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We cut a general, static, spherically symmetric spacetime and paste its copy to make a wormhole with a
thin shell of any barotropic fluid in general relativity. We show that the stability of the thin-shell wormhole
is characterized by a set of circular photon orbits called an (anti)photon sphere in the original spacetime if a
momentum flux passing through a throat is prohibited. Our result will be useful to classify the stability of
the thin shell on the throat against linearized spherically symmetric perturbations.
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I. INTRODUCTION

Recently, the LIGO and VIRGO Collaborations have
detected gravitational waves from compact objects [1], and
the Event Horizon Telescope Collaboration has detected the
shadows of black hole candidates at the centers of the giant
elliptical galaxy M87 [2] and of the Milky Way [3]. The
study of compact objects with a strong gravitational field in
theoretical and observational aspects will be important to
understanding our Universe.
Static, spherically symmetric compact objects such as

black holes and wormholes have regions of unstable
(stable) circular photon orbits called photon (antiphoton)
spheres [4,5]. Photon spheres have important roles in
several phenomena in a strong gravitational field. Dim
images near compact objects [6–8], the image of a
collapsing star to become a black hole [9,10], the photon
absorption cross section [11], quasinormal modes [12,13],
centrifugal force and gyroscopic precession [14–17], and
Bondi’s sonic horizon of a radial fluid [18–23] are related
to the photon sphere. Recently, the features of a circular
photon orbit like its radius [24], its number [25,26], and its
stability [25,27] have been investigated.
A wormhole is a hypothetical spacetime structure

with nontrivial topology which is permitted in general
relativity [28,29]. The wormhole connects two regions of
one universe or two universes by its throat. The wormhole
solutions should be stable in order for wormholes to exist in
nature. In Refs. [30,31], the Schwarzschild spacetime is
cut, and its two copies are pasted by a thin shell [32,33] to

construct a wormhole solution by Darmois-Israel matching
[33,34], and the stability of this thin-shell wormhole is
studied. After Refs. [30,31], the stability of thin-shell
wormholes pasted by using general static, spherically
symmetric spacetimes [35–38], plane symmetric space-
times [39], asymmetric spacetimes [36,40,41], cylindrical
spacetimes [42], higher-dimensional spacetimes [43], and
lower-dimensional spacetimes [44] were investigated. We
note that the stability of wormholes depends on gravita-
tional theories [45]. Recently, the details of the stability of a
traversable thin-shell wormhole have been investigated in
Refs. [46,47].
In 2000, Barcelo and Visser [48] cut a class of static,

spherically symmetric spacetime at a radius and pasted two
copies of the spacetime to make a thin-shell wormhole.
They pointed out that the location of the static throat filled
with a pure tension σ ¼ −p, where σ and p are the surface
energy density and the surface pressure of the thin shell,
was equal to the radius of photon sphere associated with the
original spacetime. Recently, Koga [49] showed that the
throat of a general static pure-tensional thin-shell wormhole
with only Z2 symmetry in Λ-vacuum is located on a photon
surface [4] and showed that the stability of the thin shell
corresponds to the stability of the photon surface. These
studies imply that (anti)photon spheres in the original
spacetime, before being cut and pasted, may have a relation
in the stability of a thin-shell wormhole beyond the pure
tension case, and this relation can be useful to classify the
stability of the thin-shell wormholes.
In this paper,we consider a general, static,Z2-symmetrical,

and spherically symmetric wormhole with a thin shell filled
with any barotropic fluidp ¼ pðσÞ. We find that the stability
of the thin-shell wormhole under linearized spherically
symmetric perturbations has a relation with (anti)photon
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spheres in general relativity if a momentum flux passing
through the throat is forbidden.
We consider the general spherical metric as possible to

study the stability of the thin-shell wormhole, but we
should keep in mind that the stability analysis of the thin-
shell wormhole will be valid only if the original spacetime
satisfies a generalized Birkhoff’s theorem [35,50,51]. In
cases where the theorem cannot be applied, the spherically
symmetric perturbations to the thin shell can affect metrics
outside of the thin shell to emit gravitational waves.
This paper is organized as follows: In Sec. II, we review

