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Near-future, space-based, radio- and gravitational-wave interferometry missions will enable us to
rigorously test whether the Kerr solution of general relativity accurately describes astrophysical black
holes, or if it requires some kind of modification. At the same time, recent work has greatly improved our
understanding of theories of gravity that modify the Einstein-Hilbert action with terms quadratic in the
curvature, allowing us to calculate black hole solutions to (essentially) arbitrary order in a slow-rotation
expansion. Observational constraints of such quadratic gravity theories require the calculation of
observables that are robust against the expansion order of the black hole solution used. We carry out
such a study here and determine the accuracy with respect to expansion order of ten observables associated
with the spacetime outside a rotating black hole in two quadratic theories of gravity, dynamical-Chern-
Simons and scalar-Gauss-Bonnet gravity. We find that for all but the most rapidly rotating black holes, only
about the first eight terms in the spin expansion are necessary to achieve an accuracy that is better than the
statistical uncertainties of current and future missions.
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I. INTRODUCTION

From gravitational wave detectors, such as LIGO/
VIRGO [1,2], to very long baseline interferometers, like
the Event Horizon Telescope [3], we have never been able
to better probe the extreme gravity environment near black
holes (BHs) [4,5]. The remarkable precision of these, as
well as future space-based detectors, allow us to interrogate
Einstein’s theory of general relativity (GR) to a finer
degree than ever before [4,6]. Among the myriad applica-
tions of these tests, placing bounds or constraints on well-
motivated theoretical modifications to GR is the topic of
this work [7,8].
The action underlying the field equations of general

relativity, the Einstein-Hilbert (EH) action, is a gem of
predictive success, having survived a century of rigorous
testing [9,10]. However, one might expect that the EH
action is not the whole story. For one, multiple candidates
for theories of quantum gravity conjecture modifications to
the EH action; the latter is linear in the curvature through
the Ricci scalar, while (effective) quantum gravity models
introduce curvature terms that are higher than linear
[11–13]. Second, that the EH action produces a theory
that is so successful across a wide range of energy scales
suggests that any modification to GR may only appear at

high curvatures; therefore, we might expect the EH action
to merely be the leading-order term of an effective theory,
expanded in powers of curvature [14–16].
In this work, we focus on two such modifications to

GR that introduce quadratic curvature terms, dynamical-
Chern-Simons (dCS) [11] and scalar-Gauss-Bonnet (sGB)
gravity [7,17]. These theories introduce a dynamical scalar
(sGB) and a pseudoscalar (dCS) degree of freedom that
couples nonminimally to the metric through the Gauss-
Bonnet (sGB) and Pontryagin (dCS) topological invariant,
respectively. Both theories are well motivated, either
from quantum gravity extensions of GR such as heterotic
string theory [11,18] or from effective field theories of
gravity [11,19]. These theories naturally avoid binary
pulsar constraints [20,21], but they are now beginning to
be bounded through observations of gravitational waves
with advanced LIGO (aLIGO) in the sGB case [22–26] or
observations of neutron stars with aLIGO and the Neutron
star Interior Composition ExploreR (NICER) in the dCS
case [27].
Finding rotating BH solutions to modified field equa-

tions, such as in dCS and sGB gravity, is in general
extremely complicated. One way to do so is through
nonperturbative, numerical methods [28–32], but, when
doing so, one must be careful to properly resolve steep
gradients, which may arise near horizons and curvature
singularities. Another way to find modified BH solutions is
perturbatively, as a simultaneous series expansion in small
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rotation or spin and in small (modified gravity)
coupling [11,33–36]. This is difficult because the perturbed
modified field equations can become quite complicated
at high enough spin order. Previous studies have often
been stymied by this difficulty and have therefore, until
recently, been truncated to relatively low expansion
order [13,33,34,37–39]. Such a truncation limits any
study to only focusing on BHs with relatively low spin
values, i.e., to BHs in a spin regime where the perturbation
is valid.
Recent work has made great progress in understanding

how the modifications to the field equations produce modi-
fied BH solutions, allowing for analytic modified BH
metrics of arbitrary order in a small spin expansion [18].
However, the high-order solutions generated through this
procedure can be extremely cumbersome due to the high
number of terms required in the expansions. We then have a
conundrum for the working physicist who wishes to use
these modified metrics: if one wishes to calculate a given
observable in a modified theory to some accuracy, what
order of expansion should one use? While it would tech-
nically be feasible to simply use the highest-order solution
possible, the unwieldy size of these solutions renders this
route computationally impractical. Instead, it would be
much better if one could calculate the sought-after observ-
able using the BH metric at the lowest order needed for a
given accuracy, leveraging the fact that all observations have
finite statistical certainty, and thus, saving considerable
computation time.
But how do we determine what this order is for a given

modified BH metric? This is the main topic of this paper.
We focus on BHs in dCS gravity and sGB gravity as an
example and on the following ten observables: (i) the mass
quadrupole moment; (ii) the photon ring perimeter radius;
(iii) the angular momentum on the photon ring; (iv) the
orbital frequency on the photon ring; (v) the Lyapunov

