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Gravitational wave (GW) astronomy has experienced remarkable growth in recent years, driven by
advancements in ground-based detectors. While detecting compact binary coalescences (CBCs) has
become routine, searching for more complex ones, such as mergers involving eccentric and precessing
binaries and subsolar mass binaries, has presented persistent challenges. These challenges arise from using
the standard matched filtering algorithm, whose computational cost increases with the dimensionality and
size of the template bank. This urges the pressing need for faster search pipelines to efficiently identify GW
signals, leading to the emergence of the hierarchical search strategy that reduces the computational cost of
matched filtering in the search. This method looks for potential candidate events using a coarse bank of
templates (with reduced density and sampling rate) in the first stage, which are then followed up in the
second stage with the usual template bank (with optimal density and sampling rate) but only in the
neighborhood of the parameter space of the candidate events identified in the first stage. Although
the hierarchical search was demonstrated to speed up the standard PyCBC analysis by more than a factor of
20 in a previous work outlined in Soni et al. [Phys. Rev. D 105, 064005 (2022)], assigning statistical
significance to detected signals, especially in the presence of non-Gaussian noise, was done in a heuristic
way. This article introduces a method for background estimation in a two-stage hierarchical search. Our
method models the distribution of background triggers obtained from time-shifted triggers in a two-detector
network. This modeling precisely aligns with the background distribution across critical signal-to-noise
ratios (SNRs), where distinguishing between signal and noise is particularly challenging. It incorporates a
fitting procedure to extrapolate to higher detection statistic values. Using this background estimation
approach, we assessed the sensitivity of the hierarchical search compared to the standard PyCBC search. Our
findings indicate that the hierarchical search attains a sensitive volume-time product comparable to the
standard two-detector PyCBC search. This equivalence holds for an inverse false alarm rate of 10 years by a
factor ranging from 0.99� 0.144 and 1.02� 0.141 within the chirp mass range of approximately 1.4 to
20M⊙. Our methodology accomplishes this while substantially reducing the overall computational cost of
the analysis. Specifically, our pipeline exhibits a remarkable speed-up, nearly 13 times faster than PyCBC

analysis, including background estimation.
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I. INTRODUCTION

Gravitational wave (GW) astronomy has experienced
impressive development since the landmark discovery of
the first GW signal from the merger of the binary black hole
(BBH), GW150914 [1]. Since then, the LIGO Scientific,
Virgo, and KAGRA (LVK) collaboration has compiled an
impressive catalog of nearly 90 GW sources [2] comprising
numerous binary black holes, two binary neutron stars
(BNS) [3,4], and two neutron star-black holes (NSBH) [5].
A majority of these detections have been possible through
offline search pipelines [6–13], which primarily use

matched filtering [14–17], a model-based search technique
that cross-correlates data from Advanced LIGO [18] and
Advanced Virgo [19] with a bank of modeled signals called
templates.
In the current state-of-the-art, the search is mostly

conducted for quadrupolar GW signals originating from
mergers of compact binaries with quasicircular orbits. With
recent advancements in ground-based GW detectors, the
ongoing upgrades in KAGRA [20], and the establishment
of proposed detectors such as LIGO-Aundha [21,22] and
third-generation detectors [23], the future holds promise for
many more discoveries. It may even become possible to
detect GW signals from binary systems, where parameter
spaces expand by several orders of magnitude. This
includes scenarios such as binary systems with orbital
precession [24] and eccentricity, as well as cases where the
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density of templates for spin-aligned systems increases,
such as in subsolar mass compact binaries.
Currently, such searches are either deferred or conducted

within highly restrictive parameter spaces owing to com-
putational limitations. This limitation arises because of the
computational cost of matched filtering that scales with the
template length, number of templates used, and dimension-
ality of the parameter space searched in the year-observed
data. Consequently, there is an urgent demand for faster
search pipelines that efficiently identify GW signals using
these highly sensitive detectors. In this context, the appli-
cation of hierarchical search methodology [25,26] has
emerged as a promising approach for detecting GW signals.
The hierarchical search method uses multiple banks of

varying densities for matched filtering detector’s data.
Initially proposed by Mohanty and Dhurandhar [27],
matched filtering was performed by hierarchically search-
ing over the chirp mass of nonspinning binary systems
using Newtonian waveforms in stationary Gaussian noise.
This approach was extended in subsequent studies to
incorporate hierarchy over component masses using
post-Newtonian (1.5PN) waveforms in Mohanty [28]
and over three parameters, component masses, and time
of coalescence (tc), in Sengupta et al. [29,30] using second-
order post-Newtonian waveforms. It was also discovered
that reducing the data sampling rate during the initial stage
of the hierarchy improves the performance.
Gadre et al. [25] achieved a significant improvement in

the hierarchical search method. Their work expanded the
methodology to include all intrinsic parameters, such as
binary component masses and spins, and introduced a two-
detector coincidence analysis into the algorithm. This
advancement resulted in a remarkable speed-up of more
than one order of magnitude in the Gaussian noise
compared to traditional analysis techniques. Further explo-
ration and development of this approach were conducted in
Soni et al. [31], where a search pipeline was established and
applied to data from the first two observing runs (O1 and
O2) of Advanced LIGO. The study demonstrated the
effectiveness of the hierarchical search method, which
could detect GW events previously identified by the
PyCBC search and reported in Abbott et al. [32]. Notably,
the hierarchical search significantly reduced the matched
filtering computation by approximately 20-fold compared
to the standard PyCBC (flat) search method.
The hierarchical search methodology described in Soni

et al. [31] involved a two-stage matched filtering search
within the PyCBC framework. In the first stage, a coarse
search is performed on the data sampled at a low frequency
using a sparsely sampled template bank called coarse bank,
generated using the hybrid geometric-random method
[33,34]. This enables faster matched-filtering operations,
thereby facilitating a rapid parameter space scan. The
objective of the coarse search is to identify potential
coincident triggers that may be GW signals for the detector

network. In the second stage, a more refined search is
carried out in the vicinity, or neighborhood (nbhd), of the
coincident trigger’s parameter space identified during the
coarse search. A nbhd of a coarse template is a region in
parameter space where the match of any template with itself
lies above 0.75. This step allows matched filtering data with
only a few tens or hundreds of templates in the nbhd region.
At this stage, matched filtering is executed at a higher
sampling rate, enabling a meticulous investigation within a
limited region of the parameter space. This approach
maximizes the likelihood of detecting true GW signals,
as the finer search focuses on regions of the parameter
space where these signals are more likely to manifest.
The two-stage hierarchical search strategy significantly

