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Quantum gravity theories predict deformations of black hole solutions relative to their classical
counterparts. A model-independent approach was advocated in Binetti et al. [Effective theory of quantum
black holes, Phys. Rev. D 106, 046006 (2022)] that uses metric deformations parametrized in terms of
physical quantities, such as the proper distance. While such a description manifestly preserves the
invariance of the space-time under coordinate transformations, concrete computations are hard to tackle
since the distance is defined in terms of the deformed metric itself. In this work, for spherically symmetric
and static metrics, we provide a self-consistent framework allowing us to compute the distance function
in close vicinity to the event horizon of a black hole. By assuming a minimal degree of regularity at the
horizon, we provide explicit (series) expansions of the metric. This allows us to compute important
thermodynamical quantities of the black hole, such as the Hawking temperature and entropy, for which
we provide model-independent expressions, beyond a large mass expansion. Moreover, imposing for
example the absence of curvature singularities at the event horizon leads to nontrivial consistency
conditions for the metric deformations themselves, which we find to be violated by some models in the

literature.
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I. INTRODUCTION

Black holes are solutions of general relativity (GR) with
an event horizon, which potentially conceals a central
singularity. While quantum corrections are expected to
modify these solutions, our lack of a comprehensive theory
of quantum gravity makes it challenging to provide precise
details about these corrections. Over the years, numerous
proposals for black hole deformations have emerged,
drawing from both fundamental theories of gravity and
effective approaches [1-15]. Notably, certain previous
works [1,3] have put forward deformations of the
Schwarzschild space-time geometry, incorporating quan-
tum corrections in a manner that allows for the formulation
of universal statements.

Concretely, spherically symmetric and static space-time
metrics are characterized by two functions f, h of a radial
coordinate [16—19]. We shall measure the latter in units of
the Planck length ¢p and denote it z. In general, assuming
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that i # f allows for the description of a wide range of
classical scenarios [20]. This includes the Tolman-
Oppenheimer-Volkov space-time for compact objects
and stellar environments [21-24]. A horizon in these
geometries corresponds to a zero of the functions f and
h, which, for simplicity, in this work, we shall consider to
be a simple zero. Asymptotically flat geometries are
characterized by the fact that both f and A tend to 1 for
large values of z.

Quantum corrections to the geometries mentioned
above can be incorporated as deformations of the classical
functions f and s and the precise form evidently depends
on a concrete model of quantum gravity. Nevertheless,
inspired by the renormalization group framework [25-27]
it has been argued in [1,3,28] that universal, model-
independent statements about physical quantities in
spherically symmetric and static quantum black holes
can be made by demanding independence with respect to
spurious scales. Notably, in order to preserve the invari-
ance of the geometry under coordinate transformations
(similar to those in GR), it has been advocated to write the
deformation functions in terms of a physical quantity.
While the concrete choice of the latter is to some degree

© 2024 American Physical Society
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ambiguous,' a natural choice in the context of static,
spherically symmetric geometries is the proper distance
from the center of the black hole. However, since the
proper distance is defined in terms of the (deformed)
metric function f, this prescription leads to an implicit
definition of the quantum geometry. This issue has been
addressed in previous works through different approx-
imations: either by replacing the proper distance with a
simpler function of z (see [3]) or by assuming a very heavy
black hole [1]. In the former case, the approximated
distance generally no longer represents a physical quantity
and therefore constitutes a conceptual departure from the
above-mentioned logic. In the latter case, quantum cor-
rections to physical quantities are suppressed by inverse
powers of the mass.

In this work, we provide a framework that allows us to
compute the proper distance near the event horizon in a
self-consistent fashion without the need for approxima-
tions. The framework assumes a certain degree of regularity
of either the metric functions or the proper distance, such
that they afford series expansions, at least up to some order.
Furthermore, apart from the proper distance of the horizon
from the center of the black hole dy, the framework only
requires information about the black hole exterior, which is
encoded in the deformations of the metric functions.
Concretely, within this setup, we find explicit solutions
of the nonlinear first-order differential equation that defines
the proper distance in terms of the metric functions. These
solutions completely determine the space-time geometry
near the event horizon, which in turn allows us to compute
the thermodynamical properties of the black hole, namely
its Hawking temperature and entropy. Further assuming a
dependence of dy on the mass of the black hole, we
calculate mass expansions of the Hawking temperature,
correcting previous results in [1].

Furthermore, using this framework we find nontrivial
conditions of the quantum-deformed black hole geometries.
On the one hand, regularity of the first derivative of the
metric functions is required to render the surface gravity
well-defined, which in turn is required for the Hawking
temperature to be well-defined [34]. However, this is not
automatic but requires conditions on the metric deforma-
tions. On the other hand, the absence of curvature singu-
larities at the event horizon also imposes nontrivial
constraints: these can either be found by demanding finite-
ness of the second derivatives of the metric functions (which
provides sufficient conditions) or by calculating series
expansions of the Ricci and Kretschmann scalar close to
(but outside of) the exterior event horizon. These generically
exhibit divergent contributions which can only be removed

'From the perspective of the renormalization group approach a
different choice of this physical quantity (see e.g. [11,29-32])
corresponds to a different scheme. We shall elaborate on this
connection in future work [33].

if certain conditions for the metric deformations are met. We
formulate these various conditions in the form of constraints
on the original input parameters of the black hole geometry
as mentioned before. Checking these conditions for certain
examples in the literature, we find that they are not always
respected. Indeed, the quantum black hole model proposed
in [3] (which we shall refer to as the Bonanno-Reuter space-
time) is based on a deformation of the metric functions that
violate the above-mentioned conditions. This means, treat-
ing the Bonanno-Reuter space-time in a self-consistent
fashion leads to an ill-defined Hawking temperature as
well as a divergence of the Ricci scalar at the event horizon.
While approximations to this space-time that were proposed
in [3] do not suffer from such unphysical singularities, they
should be interpreted as metric deformations different from
the original ones, which comply with our consistency
conditions. To further show the flexibility of our approach,
we discuss as a different model a minimal solution to our
conditions along with its physical properties.

Finally, in order to make closer contact with our previous
work [1] we consider asymptotic expansions of the metric
deformations in inverse powers of the proper distance.
Assuming that the radius of convergence of these expan-
sions is large enough to be still valid at the event horizon,
we use them as input to the framework explained above.
Concretely, we formulate the consistency conditions for the
absence of an unphysical singularity in terms of the
asymptotic expansion coefficients. Solving these condi-
tions, we furthermore provide self-consistent expressions
for the Hawking temperature and (upon assuming a mass-
dependence of dy) the entropy.

While our results are derived with a black hole geometry
in mind, they can be generalized in a straightforward
manner to spherically symmetric and static space-times.
Therefore, we foresee the further impact of the framework
presented here in the description of quantum effects in
gravitational experiments and cosmology. Furthermore,
while in this work we mainly have deformations of black
holes in mind that are due to quantum effects, our approach
is versatile enough to also describe other types of deforma-
tions. We, therefore, expect our work to be useful for
studying space-time corrections in theories of modified
gravity.

This paper is organized as follows. In Sec. II we introduce
our notation for deformations of the spherically symmetric
and static Schwarzschild geometry. We derive nontrivial
conditions for these deformations by imposing finiteness of
the first and second derivative of the metric functions at the
horizon: the first derivative is a necessary condition for the
existence of the surface gravity and the second provides
sufficient conditions for the absence of a singularity of the
Ricci scalar at the horizon. In Sec. III, we develop a more
general framework for computing the distance function for
deformations of the Schwarzschild metric. Assuming the
existence of a series expansion of the proper distance, we
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provide a recursive relation for all expansion coefficients.
The consistency of this approach and the finiteness of the
Ricci scalar at the horizon impose nontrivial conditions on
the metric deformations. In Sec. IV we apply these con-
ditions to concrete examples of black hole solutions. We
show that the Bonanno-Reuter space-time does not abide by
the conditions and indeed exhibits a singular behavior at the
horizon. We also provide a novel model based on a
minimalistic solution of the conditions derived previously.
In Sec. V we consider asymptotic expansions of the metric
deformations and (assuming that they can be extended all
the way to the black hole horizon) show how to integrate
them into the framework developed in previous sections.
Finally, Sec. VI contains our conclusions and an outlook for
further applications. This work is complemented by five
Appendixes; Appendix A generalizes the approach of
Sec. Il by deriving conditions imposed by assuming that
an arbitrarily high order N of derivatives of the metric
function is finite at the horizon. Appendix B provides a
minimal solution for the system of equations established in
Appendix A and shows that this solution for N — oo tends
to the Schwarzschild space-time. Appendix C contains
several derivations of series identities that have been
deemed too technical for the main body of the paper.
Appendix D discusses further examples of deformed black
hole metrics, namely the Hayward black hole and the
Dymnikova space-time. Finally Appendix E gives a brief
outline of how to generalize the conditions derived in Sec. II
to interior black hole horizons.