exponent on the photon ring; (vi) the perimeter radius of the
ergosphere; (vii) the perimeter radius of the innermost
stable circular orbit (ISCO); (viii) the angular momentum
on the ISCO; (ix) the binding energy on the ISCO; and (x)
the orbital frequency on the ISCO. For each of these
observables, we calculate their corrections at each spin
order in the metric up to order 24.
Calculating these observables becomes tricky at high

enough order in spin. If done entirely analytically, the
number of terms makes the calculations take an extremely
long time, even on high-performance computing clusters.
On the other hand, if done entirely numerically, the
precision required quickly overwhelms what is available
with double precision. To overcome these issues, we have
developed a novel, semianalytic method where we calculate
only the observable’s correction analytically and then store
the previous order value numerically. This allows us to
perform the calculations in a reasonable amount of time,
while also minimizing any numerical instabilities.
We find that for BH spin of less than 0.7, only the first 6

orders of spin expansion are required to calculate the
observables to a relative difference of 10−2. Figure 1 shows
how the error in the calculation of observables scales with
the order kept in the spin expansion, for dCS BHs of
various spins. Observe that only when the dimensionless
spin is very high must a high order in the spin expansion be
used. Throughout this paper, we will present the order
required in the BHmetric as a function of the BH spin value
and the sought after accuracy.
Of course, ours is not the first work that has studied the

required spin order in an approximate modified BH metric
needed to place constraints on certain observables. Previous
studies have performed similar analyzes, for example when
looking at indicators of chaos in particle trajectories of
these modified metrics [38,39] or when looking at BH
shadow observations [40,41]. Our work extends these

FIG. 1. Spread of error in the calculation of all observables studied in this paper, as a function of the spin order kept in the approximate
metric for dCS BHs (left) and sGB BHs (right) of two spin values and with the largest coupling allowed by the small-coupling
approximation used to derive these metrics. Observe that an error of ϵ < 10−2 can be achieved for all observables with fewer than eight
terms in the expansion for BHs of moderate spin (red line on the right). This improves significantly for lower spin BHs and for smaller
coupling parameters, allowing the same error to be achieved for spins less than χ ¼ 0.5 with only two expansion orders
(red line on the left).
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previous studies by not only considering far more observ-
ables, but also far higher orders in the small spin expansion,
which have only recently been made possible by the
(essentially) arbitrary-order metrics of [18]. Our work,
therefore, allows now for careful data analysis studies of
these theories against observations that will be robust to the
approximate nature of the modified BH metrics used.
The remainder of this paper presents the details that lead

to the conclusions summarized above, and it is organized as
follows. In Sec. II, we discuss the two theories of quadratic
gravity and their BH solutions. In Sec. III, we give a
description of the observables in question and describe how
they are calculated. Section IV covers how the error in the
observables behaves as a function of spin and expansion
order. Finally, Sec. V discusses the implications of the
work presented. Henceforth, we use geometric units in
which G ¼ 1 ¼ c.

II. ROTATING BLACK HOLES IN SGB
AND DCS GRAVITY

Here, we present the basics of sGB and dCS gravity, and
then briefly describe the BH solutions of each.

A. The quadratic gravity action

We can modify the conventional EH action through an
expansion in curvature terms, casting the EH term as
merely the leading-order term in a broader effective field
theory (EFT). In addition to this general EFT argument,
quadratic theories also arise naturally from certain low-
energy expansions of specific string theories [11,33].
The action for these theories is defined as

S ¼ SEH þ Smat þ Sϑ þ SRR; ð1Þ

where SEH is the EH action, Smat is the matter action, Sϑ is
an action for a dynamical scalar or pseudoscalar field, and
SRR couples a quadratic curvature term to the field. The
only distinction between the two quadratic theories we are
concerned with is in this final term. The EH action reads

SEH ¼ κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð2Þ

where κ ¼ ð16πÞ−1, g is the metric tensor determinant and
R ¼ gαβgρσRρασβ the Ricci scalar, with the Riemann tensor
Rρασβ. The action for the scalar or the pseudoscalar field
Sϑ is

Sϑ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �∇μϑ∇μϑþ 2VðϑÞ�; ð3Þ

where VðϑÞ is the potential of the scalar field. In practice,
we set VðϑÞ ¼ 0 to ensure a massless theory [42].

For the specific case of sGB and dCS gravity, we
can write down a generic action that encompasses both
theories after some parameter selection. Generically, we
can say

SRR ¼
Z

d4x
ffiffiffiffiffi
jgj

p n
αsGBϑsGBRRþ αdCSϑdCSRR̃

o
; ð4Þ

where

RR ¼ RμνρσRμνσ − 4RμνRμν þ R2 ð5Þ

is the so-called Gauss-Bonnet density, and

RR̃≡ �Rα
β
γδRβ

αγδ; ð6Þ

is the Pontryagin density with �Rα
β
γδ ¼ 1

2
ϵγδρλRα

βρλ the
dual of the Riemann tensor. The parameters αsGB and αdCS
determine the coupling parameter strength of the particular
theory being described, and they have dimensions of length
squared in geometric units.
From this generic nonminimal coupling action, we can

now define sGB theory and dCS gravity. The action for
sGB gravity is given by setting αdCS ¼ 0 in Eq. (4) and
ϑ ¼ ϑsGB in Eq. (3). This finds motivation in a certain low-
energy limit of string theory [43]. Gravitational wave
observations have already constrained α1=2sGB ≤ 5.6 km
within a 90% confidence interval [22]. Unique among
these two theories, sGB gravity induces modifications in
the spacetime regardless of whether the spacetime is
spherically symmetric (i.e., regardless of whether the BH
is spinning or not).
On the other hand, dCS gravity is defined when