reduces the computational cost of matched filtering.
However, accurately assigning statistical significance to
detected signals, particularly in real data containing non-
Gaussian noise transients, remains challenging for this
method. Specifically, estimating a GW event’s false alarm
rate (FAR) is not straightforward and requires careful
consideration.
The statistical significance of a GWevent detected in one

or more detectors is described by its FAR, which measures
the likelihood of the event being a noise event rather than a
true GW signal. There are various methods to estimate the
FAR of a detected candidate. One commonly used approach
involves artificially introducing time shifts to the data from
one detector and searching for triggers coincident in time and
the template parameters with the data from another detector
[6]. Coincident triggers between detectors are recorded by
repeating this process with many time shifts. Subsequently,
FAR is determined for detected signals based on the number
of noise coincidences that exceed a certain statistical thresh-
old within a given background time.
Ideally, one can utilize the time-shift technique to

estimate the background and determine the statistical
significance of GW signals in the hierarchical search
method. However, this technique may not achieve optimal
effectiveness owing to two main factors. First, there is the
potential issue of a biased background when the second
search is conducted solely on zero-lag (foreground) coinci-
dent triggers obtained from the first-stage search. This
problem arises from insufficient background triggers,
leading to a biased estimation of the GW event’s FAR
values detected in the second stage. Second, there is a
tradeoff in computational advantages if all coincident
triggers from the time-shift analysis of the first-stage search
are followed for the second-stage search. While construct-
ing a background by the time-shifting method, a larger
number of triggers in the second stage may resolve the bias
in FARs; it also increases the number of matched filtering
operations, subsequently reducing the computational effi-
ciency of the search.
Gadre et al. [25] addressed the issue of biased back-

ground estimation by proposing a heuristic approach that
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involves assigning significance using a scaled coarse
background. This method was later demonstrated in Soni
et al. [31], showing that a scaled background could
reasonably approximate the significance of GW events.
This approach lacks a concrete foundational basis for
background estimation.
In this work, we outline an approach for background

estimation within a two-stage hierarchical search. Our
methodology empirically models the noise distribution
obtained in the second stage of the search, particularly
after implementing the time-shifting method. The pro-
cedure goes as follows:
First, we conduct a coarse search to identify coincident

triggers, encompassing foreground and background events
as potential candidates for GW events. To mitigate exces-
sive background triggers resulting from lower thresholds on
single-detector statistics, we strategically reduce the num-
ber of time shifts in the first stage while maintaining a
manageable increase in computational cost for matched
filtering. The choice of time shift number (Nshift) is
determined proportionally to the computational cost ratio
between the two stages, resulting in a practical reduction
without compromising the overall computational gain. For
our analysis, we select Nshift ≳ 148 with a corresponding
time shift of Tshift ∼ 5000 s, applied to approximately
8.8 days of coincident data from LIGO’s third observing
run (O3). However, these values may be adaptable based on
specific datasets. Our primary emphasis lies in identifying
an optimal time shift value that yields a smooth back-
ground curve.
In the second stage, we delve into the matched filtering

process within the nbhds of the previously identified
candidates from the coarse search. Employing matched
filtering with templates in these nbhds, we collect resultant
triggers for further analysis, focusing on evaluating GW
signal significance. This assessment involves constructing a
background distribution through time-shifting the data at
intervals of 5000 s. To enhance the accuracy of the noise
distribution tail, we employ an empirical modeling tech-
nique. Specifically, we model the tail as a logarithmically
decreasing curve with respect to ranking statistics.
We test the effectiveness of our background estimation

approach with an extensive injection campaign. Our
proposed background estimation method gives a compa-
rable sensitivity with the two-detector PyCBC search for
binaries in the low-chirp mass region while significantly
reducing the computational costs associated with matched
filtering operations. Notably, our pipeline demonstrates an
impressive speed-up, performing nearly 13 times faster
than the PyCBC search.
The paper is organized as follows: In Sec. II, we provide

a comprehensive review of the search methodology
employed by the flat search for a two-detector network.
We review the use of matched filtering, delve into the data
acquisition process and data-quality checks, explain the

derivation of single-detector and ranking statistics pertinent
to the two-detector search, and briefly describe their
approach to estimating the FAR. These definitions serve
as the foundation for our subsequent discussions in Sec. III,
where we review the hierarchical search method for a two-
detector network. In Sec. IV, we present our new method
for background estimation designed explicitly for the
hierarchical search. In Sec. V, we examine the robustness
of our background estimation approach by applying it to
real data and comparing its consistency with the flat search.
Furthermore, in Sec. V B, we compare the sensitivity of our
search pipeline with that of the flat search. In Sec. V C, we
evaluate the computational efficiency of our pipeline.
Finally, we conclude our findings and draw inferences
in Sec. VI.

II. REVIEW OF EXISTING TWO-DETECTOR
FLAT SEARCH

The search for GW signals embedded in the noise nðtÞ in
a two-detector configuration is performed via a matched
filtering technique using the PyCBC-toolkit [6]. This tech-
nique involves cross-correlating the output sðtÞ of an
interferometer with a modeled waveform known as tem-
plate hðtc;ϕc; θ⃗Þ in the frequency domain. The correlation
is performed for different values of the coalescence time
(tc) and phase (ϕc), maximizing the matched-filter SNR
ρðtÞ given the source parameters1 (θ⃗). Mathematically, this
can be expressed as

ρðtc; θ⃗Þ≡ jðs; ð1þ iÞhðtc;ϕc ¼ 0; θ⃗ÞÞj: ð1Þ

In Eq. (1), (.,.) represents the scalar product between any
two data time series xðtÞ and yðtÞ weighted by the one-
sided power spectral density (PSD) SnðfÞ of the interfer-
ometer. The scalar product is defined as

ðx; yÞ ≔ 4R
�Z

fhigh

flow

x̃ðfÞỹ�ðfÞ
SnðfÞ

df

�
: ð2Þ

Here, x̃ðfÞ and ỹðfÞ denote the Fourier transforms of xðtÞ
and yðtÞ respectively, and R represents the real part of the
complex number. The integration is performed over a
frequency range of flow to fhigh.
As the incoming signal parameters are not known in

advance, matched-filter statistics are computed on data
sampled at 2048 Hz using a flat template bank (see Table I).
If the peak of the matched-filter SNR ρ is greater than or
equal to a predefined threshold ρthr (ρthr ¼ 4), a trigger is
stored for further analysis. However, these triggers can be
generated due to non-Gaussian transients in the data,
resulting in many false alarms. Therefore, the triggers

1θ includes the component masses (m1,m2) and dimensionless
spin vectors (s1z; s2z) of a spin-aligned binary system.
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are down-weighted using their chi-square (χ2r) [35] and
sine-Gaussian chi-square (χ2sg) values [36]. Using these chi-
squares, single-detector statistics ρ̂ are computed, given as