II. REGULAR GEOMETRY CLOSE
TO THE BLACK HOLE HORIZON

Our starting point is the general form of a spherically
symmetric and static space-time in four dimensions with
Lorentzian signature

dr?

ds? = g, dx*dx* = —h(r)dr* +
” ENTE

+ r2d0* + r*sin 6d¢?,
(1)

where the metric is given by
G = diag(=h(r), f(r)~', r?, r*sin? 9), (2)

with h and f, a priori, general functions of the radial
coordinate r. The classical Schwarzschild space-time [35],
which is a solution of the Einstein equations in vacuum, is
recovered for h(r) = f(r) = (1 — rg/r), with r¢ = 2GyM
the Schwarzschild radius (and Gy Newton’s constant). For
r > rg, this metric describes the space-time outside of a
central body of mass M. In the following, we shall be
interested in deformations of this metric, which specifically
represent black holes and which are characterized by
(particular) modifications of the metric functions f and #.

To describe these modifications, we first simplify the
notation by casting (1) into a dimensionless form; similar
to [1], we write the radial coordinate (and the mass
parameter M) in units of the Planck length Zp = 1/Mp
(with Mp the Planck mass), by defining

r M
= Mpr = — d = — 3
Z pr 7 and  y Mo (3)

We shall further choose units such that Newton’s constant is
equal to 1, i.e. GNMlzD = 1. In this notation, we shall
parametrize deformations of the Schwarzschild geometry
by writing the functions f and & as

where @ and ¥ encode corrections due to physical effects
beyond GR, either classical or quantum in nature. In order
to describe a black hole, we first require that the geometry
is still asymptotically flat. Concretely, we assume that the
geometry approaches the Schwarzschild metric (with mass
parameter y) for very large distances from the origin

lim ®(z) = 0 = lim ¥(z). (5)

7—00 700

Furthermore, in order for coordinate transformations of the
undeformed space-time to be also realized in the deformed
case, we demand that ¥ and ® are invariant quantities. This
can be achieved by writing them as functions of a physical
quantity, for which in [1,3] the proper distance from the
origin was proposed.” The proper (radial) distance between
two spatial points within the space-time (1) is

_frd _
d(z,z9) -—/ZO Tel d d(z) =d(z,0). (6)

We thus replace in (8)
D(2). P(2) > ©(1/d(2)).'¥(1/d(2)), (7)

where @ and W are functions of the inverse distance such
that

f(2) = 1= ot p(y=1-Z e, (g)
z Z

Here we choose a dependence on 1/d, such that asymp-
totical flatness (5) amounts to the simple relation

One can choose a more general geodesic distance to prove a
Taylor theorem for general tensor calculus shown in [36-38].
However, as mentioned in these works, explicit computations
become rapidly involved.
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®(0) = 0 = ¥(0). 9)

Furthermore, in order to describe a black hole geometry, we
require that the metric (1) has (at least one) horizon, i.e. we
impose that the functions f and & have a zero at a
coordinate zz € (0, o)

fu=f(zn) =0 = h(zy) = hy. (10)

In this paper, we shall assume that (10) are simple zeros
and that

f(z)>0, and h(z) >0 V z>zy, (11)

i.e. that z is the location of the outer horizon of the black
hole. Furthermore, we introduce the notation

dy=d(zy), and d(z) =dy+p(z), (12)

where p(z) = d(z, zy) has the interpretation as the proper
distance measured from the horizon of the black hole. With
this notation, the condition (10) can equally be written in

the form
O— ) =¥(— ] =102, 13
<dH> (dH> Og2)( ( )

This ensures the vanishing of the norm of timelike Killing
vector (K')* = & required for the existence of an event
horizon

(KD (K], = 900 (K")° (K|, = —h(zp) =0. (14)

We remark that in the remainder of this paper, unless
otherwise specified, we shall consider the space-time
outside of the horizon of the black hole, i.e. we shall only
consider the region z > zy (or equivalently p > 0).
Furthermore, we consider dy as an additional input into
the (exterior) black hole geometry, which is in fact the only
information about the interior of the black hole that is
required in the following.

The surface gravity and the Ricci scalar are fundamental
quantities that must be well-defined at and near the
horizon. We shall discuss the surface gravity in more
detail in Sec. II B, while here we give the definition of the
Ricci scalar as a geometric quantity, which directly
follows from (1); it is a scalar quantity which appears
in the equation of motion of the gravitational field (i.e. the
Einstein equations). Therefore, its regularity (notably at
the horizon) in the deformed metric ensures that in the
deformed case no additional singularities arise beyond the

classical ones, which shall be a central point in the
analysis of this paper. The Ricci scalar in terms of f
and h is’

_@fWann® pn® 2+ f-1)
2zh h z?
Fny
2n>

R =

+

(17)

We mainly focus on the finiteness of the Ricci scalar at the
horizon but, in some examples, we shall also examine the
behavior of the Kretschmann scalar, given by

K =R, R, (18)

pouY

where R
tensor.

oy = g/,,lR’lﬁW is the fully covariant Riemann

A. Near horizon constraints

By examining the expression of the Ricci scalar (17) and
the Kretschmann scalar (18), it is evident that derivatives of
the functions f and & up to the second order [in (z — zy)]
are required. Hence, we start by assuming that in the
vicinity of the black hole horizon, located at zy, they can be
expanded using a Taylor series up to the second order,
given by

(2)
70 = £ =)+ (e =20+ ol(2=20)). (19)

Aey
h(z) = iy (= 2n) + 5= 2)* + 0((z = 2u)?). (20)

We remark that similar expansions have been already
considered in the literature, for example in [39,40]. In

the following, we shall assume f ;}) > 0 and hg) > 0 such

*To save writing factors of ¢p, we have defined a dimension-
less form of R (and K), i.e. it is measured in units of &p.
Furthermore, from here on out we use the notation F® to
indicate the nth derivative of a function F with respect to its
argument. For example, we define

) =TT g o (1) = dn(b(y)‘ 19

dz" x dyn

The subscript p denotes the evaluation of a quantity at
the horizon, which corresponds to taking z = zy, d = dy, or

p=0,eg

s (2= z), and @ = @(1/dy).  (16)
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that zy is a simple zero of both f and A, as well as
the position of the outer event horizon of the black hole
space-time (i.e. f and h have no further zeros for z > zy
and both change signs at z = zp).

The expansions (19) and (20) also afford the following
form of the infinitesimal proper distance (6) from the
horizon

dz

\/fH (z—zn)

which yields explicitly

+o((z-zu)?), (21)
(Z ZH)

2Z-7n fz(z zy)Y?

A6

p(z) = +o((z—zp)*?). (22)

The latter can be locally inverted so that we can write z(p),
which up to the fourth order reads,

2p) =zn +fip +fH i

4 o5 P +okh). (23)

This allows us to rewrite the Taylor expansions for f and &
in terms of the physical, and therefore coordinate-invariant,
distance p as follows™:

(1)y2 (D2 £(2)

po) =l U R Ti ey o), (24)
(1), (1)

h(p) :fH4hH p2+f (3fH 96+fH )p4+0(p4)

(25)

The derivatives of f with respect to z are consequently
computed as [see (15) for the notation]

df _df(p(z))dp 1 df(p)
dz dp dz V) dp

fW(2) =

and similarly for 2(!). In terms of the functions ® and ¥ in
(8) we therefore find

4By abuse of notation we shall write in the following f(p)
instead of f(z(p)).

M1
L (@)
Z

(du +p)*VF

(1-h) L v (ﬁ)

and  K0(z) = @t o7

(27)

It is clear from the above that the first derivative shows a
divergence at the horizon due to the second term in the
parenthesis o f~'/2. Using (23)-(25) we can provide a
series expansion around p = 0, concretely for f(!)

22dy®Y) + @7)
1
dify

200 11

dfif P

£ = o). (28)

and similarly for A("). Therefore, we conclude that con-
sistency with the first order in (19) and (20) requires

o) =0, and W =0, (29)

which removes the singularity in (27). With these con-
ditions, we get the expressions of the first derivatives of the
metric functions at the event horizon’

(2)
f(1> = l+tw and Al = 1 2% (30)
" 2z H = 4 (1)
H H dyfy

where for later use we have introduced the shorthand
notation

Sz%icbg)

d‘;, (1)

w=1/1-

Reality of fg) requires that w € R. Furthermore, in order
for zy to be the position of (a simple) outer event horizon,

both fg) >0 and h§}> > (0. These conditions together

impose upper bounds for the derivatives <1>§§) and ‘Pg),

d; d (1
(Dg)s and ‘P(2> 7[1( —|—w).

H
8 e

Moving to the second order of the Taylor polynomials in
(19) and (20), we find for the second derivatives

>We remark that f H = =% is also a solution compatible with
(28). In the following, we shall use the result (30), which leads to
the classical Schwarzschild metric for (Dg) =0.
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(1 (1) (_1 M) (1 @) (1
f(Z) _ _f(l) l_'_w _ (1 _f) i+ 20 (dH+p> + f ® (dH+p> + ® (dH+/7> ,
z (dy+p)?VF 2 (du+pPf  2(dy+p) 7 (dy +p)t P
w1 () (ﬁ) - le2ql<l> (ﬁ) +f<1>\11(1>(m) X P (m) -
2 (dy+p)VF 2 (dy+p)f  20dy+p) P (dy+p) )
|
which we can equally expand around p = 0, similar to 72 1f-(h)2
Jiing (091 Lo =Ty oy = U )
Eq. (27). By utilizing (29) and the expressions for f},” and 2 4 =z 4 h i

hg) given in Eq. (30), we can eliminate the divergent terms
by imposing that

oY = —6d,y @) and W = —-6d,¥. (34)

As explained in Appendix A 2, demanding the finiteness of
even higher-order derivatives at the horizon (i.e. beyond
second order), one can iterate the above procedure of
removing divergent terms in the Taylor expansion, leading
to the general result (A12).