αsGB ¼ 0 in Eq. (4) and ϑ ¼ ϑdCS in Eq. (3). In this case,
ϑdCS behaves as a pseudoscalar, on account of the fact
that the Pontryagin density is odd under parity trans-
formations. DCS gravity finds motivation from a few
sources, including loop quantum gravity [21,33], the
standard model gravitational anomaly [20,33], and inves-
tigations in string theory1 [34,45]. Neutron star multi-
messenger observations have been able to constrain
α1=2dCS ≤ 8.5 km within a 90% confidence interval [27].
Unlike the sGB case, dCS gravity does not modify spheri-
cally symmetric spacetimes. For this reason, it does not
induce a change in a nonrotating BH. For a more thorough
discussion, including the explicit field equations of both
theories, see Ref. [18].
In both cases, the modifications to the metric are

proportional to the dimensionless coupling parameter,

1A combination of both theories, sGB and dCS, with two
scalar fields, also arises naturally in the effective action of
heterotic string theory [44].
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ζq ≡ α2q
κM4

; ð7Þ

which is the parameter we will use to present our results
(where q stands for the theory being considered, either dCS
or sGB). In order to satisfy the requirement of the theories
being effective, we assume the parameters ζq are small, in a
sense that we will make more precise below [46].

B. The corrected Kerr metric and its formal
regime of validity

Vacuum solutions in sGB and dCS gravity for axisym-
metric and stationary spacetimes (in other words, the
corrected forms of the Kerr metric in each theory) are
found by starting with an ansatz for a corrected line element
in Boyer-Lindquist-like coordinates ðt; r; θ;ϕÞ [18],

ds2 ¼ −
�
1 −

2Mr
Σ

− ζqH1

�
dt2 − ð1þ ζqH2Þ

4M2χr
Σ

dtdϕþ ð1þ ζqH3ÞΣ
�
dr2

Δ
þ dx2

1 − x2

�

þ ð1þ ζqH4Þ
�
r2 þM2χ2 þ 2M3χ2rð1 − x2Þ

Σ

�
ð1 − x2Þdϕ2; ð8Þ

with Σ ¼ r2 þM2χ2x2 and Δ ¼ r2 þ 2MrþM2χ2. Here,
M is the mass of the BH, χ ¼ a=M is the nondimension-
alized spin, and x ¼ cos θ. The correctionsHi are functions
only of r and x, and it is assumed that jζqHij ≪ 1

everywhere in the BH exterior. The quantity Hi can be
expressed as a power series in the spin,

Hi ¼
X∞
n¼0

HðnÞ
i χn; ð9Þ

where the HðnÞ
i can always, for the theories under consid-

eration, be written as a polynomial in both 1=r and x,

HðnÞ
i ¼

Xpmax

p¼0

Xkmax

k¼0

Hðn;p;kÞ
i xpr−k: ð10Þ

Here, Hðn;p;kÞ
i are constant coefficients containing powers

of M and kmax depends on n and p. For a complete
treatment, see Ref. [18].

Using the corrections to the metric found in [18], we can
now establish the highest allowed spin values at a given
spin order from purely theoretical considerations. Let us
define the relative error in the function Hi via

δi ≡ 1 −
PNtr

n¼0H
ðnÞ
i χnPNhi

n¼0H
ðnÞ
i χn

; ð11Þ

where Nhi is the highest spin order considered in this paper.
Figure 2 shows this relative error for the H1 function for
various values of Ntr. Observe that, while the dCS error
monotonically decreases as the spin order is increased
(even at high values of spin), this is not always the case for
sGB corrections. At small values of Ntr and for large values
of spin, the accuracy of H1 does not improve monoton-
ically, until Ntr > 6. The slow error reduction of the sGB
spin expansion limits us to using a maximum spin value of
χ ¼ 0.8, while dCS allows calculations through to χ ¼ 0.9.

FIG. 2. The H1 correction functions for dCS (blue) and sGB (orange), evaluated at rISCO, with χ ¼ 0.4 (left), and χ ¼ 0.8 (right).
These plots show the nonmonoticity of the correction size forH1;sGB at low expansion orders and high spins. Although the relative error
of the Hi;sGB do decrease at high expansion orders, this undesirable behavior should be noted for Ntr < 6. The other Hi functions are
superficially identical to the above.
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We can now establish the maximum allowed value of the
coupling parameters, ζmax

sGB and ζmax
dCS, that are allowed by the

perturbative solution. Recall that these approximate sol-
utions are bivariate expansions in small spin (to higher
order) and in the small coupling ζq (to leading order), as
explained around Eq. (9). We must therefore enforce that
jζqHij ≪ 1, which we will use to find the maximum value
of ζq allowed. Evaluating the Hi functions on the equator
and at the event horizon with χ ¼ 0.9 in dCS gravity and
χ ¼ 0.8 in sGB theory, and solving for the smallest value of
the coupling parameter that makes one of the correction
factors jζqHij larger than 0.5, we find

ζsGB ¼ 12.5; ζdCS ¼ 1.15: ð12Þ

This clearly indicates that theHi functions (evaluated at the
above values of χ, on the horizon and the equator) are of
order unity in both sGB and dCS gravity. Henceforth, we
will limit our analysis to these maximum values of the
dimensionless coupling, i.e. ζq < ζmax

q and to χ ≤ 0.8 in
sGB and χ ≤ 0.9 in dCS gravity. Just doing so, however,
does not imply that observables calculated from these
truncated approximate metrics will all be equally accurate,
which is the topic of the rest of this paper.

