposition for both sides,

Gμν ¼
 

G00 ∂jG
ðLÞ
0 þGðTÞ

j0

∂iG
ðLÞ
0 þ GðTÞ

i0 2GðYÞδij þ ∂i∂jGðLLÞ þ ∂iG
ðLTÞ
j þ ∂jG

ðLTÞ
i þGðTTÞ

ij

!
;

Tμν ¼
 

T00 ∂jT
ðLÞ
0 þ TðTÞ

j0

∂iT
ðLÞ
0 þ TðTÞ

i0 2TðYÞδij þ ∂i∂jTðLLÞ þ ∂iT
ðLTÞ
j þ ∂jT

ðLTÞ
i þ TðTTÞ

ij

!
:

The linearized equations of motion for the scalar gauge-
invariant fluctuations Φ and Ψ come from the components

δð1ÞG00; δð1ÞG
ðLÞ
0 ; δð1ÞGðYÞ, and δð1ÞGðLLÞ,

δð1ÞG00 ¼ −2δij∂i∂jΨ ¼ T00; ð4:11Þ

δð1ÞGðLÞ
0 ¼ −2∂0Ψ ¼ TðLÞ

0 ; ð4:12Þ

2δð1ÞGðYÞ ¼−2∂20Ψ−δij∂i∂jΦþδij∂i∂jΨ¼ 2TðYÞ; ð4:13Þ

δð1ÞGðLLÞ ¼ Φ − Ψ ¼ TðLLÞ: ð4:14Þ

The equations of motion for the transverse-vector gauge-
invariant fluctuations Si come from the components

δð1ÞGðTÞ
i0 and δð1ÞGðLTÞ

i :

δð1ÞGðTÞ
i0 ¼ −

1

2
δjk∂j∂kSi ¼ TðTÞ

i0 ; ð4:15Þ

δð1ÞGðLTÞ
i ¼ −

1

2
∂0Si ¼ TðLTÞ

i : ð4:16Þ

The equations of motion for the transverse-traceless-tensor

gauge-invariant fluctuations fij come from GðTTÞ
ij :

δð1ÞGðTTÞ
ij ¼ 1

2
∂
2
0fij −

1

2
δpq∂p∂qfij ¼ TðTTÞ

ij : ð4:17Þ

We can quickly count the degrees of freedom by consid-
ering the equations of motion in vacuum:

δij∂i∂jΨ ¼ 0; ∂0Ψ ¼ 0; Φ ¼ Ψ; ð4:18Þ

δjk∂j∂kSi ¼ 0; ∂0Si ¼ 0; ð4:19Þ

□fij ¼ 0: ð4:20Þ

The scalar and vector fluctuations are not dynamical, unlike
the tensor modes fij. Since the tensors are transverse
∂ifij ¼ 0 and traceless δijfij ¼ 0, this matches the count-
ing of the degrees of freedom for a 4D graviton.
After fixing the gauge in (4.6), the gravitational energy-

momentum tensor can be computed from (2.24). Since
(2.24) is quadratic in the metric fluctuations which are now
in the gauge (4.6), we indicate which fluctuations are
contributing to the various terms in the energy-momentum
tensor as follows:

T μν ¼ T ðSÞ
μν þ T ðVÞ

μν þ T ðTÞ
μν þ T ðSVÞ

μν þ T ðSTÞ
μν þ T ðVTÞ

μν ;

ð4:21Þ
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where T ðSÞ
μν , T

ðVÞ
μν , T

ðTÞ
μν are terms involving scalar, vector,

tensor modes only and T ðSVÞ
μν , T ðSTÞ

μν , T ðVTÞ
μν are terms that

mix different modes. Wewill focus on T 0i since it is needed
to compute the radiated power:

T ðSÞ
0i ¼ 2ð∂0ΨÞ∂iΦ − 4∂0ðΨ∂iΨÞ;

T ðVÞ
0i ¼ 1

2
Sj
∂0ð∂iSj þ ∂jSiÞ;

T ðTÞ
0i ¼ 1

2
fjk∂0∂kfij −

1

2
fjk∂0∂ifjk −

1

4
∂0fjk∂ifjk;

T ðSVÞ
0i ¼ −Si∂0∂0Ψ −Ψ∂j∂jSi − Sj

∂j∂iΦ

þ 1

2
∂jΦð∂iSj þ ∂

jSiÞ þ
1

2
∂jΨð∂iSj − ∂

jSiÞ;

T ðSTÞ
0i ¼ fij∂0∂jΨ −

1

2
∂0fij∂jΦ −

1

2
∂0fij∂jΨ;

T ðVTÞ
0i ¼ −

1

2
∂0ðSj

∂0fijÞ þ
1

2
ð∂0SjÞ∂0fij

þ 1

2
fjk∂jð∂iSk − ∂

kSiÞ

þ 1

2
ð∂jSkÞ∂kfij −

1

2
ð∂jfikÞ∂jSk: ð4:22Þ

As shown in Appendix B, the energy-momentum tensor for
gravitational waves will only receive contributions from the
tensor mode. Thus, we have

T 0i ¼
1

2
fjk∂0∂kfij −

1

2
fjk∂0∂ifjk −

1

4
∂0fjk∂ifjk: ð4:23Þ

We can now compute the averaged radiated power

hPi ¼ 1

T

Z
T

0

dt
Z

dΩ2R2
∞

xi

R∞
T 0i; ð4:24Þ

where T is the period of the gravitational waves and we
substituted the normal unit vector as ni ¼ xi=R∞. Far away
from the sources, the waves are spherical waves8

fij ∼
sin½ωðt − R∞Þ�

R∞
: ð4:25Þ

To leading order in 1=R∞, the spatial derivatives can be
replaced by

∂ifjk ∼
xi
R∞

∂R∞
fjk ∼ −

xi
R∞

∂0fjk: ð4:26Þ

Next we note that T 0i can be written as

T 0i ¼
1

4
∂0fjk∂ifjk −

1

2
∂iðfjk∂0fjkÞ

þ 1

2
∂kðfjk∂0fijÞ: ð4:27Þ

Asymptotically far away from the sources, the last two
terms in (4.27) will average to zero as we will now show.
Consider one of those terms and start by trading off the
spatial derivative for a time derivative

Z
T

0

dt
Z

dΩ2R2
∞

xi

R∞
∂iðfjk∂0fjkÞ

¼−
Z

T

0

dt
Z

dΩ2R2
∞∂0ðfjk∂0fjkÞþO

�
1

R∞

�
: ð4:28Þ

This vanishes since the integral in (4.28) is the integral of a
total derivative, and the integrand is a periodic function
with period T. Therefore the averaged radiated power
simplifies to

hPi ¼ 1

T

Z
T

0

dt
Z

dΩ2R2
∞

xi

R∞

1

4
∂0fjk∂ifjk

¼ 1

T

Z
T

0

dt
Z

dΩ2R2
∞
1

4
∂0fjk∂0fjk: ð4:29Þ

This is a familiar result, which in the literature is obtained
after going to the transverse-traceless gauge (see [39] for
disambiguation regarding the various meanings of the
“transverse-traceless gauge”), as it is usually done for
4D flat spacetime gravitational waves, and performing
the Isaacson average discussed in Sec. I.
However, we have arrived at it in a different way: we

used only the gauge-invariant parts of the metric fluctuation
to turn (2.24) into a manifestly gauge-invariant expression,
and we only performed a time average over the period of
the gravitational waves.
For yet another take on the same problem, in Appendix E

we perform an SOð1; 2Þ SVT decomposition of the metric
fluctuations, and in Appendix F we solve explicitly for the
gauge-invariant SVT components asymptotically far away
from a binary source. Then using the gauge-invariant
metric fluctuations in the gravitational energy-momentum
tensor (2.24) and the formula for the radiated power (2.19)
we recover the known expression for the radiated power.

B. 5D flat spacetime

Anticipating further applications to models of extra
dimensions such as Kaluza-Klein theories (small extra
dimensions) or the Randall-Sundrum model (large

8One may wonder if, indeed, the transverse-traceless tensor
modes fμν which are the result of applying a projector which is
local in momentum space and nonlocal in position space, are
indeed spherical waves asymptotically far from sources. In
Appendix C we solve the SOð1; 3Þ gauge-invariant fluctuations
due to a static source. In Appendix F we solve for the SOð1; 2Þ
gauge-invariant fluctuations asymptotically far away from a
binary source. In either case the gauge-invariant fluctuations
retain the generic feature of falling off with 1=r, where r is the
distance to the source, and are spherical waves in the second case.
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extra dimension), next we will decompose the metric
fluctuations about a 5D background into SVT components,
with respect to the SOð1; 3Þ Lorentz group. In this section
we have in mind a 5D flat spacetime, with one compact
dimension x5 ∼ x5 þ l; this breaks the isometry group from
SOð1; 4Þ to SOð1; 3Þ. We proceed then with the following
SVT decomposition:

hMN ¼
�
2ψημνþ ∂μ∂νEþ ∂μFνþ ∂νFμþfμν ∂μBþSμ

∂νBþSν 2ϕ

�
;

ð4:30Þ

where we have introduced the 5D indicesM;N¼0;1;2;3;5,
and ∂μSμ ¼ ∂μfμν ¼ ∂μFμ ¼ 0 and fμνημν ¼ 0.9

The gauge-invariant metric fluctuations areΦ,Ψ, Sμ, and
fμν, where

Φ ¼ ϕ − ∂5

�
B −

1

2
∂5E

�
;

Ψ ¼ ψ ;

Sμ ¼ Sμ − ∂5Fμ: ð4:31Þ

We gauge fix such that the metric fluctuations contain only
these gauge-invariant components:

hMN jg:i: ¼
�
2Ψημν þ fμν Sν

Sμ 2Φ

�
: ð4:32Þ

Consider next the Einstein equationsGMN¼8πG5DTMN ,
where G5D is the 5D Newton constant. To streamline
our equations we adopt the same convention and set
8πG5D ¼ 0. We perform the SVT decomposition

GMN ¼
 
2GðYÞημν þ ∂μ∂νGðLLÞ þ ∂μG

ðLTÞ
ν þ ∂νG

ðLTÞ
μ þ GðTTÞ

μν ∂νG
ðLÞ
5 þ GðTÞ

ν5

∂μG
ðLÞ
5 þ GðTÞ

μ5 G55

!
;

TMN ¼
 
2TðYÞημν þ ∂μ∂νTðLLÞ þ ∂μT

ðLTÞ
ν þ ∂νT

ðLTÞ
μ þ TðTTÞ

μν ∂νT
ðLÞ
5 þ TðTÞ

ν5

∂μT
ðLÞ
5 þ TðTÞ

μ5 T55:

!
: ð4:33Þ

The equations of motion for the scalar fluctuationsΦ andΨ
arise from

δð1ÞG55 ¼ 3ηαβ∂α∂βΨ ¼ T55;

δð1ÞGðLÞ
5 ¼ −3∂5Ψ ¼ TðLÞ

5 ;

2δð1ÞGðYÞ ¼ 3∂25Ψþ ηαβ∂α∂βΦþ 2ηαβ∂α∂βΨ ¼ 2TðYÞ;

δð1ÞGðLLÞ ¼ −Φ − 2Ψ ¼ TðLLÞ: ð4:34Þ

The equations of motion for the transverse-vector fluctua-
tions Sμ arise from

δð1ÞGðTÞ
μ5 ¼ −

1

2
ηαβ∂α∂βSμ ¼ TðTÞ

μ5 ; ð4:35Þ

δð1ÞGðLTÞ
μ ¼ 1

2
∂5Sμ ¼ TðLTÞ

μ : ð4:36Þ

Last, the equations of motion for the transverse-traceless

tensor fluctuations fμν come from δð1ÞGðTTÞ
μν :