Summarizing the result for imposing finiteness of the
first and second derivatives of f and £ [as in (19) and (20)],
as well as the reality and positiveness of the first deriva-
tives, we have obtained the following general constraints
and upper bounds:

q)H:‘PHIIOg%, q)g) :Tg) :0,
3 2 3 2
CI)I('-I) = —6dH‘DEt1), ‘PL) = —6dHlPEq),
d; a1
o2 < di @ _dy(l+@) (35)
H H

By imposing these conditions, we ensure that there are no
curvature singularities at the horizon: indeed, with (17)
(and (18) it can be verified that the Ricci and Kretschmann

scalars attain finite values, which depend on (I)g), (DE}Q,

P, and Wy

However, to provide a more comprehensive and gener-
alized framework, we delve into a broader approach that
encompasses these conditions in Sec. III B.

B. Impact on the thermodynamics

One of the main applications of the general constraints
discussed above is black hole thermodynamics. To deter-
mine the temperature of a black hole we introduce the
surface gravity which is expressed via the timelike Killing
vector (K')* introduced earlier [see Eq. (14)] and reads
[40-44]

®Due to their complexity, we refrain from presenting the
complete expressions of R and K.

Using the constraints in (35) the Hawking temperature
[43,45] is then given by7

oK1 1 1+w 2vy
H70n 4 VIHTH “4n\ 22 4
82@(2)
with @ = (/1 — “H H (37)
dy

Notice that due to the upper bound on ‘1153), the Hawking
temperature is strictly positive 7y > 0 for dy > 0 (and thus

zy > 0). Indeed, Ty = 0 would require f;y =0 and/or

A\, With (19) and (20), this would, however, imply that f
and/or & would have a double zero at the horizon, which is
thus not compatible with our initial assumption in this
approach.

For the expression of the entropy, we use the first law of
thermodynamics

dy = Tyds. (38)

such that the entropy can be written as

_ [ %
= /TH()() . (9)

To perform the integration over the black hole mass y, one

has to provide the explicit dependence of dy, zy, ‘I’g) and
@ on y i
" y itself.

III. SERIES EXPANSIONS OF THE DISTANCE
FUNCTION

In the previous section, we have provided the conditions
(35) for the functions @, ¥ appearing in Eq. (8) that
guarantee finite first and second derivatives of the metric

"In order to avoid factors of ¢p in the following, we have
defined dimensionless versions of both the surface gravity (36)
and the Hawking temperature (37), which are measured in units
of ¢ p-
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functions at the event horizon. These in turn are sufficient
conditions that also the Ricci and Kretschmann scalar are
finite. In this section, we shall recover more general (but
compatible) results by using a different approach, namely
by solving (6) assuming that a solution in the form of a
series expansion exists.

A. Solving the distance function

1. Series expansion of the radial coordinate

In Eq. (22) we have already given a limited series
expansion of the distance to the BH horizon p as a function
of z — zy, the inversion of which is given in (23). In this
section, we shall provide a general form of these expan-
sions under the assumption that z can be written as a
(convergent) series in p for p > 0. Indeed, we shall start
from a general (integer) series of the form®

d ) 0\ 12
@ _ <1 ——Zeq)("”lw)) . Yzzzy. (41)
dz Z

However, we shall consider z as a function of p, i.e. we
consider (41) in the form

dz\2 S
Z(l‘<dz> ) — % @T, Y p20.  (42)
p

We next assume that 2ye®

powers of p

affords a series expansion in

& = Zus

2ye® @77 WP with , (43
d ng £, R V neN (

)

which has an interval of convergence 2 [0,py).

Concretely, the coefficients £, can be related to the C[);?)

(p)=zy + Z a,p’ with a,eR V neN (40)  as introduced in (15). Starting from the expansion
n=1
which we assume to have an interval of convergence ( ) Z K" (44)
p€l0,p,) for some p, > 0. We shall determine the series dp +p =0
coefficients a, recursively by solving the differential
equation with the coefficients
Ly o)) N Z (T (n = )T} (n = ) oY (45)
"ol | Ay = kldy* Hop
we have verified the following relation up to order n = 8
n n—k Hn ui n
£ =20y > =25 with w;€NU {0} such that > juj=k. (46)
k=0 {uy,...,u,} ( )‘ H ( ) j=2
For example, we find for the first three coefficients
2pe® xe®r 1 1)\2 2
50 — 2}(6®H = ZH, 51 = d2 (I)g—])v 52 = d4 (ZdH(I)I(T-I) + ((I)E‘-I)) + (I)gi)) (47)
H H

In the following, we shall consider the coefficients £, [or equivalently the derivatives @,

") of O at the horizon] along with

dy as fixed and as input for the Eq. (42). We can then expand the left-hand side of the latter into a series expansion in p. To

this end, we consider

(&) -

n,m=1

00 n+1
Z nma,a,,p""? = a3 + Z (Z n—m-+ Z)maman_m+2>p".

=1

Inserting this expansion into the left-hand side of (42) we find

¥Other than in the previous section, we presently do not make any assumptions on (derivatives of) f or .
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dz\? -
1= (&) =250 -
(1-(G) ) mat-a 3

such that Eq. (42) becomes

Z’g’,,p”szl—a i l—a
p—1 n+l
—ZZ (n—m+2)m
n=1 m=

Identifying the series coefficients order by order for
p€{0,1,2} leads to

& =zn = (1 —a}),

& = (1=af)ay —4zya,a,,

& = (1 —a)ay — [zy(6ajas + 4a3) +4alay).  (50)

The first of these equations requires a; = 0, which imposes

the condition &; = 0. Using (47), this requires <I>g) =0,
which is in fact the second relation in (35). The last
equation in (50) then becomes

& = ay(1 —dzyay), (51)
which has solution

l+w

i{H

with @ =+/1—162;8. (52)

a, =

For £, =0 [and thus CD(FP =0], w is identical to the

2 d4 , which

follows from (47). The solution (52) is in agreement with
(23) using (30)."” Similar to (32), the requirement for @ to
be real (such that a, €R) imposes an upper bound on
& < 1/(16zy).

Equating the remaining powers of p? (for p > 2) in (49)
then becomes a recursive equation, which allows to express
in terms of coefficients a,, with p’ < p (and &),

definition in (31), since in this case &, =

ap

"We remark in passing that a series expansion for z to match
the case &; # 0 requires half-integer powers in Eq. (40), as is
discussed in Appendix C 3. We shall consider such a case in more
detail in the context of a specific example in Appendix C4b. As
we shall see, however, £; # 0 [and thus <I>< # 0] leads in general
to a curvature singularity at the horizon.

"Indeed, in (30) the solution with the + sign has been chosen

to recover the classical result in the limit <1>51 — 0. In the
following, we shall make the same choice.

(1-at)a, —zy g (n—m+2)ma,a,_,.»

0 p—1 n+1
Z lz I’l —m+ 2) p—naman—m+2‘| PP’

n+1
p

(48)
p+l
—ZH Z(p —m+ 2)Wlamap—m+2
m=1
Apdp— m+2]pp' (49)
1 =
ap, = T—d4z,pa, |:§p +2u Z(P —n+2)na,a, >
H p
+Zzn_m+z mnmﬂ] Vop3
n=2 m=

(53)

Equation (53) allow us to compute the coefficients a,
explicitly up to arbitrary order as functions of the &,.

2. Series expansion of the distance and metric function

In order to expand the metric function f in a series in
z — zy [asin Eq. (19)], we first assume an expansion of p in
(half-integer) powers of z — zy

(54)

The coefficients b, can be computed from (53) to arbitrarily
high order using series reversion. Indeed, generalizing a
result of Whittaker [46] for the reversion of integer series
with a; # 0 to the current case, we have verified up to order
n=2_§8

1
b = / bz = _2613 s
a;
<—1>" 1
= inal” det(M,) V n>3 (55)

where M, is the following (n — 1) x (n — 1) matrix
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2"‘3n(n—2)Z—';
2" 2n(n=1)% 23 (n(n—2)+2)

an
az

Concretely, we find for the first few coefficients with n > 3

b _5a%—4aza4 _3a2a3a4—2ag—a§a5
3— 8a;/2 ’ 4 — 261; )
231a3—504aya3a, +224a3azas + 112a3a; — 64a3a
5= 13/2 :
1284}

(56)

B. Metric functions and curvature

In the previous subsection, we solved the differential
equation (40), assuming an integer series expansion of the
radial coordinate as a function of the distance (from the
event horizon) p. In this subsection, we use this result to
compute the Ricci scalar.