III. DEFINITION OF OBSERVABLES

In this section, we describe every observable we will
study in this paper. All observables are summarized in
Table I.

A. Multipole moments

Multipole moments characterize the exterior field of a
gravitating body. For stationary spacetimes in GR, they
come in two classes: mass and angular multipoles, Ml and
Sl. For the Kerr BH, all of these are determined by the mass
and angular momentum, and they satisfy

Ml þ iSl ¼ MðiaÞl: ð13Þ

This is nothing but a manifestation of the no-hair theorems
of GR, e.g. [47,48]. Hence, the measurement of at least one
multipole moment, besides the mass and angular momen-
tum, provides a test of the Kerr hypothesis. Multipole
moments, in fact, leave an imprint in the inspiral phase of a
compact binary [49–51], and thus, on the gravitational
waves that such a binary emits, allowing us to look for
signatures of beyond-GR theories [12,23,24,52]. The mass
quadrupole M2 is the most relevant for observational
purposes, so we focus on it here.
The multipole moments can be identified by writing the

metric in ACMC (asymptotically Cartesian and mass-
centered) coordinates and reading-off certain terms in the
gtt and gtϕ components [53]. This method was used in [54]
to compute the multipole moments in several higher-
derivative theories, including dCS and sGB gravity. The
value of M2 for these theories reads

MsGB
2

M3
¼ −χ2 þ ζsGB

�
−
4463χ2

2625
þ 33863χ4

68600
þ � � �

�
;

MdCS
2

M3
¼ −χ2 þ ζdCS

�
201χ2

112
−
1819χ4

3528
þ � � �

�
; ð14Þ

and we have obtained the expansion of this quantity to
order Oðχ28Þ for dCS gravity and to order Oðχ20Þ for sGB
theory.

B. Geodesic properties

Here we describe the trajectory parameters we calculate,
which are related to null and timelike geodesics. To
facilitate our discussion of these trajectories, let us first
review a few details about particle dynamics, which are
common to all stationary and axisymmetric spacetimes.
First, the stationarity and axisymmetry give rise to two
Killing vectors, which in turn beget two conserved quan-
tities of the motion. Stationarity gives a conserved energy
via the equation E ¼ −μ−1ξνðtÞpν, and axisymmetry gives a
conserved angular momentum via L ¼ μ−1ξνðϕÞpν, where

pν ¼ μuν is the particle’s 4-momentum (with uν its
4-velocity) and ξνðXÞ is the Killing vector associated with

the X-direction [55]. A third conserved quantity is the rest
mass of the particle itself, μ, whose conservation is
guaranteed by the conservation of the metric signature
during the evolution of a geodesic. In this work, E (in the
form of the binding energy, Eb ≡ ðμ − EÞ=μ) and L are
crucial quantities we will derive from the approximate dCS
and sGB metrics.
More precisely, the derivation of the Eb and L observ-

ables starts with the particular effective potential, Veff ., that
governs geodesic motion. To derive the effective potential,
we start with the normalization condition,

TABLE I. A summary of all observables studied in this paper
for approximate metrics truncated at various orders in a small-
spin expansion.

Symbol Description

M2 Mass quadrupole moment
Rph Photon ring perimeter radius
Lph Angular momentum on the photon ring
ωph Orbital frequency on the photon ring
λph Lyapunov exponent on the photon ring
Rergo Perimeter radius of the ergosphere
RISCO Perimeter radius of the ISCO
LISCO Angular momentum on the ISCO
EISCO
b Binding energy on the ISCO

ωISCO Orbital frequency on the ISCO
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uαuα ¼ −k; ð15Þ

where k ¼ 1 for timelike geodesics parametrized by the
particle’s proper time and k ¼ 0 for null geodesics. Then,
making use of the conservation of energy and angular
momentum, we can recast this equation in the particularly
useful form [38],

1

2
ðu2r þ u2θÞ þ Veff ¼ −

1

2
k; ð16Þ

from which it can be shown that the effective potential Veff
is simply

Veff ¼
1

2

�
gϕϕE2 þ 2gtϕELþ L2gtt

gttgϕϕ − g2tϕ

�
: ð17Þ

Effective potentials can be analyzed in familiar ways
from classical mechanics: bound orbits correspond to the
potential’s extrema (Fig. 3), and the potential’s second
derivative informs the orbit’s stability to small perturba-
tions. The potential is in general a function of r and θ, but
here we only focus on equatorial trajectories, in which case
the potential becomes a function of r only.