ρ̂ ¼
�
ρ̃ðχ2sgÞ−1=2 if χ2sg ≥ 6;

ρ̃ otherwise;
ð3Þ

where ρ̃ is

ρ̃ ¼
(

ρ
½ð1þðχ2rÞ3Þ=2�1=6 if χ2r ≥ 1;

ρ otherwise:
ð4Þ

After reweighting, the surviving triggers are subjected to
a coincidence test to identify instances of time coincidence
with a high value of ranking statistics (Λ) [37] within the
two-detector network. The statistic is given by

Λ ¼ pðκ⃗jSÞ
pðκ⃗jNÞ≡

pðκ⃗jSÞ
rHL
θ⃗

pðθ⃗; δtc; δϕcjNÞ
; ð5Þ

where Λ is the ratio of coincident event rate densities due to
signal pðκ⃗jSÞ and noise pðκ⃗jNÞ for a coincident trigger’s
parameter denoted by κ⃗ that included includes the
reweighted SNRs in the Hanford (ρ̂H), and Livingston
(ρ̂L) detectors, the reduced chi-squared values (χ2sg;H; χ

2
sg;L),

the time and phase differences of the coalescence (δt; δϕc)
and the template parameter θ⃗.
In the scenario of uncorrelated noise between the two

detectors, the background noise events are expected to have a
uniform distribution in the time and phase differences [37].
Consequently, pðθ⃗; δtc; δϕcjNÞ can be treated as a constant.
Therefore, in the allowed time window of coincidences τHL

between two detectors,pðκ⃗jNÞ≡ rHL
θ⃗

is the product of noise

rate densities in each detector given by

rHL
θ⃗

¼ 2τHLr̂θ⃗;Hðρ̂HÞr̂θ⃗;Lðρ̂LÞ: ð6Þ

The signal rate density is obtained through Monte Carlo
simulations as detailed in [7,37]. On the other hand, the
individual noise rate densities are obtained by fitting the
observed single-detector triggers to exponential functions
above a fixed threshold of 6 on ρ̂ and then calculating the fit
parameters. To counteract the high variance in fit values
due to the low number of triggers above the threshold, a
moving average is applied to the fit parameters.
Furthermore, the fit parameters are smoothed by averaging
over nearby templates with similar values of effective spin,
template duration, and symmetric mass ratio, following the
method employed in Davies et al. [7].
Due to non-Gaussian features like glitches in the data,

many loud coincidences may occur, posing a challenge in
distinguishing true GW signals from noise and assessing
their significance. Therefore, to measure the significance,
FAR is computed by performing time shifts to the triggers
by 0.1 s and recalculating the ranking statistics between the
detectors. By generating a background of false coinciden-
ces (nb) through multiple time shifts, the generated dis-
tribution is used to compute the FAR [6] as follows:

FAR ¼ ð1þ nbðΛb ≥ Λ�
fÞÞ

Tb
; ð7Þ

where Tb represents the observation time for the back-
ground estimation, Λb denotes the coincident statistic
values of background triggers, and Λ�

f for the foreground
trigger that may or may not define the real GW event.

III. REVIEW OF TWO-STAGE HIERARCHICAL
SEARCH

The hierarchical search involved a matched filtering
search in two stages, as outlined in [31]. In the first stage,
data segments sampled at 512 Hz are filtered using the
templates from a coarse bank specified in Table I. Triggers
with ρ and ρ̃ values exceeding 3.5 are collected for each
detector in the network. For templates with a total mass
greater than 30M⊙, the triggers are further re-weighted
using χ2sg to mitigate the impact of short-duration glitches
on the noise. The selected triggers undergo coincidence
testing where ranking statistics, denoted by Λ1, are com-
puted for foreground and background triggers.
Unlike in the flat search, a background is constructed in

this stage by performing multiple time shifts with an
interval of Tshift ¼ 5000 s. This approach serves two
primary purposes. First, it enables the examination of all
coincident triggers, encompassing both foreground and
background triggers, during the second stage search, where
a finer search is conducted in the vicinity of the followed-up
trigger’s template parameter space. This comprehensive
analysis predominantly accounts for noise coincidences in

TABLE I. Summary of minimal match values and parameter
ranges for coarse bank constructed using the hybrid geometric-
random template placement algorithm [33,34] and the flat bank
as adopted in the third gravitational wave transient catalog
(GWTC-3) [2]. These banks are specifically designed to search
for redshifted total mass within the range of ½2; 500�M⊙,
encompassing dimensionless spin parameters for black holes
ranging from −0.99 to 0.99 and for neutron stars ranging from
−0.05 to 0.05. These parameter ranges have been selected to
ensure consistency with the ranges employed by the PyCBC-broad
search described in Abbott et al. [2].

Bank Templates Minimal match (MM)

Coarse 85,080 0.90
Flat 428,725 0.97
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the second-stage search, which were not previously
accounted for in Soni et al. [31]. Second, conducting time
shifts of Tshift ¼ 5000 s is more computationally efficient.
This approach entails performing a finer search on fewer
coincident triggers identified in the first stage, thereby
avoiding a significant increase in the computational cost of
matched filtering in the second stage.
The second stage search is conducted exclusively for

those data segments with triggers having Λ1 ≥ 7. In this
stage, these data segments are resampled at 2048 Hz and
matched filtered against templates residing in the union of
nbhds of their followed-up coarse templates. Ideally, nbhds
for each followed-up coarse template could be generated on
the fly. However, this process may increase the total
computation time. Therefore, the nbhds for each coarse
template are pre-generated as detailed in Sec. II (A2) of
Soni et al. [31]. The number of templates within a nbhd
typically ranges from approximately 10 to 100, as depicted
by the discrete color scale in Fig. 1 on the chirp mass-
effective spin plane. As seen from Fig. 1, the number of
these templates is typically lower for low-mass binary
systems. This happens because the boundaries of the coarse
template’s nbhds, defined by the minimal match ellipsoid,
tend to extend beyond the actual parameter space. The
effects of boundaries on the construction of nbhds are
thoroughly discussed in [31].
In the second stage, the triggers with ρ and ρ̃ above 4 are

collected from each detector in the network for further
analysis. These triggers are again down-weighted with χ2

and χ2sg like in the first stage search. The surviving triggers
then undergo a coincidence test, where coincidence sta-
tistics Λ2 is calculated. This statistic explicitly represents Λ
associated with the second stage search. Note that when
calculating ρ̂HL