1. Metric functions

As a first step, similar to (43), we also introduce a series
expansion for the deformation of the metric function A

9() = Z2H,

20" @ =N "0 o, with .
“ ; "’ 0,€R V¥ neN

(57)

The coefficients 6, can be related to the derivatives ‘Pg‘) in

exactly the same way as the coefficients &, are related to the

¢>Z') in Eq. (46). For the moment, we shall keep €, generic
and not mimic the constraint £; = 0, which was required
for consistency of the series expansion (40) with (43).
Using (43) and (57), as well as the expansion 1/zin (C1)
[with the coefficients p,, given recursively in Eq. (C5)], we
can express the metric functions as power series in p

nZ—i 1 0

4ngt (n+2)3 2
12n3 (4n+4)3 (n+4)2
32n3—2 (12n+8)2—2 (4n+8)z—:
SOnZ—Z (32n+16)2—§ (12n+16)Z—2

2T kntt 282 ((k=1)n+2)% 263 (k=2)n+4)%

0 0 0 0 0 - 0
0 0 0 0 0 - 0
3 0 0 0 0 - 0
(n+6)2 4 0 0 0 - 0
2
(4n+12)‘a’—2 (n+8)Z—; 5 0 0 - 0
(n_|_2k—1)z_z k .- 0
n—2
n—-2\4a
...... (n_|_2 )a_z
|
© k ®© k
F=1=0"0> pubicws and h=1="p">"p,0,,,
=0  n=0 =0  n=0
Y p>0, (58)
which reads explicitly to leading orders
PR Y kY RROTO) (59)
iH iH

0 -0 -0 0
h=-O1p 20, (4 3)§H+a2 L+ Opt).
ZH ZH K47

(60)

We can equivalently write these as expansions in (z — z)

_ =5 _ a3é — axés V32
- arZpg (Z ZH) " (02)5/2111 (Z ZH)
+0((z—zn)?), (61)
0, 243 + a30, — 2a,0
h=— _ 1/2 2 3V1 2V2 _
Tavin (z—zu) 2y (z—zn)
+0((z—zu)*?). (62)

which shows certain similarities with the results of Sec. IT A,
but also some differences. On the one hand, comparing the
expansion for the function f with (24), since

1+w (1)
4 = =
a 22 fu'

a,—& o
arZy

(63)

[see (30)] we find agreement with the leading term in (61).
On the other hand, (61) contains a term of order (z — zz)/?
[and (59) a term of order p®], which is absent in (19)
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[and (24), respectively]. Indeed (61) is not an integer series
expansion and therefore more general than (19). Similarly,
(since we have not imposed 6; = 0), the function / even
starts from a term (z — z5;)'/? in (62) [order p in (60)], which
is absent in (20) [and (25), respectively]. Our result (58) is
therefore more general than (24) and (25). We remark,
however, that for generic values of &3 and €; we have

lim f?)(z) > 0 and limAa(z) - c0.  (64)

72 i=2ZH

Indeed, in contrast to Sec. II A finiteness of the derivatives of
the metric functions at the horizon was not our initial
assumption and we shall impose in the next Sec. III B 2
absence of a physical curvature singularity instead as a more
general condition. Before doing so, however, we comment
that we can deduce the conditions for the absence of the
singularities (64) from (61) and (62) in a straightforward
manner:

9 1 = O,

Cl3§2 = a2§3, and Cl392 = Cl293. (65)

Using (53), the second of these relations implies

1 —SZHfz +w

en( 4 3m) 20 (66)

which has as only solution &; = 0, which further implies
65 = 0. Notice that the conditions

$=86=0,=0;=0, (67)

which guarantee existence of the first and second derivative
of f and h for z =zy [which are necessary for the
expansions (19) and (20)] are precisely the same as (35).
In this case, the positivity of the first derivative of & leads to
an upper bound on 9, < 1+w , which agrees with the second

relation in (32). The upper bound & < 1/(16zy) was
already obtained previously to guarantee reality of w in (52).

2. Ricci scalar and Hawking temperature

We next consider the Ricci scalar, however, for simplic-
ity, we shall work out its series expansions only to leading
order. Moreover, we shall start out by only assuming & = 0
[which is required for the consistent expansion (40)], but
we shall not assume the remaining conditions in (67). We
notably first consider €; # 0. Inserting (61) and (62) into
(17), we obtain the following series expansion (for z > zy)

n (2a3 + a30, —2a,0,)(a; — &)

Sag/zﬁlzy
x (2=2)72 + O((z = 2)°)- (68)

Using (53) the coefficient of the leading term becomes

1-8zyé +w
8zp(1 + )

a—& -
861221—1

: (69)

which is nonvanishing for all values of & < 1/(16zy) and
therefore signals a curvature singularity at the event
horizon. To avoid the latter, we impose 6; = 0, which

also leads to a well-defined derivative h(l)(zH),

a, — 0,

W) == —=.
24H

(70)

Moreover, the condition §; = 0 also changes the series
expansion in (68)

g = W2V + o) (1 + 3m)0; + 2%5)

(14 3w)(1 - 8z46, + ) (z—zg)" 12
Foeman )

We have furthermore verified that the singularity of R
at z = zy cannot be removed if 1 —8z560, + @ = 0 and
we, therefore, require 6, # az.“ In this case, the necessary
condition for regularity of R at the horizon is
(1 +3w)0;5 4+ 263 = 0. We have also verified that under
the same condition also the Kretschmann scalar is finite
at the horizon. To summarize, the consistency conditions
for the approach outlined in Sec. III A 1, the conditions for
the absence of a singularity of the Ricci scalar, and the
bounds for positive metric functions f and & for z > z are
therefore

1
& =0, 0, =0, 53:—5(14'3@)93,
1 1+w
—_— . 72
&H< 1625 2 < 82 (72)

As remarked previously [see (67)], the regularity condition
(35) found in the previous section is compatible with this
result and is the particular case & = 65 = 0.

We further remark that the series coefficients (53)
and (55) along with the expansions (58) allow to compute
the (finite) value of R at the horizon. While the general form
is rather complicated, here we only give the expression
in the particular case f=h (i.e. £, =60,V n>1) with
§1=86=0

R| _ (1- w2)(a§ —aszy) | 26
o 8zya5 Zna;
3+ (2-5w)w 192z,¢,4
= 2 2> (73)
2z(14+2w) 143w+ 2w

"'"This condition is compatible with 6, < ”w which guaran-
tees that 4(V)(z;) > 0 in (70). The latter is necessary such that
h(z) > 0 for z > zy (with a simple zero at z = z).

024045-10



QUANTUM BLACK HOLE PHYSICS FROM THE EVENT HORIZON

PHYS. REV. D 109, 024045 (2024)

which we shall use in the examples of the following
section.

Before closing this section, we also provide the expres-
sion for the Hawking temperature

N N ey 8210,
TH - = N (74)
4r 47I\/§ZH

which agrees with the expression (37) found in the previous
section. The upper bound on 6, in (72) guarantees that

Ty > 0. Indeed, Ty =0 would require fg) =0 and/or

hg) = 0, which translate into a, = &, and a, = 0,, respec-
tively. The former has no real solution, while the latter leads
to a singularity of the Ricci scalar at the horizon. We
remark, however, that black hole solutions with Ty = 0 are
possible upon choosing the solution a, = 18_71: in (52).

IV. EXAMPLES

To illustrate further the approach presented in the
previous sections, in particular, the conditions (35) and
(72) which are sufficient for a finite Ricci scalar at the
horizon, we shall consider two concrete examples; the first
one is the Bonanno-Reuter [3] black hole, while the second
one is specifically constructed to satisfy (35) in a minimal
fashion. Further examples from the literature are discussed
in Appendix D.

A. Example 1: Bonanno-Reuter asymptotically safe
black hole

We first consider as an example the black hole metric
introduced by Bonanno-Reuter [3] as a renormalization
group improved generalization of the Schwarzschild space-
time. Indeed, in this work, it has been proposed to replace
the (dimensionful) Newton constant Gyeyion DY @ running
Newton constant

Gk=0
GNewton - G(k) = 1 + a)(G(k _)O)kZ ’ (75)

where w €R is a constant and k a (position dependent)
scale (with reference scale k = 0). The choice of the latter
is ambiguous, but it has been proposed in [3] to use an
inverse physical distance from the center of the black hole'?

k(z) = &/b(2), (76)

20Other options discussed in [3] include distances of the form

Je V/|ds?|, for different choices of contours C (for example the
world line of a free-falling observer). We shall discuss in future
work (see also [28]) that different such choices correspond to
different schemes from the perspective of the renormalization
group approach.

with £ a suitable (dimensionful) constant. Such a distance
has physical meaning, independent of a specific choice of
coordinates. Adapting to our notation, the metric proposed
in [3] can be written in the form (1) with

_ () = o 1
HD) = 1) = fnl@) =1 = s (77)

where @ = w&” is a dimensionless constant. In [3] the
concrete value @ = % was given, however, subsequent
works in the literature [47-51] potentially point towards
different values (and a different sign). In the following, we
shall consider @ a generic parameter and discover marked
differences between positive and negative values.
Furthermore, we shall consider (77) to be valid only
outside of the event horizon, which is located at dgy y
(which we take as an input of the model)."* In order for f to

remain well-defined at the horizon, we shall assume

~ 2pd>
i+ d gy = i 2 0,

iH
For concrete computations, a choice for the physical

distance needs to be made. Here we shall discuss three
different possibilities that lead to a geometry with an (outer)
event horizon, for which we can verify whether the
conditions (35) are satisfied and whether therefore the
Ricci scalar is finite, namely: (i) the proper distance
computed from the metric (1); (ii) the proper distance
computed from the Schwarzschild metric; and (iii) an
interpolating function. We shall discuss all three possibil-
ities in the following:

(i) Choosing d(z) as the proper distance d(z) in Eq. (6):

vV z>0. (78)

z 1
dBR(Z):A W,

This is a self-consistent choice in the sense that the
proper distance is compatible with the metric (1).
As discussed in [1], this guarantees that the modi-
fied metric exhibits the same diffeomorphism
invariance as the (classical) Schwarzschild black
hole. However, explicitly computing the distance
becomes more involved [since (78) is an implicit
definition]. For negative values of &, a series
expansion close to the horizon is developed in
Appendix C 4 b. However, for our purposes, this is
not in fact required, since we can simply verify the
regularity conditions developed in the previous
sections, i.e. Egs. (35) or (72). For the concrete
function (77) with d(z) = dpr(z) = dpry + p(2),
we obtain

PHere we are allowing for the possibility that the metric inside
of the black hole is different from (77) in which case dgy i would
need to be computed as a separate input to the model. As we shall
see, our conclusions will be entirely independent of this choice
and thus the concrete value of dgy 5.
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(i)

20 4Z&)dBR H
- ~ # 07 g = 9 = 7= . ;é 0’ 79
dpr i (dig g + @) T (0t B ) 79)

ol —plh) _

such that neither (72) nor (35) are satisfied. In fact, (79) implies that already the first derivative of fgr

1_ 20 1
7 dpr(2)(dpr(2)* + @) \/fr(2)

f$@=0—hﬂm( ) V 2> e

diverges at the horizon
lim fii (o -+ €) = . (80
This is due to the fact that fpr(zpr ) = 0. Following the discussion of Sec. II B, this poses problems with the

interpretation of the black hole’s thermodynamical properties, notably the Hawking temperature’s definition.
Furthermore, it also leads to a curvature singularity at the horizon, since for example, the Ricci scalar becomes

_ @(fer = 1)(dpr(d3g + @) (1 — 5f5r) s + 62d3g f5r — 202)

R 9’
zdgg (djg + @) fEr

Y z2>zy.

This expression diverges at the event horizon due to the factor 35 in the denominator (while the numerator at the
horizon assumes the finite value 2@%zy).

Finally, we remark since &; # 0, the results of the series expansion approach developed in Sec. III are not
directly applicable. In Appendix C 3, we show how it can be generalized in this case, and the consequences for the
Bonanno-Reuter space-time for @ < 0, are discussed in Appendix C 4 b (confirming further our above conclusions
in this case).

Choosing d(z) as the proper distance of the (classical) Schwarzschild geometry, i.e.

. dy my —+\/2(2y — z) — 2y arctan 27*—1 if 0 <z <2y,
0 o 7y + /z2(z — 2y) + 2yarctanh, / —27)‘ if 2y < z.
Z
|
This option was initially advocated in [3] and has the scalar is finite at z = zggr y, the geometry has a
advantage that it can be computed as a closed curvature singularity at z = 2y.
expression in terms of z. This geometry possesses (iii) Although a closed function of z, the Schwarzschild
a horizon, whose position is corrected by @, e.g. for proper distance (81) is still difficult to work with for
large mass y of the black hole concrete computations. Therefore, in [3] the follow-
ing approximation for (81) was proposed'*
2@ -
IBRH = 2 — 27 +O(l@]? /%) (82) 3\ 12
dg(z) = kpr(z) = ,
N G
For fgr to be well-defined at the horizon, we assume lim kgg (2) ~ 2
that & + d§ (2 = zgr ) # 0. The derivative of f in such that =9 BRAS Vi (84)
this case becomes lim xgg(z) ~ z.
=0
Wy 2 4yw . o -

fer(2) 3 (83) Here y € R is a constant, which in order to mimic the

- o\ 3 2 w\2’
Z(1+ d§) zdg|1 - 7)( (1 + d_g) same behavior as (81) at the origin (z — 0) needs to

be chosen as y =9/2. The function kg has no

which is finite at the horizon zgg 5, but diverges for inflection points, and thus does not feature the same
z = 2y (which for @ > 0 lies outside the horizon of
the black hole). Because of this, while the Ricci "“We are using a notation adapted to the current paper.
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behavior as a proper distance at a horizon for any

value of z.
Identifying d in (77) with xR leads to a zero of
Srr at
24+vyw 5, 3
ZBRH = 2X _T;+ O(@*/x’).  (85)

At this horizon, both the first and second derivatives

of fpr are finite implying that the Ricci scalar takes

a finite value.
To summarize, treating (77) in a self-consistent fashion by
identifying d by the proper distance calculated from fpr
itself leads to a divergent first derivative of the metric
function at the horizon, which in turn leads to significant
problems for physical quantities. Notably, it poses prob-
lems for defining a finite Hawking temperature and leads to
a curvature singularity at the (outer) event horizon. This is
in line with the results of Secs. II and III, due to the fact that

the function > does not satisfy the conditions

2
(35), independent of the geometry of the black hole inside
the event horizon (i.e. independent of the value of dgpg f).
The choices (ii) and (iii) constitute a departure from the
original idea presented in [3] (proposed as an approxima-
tion in this work) by replacing d by a function of the radial
coordinate z, which does not represent a physical distance
that has been consistently calculated from the metric
characterized by (77).

While (ii), depending on the sign of @, may have a
curvature singularity outside of the event horizon, choice
(i) is at least well-behaved from this perspective.
However, from the point of view of the original motivation
to deform the Schwarzschild metric by a function of a
(consistently calculated) distance function, the choice
(iii) corresponds to a different deformation function than
(77). Using the approach outlined in Sec. III, we can
determine this modified deformation function by reverse
engineering the coefficients &,: indeed, by integrating
Eq. (41) we find the coefficients b,, in Eq. (54)

\/§|Z]33R,H + @(zgrp + 12|

b] = ) bz - Oy
\/ZBR,HZ(Z%R.H —@(zgry +27x))
.- b?)((ZIGSR,H - 32‘1;R,H5) - 71133R,H7)(C7) + 72)(25’2)
24\/5(1%12,11 + @(yx + zerop))’
by = 0. (86)

Therefore, with
a = 0, asz = 0,

we obtain for the leading coefficients of &, (which are
equal to 8,)

ZZZBR,H)((ZZBR.H +3yy)

£ =0, - ,
1 b (Z]33R,H +@(zpru +712))>

&H= &=0. (88)

These indeed satisfy the conditions (72). Therefore, the
“approximation” to use (84) for d in (77) instead of the
self-consistently calculated proper distance, corresponds to
changing the metric function (77), in a way characterized
by the above expansion coefficients.

B. Example 2: Minimal metric deformation
As a further (novel) example, we consider the following
minimal solution of the conditions (35)

2 2
Oy =Wy=go. P =Wy =0, & =w =g,

‘I’S) = ‘PS) =—6dy s, (89)

and d)(;) =0V n>4. Here ¢y, ¢, €R are arbitrary
parameters, which, however, are not independent; indeed,
in order for the metric to asymptotically, approach the
Schwarzschild one (with mass parameter y), we require the
asymptotic limit

34,
. (A (vl 3¢,
lime® @7 = ¢ =1 = bo=—%7%-

(90)
Here we also consider dy as a parameter of the model,
which encodes information about the interior of the black
hole. With this, the solution (89) of (35) can be written
compactly in the form

i i 3¢,
o =Y = ——=14

Choosing q)ﬁ}” # 0 [or ‘P(;) # 0] for n > 4 in (89) would
yield higher modifications of e® of order O(p*), which are
negligible close to the horizon. The position of the latter is
located at

p*(dy +3p) s
2dy(dy +p)*
(91)

3
7y = 2re? =2y exp _izz ) (92)
242,

A schematic plot of ¢?® as a function of p is shown in Fig. 1.
Here we have plotted e® in the entire space-time (i.e. also
inside of the event horizon for p < 0); following our
general philosophy, we shall discuss the metric function
(and all associated quantities) only outside of the horizon
(i.e. for p > 0) and only make a few brief remarks on the
physics inside of the black hole in Sec. IVB2. The
coefficients x, in a series expansion of @ in powers of p
[see Eq. (44)] are worked out in Eq. (C24), while the
leading coefficients &, [stemming from the series expansion
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4
— ¢2>0
3 — ¢ <0
6@ 2
1
0
—1 0 1 2 3 4 )
p
FIG. 1. Function ¢® in Eq. (91) with ¢y = —3¢,/2d% and
of 2ye® in Eq. (43)] are exhibited in (C25). In particular,

due to the choice (89), we find & = 0 = &;, which there-
fore satisfies (35) and (72). Moreover, since (89) also
implies ® = ¥ (and thus &, = 6,,), the condition (72) is
also trivially satisfied, such that we expect the Ricci scalar
of this model to be finite at the event horizon zg.