1. Photon rings

The set of equatorial null orbits that are bound is called
the photon ring. The radii and angular momenta corre-
sponding to these orbits are found from the conditions,

Veff ¼ 0 ¼ ∂rVeff ; ð18Þ

along with specifying that on the ring, pr ¼ pθ ¼ 0
[55,56]. All photon ring orbits have fixed r-coordinate
values, which depend only on the BH spin. Photon ring
locations are of particular interest to VLBI missions
because they define the edges of the black hole shadow [5].

2. Lyapunov exponents

Owing to their position at the top of the “hill” of an
effective potential (Fig. 3), null bound orbits on the photon
shell are inherently unstable to small perturbations, a fact
that can be quantified through the orbit’s Lyapunov
exponents. In general, for any dynamic Hamiltonian
system, the stability of a phase space trajectory can be
described by a Lyapunov exponent, λ. While a full treat-
ment of Lyapunov exponents of photon shell orbits does
not permit analytic solutions, the symmetries of a photon
ring orbit allow us to make significant simplifications. An
equatorial orbit has a two-dimensional phase space, in r
and pr. This simplifies the form of the Lyapunov exponent
significantly, which can be written as

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
∂
2
rVeff

q
: ð19Þ

While this form is sufficient for our present purposes, a full
treatment of Lyapunov exponents in a generally relativistic
context can be found in [57–59]. It should be noted that, in
general, Lyapunov exponents in GR depend on the time
parametrization of the given null geodesics. The definition
given in (19) is implicitly in proper-time parametrization.
Like photon ring locations, Lyapunov exponents are of
interest for VLBI missions, as the Lyapunov exponent
controls various aspects of the BH image, including mag-
nification and ratio between fluxes of adjacent subrings [60].

3. Innermost stable circular orbit

The ISCO is the timelike orbit around a BH with the
smallest value of r which is stable to small perturbations
[55]. The ISCO is an equatorial feature, being confined to
the plane with θ ¼ π=2. One can identify the ISCO by
demanding the effective potential of a massive particle
equal −1=2, along with its first two radial derivatives
vanishing,

FIG. 3. A collection of null orbit effective potentials in dCS gravity (left) and sGB gravity (right) for varying values of ζq, with χ ¼ 0.9
and L ≈ −6.832. The red lines at the peak of the ζq ¼ 0 curve correspond to the photon orbit in Kerr. Observe that this point moves as the
coupling strength is increased.
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Veff ¼ −1=2;

∂rVeff ¼ 0 ¼ ∂
2
rVeff : ð20Þ

ISCOs are of particular interest to observational BH
astronomy, as they represent the inner boundary where
light-emitting matter may be stably found. For this reason,
the ISCO is often considered the “inner edge” of astro-
physical accretion disks [61,62]. For the ISCO,wewill study
the accuracy of the calculation of rISCO,LISCO, andEISCO, as
well as ωISCO, the orbital frequency of massive particles at
the ISCO. The latter is constructed from the Hamiltonian
equations of motion, because ωISCO ¼ ϕ0=t0 [63], where
primes indicate derivatives with respect to proper time.

4. Ergosphere

The ergosphere is the region outside a BH in which it is
impossible for a massive observer to remain stationary.
That is to say, the region where the four-velocity of a
stationary observer becomes null, i.e. gμνu

μ
ðtÞu

ν
ðtÞ > 0, where

uαðtÞ ¼ dxα=dt ¼ ð1; 0; 0; 0Þ is the tangent to the world line

of a stationary observer. In practice, this implies solving
gtt ¼ 0 for r [55,64], which for Kerr reduces to the well-
known result rergo ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2ðθÞ

p
. Rather than

reporting the value of the r-coordinate for the photon ring,
ISCO and ergosphere, we will focus on the “perimeter
radius” R ¼ ffiffiffiffiffiffiffigϕϕ

p jr, which represents the physical radius
of each trajectory in the sense that 2πR is its arc length.

IV. ACCURACY REQUIRED FOR EACH
OBSERVABLE

In this section, we analyze the order in the spin
expansion that is required to calculate several observables
to a given accuracy. First, we outline the scheme by which
we measure the errors as a function of expansion order, and
then we summarize the results of calculating the errors for
all quantities listed in Table I.

A. Error estimation scheme

We will fix the modified gravity coupling constants ζq to
their maximum allowed values to ensure the approximate
metrics remain valid outside the horizon [see Eq. (12)]. We
will then study the relative difference between an observable
computedwith an “exact”metric andwith ametric truncated
at a given order in spin. By “exact”metric, we here mean the
series-expandedmetric truncated at a very high order in spin,
such that the terms neglected introduce modifications below
double precision. Since the series is convergent for χ < 1
outside the horizon, taking the truncation above 20th order
will suffice. In practice, we set the maximum truncation
order, which defines an exact metric, to 24.
More precisely, any observable A that depends only on

the metric can be calculated to linear order in the defor-
mation as

A ¼ AKerr þ ζqδAþOðζ2qÞ; ð21Þ

where AKerr is the observable computed with the Kerr
metric (without expanding in small spins) and δA is the
deformation from Kerr introduced by the ζq-dependent
terms in the metric. Since the modified gravity metric is
known only as an expansion in small spins, the term δA
must also be cast as a series in spin, namely,

δA ¼
XN
n

δAðnÞχn þOðχNþ1Þ: ð22Þ

In deriving these expressions, we have first expanded in
small coupling ζq ≪ 1, and then expanded only the
deformation in small spins χ ≪ 1, without expanding the
Kerr contribution in small spins, as this is known to all
orders.
With this in hand, we can define the relative fractional

error between an observable computed with an “exact”
metric Aex and one computed with a truncated metric Atr via

ϵ ¼ 1 −
Atr

Aex
¼ 1 −

AKerr þ ζq
PNtr

n δAðnÞχn

AKerr þ ζq
PNhi

n δAðnÞχn
; ð23Þ

where Nhi ¼ 24, while Ntr is a number we will vary. In
what follows, we will study how the accuracy of the
calculation of various observables changes as we increase
Ntr toward Nhi.