δð1ÞGðTTÞ
μν ¼ −

1

2
∂
2
5fμν −

1

2
ηαβ∂α∂βfμν ¼ TðTTÞ

μν : ð4:37Þ

We can quickly count the degrees of freedom by consid-
ering the vacuum equations of motion

ηαβ∂α∂βΨ ¼ 0; ∂5Ψ ¼ 0; Φ ¼ −2Ψ;

ηαβ∂α∂βSμ ¼ 0; ∂5Sμ ¼ 0;

∂
2
5fμν þ ηαβ∂α∂βfμν ¼ 0: ð4:38Þ

When Ψ (and therefore Φ) is x5-independent, Ψ describes
a 4D massless scalar, which has 1 degree of freedom. For
x5-independent vector fluctuations, Sμ describes a 4D mass-
less vector which has 2 degrees of freedom. The x5-inde-
pendent tensor fμν describes a 4D massless graviton which
has 2 degrees of freedom. This is the scenario for Kaluza-
Klein reduction, when 5D gravity reduces to a 4D Einstein-
Maxwell-dilaton theory.10 Otherwise, for x5-dependent
fluctuations, only the tensor fμν is nonzero and describes a
4D massive graviton, which has 5 degrees of freedom.
Next, we construct the energy-momentum tensor of

gravitational waves. We follow the same procedure as in
the previously discussed 4D case. We write the energy-
momentum tensor for gravitational waves as

T MN ¼ T ðSÞ
MN þ T ðVÞ

MN þ T ðTÞ
MN þ T ðSVÞ

MN þ T ðSTÞ
MN þ T ðVTÞ

MN ;

ð4:39Þ

9We performed a similar decomposition in 4D noncompact flat
spacetime in Appendixes E and F.

10For a more careful analysis of the zero-mode case leading to
the same conclusion, see Appendix D.
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where T ðSÞ
MN , T

ðVÞ
MN , T

ðTÞ
MN are terms involving scalar, vector,

tensor modes only and T ðSVÞ
MN , T ðSTÞ

MN , T ðVTÞ
MN are terms that

mix different modes. Based on our earlier counting of
degrees of freedom, the massive modes contribute only to

T ðTÞ
MN . We will focus on T 0i since it is needed to compute

the radiated power at infinity. We do not need T 05 due to
the periodicity of the fifth dimension:

T ðSÞ
0i ¼ −∂0Ψ∂iΦ − ∂iΨ∂0Φþ ∂0Φ∂iΦ − 2∂0Ψ∂iΨ

− 2∂0ðΦ∂iΦÞ − 4∂0ðΨ∂iΨÞ;

T ðVÞ
0i ¼ −

1

2
∂αðS0∂

αSiÞ þ
1

2
S0∂α∂

αSi

þ 1

2
∂
αðSαð∂0Si þ ∂iS0ÞÞ

þ 1

2
∂0Sα∂iSα − ∂0ðSα∂iSαÞ;

T ðTÞ
0i ¼ −

1

2
ð∂5ðf0α∂5fαi Þ þ ∂βðf0α∂βfαi Þ

− f0αð∂5∂5 þ ∂β∂
βÞfαi Þ þ

1

2
∂
α
∂
βðf0βfiα − fαβf0iÞ

þ 1

2
∂
αðfαβð∂0fβi þ ∂if

β
0ÞÞ

þ 1

4
∂0fαβ∂ifαβ −

1

2
∂0ðfαβ∂ifαβÞ;

T ðSVÞ
0i ¼ ∂5ðSi∂0Ψþ S0∂iΨþΦ∂iS0 þΦ∂0SiÞ

−
1

2
ð∂0Si þ ∂iS0Þ∂5ðΦþ 2ΨÞ;

T ðSTÞ
0i ¼ −

1

2
∂5ðΦ∂5f0iÞ −

1

2
Φð∂5∂5 þ ∂α∂

αÞf0i

þ 1

2
∂αðΦ∂

αf0i −Φ∂0fαi −Φ∂ifα0Þ
þ ∂

αðfiα∂0Ψþ f0α∂iΨ − f0i∂αΨÞ;

T ðVTÞ
0i ¼ −∂αðSα∂5f0iÞ þ

1

2
∂5ðSα∂0fαi þ Sα∂ifα0Þ

þ 1

2
∂
αðS0∂5fiα þ Si∂5f0α − f0i∂5SαÞ: ð4:40Þ

These expressions can be greatly simplified under certain
conditions. For example, let us assume that all the source
terms have compact support and are localized at x5 ¼ 0. We
will extract all the parts of T 0i that give a nonvanishing
contribution when computing the radiated power. Since the
sources have compact support and are localized at x5 ¼ 0, at
spatial infinity the fluctuationswill take the following form, to
leading order in 1=r: (i) spherical waves for the zero modes,
and (ii) exponentially suppressed with r for the massive
modes. For a binary source this behavior is as follows:
(i) expð2iΩðt − rÞÞ=r, whereΩ is the frequency of the binary
sources, for the zeromodes, and (ii) exponentially suppressed
expð2iΩtÞ expði2πnx5=lÞ expð−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πn=lÞ2 − 4Ω2

p
Þ=r,

where l is the periodicity of the fifth dimension and n is an
integer for the massive modes [13]. Because the fifth
dimension is periodic, and we integrate over x5 in computing
the radiated power, we can drop any term that has only one
derivative with respect to x5. Furthermore, because we
compute the power at spatial infinity we only need the leading
order in 1=r for any fluctuation. As a consequence, we can
trade ∂i for ni∂0 for the zero modes just as in Sec. IVA. Even
though the massive modes do not depend on time through the
combination t − r, given that the ∂r derivative must act on the
exponential or else itwill give a contributionwhich vanishes at
spatial infinity, we can still trade ∂r for ∂0 (appropriately
multiplied by a frequency and n dependent numerical factor).
Under time averaging, any term that is a total derivative with
respect to time drops out. We are left with

T ðSÞ
0i → −∂0Ψ∂iΦ − ∂iΨ∂0Φþ ∂0Φ∂iΦ − 2∂0Ψ∂iΨ;

T ðVÞ
0i →

1

2
∂0Sα∂iSα;

T ðTÞ
0i →

1

4
∂0fαβ∂ifαβ;

T ðSVÞ
0i → 0;

T ðSTÞ
0i → 0;

T ðVTÞ
0i → 0: ð4:41Þ

Combining all the parts, the formula for the radiated power
simplifies to

hPi ¼ 1

T

Z
T

0

dt
Z

dx5
Z

dΩ2R2
∞niT 0i

���
r¼R∞

¼ 1

T

Z
T

0

dt
Z

dx5
Z

dΩ2R2
∞

xi

R∞

�
−∂0Ψ∂iΦ − ∂iΨ∂0Φþ ∂0Φ∂iΦ − 2∂0Ψ∂iΨþ 1

2
∂0Sα∂iSα þ 1

4
∂0fαβ∂ifαβ

�����
r¼R∞

¼ l
T

Z
T

0

dt
Z

dΩ2R2
∞

�
6∂0Ψ∂0Ψþ 1

2
∂0Sα∂0Sα þ 1

4
∂0fαβ∂0fαβ

���
massless

�����
r¼R∞

þ 1

T

Z
T

0

dt
Z

dx5
Z

dΩ2R2
∞

�
1

4
∂0fαβ∂rfαβ

���
massive

�����
r¼R∞

; ð4:42Þ
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where we have highlighted the contributions of the massless
andmassive sectors andwe have used that asymptotically far
from the sources the scalars are related by the vacuum
equation Φþ 2Ψ ¼ 0. Due to the exponential suppression
with r in the massive mode sector for source frequencies
Ω > 2π=l, it is reasonable to approximate (4.42) by keeping
only themassless sector contribution.We complete the check
of the formula for the radiated power in Appendix G by
concretely solving for the gauge-invariant fluctuations and
computing the luminosity of a binary source. We show that
we reproduce previous results in the literature.

C. Randall-Sundrum model

For the Randall-Sundrum model we start with Einstein’s
equation,

RMN −
1

2
gMNðR − 2ΛÞ þ 1

2
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detð�gμνÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgMNÞ

p δμMδ
ν
N
�gμνδðyÞ

¼ TMN; ð4:43Þ

where TMN are the matter sources, �gμν is the pullback of
the bulk metric to the 3-brane located at y ¼ 0, and where
the brane tension λ and the cosmological constant Λ are
tuned such that

Λ ¼ −6κ2 and λ ¼ 12κ: ð4:44Þ

Given the SOð1; 3Þ isometry of the background metric,
ds2 ¼ dy2 þ e−2κjyjημνdxμdxν, we start by decomposing
the metric perturbation into scalar-vector-tensor fluctua-
tions as follows:

hMN ¼
�
2ψημνþ ∂μ∂νEþ ∂μFνþ ∂νFμþfμν ∂μBþSμ

∂νBþSν 2ϕ

�
:

ð4:45Þ

The gauge-invariant fluctuations are Φ, Ψ, Sμ, and fμν,
where

Φ ¼ ϕ − ∂y

�
B −

1

2
e−2κjyj∂yðe2κjyjEÞ

�
;

Ψ ¼ ψ −
1

2
ð∂ye−2κjyjÞ

�
B −

1

2
e−2κjyj∂yðe2κjyjEÞ

�
;

Sμ ¼ Sμ − e−2κjyj∂yðe2κjyjFμÞ: ð4:46Þ

Next we perform the same SVT decomposition on the left-
hand side of Einstein’s equation (4.43) which we denote
here by EMN

EMN ¼
 
2EðYÞημν þ ∂μ∂νEðLLÞ þ ∂μE

ðLTÞ
ν þ ∂νE

ðLTÞ
μ þ EðTÞ

μν ∂νE
ðLÞ
y þ EðTÞ

νy

∂μE
ðLÞ
y þ EðTÞ

μy Eyy

!
; ð4:47Þ

and to the matter sources on the right-hand side of (4.43) (note that we included the brane contribution in EMN)

TMN ¼
 
2TðYÞημν þ ∂μ∂νTðLLÞ þ ∂μT

ðLTÞ
ν þ ∂νT

ðLTÞ
μ þ TðTÞ

μν ∂νT
ðLÞ
y þ TðTÞ

νy

∂μT
ðLÞ
y þ TðTÞ

μy Tyy

!
: ð4:48Þ

Then we expand in fluctuations and write the linearized equations of motion for the gauge-invariant fluctuations. The

linearized equations of motion for the scalars Φ and Ψ arise from the components δð1ÞEyy, δð1ÞE
ðLÞ
y , δð1ÞEðYÞ, and δð1ÞEðLLÞ:

δð1ÞEyy ¼ e2κjyj
	
3e2κjyjηαβ∂α∂β þ 12eκjyjðe−κjyjÞ0∂y − 12e2κjyjððe−κjyjÞ0Þ2 þ 4eκjyjðe−κjyjÞ00 þ 2

3
λδðyÞ þ 8

3
Λ


Ψ

þ
	
−
2

3
λδðyÞ − 2

3
Λ − 12e2κjyjððe−κjyjÞ0Þ2 − 4eκjyjðe−κjyjÞ00



Φ

¼ e2κjyj½3e2κjyjηαβ∂α∂β − 12κ signðyÞ∂y − 24κ2�Ψ − 12κ2Φ ¼ Tyy;