1. Curvature and temperature

As a first step to calculating physical quantities for the
space-time metric characterized by (89), we compute the
derivative (30) of the functions f and / at the horizon

n=2yre

—¢o 32202 ¢h
)y e e“Pych,
£ =hy) = 1+44/1
o 4y dy
3
with ¢ = —%, (93)
H

which imposes the condition ¢, < 35 iwo 5, which with (90)
therefore becomes the nonlinear relatlon for ¢,

d4
Pyl dy < SH_

. 94
- 32)(2 (94)

The Ricci scalar at the horizon is finite in this model and
takes the value

3
L= 34+ 2-5w)w  48e Ynzyygs(dy — 12d%)
@ 222 (14 2w) ds(1+

@) (1 +2w)
_32
241%_1
with = 4| 1 - 0mbare 7 (95)
dfy

Finiteness of the derivatives (93) (at the event horizon) is
a necessary requirement for well-behaved thermodynamical

properties of the black hole. Indeed, the Hawking temper-
ature is given by

(1)
fu 144/1=

Ty = =
U7 4r 7 8azy dy,

Determining the entropy using Eq. (39) requires specifying
the y-dependence of dy and ¢, and thus requires further
refinement of the model. To give a concrete example, we
shall consider y > 1 along with

=0Q")

that is, we are assuming only subleading corrections to the
classical Schwarzschild metric. We, therefore, find the
horizon position

and dy =y + O(;°), (97)

H—zx—ﬂwo( 2), (98)

and thus for the Hawking temperature

1 (37° = 16)¢h, _
TH_@|:1+T4)(2+O(X 3):|, (99)

and the entropy

372 — 16)¢
51022100

log(y*) + O (%)] + const.

(100)

This approximation exhibits a logarithmic correction, com-
patible with previous results in the literature [52-62]. We
remind the reader, however, that (100) is based on the
assumptions (97), which are related to the interior of the
black hole solution.

2. Extending the metric inside the horizon

Following our general philosophy, so far we have
considered the metric function only outside of the black
hole horizon and have used the horizon distance dy (and
Zy) as the only additional input that is required for the
interior of the black hole. Indeed, due to its definition (6),
the calculation of dy requires knowing the metric in the
interior of the black hole, which we have not specified up to
this point. In the current example, since the function (91)
can in fact be extended to the entire space-time (i.e. also for
p < 0), as is showcased in Fig. 1, one can contemplate the
possibility to use (91) as a model for the entire space-time.
Although this discussion is generally outside of the scope
of this paper, here we shall nevertheless make a few
remarks regarding this possibility. For concreteness, we
shall focus on ¢, > 0 in the entire Sec. IV B 2.
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As a first question, we may ask the behavior of the metric
at the origin. In order to get a better understanding of the
space-time described by (91) for z < 1, we may use a right
rectangular approximation for the integral of the proper
distance (6)

Z

VIf(2)]

which is an algebraic equation. Numerical analysis sug-
gests that there are no real positive values for (z, d(z)) that
satisfy this relation for small z when f(z) < 0. We have,
however, obtained the following solution of (101) for z(d)
in the case f(z) >0

Vzx 1,

d(z) ~ (101)

VAR 4 (=9¢%% + /=38 + 81677 )

Z
d 32/3 (-%% /3 + 8162%2) Y

= CoS l.alrcsin @
n 3 d

Lsin 1arcsin m
V3 3 d '

The function f, therefore, approaches +1 for d — 0, which
hints towards the absence of a singularity at the origin. To
verify this, we realize that the function z in (102) cannot be
expanded in a Taylor series for d. However, noting that [for
® given in (91)] for ¢, > 0 we have the limit lim,_,_,, e®
in an exponential fashion, we can (formally) write z/d as a
series expansion in powers of e®

) 2n—lr(3n2—1) ){e(l) n )(eq)

(102)

1
o,m)
(103)

n=1

We then find the Ricci scalar close to the origin

(o}
_ zfé,df 2 [dyd*(7d - 6dyy) + (3dyy = 4d)(d - diy b
+0(e*), (164

which is indeed finite in the limit d — 0, due to the
exponential suppression of ¢®. "While the above result of
the absence of a curvature singularity at the origin is very
encouraging conceptually, it also highlights another prob-
lem; indeed, if f(z) > O close to the origin and f(z) > 0
for z > zy, with a simple zero at zy, f necessarily has (at
least) one further zero in the interval z € (0, zy), more
concretely for p < —dy /3. In other words, the space-time

SWe have also verified that the Kretschmann scalar is finite at
the origin in this model.

described by (91) has at least one more inner horizon. At
the latter, we have to verify again if all necessary con-
ditions are met for the absence of a curvature singularity.
However, since (89) is only a minimal solution of the
conditions (35) (which are tailored to remove unphysical
singularities at p = 0), we cannot guarantee the absence of
a curvature singularity at this inner horizon. This problem

can be circumvented by allowing some of the (DZ” (for
n >4) to be nonzero. While we leave a more detailed
discussion for the black hole interior to further work, we
show in Appendix E how to derive conditions for the
absence of curvature singularities at an inner horizon.

V. LARGE DISTANCE EXPANSION

So far, we have focused on the consistency conditions
arising at and near the event horizon for generic static and
spherically symmetric black hole metrics. More generally
we have investigated the impact of these conditions on an
effective metric expanded in terms of a physical distance
from the event horizon. The range of applicability of this
theory is visualized via the green box in Fig. 2. The generic
metric (1) in (8) covers any distance from the black hole
horizon as represented in the blue box.

We now investigate an asymptotic expansion from an
infinite distance valid in the red box. This was considered
in [1] and extended in [28]

Zi, dy
p=0
\\ 2X€<I>(1/d)

/ 00 0
! Z {n/)n 2X (1 + Z :Z)

n=0 n=1

FIG. 2. Schematic division of the space outside of the black
hole in three main regions. The curved dashed line represents the
position of the event horizon. The blue region is where the full
nonperturbative form of the metric functions, given in Eq. (8) is
expected to hold (i.e. the whole space-time outside the event
horizon). For simplicity, we only give the expressions for f in the
figure, but a similar form also holds for 4. The green region is
where the metric is expanded as a convergent series in the proper
distance from the event horizon p, as given in Egs. (43) and (57).
Finally, the red region refers to the asymptotically large distances
from the event horizon, where the metric can be expanded in
inverse powers of the proper distance, as given in Eq. (105).
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where ,, y, are effective coefficients encoding the
deformation from the Schwarzschild solution, and the
physical distance d(z) is defined in Eq. (6). For n even
and y,, = w, we recover the metric and results of [1]. By
construction, the expansion ensures that the classical
black hole metric is recovered at an infinite distance while
its radius of convergence depends on the w, and 7y,
coefficients.

A. Convergence criteria and derivatives

We now investigate the impact of the event horizon
constraints (35) and (72) on the large distance expansion
coefficients w, and y, under the assumption that (105) is
convergent up to the horizon. In other words, we assume
that the red box in Fig. 2 extends all the way to the event
horizon. This imposes certain conditions on the coefficients
w, and y,, namely that the radius of convergence of the
series (105) is larger than the inverse distance of the horizon

lim sup|w,|s <dy and lim sup|y,|: < dy. (106)

n—oo n—oo

where lim sup denotes the limit superior. In the following,
we shall find it useful to rescale the coefficients w,, and y,
by d1"116
w, =o,d}, and y,=7,dy, Y neN, (107)
where @, and 7,, are coefficients of a series with radius of
convergence > 1.
The position of the horizon zj is determined by

AE%)
hizg)=1—-—-11+ Y. 1 =0
(z) - ;
2 o0
and f(zH)zl—Z—Z(l—i—Zcbn):O
H n=1

which leads to the following relation for the (convergent)
series

(108)

(109)
We also have

and ‘I‘HzlogZ}'/n. (110)

n=0

oy = logi&)n

n

Il
o

The first derivative of f for z > z; reads

"For the purpose of a large y expansion (see Sec. V C),
one could equally rescale by powers of the classical horizon
distance my.

fV()=

v_ 1( —f(2)+ Z n+1> (111)

dz
Even assuming (106), such that the sum is convergent for
all values of d(z) up to the horizon, this equation is still
divergent at z = zy due to the 1/ f(z) in the denominator. A
similar problem occurs for the first derivative of h.
Concretely, expanding both derivatives f(!) and h() in
terms of p [similar to Eq. (27)], we obtain

iH defH n=1
2 (o]
0 Zn n+1)a, + Op ))
Hf =
1 by &
) = — (1 + X(l) >t
H PAufy’ n=o

- 4)((1)in(n—|— 1)}7n+0(/’)>’ (112)

d%{f H n=0

which contain terms of order p~! ~ (z — z)™V/? ~ f71/2
that become divergent at the horizon. These can be
removed by requiring

> nw, =0 and > ny, =0 (113)
n=1 n=0
From the remainder of (112) we now find
(1 162 5.
=—11 1-
= (10155 S,
1 1 24 T~ o
and hYj) = —- oo (114)

where we have again chosen a solution for fg) which
corresponds to the Schwarzschild geometry for w, —
0 V n> 1. Comparing to the first equation in Eq. (30),
we have

o 2 d>
o2 = Ena) and‘PH—IHE n2y,.  (115)
=1 <H n=1

B. Horizon constraints

In order to make contact with the regularity condition
(72) in Sec. III A, we first need to express the coefficients
&, in (43) in terms of the @,,. For p € [0, dy) we can write
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1 &
5;§pp

1+Z dH+p

e w))

In order to extract the term of order p” on the right-hand
side of this equation, we use relation (C7), such that

0—2)(< Z >=ZH,

n+p—1)
b = dH P'Z

(n—=1)!
A similar analysis allows to express the coefficients 6, in
Eq. (57) in terms of the 7,

(116)

V p>1.