B. Implementation of the calculation of observables
with a truncated slow-spin series

We must be careful when calculating the observables
described above in order to make their computation
feasible. The reason for this is twofold. If we try to perform
the calculation entirely analytically, term-by-term, the
computation becomes intractably slow for expansion orders
greater than Ntr ∼ 10, even on high-performance comput-
ing clusters. This is simply because the number of terms in
the metric increases rapidly with the expansion order,
making it extremely large beyond roughly Oðχ10Þ. If, on
the other hand, we try to perform the computation entirely
numerically, we find numerically unstable behavior at large
Ntr. This is because the Hi terms, when expanded to order
Ntr > 10, contain pieces that decay faster than r−20 far from
the black hole. These pieces are very small, even when
evaluated close to the event horizon; for example, when
evaluated at the ISCO, they are smaller than 10−16. The
background metric and other pieces in theHi terms that are
proportional to spin to a lower power, however, are of order
unity. Therefore, when the small terms are added to the
order-unity terms, one can quickly overwhelm double
precision, yielding numerical calculations unstable.
To get around these issues, we here develop a semi-

analytic approach, which allows us to limit the numerical
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noise, while also achieving useful speed. The general idea
is to always store the ðNtr − 1Þth term of the given
observable to double precision numerically, and then use
the perturbation to the metric to analytically calculate only
the perturbation to the observable. For a concrete example,
let us describe explicitly the process of calculating the first
two corrections to the parameters of an ISCO orbit.
The location of the ISCO in Boyer-Lindquist coordinates

RISCO, the energy EISCO, and the angular momentum LISCO
are found simultaneously by solving the system of equa-
tions in (20). Let us then define the following notation.
First, we denote by xi ≡ ðRISCO; EISCO; LISCOÞ a 3-vector
containing the orbital parameters we are going to solve for.
Then, we define Yi ≡ ðVeff þ 1=2; ∂rVeff ; ∂2rVeffÞ as a
vector containing the symbolic effective potential (plus
one-half), and its first two radial derivatives. With this
notation, the location of the ISCO, its energy and angular
momentum are simply found by solving the system of
equations,

YiðxjÞ ¼ 0; ð24Þ

for the xj, which is simply a rewriting of Eq. (20) in more
compact notation.
Let us now find these orbital parameters order by order.

To start, we evaluate Eq. (24),

YKerr
i ðxKerri Þ ¼ 0; ð25Þ

to find the usual xKerri . To find the zeroth-order, the

spherically symmetric (i.e. Ntr ¼ 0) correction, δxð1Þi , we
start by deriving the correction to the effective potential. At
this order, the effective potential is

Vð1Þ
eff ¼ VKerr

eff þ δVð1Þ
eff ; ð26Þ

and δVeff is the first-order perturbation,

δVð1Þ
eff ¼ δgð1Þtt

∂VKerr
eff

∂gtt
þ δgð1Þtϕ

∂VKerr
eff

∂gtϕ
þ δgð1Þϕϕ

∂VKerr
eff

∂gð1Þϕϕ

; ð27Þ

where the δgð1Þij terms are the Oðζqχ0Þ perturbations to the
metric given by Eq. (8). Equipped with the perturbation to
the effective potential [and the corresponding vector

Yð1Þ
i ¼ YKerr

i þ δYð0Þ
i ], we are now ready to calculate the

correction to xi, which we can find by linearizing Eq. (25)
about a small δxi,

Yð1Þ
i ðxiÞ ¼ YKerr

i ðxKerri þ δxiÞ þ δYiðxKerri þ δxiÞ;

≈ YKerr
i ðxKerri Þ þ δxj

∂YKerr
i

∂xj

����
xKerri

þ δYiðxKerri Þ þ δxj
∂δYi

∂xj

����
xKerri

; ð28Þ

¼ δxj
∂YKerr

i

∂xj

����
xKerri|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ð1Þ

þ δYiðxKerri Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð2Þ

: ð29Þ

The first term of the second line vanishes by virtue of
Eq. (25). Further, the last term of the second line is of
second order in the perturbation, so we drop it for the
calculation of δxi. Then, in Eq. (29), term (2) is the
perturbation to the effective potential vector, which is
analytic and must be evaluated at the orbital parameters
found in the previous iteration. The latter are known
analytically in the Kerr case, but we will store them
numerically, allowing us to also store term (2) numerically.
Term (1) is the Jacobian of YKerr

i evaluated at the Kerr
orbital parameters, which is calculated analytically, and
then stored numerically. Finally, Eq. (29) can be solved for
the values of δxi that make this equation vanish. Before we
move on to the next order, we update the Jacobian of term
(1) by calculating ∂δYi=∂xj analytically, and then evaluat-
ing it at the Kerr orbital parameters and storing the result
numerically.
Let us now move to the Ntr ¼ 1 correction. First, we find