the photon sphere and the antiphoton sphere. In Sec. III,
we make a general, static, spherically symmetric wormhole
with a thin shell filled with any barotropic fluid, and we
show a relation between (anti)photon spheres and the
(in)stability of the thin-shell wormhole if the momentum
flux passing through the throat is prohibited. We give
examples in Sec. IV, and we discuss and conclude our
results in Sec. V. In this paper, we use units in which light
speed and Newton’s constant are unity.

II. PHOTON SPHERE AND ANTIPHOTON SPHERE

We consider a general, static, spherically symmetric
spacetime with a line element

ds2¼−AðrÞdt2þBðrÞdr2þCðrÞðdθ2þsin2θdϕ2Þ; ð2:1Þ

where AðrÞ, BðrÞ, and CðrÞ are functions of a radial
coordinate r. We assume that AðrÞ, BðrÞ, CðrÞ, and
C0ðrÞ are positive and finite in a range r ≥ a, where a is
a constant and 0 is a differentiation with respect to the radial
coordinate r. There are time-translational and axial Killing
vectors tμ∂μ ¼ ∂t and ϕμ

∂μ ¼ ∂ϕ because of the stationarity
and axisymmetry of the spacetime, respectively. From
spherical symmetry, we can assume θ ¼ π=2 without loss
of generality.
The motion of a light ray is described by

−AðrÞdt2 þ BðrÞdr2 þ CðrÞdϕ2 ¼ 0; ð2:2Þ

and it is rewritten in

�
dr
dλ

�
2

þ VðrÞ ¼ 0; ð2:3Þ

where λ is an affine parameter on the trajectory of the ray
and VðrÞ is an effective potential of the motion of the ray
defined by

VðrÞ≡ 1

B

�
L2

C
−
E2

A

�
; ð2:4Þ

where

E≡ −gμνtμ
dxν

dλ
¼ A

dt
dλ

ð2:5Þ

and

L≡ gμνϕμ dx
ν

dλ
¼ C

dϕ
dλ

ð2:6Þ

are the conserved energy and angular momentum of the
light ray, respectively. The first and second derivatives of V
with respect to the radial coordinate r are given by

V 0 ¼ −
B0

B
V −

1

B

�
C0

C
L2 −

A0

A
E2

�
ð2:7Þ

and

V 00 ¼−
�
B0

B

�0
V−

B0

B
V 0 þB0

B2

�
C0

C2
L2−

A0

A2
E2

�

þ 2

B

�
C02

C3
L2−

A02

A3
E2

�
−
B0

B2

�
C00

C2
L2−

A00

A2
E2

�
; ð2:8Þ

respectively.
The circular orbit of the ray with a radius r ¼ rm should

satisfy a condition

Vm ¼ V 0
m ¼ 0; ð2:9Þ

and it gives

L2 ¼ L2
m ≡ Cm

Am
E2 ð2:10Þ

and

Dm ¼ 0; ð2:11Þ

where

DðrÞ≡ A0

A
−
C0

C
: ð2:12Þ

Here and hereafter, a function with a subscript m denotes
the function on the circular orbit at r ¼ rm. We obtain

V 00
m ¼ E2

AmBm
Fm; ð2:13Þ

where

FðrÞ≡ A00

A
−
C00

C
; ð2:14Þ

and the circular orbit of the light is stable if Fm > 0, and it
is unstable if Fm < 0. The unstable (stable) circular orbit is
called the photon sphere (antiphoton sphere).
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III. THIN-SHELL WORMHOLE