θ in this stage, the fit parameters—smoothed
over the effective spin, template duration, and symmetric
mass ratio—tend to have large variances in their values due

to an insufficient number of triggers. Therefore, we employ
the strategy described in [31] of reusing the fit values from
the “closest” coarse template to the corresponding trigger
template.
The hierarchical search is expected to yield results in

foreground and noise background candidates similar to the
flat search. This expectation is primarily because both
searches use the identical detector noise distribution,
uniformly sampled at 2048 Hz. Even though the detector’s
underlying noise probability distribution is unknown, the
statistical properties remain consistent in both searches.
Additionally, both searches use banks characterized by
consistent intrinsic source parameter ranges. Given the
similar single-detector statistics, identical thresholds
applied for the trigger selection, and coincident statistics,
we at least expect the louder single-detector and coincident
triggers to be consistent between the two searches.
However, if the triggers from the foreground or background
are faint, the hierarchical search might diverge from the flat
search in its findings. The reason is that we only follow up
coincident triggers from the first stage with Λ1 ≥ 7 in the
second for a finer search, where we reidentify them with the
best matching templates from their respective nbhds.
Consequently, if triggers are faint in the first stage of the
search, they may remain undetected due to our selection
criteria.
Another scenario that may cause differences in the

outputs of the two searches is when detected parameters,
such as those of louder events or foreground or background
triggers, vary due to the use of different templates. This is
particularly relevant for templates from the high chirp mass
region of the coarse bank. As shown in Fig. 1, templates
within this high chirp mass region are distributed sparsely.
Furthermore, by design, the number of templates in this
region is fewer than in the flat bank. If a loud trigger
generates from this region, a different coarse template
parameter, and hence its nbhd, can give ranking statistics
that may differ from those identified by the flat search. This
difference is mainly due to the computation of Λ2 in the
second stage search, as elaborated in Sec. II C of Soni et al.
[31]. Nevertheless, since the associated search cost in the
high chirp mass range is low, a flat search can be
implemented instead of a hierarchical search.

IV. A DIRECT METHOD FOR ESTIMATING THE
FAR IN THE HIERARCHICAL SEARCH

The distribution of coincident triggers obtained in the
second stage from time-shifted analysis is used for estimat-
ing FAR for GW events. To calculate FAR, we employ a
hybrid approach that combines the time-shifted background
with a fitting process applied to the tail of the distribution.
This fitting process involves using a falling exponential
model to account for true noise triggers. The application of
the exponential-fitting procedure has previously been
explored in estimating significance for single-detector

FIG. 1. Hexbin plot depicting the distribution of coarse tem-
plates in the logarithm of chirp mass (M)—effective spin (χeff )
plane. The color scale represents the total number of templates in
the nbhd of each coarse template.
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events, as demonstrated in Davies and Harry [38]. In the
present study, we leverage this method to address the
distribution of time-shifted coincidence triggers. The pro-
cedural approach is as follows:
First, we apply multiple time shifts with an interval of

5000 s to the triggers. This leads to the recalculation of the
quantity Λ2. As outlined in Capano et al. [39], obtaining an
unbiased coincident noise distribution involves the removal
of zero-lag coincident triggers from the background ones.
Therefore, we adopt this approach to segregate the fore-
ground coincidences from the time-shifted ones and obtain a
distribution that exclusively contains the true noise triggers.
Applying time shifts with a 5000 s interval on approx-

imately 8.8 days of data generates roughly one year of
background time. In contrast, the background time gen-
erated by the flat search, using a time-shift interval of 0.1 s,
spans a considerably longer duration. To ensure a fair
comparison, we generate a comparable amount of back-
ground by extrapolating the tail of the cumulative distri-
bution of Λ2. This extrapolation allows us to estimate the
background level for a time duration equivalent to the 0.1 s
time-shift interval, enabling a meaningful assessment of the
FAR estimation.
In an ideal scenario, the most systematic approach to

testing the accuracy of our proposed method would involve
verifying that the noise triggers do not have low FARs. This
verification could be performed if a large dataset is analyzed
or billions of time shifts are applied to a limited duration of
data. However, these two approaches may not be computa-
tionally practical. Considering this, we have adopted a
comparative strategy to assess the validity of our background
estimation. Specifically, we compare the extrapolated noise
background distribution obtained using the proposedmethod
with the one obtained from a flat search.
Before proceeding with the extrapolation, we appropri-

ately scale the background distribution by assuming that
the number of noise coincidences in the second stage
increases by a factor determined by the ratio of the time-
shift intervals used in the hierarchical search (5000 s) and
the flat search (0.1 s). This scaling ensures that the
cumulative distribution of the hierarchical background
matches that of the flat background, as shown in Fig. 2.
Note that this scaling approach differs from that used in
[31], where the hierarchical background was obtained by
scaling the coarse-bank background to match the flat-bank
background using sampling rate and template number
argument. In the present work, the scaling is in total data
volume, which is justifiable, as false alarm distribution is
broadly independent of the length of the data.
Figure 2 also shows that the number of background

triggers generated in hierarchical search is low compared to
the ones obtained in the flat search. This discrepancy is
mainly because of the stringent follow-up criteria applied
during the first stage search and the limited number of time
shifts implemented in the second stage search.Because of the
former, fainter coincident triggers are likely to be missed in

the hierarchical search, which explains the divergence of the
curve for Λ2 < 7.5. Due to the latter, consequently, the
maximum value attained by Λ2 is approximately 8.8, which
may not be sufficient for estimating the FAR. While the
counts vary for low statistical values, the background appears
consistent for higher statistics. Additionally, the background
distribution obtained through the time-shifting method dis-
plays an approximately linear trend on a logarithmic scale
with increasing Λ2. This behavior suggests that linear
regression methods could be used to extrapolate the curve
and estimate trigger values for higher Λ2 values.
Accordingly, we perform a linear regression on the

cumulative distribution of the number of background
coincident triggers represented on a logarithmic scale.
For high Λ2 ≳ 8, the linear regression can be written as

logðnb;2Þ ¼ αþ βΛ2; ð8Þ

where α and β are the fit parameters and nb;2 is the number
of background triggers in the second stage exceeding Λ2.
The linear regression assumes that the tail of the true noise
coincidences follows an exponential dependence, conse-
quently implying that β < 0. This assumption remains
valid even when more coincident noise triggers are fol-
lowed up from the first stage. Such a scenario may happen
if more time shifts are performed instead of performing a few
hundred corresponding to a time interval of 5000 s.However,
this approach may also increase the number of matched
filtering operations in the second stage and reduce the
computational advantages of hierarchical search over flat
search. A straightforward calculation, detailed in the
Appendix, substantiates the anticipated presence of this

FIG. 2. Plot depicting the cumulative distribution of back-
ground events (excluding the foreground) versus ranking statis-
tics for flat and hierarchical searches. The gray curve represents
the background distribution obtained from a time-shift interval of
0.1 s in the flat search, while the black curve corresponds to a
5000 s time-shift interval in the hierarchical search. A linear fit to
the hierarchical background (red) is superimposed to demonstrate
that the cumulative number of events decreases linearly on a
logarithmic scale with the ranking statistics.