the effective potential as in the Ntr ¼ 0 case, but now

Vð2Þ
eff ¼ VKerr

eff þ δVð0Þ
eff þ δVð1Þ

eff ; ð30Þ

¼ Vbg
eff þ δVð1Þ

eff ; ð31Þ

where we have absorbed the OðζqÞ correction into a

modified background Vbg
eff . The correction to this back-

ground effective potential, Vð1Þ
eff , is then simply Vð0Þ

eff but with

the replacements VKerr
eff → Vbg

eff and δg
ð0Þ
ij → δgð1Þij , where g

ð1Þ
ij

is of OðζqχÞ. Making the same replacements in Eq. (29)
and using the same procedure we described above gives the
corrections to δxi at second order. Clearly then, this method
allows one to bootstrap the correction to the ISCO
observables (and to any other observable by following a
similar procedure) to arbitrary order in perturbation theory,
while minimizing the number of numerically troublesome
terms. At every step after Ntr ¼ 0, one must be careful to
keep only the order in χ being considered, and expand all
analytic expressions to OðζqχNtrÞ whenever possible, to
minimize numerical error.
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C. Accuracy of observables computed with a truncated
slow-spin series

Having laid out the scheme above, we are now ready to
calculate the quantities described in Sec. III. We here seek
to understand how the relative error in the calculation of
observables behaves as we vary the truncation order, for a
given set of dimensionless spins and coupling constants. To
get a grasp of this behavior, we present two types of figures
that describe the error in the observables. The first type
presents the relative error in Eq. (23) as a function
of expansion order for several values of χ, while setting
Nhi ¼ 25 and ζq to the maximum values of Eq. (12).
Figure 4 shows an example of this first type of figure for

the calculation of the Lyapunov exponent, λph. Observe that
as the truncation order is increased, the relative error
decreases as expected. Observe also that we only plot
even values of Ntr. This is due to the fact that the Hi
functions only modify the metric at even orders in χ, a fact
already shown in Fig. 2. Observe finally that as the spin
increases, the number of terms needed to maintain a given
accuracy also increases. For example, if one wishes to

calculate λph in dCS gravity to 0.1% accuracy, then the Kerr
deformations in the metric must be known to Oðχ2Þ when
the spin is χ < 0.4, but the deformations need to be known
toOðχ20Þ if χ ∼ 0.9. SGB gravity presents similar behavior,
but, in this case, even fewer terms are needed in the metric
deformation to achieve a certain accuracy. At this point, we
should also explain some unexpected behavior that appears
in the relative error calculations for several observables in
sGB gravity—see the plots in Appendix A. The error is
observed to increase briefly at low orders before continuing
to reduce. This is simply due to the fact that the relevant
calculated quantity changes sign, which can produce this
behavior when the absolute value is taken, as is done for the
calculation of ϵ.
The second type of plot is, in some sense, an inversion of

the first type. For a given value of the coupling constants,
we present the expansion order required to achieve an error
less than a given threshold. Figure 5 presents an example of
such a figure, again focusing on the Lyapunov exponent,
λph. Observe that indeed, if the spin is low enough, then a
few terms suffice to achieve good accuracy. For example,

FIG. 5. The expansion order required to achieve a given relative error as a function of spin, for the Lyapunov exponent λph, with
ζdCS ¼ 1.15 (left) and ζsGB ¼ 12.5 (right).

FIG. 4. Accuracy of the calculation of the Lyapunov exponent λph, as a function of the truncation order of the metric in a slow-spin
expansion. In this figure, we have saturated the coupling constants ζq at the largest values allowed by the small-coupling approximation,
with ζdCS ¼ 1.15 (left) and ζsGB ¼ 12.5 (right).
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for an accuracy of 1% in dCS gravity, the metric deforma-
tion must only be known to Oðχ5Þ if the spin χ < 0.6.
However, if one wishes to study more rapidly spinning
BHs, such as one with χ ¼ 0.9, then the metric deformation
must be known toOðχ16Þ. Observe that this is also the case
for sGB gravity, although here fewer terms are needed. For
example, for an accuracy of 1% in sGB gravity, the metric
deformation must only be known to Oðχ4Þ when the
spin χ < 0.6.
The other observables we presented in Sec. III show very

similar behavior. In order to avoid cluttering the paper, we
have included these figures in Appendixes A and B. To
summarize all results, Fig. 1 presents the spin order to which
different metric deformations need to be kept to achieve a
given accuracy, for BHs of various spins. Each band
presented in that figure corresponds to the set of curves
for all observables studied, at a fixed value of spin. For
example, the blue-shaded region in Fig. 1 corresponds to the
region occupied by the relative accuracy curves for all
observables of Table I, corresponding to the blue curves
in the plots of Appendix A. Observe that, once more, the
number of terms required to obtain 1% accuracy is rather
small for spins χ < 0.5, but for more rapidly spinning BHs,
more terms need to be kept.
These plots make it clear that for χ ≲ 0.6, corrections of

Oðζqχ8Þ provide excellent accuracy, with a relative differ-
ence ϵ being less than 10−4 in almost all cases of the
coupling parameter (Fig. 1). For intermediate spins, with
0.6 < χ < 0.8, the story is more complicated, depending on
the observable in question. For high spins of χ > 0.8, the
accuracy increases much more slowly.