δð1ÞEðLÞ
y ¼ ½−3e2κjyj∂y þ 6e3κjyjðe−κjyjÞ0�Ψþ 3eκjyjðe−κjyjÞ0Φ ¼ e2κjyj½−3∂y − 6κ signðyÞ�Ψ − 3κ signðyÞΦ ¼ TðLÞ

y ;

2δð1ÞEðYÞ ¼
	
2e2κjyjηαβ∂α∂β þ 3∂2y − 4eκjyjðe−κjyjÞ00 þ 1

3
λδðyÞ þ 4

3
Λ


Ψ

þ e−2κjyj
	
ηαβ∂α∂β þ

1

6
λδðyÞ þ 2

3
Λ − 2eκjyjðe−κjyjÞ00 − 6e2κjyjððe−κjyjÞ0Þ2 − 3eκjyjðe−κjyjÞ0∂y



Φ

¼ ½2e2κjyjηαβ∂α∂β þ 3∂2y − 12κ2 þ 12κδðyÞ�Ψþ e−2κjyj½ηαβ∂α∂β þ 3κ signðyÞ∂y − 12κ2 þ 6κδðyÞ�Φ ¼ 2TðYÞ;

δð1ÞEðLLÞ ¼ −Φ − 2e2κjyjΨ ¼ TðLLÞ; ð4:49Þ
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where we used primes to denote differentiation with respect to y. The linearized equations of the vector fluctuation Sμ come

from the components δð1ÞEðTÞ
μy and δð1ÞEðLTÞ

μ :

δð1ÞEðTÞ
μy ¼

	
−
1

2
e2κjyjηαβ∂α∂β−eκjyðe−κjyjÞ00−3e2κjyjððe−κjyjÞ0Þ2−2

3
λδðyÞ−2

3
Λ


Sμ

¼
	
−
1

2
e2κjyjηαβ∂α∂β−6κδðyÞ



Sμ ¼TðTÞ

μy ;

δð1ÞEðLTÞ
μ ¼

	
1

2
∂y−e−κjyjðe−κjyjÞ0



Sμ ¼

	
1

2
∂y− κ signðyÞ



Sμ ¼TðLTÞ

μ : ð4:50Þ

The tensor fμν equation of motion is

δð1ÞEðTÞ
μν ¼

	
−
1

2
e2κjyjηαβ∂α∂β − −

1

2
∂
2
y −

1

6
λδðyÞ − 2

3
Λ − 2e2κjyjððe−κjyjÞ0Þ2



fμν

¼
	
−
1

2
e2κjyjηαβ∂α∂β −

1

2
∂
2
y þ 2κ2 − 2κδðyÞ



fμν ¼ TðTÞ

μν ð4:51Þ

and originates in δð1ÞEμν. In the absence of matter sources
we recognize here our earlier Eq. (3.15).
In vacuum, the set of equations obeyed by the gauge-

invariant fluctuations reduces to

ηαβ∂α∂βΨ¼ 0; ∂yΨ¼ 0; Φþ2e2κjyjΨ¼ 0;

e2κjyjηαβ∂α∂βSμ ¼−12κδðyÞSμ;

	
1

2
∂y− κ signðyÞ



Sμ ¼ 0;	

−
1

2
e2κjyjηαβ∂α∂β−

1

2
∂
2
yþ2κ2−2κδðyÞ



fμν ¼ 0: ð4:52Þ

The linearized vector vacuum equations admit no solution
due to the delta function present on the right-hand side of

Eq. (4.52) and the absence of any ∂y derivatives, which
imply that Sμ vanishes on the brane. The tensor equation,
however, does not suffer from this problem and admits
solutions. The scalar equations admit solutions for null
4-momenta, but the Ψ scalar metric fluctuations are jyj-
independent, and the Φ fluctuations are growing with jyj.
Both fluctuations are non-normalizable, exponentially
growing with jyj relative to the background metric.
We are now turning our attention to constructing the

gravitational energy-momentum tensor T μν. It is quadratic
in fluctuations: we denote the scalar, vector, and tensor

contributions by T ðSÞ
ρσ ; T

ðVÞ
ρσ ; T ðTÞ

ρσ and the mixed contribu-

tions by T ðSVÞ
ρσ , for the mixed scalar-vector contribution, etc.

We give each one of these expressions below:

T ðSÞ
ρσ ¼ ηρσ½−4e−κjyjðe−κjyjÞ0Φ∂yΦ − 4eκjyjðe−κjyjÞ0Ψ∂yΦþ 6∂yΨ∂yΦ − 4e−κjyjðe−κjyjÞ0Φ∂yΦ − 12Φ2ððe−κjyjÞ0Þ2

− 8e2κjyjððe−κjyjÞ0Þ2ΦΨþ 8e4κjyjððe−κjyjÞ0Þ2Ψ2 − 8eκjyjðe−κjyjÞ0Φ∂yΨ − 3∂yΦ∂yΨþ 16eκjyjðe−κjyjÞ0Φ∂yΨ

− 8e3κjyjðe−κjyjÞ0Ψ∂yΨ − 4e−κjyjðe−κjyjÞ00Φ2 − 8e3κjyjðe−κjyjÞ00Ψ2 þ 2Φ∂y∂yΨþ 4e2κjyjΨ∂y∂yΨþ ηαβ∂αΦ∂βΦ

− ηαβe2κjyj∂αΦ∂βΨþ 3e4κjyjηαβ∂αΨ∂βΨþ ηαβΦ∂β∂αΦþ e2κjyjηαβΨ∂β∂αΦþ 4e4κjyjηαβΨ∂β∂αΨ� − ∂ρΦ∂σΦ

− e2κjyjð∂ρΨ∂σΦþ ∂ρΦ∂σΨÞ − 6e4κjyj∂ρΨ∂σΨ − 2Φ∂σ∂ρΦ − 4e4κjyjΨ∂σ∂ρΨ;−ηρσλδðyÞ
	
1

4
Φ2 þ 3ΦΨ



; ð4:53Þ

T ðVÞ
ρσ ¼ ηρσ

	
−
3

2
e2κjyjSαSαððe−κjyjÞ0Þ2 − 3eκjyjðe−κjyjÞ0Sα

∂ySα −
3

2
eκjyjSαSαðe−κjyjÞ00 þ 3

4
e2κjyjηβγ∂βSα

∂γSα

þ 1

2
e2κjyjηβγSα∂γ∂βSα −

1

4
e2κjyj∂αSβ

∂βSα −
1

2
λδðyÞSαSα



þ 1

2
e2κjyjSα

∂αð∂ρSσ þ ∂σSρÞ −
1

2
e2κjyjηαβ∂αSρ∂βSσ

−
1

2
e2κjyj∂ρSα

∂σSα − e2κjyjSα∂σ∂ρSα;
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T ðTÞ
ρσ ¼ ηρσ

	
−
3

2
e3κjyjðe−κjyjÞ0fαβ∂yfαβ þ

3

8
e2κjyjηαβηγκ∂yfαγ∂yfβκ þ

3

8
e4κjyjηγκ∂γfαβ∂κfαβ þ e4κjyjððe−κjyjÞ0Þ2fαβfαβ

þ 1

4
e2κjyjfαβ∂2yfαβ −

1

2
e3κjyjfαβfαβðe−κjyjÞ00 þ

1

4
e4κjyjfαβηγκ∂κ∂γfαβ −

1

4
e4κjyj∂βfαγ∂γfαβ




þ e3κjyjðe−κjyjÞ0ðfσα∂yfρα þ fρα∂yfσαÞ −
1

2
e2κjyjηαβ∂yfρα∂yfσβ − 2e4κjyjððe−κjyjÞ0Þ2fραfσα

þ e4κjyj
	
1

2
∂αfσβ∂βfρα −

1

2
fαβ∂β∂αfρσ þ

1

2
fαβ∂β∂ρfσα þ

1

2
fαβ∂β∂σfρα −

1

2
ηβγ∂βfρα∂γfσα

−
1

4
∂ρfαβ∂σfαβ −

1

2
fαβ∂σ∂ρfαβ



−
1

4
ηρσλδðyÞfαβfαβ; ð4:54Þ

T ðSVÞ
ρσ ¼ e2κjyjηρσSα

∂y∂αΨþ e2κjyjηαβηρσ∂ySβ∂αΨ

þΦ∂y∂ρSσ þ e2κjyjSσ∂y∂ρΨþΦ∂y∂σSρ þ e2κjyjSρ∂y∂σΨþ 1

2
∂yΦ∂ρSσ þ 2eκjyjðe−κjyjÞ0Φ∂ρSσ

þ 2e3κjyjðe−κjyjÞ0Ψ∂ρSσ − e2κjyj∂yΨ∂ρSσ þ e2κjyj∂ySσ∂ρΨþ 1

2
∂yΦ∂σSρ þ 2eκjyjðe−κjyjÞ0Φ∂σSρ

þ 2e3κjyjðe−κjyjÞ0Ψ∂σSρ − e2κjyj∂yΨ∂σSρ þ e2κjyj∂ySρ∂σΨ; ð4:55Þ

T ðSTÞ
ρσ ¼ 1

2
e2κjyjfαβηρσ∂β∂αΦþ 1

2
∂yΦ∂yfρσ − ∂yfρσ∂yΦ − 4e2κjyjððe−κjyjÞ0Þ2fρσΦ

− 8e4κjyjððe−κjyjÞ0Þ2fρσΨþ 4e3κjyjðe−κjyjÞ0fρσ∂yΨ −Φ∂y∂yfρσ þ
1

2
e2κjyjηαβ∂αΦ∂βfρσ

− e4κjyjηαβ∂αΨ∂βfρσ − e4κjyjηαβΨ∂β∂αfρσ −
1

2
e2κjyj∂αΦ∂ρfσα þ e4κjyjfσα∂ρ∂αΨ

−
1

2
e2κjyj∂αΦ∂σfρα þ e4κjyjfρα∂σ∂αΨþ λδðyÞfρσ

	
1

2
Φþ 2Ψ



; ð4:56Þ

T ðVTÞ
ρσ ¼ e2κjyj

	
−
1

2
ηρση

βγ
∂yfαβ∂γSα − Sα

∂y∂αfρσ −
1

2
fαβηρσ∂y∂βSα þ

1

2
Sα
∂y∂ρfσα

þ 1

2
Sα
∂y∂σfρα þ eκjyjðe−κjyjÞ0Sα

∂αfρσ − eκjyjðe−κjyjÞ0fσα∂αSρ − eκjyjðe−κjyjÞ0fρα∂αSσ

−
1

2
ηαβ∂ySα∂βfρσ þ

1

2
ηαβ∂yfσα∂βSρ þ

1

2
ηαβ∂yfρα∂βSσ þ

1

2
∂ySα∂ρfσα þ

1

2
∂ySα∂σfρα



; ð4:57Þ

where the 4D indices α and β on the vector and tensor
fluctuations have been raised with the Minkowski metric,
e.g., Sα ¼ ηαβSβ. The delta-function terms arise due to the
presence of the brane.
Under the same assumption that all sources have

compact support, let us extract those parts in T μν which
are relevant for computing the radiated power. For κr ≫ 1
we derived in Sec. III D the profile of spherical waves in the
Randall-Sundrum background. We see that the same argu-
ments we have been using earlier still apply. First, for the
radiated power we only need T 0i if we chose to compute
the rate of the energy flux through the surface of an
infinitely long cylinder (we are thus keeping r ¼ R∞ large
and fixed and integrating over y). This is merely a

convenient choice of the surface enclosing the sources,
and keeping with our assumption that we are measuring the
radiated power far away from the sources. Second, the
relevant terms in T 0i which contribute to the averaged
radiated power can be found by (i) dropping all total ∂i
derivatives [since these can be turned in ðxi=rÞ∂r in TðSÞ