SONI, DHURANDHAR, and MITRA PHYS. REV. D 109, 024046 (2024)

024046-6



feature. A straightforward calculation, detailed in the
Appendix, substantiates the anticipated presence of this
feature.
Note that the exponential fit method may not be suitable

for cases where loud background triggers, which are not
eliminated from the data, increase the background. This
problem has also been observed in generic flat searches and
primarily occurs when very short-duration templates pro-
duce triggers in the presence of glitches, resulting in an
inflated background. Such instances should be carefully
examined before proceeding with the fitting procedure. To
mitigate such problems in hierarchical search, one
approach could involve removing these loud background
triggers from the coarse background. Since only coincident
triggers are followed up in the second stage, the probability
of loud noise coincidences affecting the second-stage
background is relatively low. Once these triggers are
removed and the second-stage search is performed, the
fitting procedure can be applied.
Once we have obtained the fitted noise distribution, we

compute FAR for the foreground events detected in the
second stage of the search. This involves utilizing Eq. (7)
and the fitted distribution to determine the number of
background coincidences that have a Λ2 value greater than
or equal to that of the statistic value foreground trigger.

V. APPLICATION TO REAL DATA

We now employ a hierarchical search pipeline on real
data, as elaborated in Sec. III. We apply the methodology
outlined in Sec. IV to calculate FARs for the detected
events in our analysis. For comparison, we will utilize a
two-detector PyCBC-broad search pipeline.
For this study, we analyzed approximately 8.8 days of data

extracted from May 12 to May 21, 2019, during the third
observational run of the twin LIGO–LHO-LIGO Hanford
Observatory and LLO-LIGO Livingston Observatory. We
used the strain data obtained fromGWDataFind [40] for both
the detectors. This data encompasses a mixture of Gaussian
and non-Gaussian noise features called glitches. The pres-
ence of the latter, often attributed to diverse instrumental
artifacts, requires their removal before the matched-filtering
step. Therefore, the timestamps displaying suboptimal qual-
ity or instances of data unavailability were removed using
Category 1 and Category 2 vetoes [41]. Moreover, transient
short-duration artifacts in the data were eliminated using a
gating method [6]. Although most known noise artifacts can
be removed before the matched filtering step, some glitches
persist. These were subsequently filtered out through the
application of different chi-squares criteria as described
in Sec. II.
Once the timestamps unsuitable for astrophysical

searches were removed, we ran both search pipelines to
initiate the analysis. For the flat search, we employed the
flat bank previously constructed for the PyCBC-broad search
described in Abbott et al. [2]. For hierarchical search, we

used pre-computed coarse and nbhd banks as elaborated
upon in Soni et al. [31]. These sets of banks were
specifically designed to explore the parameter spaces of
the BBH, BNS, and NSBH systems. Further, the banks
were tailored to cover a wide range of total masses, from 2
to 500M⊙, as well as component spins within the respective
ranges of 0 to 0.9 for black holes and 0 to 0.05 for neutron
stars. Spin precession was not considered in this study.

A. Results

The analysis resulted in the identification of numerous
foreground and background coincidences. We assessed the
significance of foreground triggers using the method out-
lined in Sec. IV. As depicted in Fig. 3, the FARs of the
background triggers obtained from the background fit
closely match those derived from the traditional time-
shifting method in the hierarchical search up to a threshold
of approximately Λ2 ∼ 8.8. Furthermore, the fit aligns well
with the curve obtained from the flat search, wherein a
larger number of time shifts, equivalent to an interval of
0.1 s, are employed. This outcome demonstrates the
effectiveness of our proposed approach for background
estimation, as elaborated in Sec. IV.
We also examined the significance of foreground events

identified in our analysis. Table II summarizes our find-
ings from the two searches. Our method identified all
events characterized by high network SNRs with consis-
tent FAR values within a factor of a few compared to those
obtained from the flat search. We were able to recover two
previously detected GWevents—GW190521_074359 and
GW190519_153544, as cataloged in Abbott et al. [2].
Additionally, we identified two other low-significance

FIG. 3. A comparison plot of the FAR as a function of ranking
statistics of the background triggers obtained in flat and hierar-
chical search methods. The FAR distribution with and without
exponential fit to the hierarchical background distribution is
shown in black and red, respectively. The FAR distribution for
background from the flat search is overlaid (gray) to demonstrate
that the linear-fit approximation adequately matches the FAR
values between the two search methods.
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events, GW190513_205428 and GW190517_055101,
also reported in the GWTC-3.
As seen in Table II, the four events have varying network

SNR values in both searches. These variations are attributed
to the differences in their recovered coincident templates,
which yield distinct chirp mass values. As illustrated in
Fig. 1, the number of coarse templates in the coarse bank in
the high chirp mass range is less. As a result, the chances of
precisely identifying the template in the nbhd of a coarse
template from high-chirp mass regions could be lower,
leading to potential differences in the recovered parameters.
These findings are also illustrated in Fig. 4, where we

present a comparison of the inverse false alarm rates
(IFARs) for the recovered events in both hierarchical and
flat search methodologies. This comparison suggests that
the hierarchical search yields a candidate list similar to the
flat search, though there are some differences for very quiet
events. Additionally, our method seems to provide similar
IFAR estimates for notable events in the O3 data.

The data quality employed in the analysis could affect
the fitting procedure for acquiring the background. To
assess the efficacy of our methodology across various
instances of noise, we applied it to multiple datasets
collected during the first two observing runs of the twin
LIGO. Specifically, our analysis concentrated on approx-
imately 5.3 days of concurrent data from O1 and 5.5 days
from O2. Our results, as shown in Fig. 5, suggest a
consistent alignment between the background trigger rates
from our method and those from the flat search, indicating
the reliability of our background estimation approach.