We construct a thin-shell wormhole by cutting and
pasting a general, static, spherically symmetric spacetime
[33,34]. We assume that the original spacetime satisfies
a generalized Birkhoff’s theorem [35,50,51] and that
spherically symmetric perturbations to a thin shell do
not affect metrics outside of the thin shell. We take two
copies of a manifold Ω� ≡ fr� > ag with boundaries
given by timelike hypersurfaces Σ� ≡ fr� ¼ ag. We
identify the hypersurfaces Σ≡ Σþ ¼ Σ− to obtain a
manifold M by gluing the manifolds Ω� at a throat
located at Σ. Note that the wormhole has Z2 symmetry
against the throat. The hypersurface Σ filled with Dirac
distribution matter is called a thin shell. Coordinates inΩ�
denote xμ, but the coordinates may not join continuously
at the two-dimensional hypersurface Σ. We denote by yi

coordinates on the two-dimensional hypersurface Σ. We
assume that the same coordinates yi can be taken on both
sides of the hypersurface Σ. We permit a ¼ aðτÞ, where τ
is its proper time, since we are interested in the dynamics
of the thin shell.
We consider that the hypersurface Σ is orthogonally

stuck by a congruence of geodesics. The geodesics are
parametrized by the proper distance l, and we set l ¼ 0
when the geodesics intersect the hypersurface and l < 0
(l > 0) when they are in Ω− ðΩþÞ. A displacement from
the hypersurface Σ is given by dxμ ¼ nμdl, where nμ is the
unit normal to the hypersurface. A metric tensor in M is
given by gμν ¼ Θð−lÞg−μν þ ΘðlÞgþμν, where ΘðlÞ is the
Heaviside distribution, which is 0 if l < 0, and 1 if l > 0,
and which is indeterminate if l ¼ 0, and where g−μν and
gþμν are metric tensors in Ω− and Ωþ, respectively.
The connection Γμ

νρ is given by

Γμ
νρ ¼ Θð−lÞΓμ

−νρ þ ΘðlÞΓμ
þνρ; ð3:1Þ

where Γμ
−νρ and Γμ

þνρ are the connections in Ω− and Ωþ,
respectively. The extrinsic curvature Kij of the timelike
hypersurface Σ is given by

Kij ≡ eμi e
ν
j∇νnμ ¼ ðnμ;ν − Γρ

μνnρÞeμi eνj ; ð3:2Þ

where eμi are basis vectors:

eμi ≡ ∂xμ

∂yi
; ð3:3Þ

and ∇ν is a covariant differentiation in M.
The induced metric hij ≡ gμνe

μ
i e

ν
j on the hypersurface Σ

can be written by

ds2Σ ¼ hijdyidyj

¼ −dτ2 þ CðaÞðdθ2 þ sin2θdϕ2Þ: ð3:4Þ

The induced metrics in Ω− and Ωþ are the same as each
other. The four-velocity uμ of the thin shell at t ¼ TðτÞ and
r ¼ aðτÞ is given by

uμ∂μ ¼ Ṫ∂t þ ȧ∂r; ð3:5Þ
where the dot denotes a differentiation with respective
to τ and

Ṫ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bȧ2

A

r
: ð3:6Þ

We obtain

T̈ ¼ 2ä ȧ ABþ ȧ3ðAB0 − A0BÞ − ȧA0

2A2Ṫ
: ð3:7Þ

The unit normals nμ� to the hypersurface in Ω− and Ωþ
are obtained as

nμ�dxμ ¼ ��
−

ffiffiffiffiffiffiffi
AB

p
ȧdtþ

ffiffiffiffiffiffiffi
AB

p
Ṫdr

�
; ð3:8Þ

and the basis vectors eμi are given by

eμτ∂μ ¼ Ṫ∂t þ ȧ∂r; ð3:9Þ

eμθ∂μ ¼ ∂θ; ð3:10Þ

eμϕ∂μ ¼ ∂ϕ: ð3:11Þ

The extrinsic curvatures of the hypersurfaces in Ω� are
given by

Kτ
τ� ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ȧ2 þ 1
B

q �
äþ ȧ2ðABÞ0

2AB
þ A0

2AB

�
; ð3:12Þ

Kθ
θ� ¼ Kϕ

ϕ� ¼ �C0

2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȧ2 þ 1

B

r
; ð3:13Þ

and the traces are

K� ≡ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ȧ2 þ 1

B

q �
äþ ȧ2ðABÞ0

2AB
þ A0

2AB

�
� C0

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȧ2 þ 1

B

r
:

ð3:14Þ

The Einstein equations, which the thin shell should satisfy,
are given by

Sij ¼ −
1

8π
ð½Ki

j� − ½K�δijÞ; ð3:15Þ

where Sij is a surface stress-energy tensor for the thin shell

Sij ¼ ðσ þ pÞUiUj þ pδij; ð3:16Þ
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where we define Uidyi ≡ uμe
μ
i dy

i ¼ dτ, and where σ and
p are the surface energy density and the surface pressure
of the thin shell, respectively and we obtain Sττ ¼ −σ and
Sθθ ¼ Sϕϕ ¼ p. Here, [T] is defined by

½T�≡ TþjΣ − T−jΣ; ð3:17Þ

where Tþ and T− are any tensorial function T in Ωþ and
Ω−, respectively. From ðτ; τÞ and ðθ; θÞ components of the
Einstein equations (3.15), we obtain the surface energy
density σ and the surface pressure p:

σ ¼ −
1

4π

C0

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȧ2 þ 1

B

r
ð3:18Þ

and

p ¼ 1

8π

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ȧ2 þ 1

B

q �
2äþ ȧ2ðABCÞ0 þ ðACÞ0

ABC

�
; ð3:19Þ

respectively. From Eqs. (3.18) and (3.19), we obtain

dðσAÞ
dτ

þ p
dA
dτ

¼ −
ȧ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȧ2 þ 1

BðaÞ

s
C0ðaÞHðaÞ; ð3:20Þ

where A≡ 4πCðaÞ is the area of the throat. Here, we have
defined HðrÞ by

HðrÞ≡ 2C00ðrÞ
C0ðrÞ −

ðAðrÞBðrÞCðrÞÞ0
AðrÞBðrÞCðrÞ : ð3:21Þ

A term on the right-hand side of Eq. (3.20) means a
momentum flux passing through the throat. Under the
assumptions that ȧ is nonzero, C0ðaÞ is positive, and BðaÞ
has a positive and finite value, the flux term vanishes if and
only if HðaÞ ¼ 0 holds. In this paper, we name HðrÞ ¼ 0
the no-flux-term condition, which was also investigated in
Refs. [35,52]. Note that we have defined that the no-flux-
term condition as a condition of the original spacetime
before being cut and pasted. If we transform the radial
coordinate r to be AðrÞBðrÞ ¼ 1 in the original spacetime
without loss of generality, we can integrate the no-flux-term
condition HðrÞ ¼ 0, and we obtain

CðrÞ ¼ ðc1rþ c2Þ2; ð3:22Þ

where c1 and c2 are integral constants. Equation (3.22)
means that the radial coordinate is an affine parameter.
For simplicity, we assume that c1 is positive and c2 is not
negative. If the original spacetime satisfies

AðrÞBðrÞ ¼ 1; CðrÞ ¼ ðc1rþ c2Þ2; ð3:23Þ

then the no-flux-term condition HðrÞ ¼ 0 holds.

Equation (3.20) is rewritten in

CðaÞσ0 þ C0ðaÞðσ þ pÞ ¼ CðaÞ
2

HðaÞσ; ð3:24Þ

where σ0 ≡ σ̇=ȧ. If we assume a barotropic fluid with
p ¼ pðσÞ, from Eq. (3.24), we obtain the surface density
σ ¼ σðaÞ. From Eq. (3.18), the equation of motion for the
thin shell is given by