0i and

TðVÞ
0i ; the ∂r derivative must act on the phase of the spherical

wave; otherwise, it will lead to a flux which vanishes
asymptotically far away (r ¼ R∞ → ∞); at this point ∂r
can be converted into ∂t; last, the time average will set this
term to zero)]; similarly, total derivatives can be dropped

from TðTÞ
0i ; and (ii) dropping all the terms which are odd in y

such as single ∂y derivatives. What is left is
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T ðSÞ
0i → ∂0Φ∂iΦ − 2e4κjyj∂0Ψ∂iΨ − e2κjyjð∂0Ψ∂iΦþ ∂0Φ∂iΨÞ;

T ðVÞ
0i →

1

2
S0e2κjyjηαβ∂α∂βSi þ

1

2
e2κjyj∂0Sα∂iSα;

T ðTÞ
0i → −

1

2
e−2κjyj∂yðe2κjyjf0αÞ∂yðe2κjyjfαi Þ −

1

2
e4κjyjfα0□

ð4DÞfiα þ
1

4
e4κjyj∂0fαβ∂ifαβ;

T ðSVÞ
0i → 0;

T ðSTÞ
0i →

1

2
∂yΦ∂yf0i − ∂yf0i∂yΦ − 4κ2f0iΦ − 8κ2e2κjyjf0iΨ − 4κ signðyÞe2κjyjf0i∂yΨ −Φ∂

2
yf0i þ

1

2
e2κjyjηαβ∂αΦ∂βf0i

− e4κjyjηαβ∂αΨ∂βf0i − e4κjyjΨηαβ∂α∂βf0i −
1

2
e2κjyj∂αΦ∂0fαi þ e4κjyjfαi ∂0∂αΨ −

1

2
e2κjyj∂αΦ∂ifα0 þ e4κjyjfα0∂i∂αΨ

þ
�
2Ψf0i þ

1

2
Φf0i

�
λδðyÞ;

T ðVTÞ
0i → 0: ð4:58Þ

The luminosity (radiated power) of the gravitational waves is obtained by substituting the expressions in (4.58)
into (2.19)

hPi ¼ 1

T

Z
T

0

dt
Z

∞

−∞
dye−4κjyj

Z
dΩ2R2

∞e2κjyj½T ðSÞ
0i þ T ðVÞ

0i þ T ðTÞ
0i þ T ðSVÞ

0i þ T ðVTÞ
0i þ T ðSTÞ

0i �: ð4:59Þ

Last, this expression can be further simplified: since we are asymptotically far away from sources, wewill use the vacuum
relations satisfied by the scalars Φþ 2 expð2κjyjÞΨ ¼ 0, and we ignored the vector contribution since it does not couple to
matter on the brane:

hPi ¼ 1

T

Z
T

0

dt
Z

∞

−∞
dye−4κjyj

Z
dΩ2R2

∞e2κjyj
	
6e4κjyjΨ̇ Ψ̇

þ e4κjyj
xi

R∞

�
−
1

2
e−6κjyj∂yðe2κjyjf0αÞ∂yðe2κjyjfαi Þ −

1

2
fα0η

μν
∂μ∂νfiα þ

1

4
∂0fαβ∂ifαβ

�

þ e4κjyj
xi

R∞
ðe−4κjyj∂yðe2κjyjΨÞ∂yf0i þ ηαβð−2∂αΨ∂βf0i −Ψ∂α∂βf0iÞ

þ ηαβ∂α∂iðΨf0βÞ þ 2e−2κjyjΨ∂2yf0i − 4κ signðyÞe−2κjyjf0i∂yΨþ 12κδðyÞΨf0iÞ


: ð4:60Þ

V. CONCLUSIONS

In this paper we constructed the gravitational-wave
energy-momentum tensor in a strongly curved background.
The main takeaway is that the quasilocal expression
ubiquitous in the literature hTμνiI ¼ ð1=4Þhhρσ;μhρσ ;νiI,
where the subscript “I” denotes an averaging procedure
devised by Isaacson, is valid when the background metric
satisfies certain conditions and those conditions fail to
hold in a strongly curved background. The expression

hTμνiI ¼ ð1=4Þhhρσ;μhρσ ;νiI assumes the integration (i.e.,
averaging) over a region of spacetime, smaller in size than
the curvature length of the background R ∼ 1=L2 and larger
than the wavelength λ of the gravitational fluctuation hμν.
These assumptions imply that L > λ, inside the averaging
region the metric is almost flat, curvature effects are
negligible, and background-covariant derivatives commute.
Then the gravitational radiation backreaction on the back-
ground geometry which is given by
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T μν ¼ −
1

2
hð1Þαβðhð1Þμν;α;β − hð1Þνα;μ;β − hð1Þμα;ν;β þ hð1Þαβ;μ;νÞ þ

1

2
hð1Þνβ;αðhð1Þα;βμ − hð1Þβ;αμ Þ

−
1

4
hð1Þαβ;μh

ð1Þαβ
;ν −

1

4
ðhð1Þνα;μ þ hð1Þμα;νÞðhð1Þ;α − 2hð1Þα;ββ Þ þ 1

4
hð1Þ;αμν ðhð1Þ;α − 2hð1Þ;βαβ Þ

þ 1

4
ḡμν

�
hð1Þαβðhð1Þ;α;β þ hð1Þαβ

;γ
;γ − 2hð1Þαγ

;γ
;βÞ −

1

2
hð1Þ;αhð1Þ;α − 2hð1Þ;ααβ hð1Þβγ ;γ

þ 2hð1Þ;αhð1Þαβ ;β − hð1Þαγ;βh
ð1Þαβ;γ þ 3

2
hð1Þαβ;γh

ð1Þαβ;γ
�
; ð5:1Þ

in the de Donder gauge hð1Þ;μμν ¼ 0, simplifies to the point
where it is given by

hT μνiI ¼
1

4
hhð1Þρσ;μhð1Þρσ ;νiI ð5:2Þ

after integration by parts (e.g., hhð1Þμν;α;βh
ð1ÞαβiI ¼

−hhð1Þμν;αhð1Þαβ ;βiI) and use of the linearized equations of

motion obeyed by hð1Þμν . The other advantage of Isaacson’s
averaging is that the resulting expression is manifestly
gauge invariant. This can be seen by substituting the gauge-

transformed fluctuations δhð1Þμν ¼ ξðμ;νÞ in (5.2), integrating
by parts, and using the linearized equations of motion.
Of course, one of the main conditions for defining a
good gravitational-wave energy-momentum tensor is gauge
independence.
However, if the background geometry varies on scales

shorter than the wavelength of the radiation, we cannot rely
on the averaging procedure of Isaacson. This is the case, in
particular, for the Randall-Sundrum model of large extra
dimensions. The background curvature length must be
smaller than μm in order to confine gravity near the brane
and hide any deviations from Newton’s law at sub-μm
scales. A similar situation arises in a cosmological scenario
[23] when the curvature scale is smaller than the wave-
length of the gravitational fluctuations.
Without the benefit of the averaging, not only can we not

simplify the expression in (5.1) further, but we are looking
at a gauge-dependent quantity. Our resolution to the
problem of defining a gauge-invariant gravitational-wave
energy-momentum tensor in a strongly curved background
mirrors that of Abramo et al. [23]. Namely, we use only the

gauge-invariant parts of the linearized fluctuations hð1Þμν in
the expression (5.1). This definition can be used in any
background geometry that invalidates the assumptions
made by Isaacson, and it does reduce to the usual
expression (5.2) in flat backgrounds. To drive the message
home, take, for example, flat space as a background, and

consider the linearized fluctuations hð1Þμν as we did in
Sec. IVA. We further decompose the metric fluctuations
according to how they transform under the rotation group,
SOð3Þ, i.e., scalars, vectors, tensors, as in Eq. (4.2). This is

known as performing a SVT decomposition of the linear-
ized metric fluctuations. The linear combinations given in
Eq. (4.3) are gauge invariant. As expected, the linearized
Einstein equation (2.5) constrains only these gauge-
invariant fluctuations. Anything else is a gauge degree of
freedom. We next cast the metric in the form given in
Eq. (4.6) in terms of the gauge-invariant fluctuations. This
is further substituted in the gravitational energy-momentum
tensor (5.1). The radiated power (radiated energy per unit
time) through a region M whose boundary is asymptoti-
cally far away from sources can be computed using

P ¼ −
dE
dt

¼
Z
∂M

dd−2x
ffiffiffiffiffiffi
−ḡ

p
nikμT μi; ð5:3Þ

where kμ is a timelike background Killing vector and ni is a
unit vector transverse to the boundary ∂M. Furthermore,
assuming that the sources are generating gravitational
waves and that the period of the gravitational waves is
T, we defined the averaged radiated power through the
boundary ∂M:

hPi ¼ 1

T

Z
T

0

dt
Z
∂M

dd−2x
ffiffiffiffiffiffi
−ḡ

p
nikμT μi: ð5:4Þ

We verified that the radiated power reduces to the known
expression in Eq. (4.29). In Appendix F we also verified
that had we performed a different SVT decomposition, with
respect to the SOð1; 2Þ isometry subgroup, we would arrive
at the same expression for the power radiated away by a
binary source as with the previous SOð3Þ SVT decom-
position. In Sec. IV B, we further checked that the same
procedure of retaining only the gauge-invariant linearized
fluctuations of the 5D metric, with a flat background
R3;1 × S1 and a compact fifth dimension, yields the
expected results. We decomposed the metric with respect
to the isometry group SOð1; 3Þ and retained only the gauge-
invariant fluctuations as in Eq. (4.32). We simplified the
formula for the power radiated by a binary located at the
same position along the fifth dimension (the binary sources
are on the same brane) and further evaluated the expression
in (4.42). In Appendix G, we reproduced once more known
results.