B. Sensitivity comparison

We now compare the sensitivities of two pipelines
through an extensive injection campaign. We use sensitive
volume-time (VT) [42] as a metric to compare the sensi-
tivities of the search pipeline for a simulated population of
binary injections in the data.
The VT product for a search pipeline measures the

projected number of detectable signals originating from a
population of binary systems that exceeds a predefined
level of statistical significance. Assuming the binary merger
rate remains constant, the ratio of the VT product between
the two search pipelines provides insight into their relative
sensitivities. Typically, this evaluation is carried out using
Monte Carlo simulations [42].
For this study, we systematically injected various signals

corresponding to the BBH, BNS, and NSBH mergers. We
then observed their recovery using both flat and hierarchi-
cal searches, as described in Secs. II and III, respectively.
Specifically, we targeted sources with intrinsic parameters
as listed in Table III. The parameter ranges selected for
these injections were inspired by the PyCBC analysis
conducted during O3.
To simulate these sources, we generated non-precessing

quasi-circular and quadrupolar GW signals using the
SpinTaylorT4 [43] waveform model for BNS sources
and the SEOBNRv4_opt [44] waveform model for BBH
and NSBH sources. These signals were injected at a time
step interval of 100 s within the data. For simplicity,

TABLE II. Results from a two-detector analysis over data duration from May 12 to May 21, 2019, using flat and
hierarchical searches. Listed events have a FAR less than 1 per year and are ordered in descending order based on
their network SNR ðρ̂T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2H þ ρ2L

p
Þ. The table also provides chirp mass (M) for each identified event. The FARs

of the detected events in the flat search were determined using the time-shift method, whereas those for the
hierarchical search were determined by our proposed method described in Sec. IV. The redetection of these events is
consistent with the GWTC-3 [2].

Flat Hierarchical

Event FAR ðyr−1Þ ρ̂T M ðM⊙Þ FAR ðyr−1Þ ρ̂T M ðM⊙Þ
GW190521_074359 <1.76 × 10−5 24.03 30.56 <1.76 × 10−5 23.31 24.32
GW190519_153544 <1.76 × 10−5 13.19 73.04 <3.53 × 10−5 12.55 71.25
GW190513_205428 3.7 × 10−4 11.61 32.52 1.9 × 10−4 11.79 28.89
GW190517_055101 9.0 × 10−3 10.13 44.15 3.4 × 10−2 10.45 36.74

FIG. 4. Comparison of the cumulative histogram of the inverse
false alarm rate (1=FAR) for the foreground triggers obtained in
the flat (blue) and hierarchical (red) searches. The dashed line
represents the expected background for a given observation time
T, while the yellow-shaded regions represent Poisson errors
estimated for the flat search.
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we distributed these signals isotropically all over the sky
and chirp distances ranging from 5 to 400 Mpc.
We observed the recovered injections and used VT

product computations to examine the sensitivities of the
pipelines. Our findings, illustrated in Fig. 6, suggest that the
VT ratios between the two pipelines for low chirp masses
and across all the IFAR bins are close to unity. Specifically,
the values fluctuate between 0.99� 0.144 and 1.02�
0.141 for chirp masses ∼1.4–20M⊙ at an IFAR of 10 years.
This result indicates that the sensitivity of the hierarchical
search is comparable to that of the flat search, particularly
for binary systems characterized by low chirp masses.
However, the sensitivity of the hierarchical search begins to
diminish for chirp masses greater than 20M⊙. This reduc-
tion is primarily attributed to the lower density of coarse
templates within the higher chirp mass range and the
domain of low effective spins, as shown in Fig. 1.

C. Computation efficiency

We demonstrated that our background computation has
good signal detection capabilities while maintaining a

search sensitivity comparable to the flat search in low-
chirp mass regions. To further evaluate the performance of
our search pipeline, we now turn our attention to its
computational efficiency.
The computational efficiency of a search pipeline relies

heavily on the speed at which matched filtering operations,
which inherently involve performing fast Fourier trans-
forms (FFTs), are executed. This aspect can be evaluated by
directly utilizing the Cooley-Tukey algorithm [45] to
compute the number of floating-point operations involved.
Let us assume that the data segment is sampled at a

frequency of f Hz and has a tseg s duration. In this case, the
number of FFT operations can be expressed as κN log2ðNÞ,
where N ¼ f tseg and κ is approximately a few. This
operation is repeated for several templates denoted by
Ntemp, resulting in an actual computational cost of approx-
imately κNtempN log2ðNÞ. It means that the computational
cost of matched filtering scales with the data sampling rate
and number of templates.
Ideally, the speed-up factor in the matched filtering

computation between the flat and hierarchical search
methods can be estimated by calculating the ratio of the
total cost in the flat search to the combined total cost in both
stages of the hierarchical search. This speed-up can be
represented as

speed-up ≈
NsegNflat

tempOflat

NsegN
stage1
temp Ocoarse þ Nstage2

temp Ofine

; ð9Þ

where,

Oflat ¼ κfflattseg logðfflattsegÞ;
Ocoarse ¼ κfcoarsetseg logðfcoarsetsegÞ;
Ofine ¼ γOflat:

FIG. 5. Comparison of the histograms of background trigger rates (excluding the foreground) versus ranking statistics for O1, O2, and
O3 data. The black curve represents the true background obtained from time-shifted triggers across the detectors. The red curve
represents the background obtained after fitting the true background trigger distribution. The background trigger rate from a flat search is
overlaid in gray for comparison.

TABLE III. The table presents the parameter distributions and
corresponding ranges for m1, m2 (redshifted component masses),
and χ1 and χ2 (dimensionless effective spins) for each source
category. The specified parameter intervals align with those used
in Abbott et al. [2].

Source Parameter Distribution Range

BBH m1, m2 Log-uniform 2.5–150M⊙
χ1, χ2 Uniform 0–0.9

BNS m1, m2 Uniform 1–2.5M⊙
χ1, χ2 Uniform 0–0.4

NSBH m1 Log-uniform 2.5–97.5M⊙
m2 Log-uniform 1–2.5M⊙
χ1 Uniform 0–0.9
χ2 Uniform 0–0.4
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Here, Nseg represents the total number of overlapping
segments analyzed. The data sampling rates are denoted
by fflat (2048 Hz) for the flat search and fcoarse (512 Hz) for
the first stage of the hierarchical search. While the matched
filtering cost dominates the analysis of a data segment with
a large template bank, overhead costs are associated with
each segment, for example, for loading and initial data
processing, which are independent of the number of
templates. The overhead cost per template can become
comparable to or even greater than the matched filtering
cost when the number of templates is small. In the above
formula, factor γ accounts for this.
We previously discussed a comparison of the matched

filtering computational costs between the hierarchical and
flat search pipelines using O3 data from the Hanford and
Livingston detectors. In our analysis, the data from the
Hanford detector was split into 176 blocks and that from
the Livingston detector into 197 blocks. Each block was
then segmented into overlapping durations of 512 s each.
In the flat search, each segment of the data block sampled

at a rate of fflat was filtered with Nflat
temp ¼ 428,725 templates.