ȧ2 þ VðaÞ ¼ 0; ð3:25Þ

where VðaÞ is an effective potential defined by

VðaÞ≡ 1

B
−
�
4πσC
C0

�
2

: ð3:26Þ

The derivative of V with respect to r is given by

V 0 ¼ −
B0

B2
−
32π2σC

C0

��
1 −

CC00

C02

�
σ þ Cσ0

C0

�
; ð3:27Þ

and from Eq. (3.24), it can be rewritten as

V 0 ¼ −
B0

B2
þ 16π2σC

C0

�
2pþ ðABCÞ0

ABC0 σ

�
: ð3:28Þ

The second derivative of V is obtained as

V 00 ¼ −
B00B − 2B02

B3

þ 16π2
��

C
C0 σ

0 þ
�
1 −

CC00

C02

�
σ

��
2pþ ðABCÞ0

ABC0 σ

�

þ C
C0 σ

�
2p0 þ ðABCÞ0

ABC0 σ0

þ ððABÞ00AB − ðABÞ02ÞC0 − ABðABÞ0C00

ðABC0Þ2 Cσ

��
;

ð3:29Þ

and from Eq. (3.24), it becomes

V 00 ¼−
B00B−2B02

B3
−8π2

��
2pþðABCÞ0

ABC0 σ
�

2

þσ

�
2pþ

�
2þðABCÞ0

ABC0 −
2CC00

C02

�
σ

��ðABCÞ0
ABC0 þ2β2

�

þ2C2ðððABÞ02−ABðABÞ00ÞC0 þABðABÞ0C00Þσ2
ðABÞ2C03

�
;

ð3:30Þ

where β2 ≡ dp=dσ ¼ p0=σ0.
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We consider a static thin shell at a ¼ a0, where a0 is a
positive constant, with the surface energy density

σ0 ¼ −
C0
0

4π
ffiffiffiffiffiffi
B0

p
C0

ð3:31Þ

and the surface pressure

p0 ¼
ðA0C0Þ0

8π
ffiffiffiffiffiffi
B0

p
A0C0

; ð3:32Þ

where the subscript 0 denotes the functions at a ¼ a0.
From the definition, V0 ¼ V 0

0 ¼ 0 is satisfied. Therefore,
the effective potential can be expanded around a ¼ a0 as

VðaÞ ¼ V 00
0

2
ða − a0Þ2 þOðða − a0Þ3Þ; ð3:33Þ

where V 00
0 is given by

V 00
0¼

1

B0

�
2G0β

2
0þ

A00
0

A0

þG0−
A02
0

A2
0

−
A0
0B

0
0

2A0B0

−
A0
0C

0
0

A0C0

−
B0
0C

0
0

B0C0

�
;

ð3:34Þ

where we define GðrÞ as

GðrÞ≡ C00

C
−
B0C0

2BC
−
C02

C2

¼ C0

2C
ðDþHÞ: ð3:35Þ

When V 00
0 > 0 ðV 00

0 < 0Þ, the thin shell is stable (unstable).
If we assume the no-flux-term condition HðrÞ ¼ 0 and

we choose the radial coordinate to be AðrÞBðrÞ ¼ 1 in the
original spacetime, then we obtain

V 00
0 ¼ A0

�
2

c1a0 þ c2
D0β

2
0 þ F0 −

A0
0

2A0

D0

�
: ð3:36Þ

The thin shell is stable if

β20 >
c1a0 þ c2

2D0

�
−F0 þ

A0
0

2A0

D0

�
ð3:37Þ

for D0 > 0, and if

β20 <
c1a0 þ c2

2D0

�
−F0 þ

A0
0

2A0

D0

�
ð3:38Þ

for D0 < 0. Note that an antiphoton sphere or a photon
sphere is found at Dm ¼ 0. Thus, we realize that the
existence of the antiphoton sphere and photon sphere
of the original spacetime strongly affects the stability of
the thin-shell wormhole spacetime. If Dm0 ¼ 0 holds,
we obtain

V 00
m0 ¼ Am0Fm0: ð3:39Þ

Here, the subscript “m0” denotes the functions at r ¼
a0 ¼ rm. Therefore, the thin shell on the antiphoton spheres
(photon spheres) is stable (unstable) independent of the
value of β2m0.