GRAVITATIONAL-WAVE ENERGY-MOMENTUM TENSOR AND … PHYS. REV. D 109, 024049 (2024)

024049-19



After having tested our proposal for the gravitational-wave
energy-momentum tensor and our ability to perform the
calculation of the radiated power starting from the gauge-
invariant fluctuations in a variety of setups, we turned our
attention to the Randall-Sundrum large extra-dimension
scenario in Sec. IV C.We performed the SVT decomposition
of the linearized metric fluctuations with respect to the
SOð1; 3Þ background isometry group, and we wrote the
equations which constrain their dynamics, by analyzing
the linearizedEinstein equations.Using thesegauge-invariant
fluctuations we arrived at the expression for the gravitational-
wave energy-momentum tensor in Eqs. (4.53)–(4.57). In
Sec. III, after reviewing the construction of various Green’s
functions in flat andAdS backgrounds, we derived the profile
of the gravitational waves, which propagate in the Randall-
Sundrum geometry, when sourced by a localized periodic
signal. From the form of Green’s function (3.43) we inferred
that thegauge-invariant fluctuations are sphericalwaves. This
allowedus to evaluate thegravitational-wave energy-momen-
tum tensor expressions T0i used in the computation of the
radiated power and arrive at the simplified expressions (4.58).
A complete evaluation of the radiated power (4.60) is
forthcoming.
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APPENDIX A: THE SECOND-ORDER
EXPANSION OF THE RICCI TENSOR

In this appendix we perform explicitly the second-order
expansion of theEinstein equations, given ametric gμν which
differs from a background metric ḡμν by a small fluctuation

gμν ¼ ḡμν þ hμν: ðA1Þ
Expanding order-by-order in the fluctuation hμν, the inverse
metric and Christoffel symbols are

gμν ¼ ḡμν − hμν þ ½h2�μν − ½h3�μν þ � � � ;
Γρ
μν ¼ Γ̄ρ

μν þ δð1ÞΓρ
μν þ δð2ÞΓρ

μν þ � � � ;

δð1ÞΓρ
μν ¼ 1

2
ḡρσð−hμν;σ þ hσν;μ þ hμσ;νÞ;

δð2ÞΓρ
μν ¼ −

1

2
hρσð−hμν;σ þ hσν;μ þ hμσ;νÞ; ðA2Þ

where ½h2�μν ¼ hμρhνσ ḡρσ, etc., and all the indices are raised
and lowered with the background metric. Consequently, the
Ricci tensor andRicci scalar, expanded to second order in the
fluctuation hμν, are

Rμν ¼ R̄μν þ δð1ÞRμν þ δð2ÞRμν þ � � � ;

δð1ÞRμν ¼ ∇ρδ
ð1ÞΓρ

μν −∇μδ
ð1ÞΓρ

ρν ¼ 1

2
ð−hμν;ρ;ρ − h;μ;ν þ hρν;μ;ρ þ hμρ;ν;ρÞ;

δð2ÞRμν ¼ ∇ρδ
ð2ÞΓρ

μν −∇μδ
ð2ÞΓρ

ρν þ δð1ÞΓρ
μνδð1ÞΓσ

σρ − δð1ÞΓρ
μσδð1ÞΓσ

ρν

¼ 1

4
∇μ∇νðhρσhρσÞ −

1

4
hρσ ;μhρσ;ν −

1

2
hρσðhσν;μ;ρ þ hμσ;ν;ρ − hμν;σρÞ −

1

2
hρσ ;ρðhσν;μ þ hμσ;ν − hμν;σÞ

−
1

2
ðhμσ ;ρhρν;σ − hμσ ;ρhσν;ρÞ þ

1

4
h;σðhσν;μ þ hμσ;ν − hμν;σÞ;

R ¼ gμνRμν ¼ R̄þ δð1ÞRþ δð2ÞRþ � � � ;
δð1ÞR ¼ −hμνR̄μν − h;ρ;ρ þ hρσ;;σ;ρ;

δð2ÞR ¼ ½h2�μνR̄μν − hμνδð1ÞRμν þ ḡμνδð2ÞRμν; ðA3Þ

where h ¼ hμνḡμν and the background-covariant derivatives

are denoted either through ∇μ or are implied by an index
preceded by a semicolon (; μ).

APPENDIX B: THE CONTRIBUTION OF THE
SCALAR AND VECTOR MODES TO THE
RADIATED POWER IN 4D FLAT SPACE,
WITH AN SOð3Þ SVT DECOMPOSITION

First, consider the scalar mode Ψ which satisfies the
equations

G00 ¼ −2δij∂i∂jΨ ¼ −2∇2Ψ ¼ T00; ðB1Þ

GðLÞ
0 ¼ −2∂0Ψ ¼ TðLÞ

0 : ðB2Þ

Due to the compact support of the source, Eq. (B1) tells us
that far away from the source, Ψ is at most of orderOð1=rÞ
with its phase depending on time t instead of retarded time
(t − r). Thus, ∂iΨ will be at most of order Oð1=r2Þ, which
means any term in T 0i that contains ∂iΨ will not contribute
to the calculation of radiated power.
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Let us now move on to Eq. (B2). TðLÞ
0 can be solved as

TðLÞ
0 ¼ −

∂
i

∇2
T0i: ðB3Þ

Since the source has compact support, at large distance r,

we can see that TðLÞ
0 will be at most of Oð1=r2Þ, which

means any term in T 0i that contains ∂0Ψ will not contribute
to the calculation of radiated power.
Next, consider the scalar mode Φ which relates to Ψ by

the equation

GðLLÞ ¼ Φ −Ψ ¼ TðLLÞ: ðB4Þ

TðLLÞ can be solved as

TðLLÞ ¼ 3

2

∂
i
∂
j

ð∇2Þ2 Tij −
1

2∇2
δijTij; ðB5Þ

which means when far away from the source, similar to Ψ,
TðLLÞ will also be at most of order Oð1=rÞ with its phase
depending on time t instead of retarded time (t − r). Thus,
any term in T 0i that contains ∂iΦ will not contribute to the
calculation of radiated power.
The analysis for the vector mode Si is the same as that for

Ψ, which leads to the conclusion that any term that contains
∂jSi or ∂0Si will not contribute to the calculation of
radiated power.
In addition, since we need to take a time averaging over

the period of the gravitational wave to compute the radiated
power, any term in T 0i that is a total derivative of time will
not give any contribution.
Therefore none of the terms in (4.22) that involve any of

the scalar modes, Φ and Ψ, or the vector mode, Si will
contribute to the calculation of radiated power.

APPENDIX C: THE NONLOCALITY
OF THE SVT DECOMPOSITION

Whenever we perform a decomposition of SVT type, the
resulting metric components are extracted with projectors
that are nonlocal in position space. The same operators
when applied to a delta function localized energy-momen-
tum source will also result in a nonlocal set of SVT Tμν

components. To gain a better understanding of the action of
the nonlocal projectors and the consequences of a nonlocal
energy-momentum source we consider a flat background
and a static source and perform an SOð1; 3Þ SVT decom-
position for both the metric and the Einstein equations. Let
us begin with the metric fluctuations:

hμν¼ημνΨþ∂μh
ðLTÞ
ν þ∂νh

ðLTÞ
μ þ∂μ∂νhðLLÞþhðTTÞμν ; ðC1Þ

where hðLTÞμ is a transverse vector and hðTTÞμν is a transverse-
traceless tensor,

∂μhðLTÞμ ¼ 0; ημνh
ðTTÞ
μν ¼ 0; ∂μhðTTÞμν ¼ 0: ðC2Þ

The indices are raised with the background (Minkowski)
metric.
Given hμν we can solve for each of Ψ; hðLLÞ; hðLTÞμ ,

and hðTTÞμν :

Ψ ¼ −
∂μ∂ν

d − 1

1

□
hμν þ h

d − 1
; ðC3Þ

where h ¼ hμνημν,

hðLLÞ ¼ d
d − 1

∂μ∂ν

□
2
hμν −

1

ðd − 1Þ
1

□
h; ðC4Þ

hðLTÞν ¼ 1

□

�
∂μhμν − ∂

ν ∂
ρ
∂
σ

□
hρσ

�
; ðC5Þ

and where d ¼ 4 here. Last, hðTTÞμν is obtained substituting
the previous expressions into (C1). While a bit more
cumbersome than the usual SOð3Þ SVT decomposition,
this SOð1; 3Þ decomposition arises naturally in the context
of a 5D spacetime that has 4D Lorentz symmetry.
Consider next a static source and solve for the linearized

fluctuation in the usual fashion (define the trace-reversed
metric fluctuations, impose the Lorentz gauge, and solve
the resulting decoupled equations):

T00 ¼ Mδ3ðr⃗Þ;

hμνdxμdxν ¼
2MG
r

dt2 þ δij
2MG
r

dxidxj: ðC6Þ

Then we can extract the SVT metric components by
applying the nonlocal projectors as above:

Ψ ¼ 2MG
3r

; hðLLÞ ¼ −
MG
3

r; hðLTÞμ ¼ 0;

hðTTÞ00 ¼ 8MG
3r

; hðTTÞ0i ¼ 0;

hðTTÞij ¼ 2MG
3r

ðδij þ ninjÞ; ðC7Þ

where ni ¼ xi
r . The matter energy-momentum tensor is

decomposed in a similar fashion:

Tμν ¼ ημνTðΨÞ þ ∂μT
ðLTÞ
ν þ ∂νT

ðLTÞ
μ

þ ∂μ∂νTðLLÞ þ TðTTÞ
μν ; ðC8Þ
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with

TðΨÞ ¼ −
MG
3

δ3ðr⃗Þ; TðLLÞ ¼ MG
12πr

;

TðLTÞ
μ ¼ 0; TðTTÞ

00 ¼ 2MG
3

δ3ðr⃗Þ;

TðTTÞ
ij ¼ 2MG

9
δ3ðr⃗Þδij −

MG
12πr3

ðδij − 3ninjÞ: ðC9Þ

As a check, we verify that the SVT fluctuations obey
decoupled linearized Einstein equations11

□Ψ ¼ −8πGTðψÞ; □hðTTÞμν ¼ −16πGTðTTÞ
μν : ðC10Þ

There is one more linearized Einstein equation that
involves Ψ:

∂μ∂νΨ ¼ −8πG∂μ∂νTðLLÞ: ðC11Þ

However, this equation is satisfied due to the transversality
of Tμν which implies that □TðLLÞ þ TðΨÞ ¼ 0 and

TðLTÞ
ν ¼ 0.
Notice also that the Einstein equations constrain only the

gauge-independent fluctuations, Ψ and hðTTÞμν . The other

two fluctuations hðLTÞμ and hðLLÞ are pure gauge. Given the

expressions for Ψ and hðTTÞμν in (C7) and the SVT energy-
momentum tensor components in (C9), we can proceed to
verify that Eq. (C10) are satisfied.
We can now take stock of what we have learned. While

source terms for Eq. (C10) obeyed by the decoupled SVT
fluctuations are nonlocal, the only consequence of this
nonlocality is that the linearized SVT metric fluctuations,
which still fall off as 1=r, acquire a dependence on ninj.

APPENDIX D: ZERO-MODE SECTOR

1. Maxwell field

The SVT decomposition requires a slight modification
in the case of null eigenvectors of the d’Alembertian.
As a warm-up we consider first the Maxwell field in a
d-dimensional flat space. The scalar-vector (SV) decom-
position with respect to the SOð1; d − 1Þ Lorentz group

Aμ ¼ ∂μAðLÞ þ AðTÞ
μ ; ημν∂μA

ðTÞ
ν ¼ 0; ðD1Þ

or in terms of Fourier modes,

Aμ ¼ ikμAðLÞ þ
Xd−1
p¼1

ϵðpÞμ Ap; ϵðpÞ · k ¼ ημνϵðpÞμ kν ¼ 0;

ϵðpÞ · ϵðqÞ ¼ δpq; ðD2Þ

maps the d components of the vector field into a longi-
tudinal vector ∂μAðLÞ and a d − 1 component transverse

vector AðTÞ
μ . The latter components are gauge invariant.