(117)

(118)

T8V (14 55, @,)

where in the last relation we have used (113). More
generally, the conditions (35) which guarantee the finite-
ness of the first and second derivatives of the metric
functions at the horizon, translate into

n=1 n=1

Znyn = 0 = Zl’lz(l’l + 3)}’,,,

n=1 n=1

- d? - 1 d
> nte, < > n%, U+ @)dy (120)
=1 16zx =l 8xzn

In Appendix B, we delve into the consequences of
imposing the condition that the function f(z) belongs to the
class CV(X), where X is the submanifold defined by z > z
and N > 2. We also remark that the more general con-
ditions (72) can be translated into conditions for the w,, and
7., using the identifications (117) and (118). Furthermore,
Appendix B provides a minimal solution for the system of
equations obtained by truncating the series in (105) after N
terms while imposing regularity of N derivatives of the
metric functions at the horizon. It also discusses the
limit N — oo.

C. Thermodynamics

Next we consider the Hawking temperature (37). Using
expressions (114) and eliminating z through the relations
(109) we have

Lﬂ (1 +Zy”> <§n27"> +

which is still complicated to evaluate directly. However, we
can gain more intuition into this temperature by expanding
for large mass y > 1. In this case, we expect that the
distance of the horizon compared to the classical case is only
modified by subleading terms, i.e. dy = my + 0(y), which
we assume to also hold true for the position of the horizon
itself, zz; = 2y + o(y). With relation (109) this implies

n=1 n=1
ie. lim @, =0 = lim Vn 122

(121)

1 —&fz (1 +i@n> (inza)n)
dH n=1 n=1

|

In the following, we shall furthermore assume that this is due
to a genuine scaling property of the coefficients @, and 7,
such that

limZn’chzoz mZnyn, vV reN. (123)
)(—>oon=1 - n=1

Under these assumptions, the leading correction to the
Hawking temperature arises from the terms

1 &
;Z 4” (wn+7n +” 0] )+

T
H= 871')( [ o

] (124)
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As an example, suppose that the proper distance can be
expanded for large masses as

dH:n;(< f+0 )) with y, €R. (125)

We then find for particular cases:
(i) For (wy,71) # (0,0)

1 o1 +4(r + o)
TH - 8— - 3
Y Ty

+@%VH§E;@DM+OGQ>.O%)

(ii) For w; =0 =y, and (w,,72) # (0.0)

1 < 7wy 4 16(r; + @)
Tyuy=—1\1-
H= g 12
Y 'ty

(27z w; + 6‘;{(57;22 + @)y Ly O();))

(127)

We observe that the leading correction to the Hawking
temperature is determined solely by the classical term in the
expansion (125) of the proper distance, with no dependence
on higher-order terms.

To compute the entropy, we resort to the first law of
thermodynamics (39), and we consider the two cases
examined above:

(i) For (wy,7,) # (0,0)

2(4
S:4;z)(2( 8}’1+ (4 + %),
iy
2(4y, + (4 +
+ ( yl (6 2” )wl) log(ﬂBZ_“'}/]
X
1
—@+ﬁmﬂ+OQJ>- (128)
(i) For @, = 0=y, and (a,.7,) # (0.0)
1 1 2
S=4ﬂ'){2< (67/2+<6+”)w2) (”)(2
e
1

We remark that this result corrects the mass ex-
pansion of the entropy provided in the previous
paper [1]. There, rather than using a self-consistent
approach as in the current work, an approximation of
the distance function (based on the distance function
of the Schwarzschild black hole) was considered.

This leads to a different conclusion for the sublead-
ing corrections of the entropy [as well as the
Hawking temperature (127)].

VI. CONCULSIONS

In this paper, we have provided regularity conditions
for generic deformations of static and spherically sym-
metric black hole metrics. Following [1,3] we have
considered deformations of the radially-symmetric and
static Schwarzschild space-time, which are described by
corrections of the metric functions as in Eq. (8). In order to
remain invariant under the same coordinate reparametri-
zations as the classical geometry, it has been proposed
[1,3] that these deformations are not arbitrary functions of
the radial variable z, but only depend on a physical
distance. Focusing on the exterior of the black hole
(i.e. outside of its event horizon), we have chosen the
latter to be the proper distance p measured from the
horizon."” Since p is defined through the metric function f
itself [concretely through the differential equation (41)], it
needs to be computed in a self-consistent fashion. In this
paper we have solved this problem in a region just outside
of the event horizon (which we assume to be located at zy
with distance dy) in two different fashions:

(1) In a first approach (see Sec. II A) we have assumed
that the first and second derivative (with respect to
the radial coordinate z) of both f and h at zy are
finite such that both functions can be approximated
by their Taylor polynomials (19) and (20) [which
also affords a finite expansion of the distance
function in Eq. (22)]. On the one hand, since the
derivative of p with respect to z is divergent at the
horizon, these assumptions lead to nontrivial con-
ditions on the deformations of the metric functions
as shown in Eq. (35).18 On the other hand, these
also ensure that important physical quantities are
well-behaved; indeed, the existence of the first
derivative of f and h (at the horizon) is required
for the finiteness of the Hawking temperature and
the existence of the second derivatives guarantees
that the Ricci-scalar (and Kretschmann scalar) are
finite (such that the black hole is free of curvature
singularities) at the horizon.

(2) The second approach (see Sec. III) is schematically
summarized in Fig. 3; we assume that (outside of the
horizon of the black hole) the deformations of the
metric functions allow for a series expansion in p,
as in Eqgs. (43) and (57), respectively. Taking the
expansion coefficients {£,} and {0,}, respectively,

"Other choices shall be considered in upcoming work [33]
(see also [32]).

"We have generalized these conditions in Appendix A by
assuming arbitrarily high derivatives of f to remain finite at the
event horizon.
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conditions eq.(72)

+
)
du
5 Curvature
£l R eq.(17)
e
;,f -§ solving Hawking
{6}, {0n} ea.(42) Tt eq.(37)
ote
== Entropy
% ’% S eq.(39)
{wn} o}
—/
input distance function physical quantities
FIG. 3. Schematic overview of the approach of Sec. III to

compute the distance function p and physical quantities of the
deformed Schwarzschild geometry.

as well as dy as input, we look for a solution of the
nonlinear differential equation (42) [which is equiv-
alent to (41)] in the form of an integer series; more
precisely, writing the radial coordinate z as an
integer series in powers of p [see Eq. (40)] we
determine all coefficients {a,} recursively in terms
of the coefficients {£,} and dy [see Egs. (52) and
(53)]. Through series reversion, this allows to write p
as the series (54) in half-integer powers of (z — zy),
whose coefficients {b,} are given in (55). These
expressions finally allow us to compute the Ricci
scalar (as well as other physical quantities) in the
vicinity of the black hole horizon. Finally, the
consistency of this procedure, as well as the absence
of a singularity of the Ricci scalar at the horizon
impose the nontrivial conditions (72) on the ex-
pansion coefficients {&,} and {6, } of the deforma-
tion of the metric functions.
Both methods yield compatible results. They are based on
assuming regularity of certain quantities (up to a given
order) at the horizon and (apart from dy) only require
information about the black hole outside of the event
horizon. They allow us, however, to derive non-trivial
physical quantities of the geometry (curvature scalars such
as the Ricci and Kretschmann scalar) and the thermody-
namics (notably the Hawking temperature and the entropy
of the black hole). We have tested the conditions (35) in
the case of the black hole metric proposed in [3] and find
that they are violated: indeed if considered as a geometry
that is self-consistently defined, it leads to a divergent first
derivative of the metric functions at the horizon, which
poses problems for the thermodynamic interpretation, as
well as a curvature singularity at the horizon. While in [3]
“approximations” have been proposed that indeed render
the geometry well-defined, these correspond to a modi-
fication of the metric deformations that adhere to the
conditions we have found in (72). Along these lines, other
examples can be studied and we have discussed a minimal
solution to these conditions.

Finally, making contact with [1], we have considered a
(generic) asymptotic expansion of the metric deformations
in inverse powers of the proper distance (105). Assuming
that the radius of convergence of the latter is sufficiently
large such that these series are still valid at the event
horizon, we have used the previous formalism to convert
the conditions (35) on the deformation functions into
nontrivial relations among the asymptotic coefficients
(120). We have furthermore also expressed the Hawking
temperature in terms of these coefficients in a consistent
manner in Eq. (121), thereby correcting previous approx-
imations in [1].

In this paper, we have established a framework that is
applicable to (quantum) deformations of the classical
Schwarzschild space-time in a model-independent
fashion and moreover allows to extract certain physical
quantities. We have established nontrivial conditions for the
deformations themselves, which can be translated into
constraints in the context of concrete quantum gravity
models.

One of the most intriguing future directions is to extend
our methodology to include charged and spinning black
holes. It would therefore be interesting to revisit the
work of [36-38], on Taylor expansions for generic tensor
on curved backgrounds. Generalizing our deformation
approach to the classical Kerr and Reissner-Nordstrom
geometries is a natural next step, which could reveal new
insights into the behavior of quantum-deformed black holes
with other hair parameters [16,17]. Beyond black holes, our
approach is applicable to various other space-times, such as
anti—de Sitter spaces and even models of cosmology, for
example in the context of cosmic inflation [63-66].
Additionally, our work opens up intriguing possibilities
for studying the interior of black holes (a first hint of which
is provided in Appendix E) and the fate of the singularity
at the origin within the context of quantum-deformed
geometries [67].