IV. APPLICATION

We apply our formulas to the Reissner-Nordström
spacetime and the Kottler spacetime, which is often called
Schwarzschild–(anti-)de Sitter spacetime. We review not
only the (anti)photon spheres, but also subextremal and
extremal event horizons and cosmological horizons in the
original Reissner-Nordström and Kottler spacetimes. This
is because we cannot make static wormholes by using the
regions of the inside of the event horizons and the outside
of the cosmological horizon in the original spacetimes,
and because a strong gravitational field, which can almost
form the cosmological horizons and the subextremal event
horizons, would make the throat unstable. Thus, we can
categorize the stability of the thin-shell wormholes by
considering not only the existence of the photon and
antiphoton spheres, but also the existence of the event
and cosmological horizons in the original spacetimes.

A. Reissner-Nordström spacetime

The Reissner-Nordström spacetime is a static, spheri-
cally symmetric, asymptotically flat electrovacuum solu-
tion in general relativity with

A ¼ 1

B
¼ 1 −

2M
r

þQ2

r2
; ð4:1Þ

C ¼ r2; ð4:2Þ

and it satisfies the condition (3.23). The stability of the
wormhole produced by cutting the Reissner-Nordström
spacetimes and sticking them together with the thin shell of
the barotropic fluid was investigated by Eiroa and Romero
in 2004 [53].
We can categorize this spacetime into case I (jQj < M),

where it has a subextremal event horizon at r ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
and a photon sphere at r ¼ ð3M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9M2 − 8Q2
p

Þ=2; case II (jQj ¼ M), where it has an
extremal event horizon at r ¼ M and a photon sphere
at r ¼ 2M; case III (M < jQj < 3

ffiffiffi
2

p
M=4), where it

has a photon sphere and an antiphoton sphere at r ¼
ð3M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ=2 and no event horizon; case IV

(jQj ¼ 3
ffiffiffi
2

p
M=4), where it has a marginal unstable

photon sphere [54] and no event horizon; and case V
(jQj > 3

ffiffiffi
2

p
M=4), where it has no photon sphere, anti-

photon sphere, or event horizon. The stability in cases I–III
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FIG. 1. Stability of the Reissner-Nordström wormhole for Q ¼ 0.5M (top-left, case I), Q ¼ M (top-right, case II), Q ¼ 1.02M
(bottom-left, case III), and Q ¼ 1.5M (bottom-right, case V). Colored parts are stable. For Q ¼ 0.5M (top-left, case I), the original
Reissner-Nordström spacetime has a photon sphere at r ¼ 2.82M and a subextremal event horizon at r ¼ 1.87M. ForQ ¼ M (top-right,
case II), it has a photon sphere at r ¼ 2M and an extremal event horizon at r ¼ M. ForQ ¼ 1.02M (bottom-left, case III), it has a photon
sphere at r ¼ 1.91M and an antiphoton sphere at r ¼ 1.09M and no event horizon. For Q ¼ 1.5M (bottom-right, case V), it has no
photon sphere, antiphoton sphere, or event horizon.

FIG. 2. Stability of the Kottler wormhole for Λ ¼ −0.1M−2 (left, case I) and Λ ¼ 0.1M−2 (right, case VI). Colored parts are stable. For
Λ ¼ −0.1M−2 (left, case I), it has a photon sphere at at r ¼ 3M and a subextremal event horizon at r ¼ re ¼ 1.80M. For Λ ¼ 0.1M−2

(right, case VI), the original Kottler spacetime has a photon sphere at r ¼ 3M, the event horizon at r ¼ re ¼ 2.56M, and a cosmological
horizon at r ¼ rc ¼ 3.73M.
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and V are shown in Fig. 1. We do not show the stability in
case IV, since it falls outside of our assumptions.