However, this breaks down when AðLÞ is a null eigenvector
of the d’Alembertian, i.e., □AðLÞ ¼ 0, since in this case
∂μAðLÞ is transverse (or, in Fourier space, kμ is null). In this
case, we proceed with

Aμ ¼ ikμaþ ik̃μãþ
Xd−2
p¼1

ϵðpÞμ Ap;

kμ ¼ ðk0; k⃗Þ; k̃μ ¼ ðk0;−k⃗Þ;
k · k ¼ k̃ · k̃ ¼ ϵðpÞ · k ¼ ϵðpÞ · k̃ ¼ 0;

ϵðpÞ · ϵðqÞ ¼ δpq: ðD3Þ

The gauge-invariant components are ã and Ap.
Furthermore, Maxwell’s equations set ã ¼ 0. For an on-
shell gauge field, we can write then

Aμ ¼ ∂μAðLÞ þ AðTÞ
μ ; ðD4Þ

where the gauge-invariant components are transverse

AðTÞ
μ ¼ ð0; A⃗ðTÞÞ; ∇! · A⃗ðTÞ ¼ 0.
Next, let us consider a Maxwell field in dþ 1 dimen-

sions and perform an SV decomposition with respect to the
SOð1; d − 1Þ Lorentz group

AM ¼ ðAμ; Adþ1Þ ðD5Þ

Aμ ¼ ∂μAðLÞ þ AðTÞ
μ ; ημν∂μA

ðTÞ
ν ¼ 0; ðD6Þ

where M is a dþ 1 index and μ ¼ 0; 1; 2;…; d − 1. Such
an expansion would be appropriate if we are working with
one compact dimension, xdþ1. In terms of Fourier modes
expðikμxμÞ (scalar eigenfunctions of the d-dimensional
d’Alembertian) we can write

AM ¼
�
ikμAðLÞ þ

Xd−1
p¼1

ϵðpÞμ Ap; Adþ1

�
;

ϵðpÞ · k≡ ημνkμϵ
ðpÞ
ν ¼ 0: ðD7Þ

This assumes that k · k ¼ ημνkμkν ≠ 0. The gauge-invariant
components are Adþ1 − ∂dþ1AðLÞ and AðTÞ. Furthermore,
Maxwell’s equations set the scalar gauge-invariant
combination Adþ1 − ∂dþ1AðLÞ to zero and require that
ð−k · kþ ∂

2
dþ1ÞAp ¼ 0.

11Use that□ 1
r ¼ −4πδ3ðr⃗Þ;□ ninj

r ¼ − 4π
3
δijδ

3ðr⃗Þ − 1
r3 ð6ninj−

2δijÞ.
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If the Fourier momenta are null (k · k ¼ 0), then we
proceed as we did earlier, with

Aμ ¼ ikμaþ ik̃μãþ
Xd−2
p¼1

ϵðpÞμ Ap; ðD8Þ

with the polarization vectors ϵðpÞμ transverse to both null
vectors kμ and k̃μ. Maxwell’s equations set ã ¼ 0 and
require that the scalar gauge-invariant combinations
Adþ1 − ∂dþ1a and Ap be independent of xdþ1. To conclude,
for an on-shell Maxwell field we can write

Aμ ¼ ∂μAðLÞ þ AðTÞ
μ ; ðD9Þ

where AðTÞ
μ satisfies ∂μAðTÞ

μ ¼ 0 if the Fourier momentum is

not null, or AðTÞ
μ ¼ ð0; A⃗ðTÞÞ with ∇! · A⃗ðTÞ ¼ 0 if the

Fourier momentum is null. The additional physical degree
of freedom is the scalar Adþ1 − ∂dþ1a.

2. GR

For concreteness, we begin by considering 4D GR in a
flat background and perform an SVT decomposition
with respect to the Lorentz isometry group SOð1; 3Þ. We
decompose the metric fluctuations in terms of eigenvectors
of the 4D d’Alembertian and focus on the zero eigenvalues
sector (e.g., the scalar eigenvectors satisfy □4Deik·x ¼ 0,
etc.). After Fourier transforming, the metric fluctuations are
decomposed as

hμν ¼ 2ψημν − kμkνE − ðkμk̃ν þ kνk̃μÞẼ − k̃μk̃ν
˜̃E

þ iðkμFμ þ kνFμÞ þ iðk̃μF̃ν þ k̃νF̃μÞ þ fμν; ðD10Þ

where μ; ν ¼ 0; 1; 2; 3, the momenta kμ and k̃μ are null:

k · k ¼ k̃ · k̃ ¼ 0, and where Fμ¼
P

p¼1;2ϵ
ðpÞ
μ Fp, F̃μ ¼P

p¼1;2 ϵ
ðpÞ
μ F̃p, fμν¼

P
p;q¼1;2ϵ

ðpÞ
μ ϵðqÞν fpq,

P
p¼1;2f

pp¼0,

and ϵðpÞμ kμ ¼ ϵðpÞμ k̃μ ¼ 0, ϵðpÞ · ϵðqÞ ¼ δpq. The gauge-

invariant fluctuations are ψ ; fμν; F̃μ;
˜̃E. The rest are gauge

dependent: δFμ ¼ ξ⊥μ ; δE ¼ 2ξ; δẼ ¼ ξ̃, where we decom-
posed the gauge parameter in a similar way: ξμ ¼
ξðTÞμ þ ikμξþ ik̃μξ̃, with ξðTÞμ ¼Pp¼1;2 ϵ

ðpÞ
μ ξp. The equa-

tions of motion set ˜̃E ¼ 0; F̃μ ¼ 0;ψ ¼ 0. The 2 degrees of
freedom of the on-shell graviton are contained in the
transverse and traceless tensor fμν.12 Of course, there are

no solutions to the equations of motion for non-null
momenta.
We consider next a 4D flat background with one compact

dimension, and we perform the SVT decomposition with
respect to the SOð1; 2Þ Lorentz isometry group. This is
the same scenario we will discuss further in Appendix E.
Here we focus only on the zero-mode sector of the
three-dimensional (3D) d’Alembertian. After Fourier
transforming and restricting to null 3D momenta
(k · k≡ ημνkμkν ¼ 0) we proceed with

hμν ¼ 2ψημν − kμkνE − ðkμk̃ν þ kνk̃μÞẼ − k̃μk̃ν
˜̃E

þ iðkμFμ þ kνFμÞ þ iðk̃μF̃ν þ k̃νF̃μÞ;
h3μ ¼ ikμBþ ik̃μB̃þ Sμ; h33 ¼ 2ϕ; ðD11Þ

where μ; ν ¼ 0; 1; 2, Sμ ¼ ϵμS, Fμ ¼ ϵμF, F̃μ ¼ ϵμF̃,
ϵμ · k ¼ ϵμ · k̃ ¼ 0, and we recall that k̃ · k̃ ¼ 0. Note that
there is no transverse-traceless tensor contribution fμν since
in 3D there is only one vector ϵμ, perpendicular to both kμ
and k̃μ. The six gauge-invariant combinations are ψ , Φ ¼
ϕ − ∂3ðB − ∂3E=2Þ, Sμ ¼ Sμ − ∂3Fμ, F̃μ,

˜̃E, B̃ ¼ B̃ − ∂3Ẽ.
The vacuum linearized equations of motion impose the

following conditions: ˜̃E ¼ 0, F̃ ¼ 0, ∂23ψ ¼ 0, ∂3B̃ ¼ 0,
4∂3ψ þ ðk · k̃ÞB̃ ¼ 0, Φ ¼ 0, ∂3Sν ¼ 0. The 2 degrees of
freedom of the 4D graviton are contained in the scalar ψ
and the transverse gauge-invariant vector Sμ, which are
both null eigenvectors of the 3D d’Alembertian and x3

independent.
Similarly, for the case of a dþ 1 flat background with

one compact dimension and d > 3 we make the decom-
position

hμν ¼ 2ψημν − kμkνE − ðkμk̃ν þ kνk̃μÞẼ − k̃μk̃ν
˜̃E

þ iðkμFμ þ kνFμÞ þ iðk̃μF̃ν þ k̃νF̃μÞ þ fμν;

hdþ1μ ¼ ikμBþ ik̃μB̃þ Sμ; hdþ1dþ1 ¼ 2ϕ; ðD12Þ

where μ; ν ¼ 0; 1; 2;…; d − 1, Sμ ¼
P

d−2
p¼1 ϵ

ðpÞ
μ Sp, Fμ ¼P

d−2
p¼1 ϵ

ðpÞ
μ Fp, F̃μ ¼

P
d−2
p¼1 ϵ

ðpÞ
μ F̃p, ϵðpÞ · k ¼ ϵðpÞ · k̃ ¼ 0,

ϵðpÞ ·ϵðqÞ ¼δpq, fμν ¼
P

d−2
p;q¼1 ϵ

ðpÞ
μ ϵðqÞν fpq,

P
d−2
p¼1 f

pp ¼ 0,

and k · k ¼ k̃ · k̃ ¼ 0.
The gauge-invariant fluctuations are ψ , ˜̃E, F̃μ,

Φ ¼ ϕ − ∂dþ1ðB − ∂dþ1E=2Þ, B̃ ¼ B̃ − ∂dþ1Ẽ, Sμ ¼ Sμ −
∂dþ1Fμ and fμν. The vacuum linearized equations of

motion set ˜̃E ¼ 0, Φ ¼ −ðd − 2Þψ , F̃ ¼ 0, ∂
2
dþ1ψ ¼ 0,

∂dþ1B̃ ¼ 0, 2ðd − 1Þ∂dþ1ψ þ ðk · k̃ÞB̃ ¼ 0, ∂dþ1Sμ ¼ 0,
∂dþ1fμν ¼ 0. The ðd − 1Þðd − 2Þ=2 − 1 degrees of freedom
of the (dþ 1)-dimensional graviton are parametrized by the

transverse [in a (d − 1)-spatial sense since eðpÞμ ¼ ð0; e⃗ðpÞμ Þ]
and traceless tensor fμν, the transverse vector Sμ, and the

12Since the vectors ϵðpÞμ are transverse to both kμ and k̃μ, this
means that ϵðpÞμ ¼ ð0; ϵ⃗ðpÞÞ. So the nonzero components of the
tensor fμν are purely spatial, and as a result, fμν is transverse with

respect to the 3D gradient ∇!.
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scalar ψ, all of which are independent of the compact
coordinate xdþ1. This is what we expect to see when
performing a Kaluza-Klein reduction of dþ 1 gravity in
the massless sector.
Thus, in the zero-mode sector, for the on-shell linearized

fluctuation, we can reach a gauge where all the gauge-
dependent terms are zero and write

hμνjg:i: ¼ 2ψημν þ fμν;

hdþ1μjg:i: ¼ Sμ; hdþ1dþ1jg:i: ¼ 2Φ; ðD13Þ

which is of the form used in (E3). The one caveat is that the
transverse tensors fμν are transverse in a d − 1 sense for the
zero modes, while for the massive modes (kdþ1 ≠ 0 which
implies k · k ≠ 0) the tensor fluctuations are transverse in a
d-sense (and the scalar and vector fluctuations are zero).