However, the number of templates and data sampling rates
varied between the two stages of the hierarchical search. In
the first stage, the data segments were sampled at fcoarse and
filtered with 85,080 templates denoted byNstage1

temp . During the
second stage of the search, despite the data segments being
sampled at fflat rates, the number of templates varied across
segments, leading to fewer FFT operations than in the flat
search. This variability in the number of templates per
segment resulted from the number of templates in the union
of the nbhds that were followed. Consequently, the number
of templates fluctuates for each data block, as shown
in Fig. 7.
If the number of templates used by each segment were

large, γ would be close to 1. However, we find that for a
typical data block, for the Hanford (Livingston) detector,
the CPU time taken for flat search, with 428; 725 × 10
(segments in the block) ∼4 million application of templates
to data, was 66.52 hr (73.15 hr). In contrast, for the same
block, in the second stage, with a total of 46,369

applications of templates to data, the CPU time taken
was 1.88 hr (1.72 hr). If we compare the computation time
per segment per template, one can see that the flat search
(∼0.05 s per template per segment) was approximately
three times less expensive than the nbhd search (∼0.15 s
per template per segment), that is, γ ∼ 3. We checked for

FIG. 6. Plot depicting volume-time (VT) ratio between hierarchical and flat search.

FIG. 7. Plot depicts the number of nbhds triggered per block
while performing the second-stage search for data from Hanford
(H). The color bar represents the total number of templates in the
nbhds triggered for a block. The number of nbhds triggered and
the corresponding number of templates in the nbhds is larger
when foreground and background triggers are followed up in the
second stage (top panel). However, these numbers are lower when
only the second search is performed on the foreground triggers
alone (bottom panel).
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different data blocks and γ remained nearly the same for
similar data block lengths.
In our study, with tseg set at 512 s and Nseg set at 1493 for

the Hanford detector (or 1731 for Livingston), the total
number of templates in the second stage of the hierarchical
search was approximately 6,274,846 (or 6,235,197 for
Livingston). The resulting speed-up in the matched-
filtering computation was approximately 18.36 (or 18.38
for Livingston). Accounting for the overhead computation
time per segment with γ ∼ 3, the estimated speed-up, 13.58
for Hanford and 14.07 for Livingston, matches the actual
CPU obtained by comparing the real CPU times.
We also compared the computational efficiency of our

search pipeline using a commonly employed metric in
high-performance computing environments, that is, CPU
core hours. We effectively distributed matched filtering
operations across multiple CPU cores by leveraging the
parallelization features of the PyCBC toolkit. We found that
the CPU core hour requirements for hierarchical search
were consistently 14–15 times lower than those for flat
search for both detectors, as shown in Table IV. This
indicates a considerable reduction in computational resour-
ces and processing time associated with hierarchical
searches.

VI. CONCLUSION AND DISCUSSION

Since its inception, the hierarchical search strategy has
aimed to improve the efficiency of matched filtering by
performing multi-stage searches using multiple banks of
varying densities. Although it offers several advantages,
especially in conducting computationally expensive searches
for compact binaries such as sub-solar masses, accurately
estimating an unbiased background has proven to be a
persistent challenge. In particular, there is a constant
tug-of-war between optimizing the computational cost of
matched filtering and obtaining a proper noise background
for assigning significance to detected candidates.
In this work, we have attempted to address this challenge

by introducing a minor computational tradeoff. In Sec. IV,
we outline a method to estimate an unbiased noise back-
ground. This method uses a hybrid approach that combines

the time-shifted background distribution and empirically
models its tail based on the assumption that the distribution
contains only noise coincidences. The effectiveness of our
scheme was thoroughly demonstrated in Sec. V, where we
found that our estimated FARs of true events from O3
closely align with those obtained through flat search. This
result indicates the reliability and accuracy of our method
for capturing the true significance of GW events. Because
the tail of the distribution was obtained by extrapolation,
one may argue that the background estimate in this region
may contain a certain level of inaccuracy. However, the tail
corresponds to loud detections, and any minor discrepan-
cies in the FAR for these occurrences are likely to hold little
significance when making inferences about astrophysical
implications. Note that the background for the lower-
ranking statistic (≲8.5), where distinguishing signals from
noise presents a challenge, our estimations are derived
directly from the time-slides, without involving any
extrapolation, and hence, should be as reliable as the flat
search. If necessary, this lower-ranking statistic region can
be expanded further, perhaps up to a ranking statistic of
approximately ∼9. This expansion would involve increas-
ing the number of time shifts, incurring additional compu-
tation time. However, despite this increase in computational
demand, the overall computational efficiency of the entire
search is still significantly advantageous.
The significance of employing hierarchical search strat-

egies for low-chirp mass sources becomes even more
apparent based on our VT comparison results, as presented
in Sec. V B. We observed that with the current detection
statistics and template bank configurations, the sensitivity of
detecting lower-mass binaries is similar to that of flat search.
However, in the case of higher chirp mass ranges, the
sensitivity is reduced owing to the sparsity of templates in
both the coarse bank and nbhd bank. Consequently, precise
measurements of masses and spins are challenging for very
short-duration signals with a hierarchical search. Thus, it is
advisable to consider a more targeted search approach for
such parameter ranges. Because the total number of tem-
plates in higher masses is much smaller than that for lower
masses, we recommend performing the standard flat search
for high masses, which adds an insignificant amount to the
total computation cost. Incidentally, dedicated searches
focused on high-mass binaries are performed routinely
[2]. Therefore, no additional effort may be necessary to
improve computational efficiency in the above context for
high-mass binaries.
Although our approach has a minor reduction in com-

putational gains compared to the previous implementation
[31], where the background is estimated by scaling, this
tradeoff is more than justified. The current pipeline, while
being reliable, manages to substantially reduce the com-
putational cost of matched filtering by an order of magni-
tude, and we find a computational speed-up of ∼13 for O3

TABLE IV. Table depicting the CPU core hour for the matched
filtering jobs in flat and hierarchical searches. The numbers are
estimated separately for the two detectors–Hanford (H) and
Livingston (L) in the analysis.

CPU core hour

Search pipeline Hanford Livingston

Flat 10,685.11 12,289.90
Hierarchical with background
follow-up

712.89 790.71

Hierarchical with only
foreground follow-up

452.96 529.21
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data. This ensures that the proposed method is efficient and
practical for real-world GW detection.
It is important to note that although our proposed method

is effective for cases where multiple detectors detect GW
signals, it may require careful attention and consideration
for situations where the signal is captured by only one
detector. In such cases, our background estimation may be
susceptible to non-Gaussian artifacts caused by signal
contamination. To address this potential issue, it is crucial
to carefully extract and account for contamination, thus
ensuring the reliability of our method, even in such
challenging scenarios.
In conclusion, our study introduces a robust approach for

obtaining an unbiased background in a hierarchical search,
a powerful and efficient tool for GW search. By effectively
balancing computational efficiency and accurate back-
ground estimation, our method paves the way for new
avenues of research in the study of compact binaries.
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APPENDIX: ANALYTICAL CALCULATION FOR
COINCIDENT NOISE DISTRIBUTION IN

GAUSSIAN NOISE

In this section, we attempt to understand the coincident
noise distribution in the case of stationary Gaussian noise.