B. Kottler spacetime

The Kottler [Schwarzschild–(anti-)de Sitter] spacetime
is the unique spherically symmetric, vacuum solution of
Einstein equations with a cosmological constant Λ. Its
metric has

A ¼ 1

B
¼ 1 −

2M
r

−
Λr2

3
; ð4:3Þ

C ¼ r2; ð4:4Þ

and it satisfies the condition (3.23). The stability of the thin-
shell Kottler wormhole with the thin shell of the barotropic
fluid was investigated by Lobo and Crawford in 2004 [55].
We can categorize it into case I (Λ ≤ 0), where it has a
subextremal event horizon at r ¼ re and a photon sphere at
r ¼ 3M, and case VI [0 < Λ < ð3MÞ−2], where it has a
subextremal event horizon, a photon sphere, and a cosmo-
logical horizon at r ¼ rc. It has a static region only in
re < r < rc. Note that re and rc satisfy the relation
2M < re < 3M < rc. For ð3MÞ−2 ≤ Λ, it has no static
region. See Ref. [56] for the details of an extreme case,
Λ ¼ ð3MÞ−2. Figure 2 shows the stability in the cases I
and VI.

V. DISCUSSION AND CONCLUSION

Recently, interesting features of (anti)photon spheres and
circular photon orbits—not only in wormhole spacetimes,
but also in various other spacetimes—have been inves-
tigated. Shaikh et al. [57] pointed out that the images of
ultracompact objects with a photon sphere and an anti-
photon sphere, such as the interior Schwarzschild solutions
due to Synge [58] and Florides [59], can be brighter than
the images of objects with a photon sphere and no
antiphoton sphere. Kudo and Asada prove that a spacetime
cannot be asymptotically flat if its outermost circular
photon orbit is stable [60]. The relation between the
(in)stability of spacetimes and circular photon orbits has
been also investigated eagerly. Stable and unstable circular
photon orbits might cause the instability of ultracompact
neutron stars, boson stars, Proca stars, and so on [61–64],
while we may find linearly stable ultracompact objects if
they do not have ergoregions [65].
In this paper, we have cut a general, static, spherically

symmetric spacetime and joined two copies to make a

thin-shell wormhole spacetime satisfying the condition of
a thin shell filled with any barotropic fluid in general
relativity. We have shown that the stability and instability
of the throat strongly depend on the existence of the
photon sphere and antiphoton sphere of the original
spacetime under the assumption that the original space-
time satisfies a generalized Birkhoff’s theorem [35,50,51],
and that a momentum flux passing through the throat is
forbidden.
Stable wormholes without the thin shell in general

relativity have not been found to date [66–69], but
Bronnikov et al. have reported a candidate of a stable
wormhole with some matter sources [70], and Azad et al.
have discussed that the rotation of a wormhole may
stabilize it [71]. We notice that there are few studies on
the (in)stability analysis of a wormhole with an antiphoton
sphere on a throat, while the instability of static and
spherically symmetrical wormholes with a photon sphere
on the throat have been reported often.
Moreover, in a general context, the possibility that

static, spherically symmetrical, and Z2-symmetrical worm-
holes can have an antiphoton sphere on a throat has
been overlooked often. For example, Bronnikov and
Baleevskikh have shown that a general static, spherically
symmetrical, and Z2-symmetrical wormhole has circular
photon orbits on the throat from the symmetry, and they
have concluded that the wormhole has a photon sphere on
the throat [72]. On the other hand, in Ref. [73], Shaikh et al.
have pointed out that wormholes can have an antiphoton
sphere on the throat, and Tsukamoto has shown that a
Damour-Solodukhin wormhole [74] or a Bronnikov-Kim
wormhole [75,76] can have an antiphoton sphere on the
throat in Refs. [77,78].
In this paper, we have concentrated on the thin-shell

wormhole with Z2 symmetry against the throat, but our
result gives us a method to find stable wormholes without
the thin shell: Our result implies that an antiphoton sphere
on or near the throat might stabilize wormholes. Thus, the
investigation of wormholes with an antiphoton sphere on or
near their throats could be a good strategy to find stable
wormholes without the thin shell.
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