V. CONCLUSIONS

We have here calculated several observables associated
with the spacetime outside BHs described by two different
quadratic theories, sGB and dCS gravity. These BH metrics
are now known to linear order in the coupling but to very
high order in a small spin expansion, begging the question
of what order must be kept in the latter to obtain sufficiently
accurate calculations. The answer to this question is non-
trivial because various observables that one may wish to
calculate depend non-linearly on the various components of
the metric. We have here carried out a careful and extensive
exploration of the accuracy in the calculation of various
observables and showed that, for large regions in spin and
coupling parameter space, only relatively few orders of
expansion in spin are required to achieve quite impressive
accuracy.
We expect these results to be of interest when computing

other quantities with direct observational interest in detec-
tors, such as quasinormal modes, gravitational waveforms
and shadows. Since the computation of these more realistic
observables can be challenging, it is crucial to reduce the
computational cost by truncating the spin expansion of the

metric at the minimum order required to obtain a given
desired accuracy. The work presented here provides a
suggestion for what this minimum order should be.
Future work could study whether indeed the order require-
ments suggested here for a given set of observables also
applies to other observables of interest.
For instance, photon ring properties are sometimes related

to the quasinormal mode spectrum of BHs through the
geodesic analogy [59,65,66], even in somemodified gravity
theories [67]. Future experiments may be able to measure
these modes with an accuracy of around 1% [68,69]. Thus,
to be on the safe side, one should compute theQNMswith an
accuracy higher than this. Using our results for the photon
ring frequency as a reference—see Figs. 6 and 9—if one
wishes to calculate QNMs with an accuracy of 1% for a BH
of χ ¼ 0.7, one would need expansions of at least order
Ntr;sGB ∼ Ntr;dCS ∼ 6. On the other hand, we need expan-
sions of around twice this order in order to achieve an
accuracy of 0.1%. One could therefore attempt to compute
quasinormal modes with such a metric and determine
whether indeed this order in small-spin expansion is
sufficient. Of course, BH perturbation theory for small-spin
metrics can itself be a very challenging calculation, with
results only known to first [70–72] or second [73] orders in
spin in dCS and sGB gravity—see also [74–77]. Other,
numerical methods for QNM calculations, such as wave
packet scattering,may bemore suitable for calculationswith
higher-order-in-spin metrics.
Further, there is more exploration to be done of other

high-curvature modifications to gravity, such as those with
quartic [78,79] and cubic [18] terms in the curvature,
Einstein–Æther theory [80], or even other coupling func-
tions in Gauss-Bonnet gravity that are not merely the shift-
symmetric version considered here, such as in [81]. Finally,
it would be useful to confirm the results found here through a
parameter estimation study of a set of observables. One
could imagine a study wherein GRMHD simulation data
were compared to real-life interferometric data in order to
perform a similar error analysis to what has been presented
here. Our study lays the foundations for such follow-up
work.

ACKNOWLEDGMENTS

The work of P. A. C. is supported by a postdoctoral
fellowship from the Research Foundation—Flanders (FWO
Grant No. 12ZH121N). N. Y. and A. D. are supported
through the Simons Foundation Award No. 896696 and the
NSF Grant No. PHY-2207650.

APPENDIX A: RELATIVE ERROR PLOTS

Below we show, in Figs. 6–8 the relative error plots for
every observable listed in Table I.
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FIG. 6. The accuracy of 4 observables as a function of Ntr. Clockwise from top left: M2, Rph, Lph, ωph. The left columns are for dCS,
with sGB on the right. The top row has ζq ¼ 0.5, and the bottom row has ζq ¼ ζmax.
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FIG. 7. The accuracy of 4 observables as a function of Ntr . Clockwise from top left: λph, Rerg, RISCO, Eb. The left columns are for dCS,
with sGB on the right. The top row has ζq ¼ 0.5, and the bottom row has ζq ¼ ζmax.
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FIG. 8. The accuracy of LISCO (left) and ωISCO (right) as a function of Ntr . The left columns are dCS, with sGB on the right. The top
row has ζq ¼ 0.5, and the bottom row has ζq ¼ ζmax.

ACCURACY OF THE SLOW-ROTATION APPROXIMATION FOR … PHYS. REV. D 109, 024048 (2024)

024048-13



APPENDIX B: REQUIRED ORDER PLOTS

Below we show, in Figs. 9–11, the order required to achieve a given error for every observable listed in Table I.

FIG. 9. The required value ofNtr to achieve a given accuracy for four observables. Clockwise from top left:M2, Rph, Lph, ωph. The left
columns are for dCS, with sGB on the right. The top row has ζq ¼ 0.5, and the bottom row has ζq ¼ ζmax.

CANO, DEICH, and YUNES PHYS. REV. D 109, 024048 (2024)

024048-14



FIG. 10. The required value of Ntr to achieve a given accuracy for four observables. Clockwise from top left: λph, Rerg, RISCO, Eb. The
left columns are for dCS, with sGB on the right. The top row has ζq ¼ 0.5, and the bottom row has ζq ¼ ζmax.
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