The analytical calculation presented in this section sub-
stantiates the anticipated presence of linearly falling back-
ground distribution that we discussed in Sec. IV. This
exercise aims to gain insights into the statistical distribution
of detection statistics, particularly the quadrature sum of
matched filter SNRs, in the context of Gaussian-colored
noise.
Suppose we aim to detect a GW signal embedded in

stationary Gaussian noise, characterized by N independent
random variables. To accomplish this, we perform matched
filtering on a data segment with a length of 512 s, sampled
at 2048 Hz, using a template that consists of two ortho-
normal polarizations, ho and hπ=2. For the sake of sim-
plicity, we assume that the occurrence of these signals is
extremely rare within the data. The output of the matched
filter can be regarded as the projection of the data vector
onto the templates, as given by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2o þ c2π=2

q
; ðA1Þ

where ρ represents the SNR obtained from the matched
filter, while co and cπ=2 denote the projection coefficients
onto ho and hπ=2, respectively. Since the two polarizations
are orthonormal, co and cπ=2 are normally distributed. The
matched filter generates N0 samples of ρ over time, and
these samples follow a Rayleigh distribution, as shown
in Fig. 8.
The samples produced by the matched filtering process

are typically weakly correlated. Due to the weak correla-
tions, we can assume that the cyclic operation of matched
filtering generates N < N0 statistically independent
Rayleigh variables. In such cases, the probability distribu-
tion of the maximum of N independent Rayleigh variables
is given by

pNðρÞ ¼ Nρe−ρ
2=2ð1 − e−ρ

2=2ÞN−1: ðA2Þ

The above pdf can be easily obtained by taking the product
of N Rayleigh distribution functions and then differentiat-
ing the product. For a large value of N, Eq. (A2) can be
approximated to a simpler form amenable to easy analytical
manipulations as

pðρÞ ≃ Nρe−ðρ2=2þNe−ρ
2=2Þ: ðA3Þ

Let y1 and y2 represent two Rayleigh deviates corre-
sponding to the SNRs from Hanford and Livingston,
respectively. The probability distribution functions for y1
and y2 based on Eq. (A3) are given by

pðy1Þ ¼ N1y1e−ðy
2
1
=2þN1e

−y2
1
=2Þ ðA4Þ

pðy2Þ ¼ N2y2e−ðy
2
2
=2þN2e

−y2
2
=2Þ; ðA5Þ
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where N1 and N2 represent the maximum number of
independent Rayleigh variables in each detector.
Let us define the network SNR as the coincident

statistics in this case. Therefore, if we set N ¼ N1 ¼ N2,
then the joint probability distribution function, denoted as
gðy1; y2Þ, can be expressed as the product of the individual
PDFs for y1 and y2 as

gðy1; y2Þ ¼ pðy1Þpðy2Þ ðA6Þ

¼ N2

2
y1y2e−f

1
2
ðy2

1
þy2

2
ÞþNðe−y21=2þe

−y2
2
=2Þg: ðA7Þ

Consider solving the above problem in polar coordi-
nates. That means if y1 ¼ ρc cosϕ and y2 ¼ ρc sinϕ,
gðy1; y2Þ (i.e., ρc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p
) will become

gðρc;ϕÞ ¼
N2

2
ρ2c sin 2ϕe−ρ

2
c=2

×
h
e−N

�
e−

ρ2c
4
ð1þcos 2ϕÞþe−

ρ2c
4
ð1−cos 2ϕÞ

�i
: ðA8Þ

To obtain the joint PDF as a function of ρc, we
marginalize Eq. (A8) over ϕ, that means

gðρcÞ ¼
N2

2
ρ3ce−ρ

2
c=2

×
Z

π=2

0

dϕ sin 2ϕ
h
e−Nc

�
e−

ρ2c
4
ð1þcos 2ϕÞþe−

ρ2c
4
ð1−cos 2ϕÞ

�i
:

ðA9Þ

Setting cos 2ϕ ¼ u

gðρcÞ ¼
N2

4
ρ3ce−ρ

2
c=2

Z
1

−1
du e−N

�
e−

ρ2c
4
ð1þuÞþe−

ρ2c
4
ð1−uÞ

�

¼ N2

2
ρ3ce−ρ

2
c=2

Z
1

0

du e−N
�
e−

ρ2c
4
ð1þuÞþe−

ρ2c
4
ð1−uÞ

�
: ðA10Þ

It can be shown that the peak of this distribution occurs at
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 logN

p
. Although the above integration can be numeri-

cally performed, we derive a semianalytical fit for the tail of
the distribution at large values of ρc ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 logN

p
, where it

is observed that the term fðuÞ ¼ e−N
ρ2c
4
ð1−uÞ dominates the

integral. The function fðuÞ is approximately shaped like a
trapezium: for low values of u, fðuÞ ≃ 1 and→ 0 as u → 1.
We write the integral as J:

J ¼
Z

1

0

du fðuÞ: ðA11Þ

FIG. 9. Probability density function for network SNR as a
histogram obtained from simulations (blue) and by numerically
integrating Eq. (A10) (black).

FIG. 8. Probability density function of ρ represented as a
histogram (in blue). An ideal Rayleigh distribution is overlaid
in black, providing a visual comparison. The vertical dotted line
represents ρ ¼ 5.3.

FIG. 10. Cumulative density distributions obtained by integrat-
ing Eqs. (A10) (black) and (A12) (orange), along with a
histogram (blue) from simulated results. A linear fit (red) is
overlaid in the logarithmic scale for comparison.
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We approximate fðuÞ using the trapezoidal rule. In this
approximation, we set fðuoÞ ¼ 1

2
at the mid-height of the

trapezium, which has a unit height. Solving for uo yields
the integral J

uo ¼ 1 −
4

ρ2c
ðlogN − log log 2Þ≡ J: ðA12Þ

From Fig. 9, it is evident that the approximation derived
from Eq. (A12) aligns well with Eq. (A10) and the network
SNR distribution obtained from the simulation. This

observation prompts us to examine the cumulative distri-
bution, as depicted in Fig. 10.
Notably, the tail of the cumulative density function

displayed in Fig. 10, derived from Eqs. (A10) and
(A12), exhibits a characteristic pattern that can be approxi-
mated by linearly decreasing values of ranking statistics
when plotted on a logarithmic scale. This finding forms a
benchmark for effectively modeling background distribu-
tion acquired through time-shifting triggers in real analysis.
This exercise shows that the tail of the distribution in the

general case has similar features as in this tractable case of
Gaussian noise.
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