APPENDIX E: THE SOð1; 2Þ SVT
DECOMPOSITION OF THE METRIC
FLUCTUATIONS ABOUT A 4D FLAT

BACKGROUND

In this appendix we want to use the familiarity of 4D
gravity to study a less standard way to decompose the
metric fluctuations, namely using the SOð1; 2Þ background
isometry rather than the rotational isometry SOð3Þ. As we
will see, unlike the SOð3Þ case analyzed in Sec. IVA, the
tensor modes are not the only dynamical ones, and both

scalar and vector modes contribute together with the tensor
modes to the gravitational energy-momentum tensor.
We begin by writing the metric perturbation as

hμν ¼
�
2ψημ̄ ν̄þ ∂μ̄∂ν̄Eþ ∂μ̄Fν̄þ ∂ν̄Fμ̄ þ fμ̄ ν̄ ∂ν̄Bþ Sν̄

∂μ̄Bþ Sμ̄ 2ϕ

�
;

ðE1Þ

where we denote the 4D indices by μ; ν ¼ 0; 1; 2; 3, while
μ̄; ν̄ ¼ 0; 1; 2. The gauge-invariant pieces are Φ;Ψ;Sμ̄, and
fμ̄ ν̄, where

Φ ¼ ϕ − ∂3

�
B −

1

2
∂3E

�
;

Ψ ¼ ψ ;

Sμ̄ ¼ Sμ̄ − ∂3Fμ̄: ðE2Þ

As in [23] we can restrict to the gauge-invariant fluctuations
by going to the gauge

hμνjg:i: ¼
�
2Ψημ̄ ν̄ þ fμ̄ ν̄ Sν̄

Sμ̄ 2Φ

�
: ðE3Þ

We apply the same SVT SOð1; 2Þ decomposition to the
Einstein equations Gμν ¼ Tμν:

Gμν ¼
 
2GðYÞημ̄ ν̄ þ ∂μ̄∂ν̄GðLLÞ þ ∂μ̄G

ðLÞ
ν̄ þ ∂ν̄G

ðLÞ
μ̄ þGðTTÞ

μ̄ ν̄ ∂ν̄G
ðLÞ
3 þGðTÞ

ν̄3

∂μ̄G
ðLÞ
3 þ GðTÞ

μ̄3 2G33;

!
; ðE4Þ

Tμν ¼
 
2TðYÞημ̄ ν̄ þ ∂μ̄∂ν̄TðLLÞ þ ∂μ̄T

ðLTÞ
ν̄ þ ∂ν̄T

ðLTÞ
μ̄ þ TðTTÞ

μ̄ ν̄ ∂ν̄T
ðLÞ
3 þ TðTÞ

ν̄3

∂μ̄T
ðLÞ
3 þ TðTÞ

μ̄3 2T33

!
: ðE5Þ

The linearized equations of motion for the scalar fluctua-
tionsΦ andΨ come from the components δð1ÞG33, δð1ÞG

ðLÞ
3 ,

δð1ÞGðYÞ, and δð1ÞGðLLÞ:

2δð1ÞG33 ¼ 2ηᾱ β̄∂ᾱ∂β̄Ψ ¼ 2T33;

δð1ÞGðLÞ
3 ¼ −2∂3Ψ ¼ TðLÞ

3 ;

2δð1ÞGðYÞ ¼ 2∂23Ψþ ηᾱ β̄∂ᾱ∂β̄Φþ ηᾱ β̄∂ᾱ∂β̄Ψ ¼ 2TðYÞ;

δð1ÞGðLLÞ ¼ −Φ −Ψ ¼ TðLLÞ: ðE6Þ

The equations of motion for the transverse vector Sμ̄ come

from the components δð1ÞGðTÞ
μ̄3 and δð1ÞGðLTÞ

μ̄ :

δð1ÞGðTÞ
μ̄3 ¼ −

1

2
ηᾱ β̄∂ᾱ∂βSμ̄ ¼ TðTÞ

μ̄3 ;

δð1ÞGðLTÞ
μ̄ ¼ 1

2
∂3Sμ̄ ¼ TðLTÞ

μ̄ : ðE7Þ

Last, the equation of motion for the transverse-traceless

tensor fμ̄ ν̄ comes from δð1ÞGðTTÞ
μ̄ ν̄ ,

δð1ÞGðTTÞ
μ̄ ν̄ ¼ −

1

2
∂
2
3fμ̄ ν̄ −

1

2
ηᾱ β̄∂ᾱ∂β̄fμ̄ ν̄ ¼ TðTTÞ

μ̄ ν̄ : ðE8Þ

Next, we count the degrees of freedom by considering the
vacuum equations of motion:
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ηᾱ β̄∂ᾱ∂β̄Ψ ¼ 0; ∂3Ψ ¼ 0; Φ ¼ −Ψ;

ηᾱ β̄∂ᾱ∂β̄Sμ̄ ¼ 0; ∂3Sμ̄ ¼ 0;

∂
2
3fμ̄ ν̄ þ ηᾱ β̄∂ᾱ∂β̄fμ̄ ν̄ ¼ 0: ðE9Þ

Due to the constraints ∂3Ψ ¼ 0 and ∂3Sμ̄ ¼ 0, it is natural
to separately consider the case p3 ¼ 0 and the case p3 ≠ 0.
When p3 ¼ 0: Ψ describes a 3D massless scalar, which has
1 degree of freedom; Sμ̄ describes a 3D massless vector,
which has 1 degree of freedom; fμ̄ ν̄ describes a 3D
massless graviton, which has 0 degrees of freedom. When
p3 ≠ 0:Ψ has no solution; hence its degree of freedom is 0;
Sμ̄ has no solution, and its degree of freedom is 0; fμ̄ ν̄
describes a 3D massive graviton, which has 2 degrees of
freedom. This again adds up to the correct number of
degrees of freedom of the 4D graviton. However, our
analysis was not rigorous. If p3 ¼ 0, then the equations of
motion require that the 3-momentum pμ is null
(ημ̄ ν̄pμ̄pν̄ ¼ 0) which means that the SVT decomposition
starting point (E1) is invalid. Nonetheless, as we showed in
Appendix D, the conclusion reached here stands: the
2 degrees of freedom of the 4D graviton are the massless
scalar Ψ and the massless vector Sμ̄.
The point to be made is that unlike the SOð3Þ SVT

decomposition, where only the SOð3Þ-tensor fluctuation is
dynamical, when performing an SOð1; 2Þ decomposition all

types of fluctuations (scalar, vector, and tensor) are dynami-
cal. Thus, the energy-momentum tensor can receive con-
tributions from all three types of fluctuations. If the x3

dimension were compact, the Fourier spectrum along x3 is
discrete, and indeed all three types of fluctuations do
contribute, with the scalar and vector modes part of the
massless sector of a Kaluza-Klein reduction. If, on the other
hand, the x3 dimension is noncompact, the Fourier spectrum
along x3 is continuous, and only the tensormodes contribute
to the radiated power as we will see in Appendix F.

APPENDIX F: THE SOð1; 2Þ SVT MODES
SOURCED BY A BINARY IN 4D FLAT SPACE

AND THE LUMINOSITY OF THE
GRAVITATIONAL WAVES

In this appendix we derive concrete expressions for the
SOð1; 2Þ SVT modes in 4D flat space, asymptotically far
away from sources, and verify that we correctly reproduce
known results for the radiated power using the results
from Sec. II.
We begin with a known form of the 4D metric pertur-

bation far away from a binary source [see, for example,
Eq. (5.24) in [13] ]. Keeping only the time-dependent parts,
hμν, which are the relevant pieces for the computation of the
radiated power, we write

hμν ¼ h̃μν −
1

2
ημνη

αβh̃αβ ¼

0
BBBBB@

1
2
h̃00 −n1h̃11 − n2h̃12 −n1h̃12 − n2h̃22 0

−n1h̃11 − n2h̃12 h̃11 þ 1
2
h̃00 h̃12 0

−n1h̃12 − n2h̃22 h̃12 h̃22 þ 1
2
h̃00 0

0 0 0 1
2
h̃00

1
CCCCCA; ðF1Þ

where h̃μν is the so-called trace-reversed metric fluctuation
and ni ¼ xi=r are the Cartesian components of a radial
pointing, unit vector n⃗ ¼ r⃗=r. In writing (F1) we have used
that for the binary solution h̃3μ ¼ 0 and h̃11 þ h̃22 ¼ 0.
Note that the x3 direction is perpendicular to the plane of
the binary. This metric perturbation satisfies the harmonic
gauge ημν∂μh̃νρ¼0, which implies that h̃00 can be written as

h̃00 ¼ ðn1Þ2h̃11 þ 2n1n2h̃12 þ ðn2Þ2h̃22: ðF2Þ

Each of the components h̃00, h̃11, h̃12, h̃22 are in the form of
spherical waves. For example, h̃12¼μr212Ω2sinð2Ωðt−rÞÞ=
ð2πrÞ, where μ is the reduced binary mass, r12 is the
separation distance between the binary components, Ω is
the angular frequency of the binary, and we set 8πG ¼ 1.
Next let us consider the SOð1; 2Þ decomposition of the

perturbation (E1) and the gauge-invariant fluctuations
given in (E2). We recall that μ̄; ν̄ ¼ 0; 1; 2. Later we will

also use indices ī; j̄ ¼ 1; 2. From (F1), we can see that
B ¼ 0 and Sμ̄ ¼ 0. In terms of the SVT decomposed fields,
the harmonic gauge condition ∂μh̃

μν̄ ¼ ∂μ̄h̃
μ̄ ν̄ ¼ ∂μ̄ðhμ̄ ν̄ þ

ð1=2Þημ̄ ν̄h̃Þ ¼ 0 becomes

∂ν̄ð□3DEþ 2Ψ − 2ϕÞ þ□3DFν̄ ¼ 0; ðF3Þ

where □3D ¼ −ð∂0Þ2 þ ð∂1Þ2 þ ð∂2Þ2. We also used that

2ϕ ¼ 1

2
h̃00; h̃ ¼ h̃μνημν ¼ −h̃00: ðF4Þ

By tracing hμ̄ ν̄ with ημ̄ ν̄ we learn

□3DEþ 6Ψ ¼ 2ϕ: ðF5Þ

From (F3) and (F5) we infer that □3DFν̄ ¼ 4∂ν̄Ψ, which
given the transversality of Fν̄ implies□3DΨ ¼ 0. However,
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given the spherical symmetry of the problem we are led to
conclude Ψ ¼ 0 and Fν̄ ¼ 0.
Thus, the SOð1; 2Þ decomposition becomes

hμν ¼
�
∂μ̄∂ν̄Eþ fμ̄ ν̄ 0

0 2ϕ

�
: ðF6Þ

Next we solve for E and fμ̄ ν̄ by further assuming E is in the
form of a spherical wave. We can verify our assumption
later by checking the consistency of our solution. This
method works when the solution is supposed to be unique.
With this assumption for E and keeping everything to
leading order in 1=r, we have

□3DE ≃ ðn3Þ2ω2E ≃
1

2
h̃00: ðF7Þ

Thus, to leading order in 1=r,

E ¼ 1

2ðn3Þ2ω2
h̃00;

fμ̄ ν̄ ¼ hμ̄ ν̄ − ∂μ̄∂ν̄E ¼ hμ̄ ν̄ þ
nμ̄nν̄
2ðn3Þ2

h̃00; ðF8Þ

where we have defined

nμ̄ ¼ ð−1; n1; n2Þ: ðF9Þ

Since ðn1Þ2 þ ðn2Þ2 þ ðn3Þ2 ¼ 1, we have

ημ̄ ν̄nμ̄nν̄ ¼ −ðn3Þ2: ðF10Þ

We are now checking that the gauge-invariant tensor
fluctuation fμ̄ ν̄ is indeed transverse and traceless. For
tracelessness, we have

ημ̄ ν̄fμ̄ ν̄ ¼ ημ̄ ν̄hμ̄ ν̄ þ
ημ̄ ν̄nμ̄nν̄
2ðn3Þ2

h̃00

¼ 1

2
h̃00 −

1

2
h̃00 ¼ 0: ðF11Þ

For transversality,

∂
μ̄fμ̄ ν̄ ¼ ∂

μ̄hμ̄ ν̄ þ
nμ̄nν̄
2ðn3Þ2

∂
μ̄h̃00

¼ −nμ̄ḣμ̄ ν̄ −
nμ̄nν̄
2ðn3Þ2

nμ̄ ˙̃h00

¼ −ḣ0ν̄ − nīḣī ν̄ þ
1

2
nν̄

˙̃h00 ðF12Þ

must vanish. Substituting ν̄ ¼ 0 in (F12) yields

∂
μ̄fμ̄0 ¼ −ḣ00 − nīḣī0 þ

1

2
n0

˙̃h00

¼ −
1

2
˙̃h00 − nī ˙̃h0ī −

1

2
˙̃h00 ¼ 0; ðF13Þ

where in the last step we used the transversality of h̃μν and
the spherical wave nature of the fluctuations. Similarly, if
ν̄ ¼ j̄, we find

∂
μ̄fμ̄ j̄ ¼ −ḣ0j̄ − nīḣī j̄ þ

1

2
nj̄
˙̃h00

¼ − ˙̃h0j̄ − nī
�
˙̃hī j̄ þ

1

2
δī j̄

˙̃h00

�
þ 1

2
nj̄
˙̃h00 ¼ 0: ðF14Þ

This concludes the check on our asymptotic solution
for fμ̄ ν̄.
We compute next the gauge-invariant scalar Φ. We find

that it vanishes

Φ ¼ ϕ − ∂3

�
B −

1

2
∂3E

�
¼ ϕþ 1

2
ð∂3Þ2E ¼ 0: ðF15Þ

We see that the relation which the two gauge-invariant
scalars obey in vacuum Φ ¼ −Ψ is satisfied by our
asymptotic solution. The vanishing of scalar and vector
modes may not be a coincidence but could be a general
feature of uncompactified flat spacetime. Since in the
analysis performed in this appendix the extra dimension
(x3) is noncompact, the spectrum of Fourier modes of the
gauge-invariant fluctuations is continuous. Because the
scalar and vector modes consist of only zero modes of
the 3D d’Alembertian, they vanish in such cases.
At last, we can compute the radiated power, substituting

the gauge-invariant fluctuations in the formula for the
gravitational energy-momentum tensor. We need T 0ī and
T 03 which can easily be extracted from (2.24) substituting

hμν

����
g:i:

¼
�
fμ̄ ν̄ 0

0 0

�
: ðF16Þ

To compute the radiated power we start by integrating over
a 3D sphere as in (2.19) and use the same simplifications of
turning spatial derivatives into time derivatives (to leading
order in 1=r) when acting on spherical waves at spatial
infinity. Explicitly, we write
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hPi ¼ 1

T

Z
T

0

dt
Z

dΩ2R2
∞niT 0ijr¼R∞

¼ 1

T

Z
T

0

dt
Z

dΩ2R2
∞
1

4
ḟμ̄ ν̄ḟ

μ̄ ν̄

¼ 1

4T

Z
T

0

dt
Z

dΩ2R2
∞

�
ḣμ̄ ν̄ þ

nμ̄nν̄
2ðn3Þ2

˙̃h00

�
2

¼ 1

4T

Z
T

0

dt
Z

dΩ2R2
∞

�
˙̃hμ̄ ν̄ þ

1

2
ημ̄ ν̄

˙̃h00 þ
nμ̄nν̄
2ðn3Þ2

˙̃h00

�
2

¼ 1

4T

Z
T

0

dt
Z

dΩ2R2
∞

�
˙̃hμ̄ ν̄

˙̃h
μ̄ ν̄ þ 3

4
˙̃h00

˙̃h00 þ
1

4
˙̃h00

˙̃h00 þ ημ̄ ν̄ ˙̃hμ̄ ν̄
˙̃h00 þ

nμ̄nν̄

ðn3Þ2
˙̃hμ̄ ν̄

˙̃h00 −
1

2
˙̃h00

˙̃h00

�

¼ 1

4T

Z
T

0

dt
Z

dΩ2R2
∞

�
1

2
˙̃h00

˙̃h00 − 2 ˙̃h0ī
˙̃h0ī þ ˙̃hī j̄

˙̃hī j̄

�

¼ R2
∞

20G
h ˙̃hī j̄ ˙̃hī j̄i ¼

32

5
Gμ2Ω6ðr12Þ4; ðF17Þ

where we used the transversality of h̃μν and that the

fluctuations are spherical waves to set nμ̄ ˙̃hμ̄ ν̄ ¼ 0. In the
last step we reintroduced the dependence on Newton’s
constant (recall that we have been working with 8πG ¼ 1).
We have thus recovered a well-known 4D result [see, for
example, footnote 10, with D ¼ 4, leading further to
Eq. (6.11) in [13]].

APPENDIX G: THE SOð1; 3Þ SVT MODES
SOURCED BY A BINARY IN 5D FLAT SPACE
WITH COMPACT x5 AND THE LUMINOSITY

OF THE GRAVITATIONAL WAVES

In this appendix we aim to recover the power radiated
away by gravitational waves in a 5D flat space, with one
compact dimension x5 ∼ x5 þ l [13]. As discussed in [13],
for a small extra dimension, the contribution from the 5D
graviton modes with p5 ≠ 0 can be safely ignored far away
from the sources, since it is exponentially suppressed. This
fact can easily be understood from a 4D perspective where
these modes appear massive, with the 4D mass proportional
to the p5 momentum. Thus, the radiated power receives its
dominant contribution from 5D graviton modes with
p5 ¼ 0. This translates in 5D fluctuations which are
independent of x5. Far away from a binary source, the
metric fluctuations are given in Eq. (5.24) in [13], and the
radiated power, which was computed using Isaacson’s
averaging scheme, is given in Eqs. (6.8) and (6.10) in [13].
Given the symmetry of the problem, we proceed with

performing an SOð1; 3Þ SVT decomposition of the metric
fluctuations

hμν ¼ 2ψημν þ ∂μ∂νEþ ∂μFν þ ∂νFμ þ fμν;

hμ5 ¼ ∂μBþ Sμ;

h55 ¼ 2ϕ: ðG1Þ

The analog of the 4D trace-reversed fluctuations in 5D is
h̃MN where

h̃MN ¼ hMN −
1

2
ηMNh; h ¼ hMNη

MN; ðG2Þ

hMN ¼ h̃MN −
1

3
ηMNh̃; h̃ ¼ h̃MNη

MN: ðG3Þ

The 5D solution in [13] is of the form

h̃MN ∼
�
h̃μν 0

0 0

�
∼
3

4

�
h̃ð4DÞμν 0

0 0

�
; ðG4Þ

where we used the squiggle line to indicate that we only
take into account components that are explicitly time
dependent and drop the static (Coulombic) metric fluc-
tuation, just as we did in the previous Appendix F. The
time-independent terms are irrelevant in the computation of
the radiated power.
Assuming no x5-coordinate dependence, the harmonic

gauge condition

∂
Mh̃MN ¼ 0 ðG5Þ

reduces to

∂
μhμν ¼

1

2
∂νh: ðG6Þ

After comparing (G1) with the solution in [13] we
identify

Φ ¼ ϕ ¼ 1

2
h55 ¼ −

1

6
h̃: ðG7Þ

The harmonic gauge condition becomes
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∂ν

�
1

2
□4DE −

1

2
h55 − 2ψ

�
þ□4DFν ¼ 0: ðG8Þ

Next, while remaining in the harmonic gauge, we use the
residual gauge freedom to set □4DE to be 0. We use the
gauge parameter

ξM ¼ ðξ0; 0; 0; 0; 0Þ: ðG9Þ
Since the harmonic gauge constrains ξM by □4Dξ

M ¼ 0,
then far away from the sources we take with ξ0 to be of the
form of a (4D) spherical wave. After performing this gauge
transformation, the new metric is hnewMN :

hðnewÞMN ¼ hMN þ ∂MξN þ ∂NξM: ðG10Þ
We consider the trace of the 4D part of the metric
perturbation

ημνhðnewÞμν ¼ημνhμν−2∂0ξ0¼8ψ ðnewÞþ□4DEðnewÞ; ðG11Þ

and we require that □EðnewÞ ¼ 0. We recall that since ψ is
gauge independent, then ψ ðnewÞ ¼ ψ ¼ Ψ. We use the
vacuum equations for the scalar fluctuations to relate Ψ
and Φ: Ψ ¼ −ð1=2ÞΦ and solve for the gauge parameter
from (G11)

2∂0ξ0¼ημνhμνþ2h55¼ημνh̃μνþ2h̃55−2h̃¼−h̃: ðG12Þ

We proceed to compute the gauge-transformed metric
perturbation:

hðnewÞ00 ¼ h00 þ 2∂0ξ0 ¼ h̃00 −
2

3
h̃;

hðnewÞ0i ¼ h0i þ ∂iξ0 ¼ h̃0i þ
ni
2
h̃;

hðnewÞij ¼ hij ¼ h̃ij −
1

3
δijh̃;

hðnewÞ5μ ¼ 0;

hðnewÞ55 ¼ h55 ¼ −
1

3
h̃: ðG13Þ

Now, we have the gauge-invariant pieces

Φ ¼ −
1

6
h̃ ¼ 1

6
h̃00; ðG14Þ

Ψ ¼ 1

12
h̃ ¼ −

1

12
h̃00; ðG15Þ

Sμ ¼ 0; ðG16Þ

fμν ¼ hðnewÞμν −
1

6
h̃ημν: ðG17Þ

We can explicitly check that fμν is indeed transverse and
traceless.13 Finally we can compute the power radiated by
gravitational waves far away, at a distance R∞, from a
binary source using (4.42):

hPi ¼ lR2
∞

T

Z
T

0

dt
Z

dΩ2

�
6Ψ̇ Ψ̇þ 1

4
ḟμνḟ

μν

�
ðG18Þ

¼ lR2
∞

4T

Z
T

0

dt
Z

dΩ2

	�
4 · 6
144

˙̃h00
˙̃h00

�
þ
�
˙̃h00 −

1

2
˙̃h

��
˙̃h00 −

1

2
˙̃h

�

− 2

�
˙̃h0i þ

ni
2
˙̃h

��
˙̃h0i þ

ni
2
˙̃h

�
þ
�
˙̃hij −

1

2
δij

˙̃h

��
˙̃hij −

1

2
δij

˙̃h

�


¼ lR2
∞

4T

Z
T

0

dt
Z

dΩ2

	
þ
�
1

6
þ 9

4

�
˙̃h00

˙̃h00

þ
�
−2 ˙̃h0i

˙̃h0i − 2 ˙̃h00
˙̃h00 −

1

2
˙̃h00

˙̃h00

�
þ
�
˙̃hij

˙̃hij þ
3

4
˙̃h00

˙̃h00

�


¼ lR2
∞

4T

Z
T

0

dt
Z

dΩ2

�
2

3
˙̃h00

˙̃h00 − 2 ˙̃h0i
˙̃h0i þ ˙̃hij

˙̃hij

�

¼ 19lR2
∞

360G5D
h ˙̃hij ˙̃hiji; ðG19Þ

13Since we are looking at zero modes, i.e. gravitational waves with a null 4-momentum, the results of Appendix D apply. The tensor
mode fμν given in (G17) contains a 4D transverse-traceless gauge-dependent term ∂μFν þ ∂νFμ, with Fμ such that □4DFμ ¼ 0 which
follows from (G8). To obtain the gauge-invariant tensor, which is transverse and traceless in a 3D sense as explained in Appendix D, we
ought to remove this term. Nonetheless in computing the radiated power such terms are harmless and yield no contribution, so we are
free to leave them packaged in fμν given in (G17).
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wherewe recall that l is the length of the compact dimension
andwhere in the last stepwehave restored the dependence on
the 5D gravitational constantG5D and used the transversality
of the trace-reversed metric h̃μν. After accounting for an
overall negative sign which we introduced in our earlier

definition of the radiated power (2.19), we have thus
recovered the previous 5D result given in Eq. (6.8) in
[13]. We also notice that the contributions from scalar
and tensor fluctuations match the corresponding parts in
Einstein-Maxwell-dilaton theory, respectively [40].
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