From a broader perspective, our framework offers an
exciting opportunity for quantum gravity phenomenology.
By systematically extracting physical quantities and com-
paring them with observations, we can test and constrain
concrete quantum gravity models, bridging the gap
between theoretical concepts and experimental verifiability
[68,69]. Finally, it is interesting to explore the applicability
of our approach beyond the realm of (quantum) gravity, for
example in the context of dyons and monopoles in gauge
theories.
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APPENDIX A: REGULAR HIGHER-ORDER
DERIVATIVES

In Sec. I A we have derived the conditions (35) by
assuming that the first and second derivatives of the metric
functions f and h are finite at the horizon zy. In this
appendix, we explore further conditions that stem from
assuming that also higher derivatives (i.e. beyond the
second) are finite. For simplicity, we shall focus on the
function f, while the same considerations also apply to 4.
Concretely, let N €N and let us assume that all derivatives

fg;) forke{1,...,N} at z = zy are finite. This allows us to
go beyond (19) and write

1. Distance function

Inserting the expansion (Al) into the differential equa-
tion (41) yields a series expansion of p in powers of z — zy

2N-1

p="> bilz=z)"* + O((z = zu)").

k=1

(A2)

which generalizes (22). The coefficients b, of this series
can be found as the solutions of the differential equa-
tion (41) up to order N, which we rewrite in the form

() 7

The right-hand side of this equation has a simple pole at
7 = zy and we can write the Laurent series expansion

(A3)

N-

Z Cn(z—zg)" + O((z— zg)N ),

eR. _ (A4)

l\)

L
f(2)
with 2,

Multiplying both sides of this equation by (z — z;) and
taking the limit z — z, we find for the leading coefficient

£, =1/ fg). To extract the remaining coefficients, we
consider the relation

d 1 __Lg
f(Z)d*Zm— f(z) dz (AS)

and expand both sides in powers of (z — z). Comparing
order by order we then find

N (k)
70 =3 (= )+ Ol =2
dn
with .= 97 (A1)
dZ =y
|
A
bo=- DY O
2fu 2(fy’)
gy—— =L | D SR g +”§*:‘fp_k+1f§§)
: (PJr])fg) (p+2)! = (p—k+ 1) =

I1<p<N-2,

k=1 | == (A6)

which fixes the coefficients £, iteratively (in terms of the fﬁ;ﬁ). Inserting (A4) into (A3), we find the following recursive

structure for the coefficients b,

2
by =2\/f_, =—=—— b,=0,
)
H

2
(25+3)b, [ P

1 2541 n(2s—n+3)
RGO Zn:Z 4 bans—n+3

£ — Zis:'zz n(251ﬂ+4) bnb2s—n+4] if P = 2s+3€ Nodda

3<p<2N-1, (A7)

ifp:2s+2€N0dd,
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which allows to fix them iteratively in terms of the f;';).
Since b, = 0, the recursive structure in (A7) implies that
by, = 0forse{l,...,N —2}. For the odd coefficients, we
find for the first few instances (for sufficiently large N)

> 7@
by = (Dy1y2° by = _6 ({i) 3/2
(') (fu")
9fi7)* - 8f‘f}>f<3> (48)
240(f4)))3/>

These results are indeed compatible with (22) for the
case N = 2.

2. Conditions for the regularity of higher
derivatives f™

The results of the previous subsection can be used to
derive necessary conditions for the function e® such that
the first N derivatives of the function f (with respect to z)
are finite, which is required for (Al). Assuming an
expansion of the latter of the form (43), we have with (A2)

2N-1

1"2&(2 bi(z—zn "“) +0((z—zu)"),
(A9)

which is only a function of z. Due to the fact that this
expression contains half-integer powers of (z — z), deriv-
atives of f can contain negative powers unless certain
conditions for the coefficients &, are satisfied. To understand
these conditions, we first rewrite the summation in (A9),
taking into account that b, =0 for s€ {1, ...,N =2}

N-1 2m
" <Z by (z = ZHV)
r=0

2m—1

1 &
flz) =1 _EZ§2m<Z_ZH)

m=0
1 N

N-1
T Z Som—1 (Z by (z - ZHV“”)
r=0

m=1

+ O((z = zm)"). (A10)
With the expansion of 1/z
1 &L (=)
- 72 z” (z—zp)"+ O((z—zy)"Th), (A1)

n=|

it is clear that the terms in the first line of (A10) contain no
half-integer powers of (z — z) and thus cannot contribute
to singularities of derivatives of f at z = zy. The terms in
the second line of (A10), however, contain terms that lead
to negative powers of (z—zy) for derivatives of f.

The conditions to eliminate these singular terms for all

f%{) for ke{l,...,N} are therefore

ijn_1:0 \4 I’le{l,...,N}. (AIZ)

To see this, let s€{l1,..., N} and assume that &,_; # 0,
while &,,_; =0V me{l,...,s —1}. In this case, fg)

has a singularity of the form (z — z;)~"/?
ds . it
@) = =Bt 2 4 Ol(2 - 7))
b7 dz
(25— 1)1

+O0((z - zy)°). (A13)
Absence of this singular contribution therefore requires
525—] =0.

Using (46), the conditions (A12) can also be rewritten
as conditions for the derivatives d>gl). For completeness,
we exhibit the first few such conditions (for sufficiently
large N)

o) =0, @ =-64,07
3

") = 480430 — 204, (Al4)

which are indeed compatible with (35).

APPENDIX B: TOWARDS A FULLY
REGULAR SOLUTION

In this appendix, we consider a particular solution for the
consistency conditions found at the end of Appendix A. We
consider a metric function f(z) of the form (8), with
deformation e®), which is N-times differentiable (with
N €N) in the region z > zy, i.e. outside of the horizon of
the black hole. This allows us to define the Taylor
polynomial of f for large z

(B1)

which we shall assume to be a satisfactory approximation
of f for all z > zy. In this case, the consistency conditions
at the horizon take the form of the following linear system

ke{O, ...,N—2},

and Zn+2k O,

n—l

(B2)
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FIG. 4. Left panel: coefficients a, for low values of n. The black dots represent max(|a],...,|ay|), while the black

dashed curve represents the enveloping value according to Eq. (B7). Right panel: evaluation of |a, | in Eq. (B6). The dashed

line represents the value 3/+/5.

where we have used the rescaled coefficients @,, defined in
(107). Furthermore, zy(N) is the position of the (external)
event horizon computed from the Taylor polynomial (B1),
which is therefore implicitly a function of N.

For fixed N, the system of Eq. (B2) uniquely fixes the

coefficients @,, for n=1,...,N, and we have found
empirically
N)-2
B, =2 o (), (83)
2y
with

n—

a,(N) =Y _(-1)°

s=0
V ne{l,...,N},

<n -1 ) Val(N +3%)
s JTN=TG+ 1)’
(B4)

which we have tested up to N = 250. The individual
coefficients a,, are plotted for low values of n in the left
panel of Fig. 4.

For N — oo individual coefficients are divergent, for
example, the leading contribution behaves as

Nn/2

for n<N.
)

ay ~ (_1)”_1\/;7;

(85)

For given N, the largest coefficient (in terms of its absolute
value) appears to be

N-—-1
max (jay |, .o [ay]) = [y | With 7y = {—J i

3

Mmax |

(B6)

Numerical evaluations (see right panel of Fig. 4) suggest
that this coefficient behaves as

4\ N i 3
~agl = with oy~ —.
0 3 0 \/5

Therefore, for (B2) to make sense also for large N, i.e. to
yield finite @, the difference z5(N) — 2y needs to tend to
zero as well. Indeed, divergent coefficients @, would
indicate the nonexistence of the derivatives of f up to
order N and therefore contradict our initial assumptions.
For example, using (B7), in order for all the coefficients @,
(forne{l,...,N}) to remain finite (and not tend to 0), we
may choose the following asymptotic form for the differ-
ence of zy and the classical position of the horizon

ZH(N) —2)( 3\ NV
AL N =
2y 4

(B7)

a
‘ Mmax

(B8)

for some constant §, € R. The results are shown in Fig. 5.
Indeed, for large N, i.e. for a metric function that is
infinitely differentiable for all d > dy;, the solution simply
approaches 6 — 0, i.e. simply leads to the Schwarzschild
black hole.

Notice, that through (B8), the condition of an infinitely
differentiable metric function outside of the horizon,

6
1.0F

08l .
06
04/

02l

0.2 0.4 0.6 0.8 10 d

FIG.5. Function @ in Eq. (B1) for different N and for the choice
S0 =4/3.
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imposes a nontrivial condition for the position of the
horizon. Through

7y dz
dy =
" / 7@

the latter in principle enters also into relations containing
the metric function inside the black hole horizon.

and  f(zy) =0,  (BY)

APPENDIX C: SERIES RELATIONS

For convenience, we compile several series identities in
this appendix, which are too lengthy to be presented in the
main body of the paper.

1. Series expansion of inverse radial coordinate

In this appendix, starting from the series (40), we express
the inverse radial coordinate as a series expansion in p.
More precisely, we determine the coefficients p,, in

Differentiating both sides with respect to p and multiplying
by z, we find

dz

z2(p)P(p) = —P(p) O (C2)

which with (40) becomes the following series identity

<ZH + Z a, pn> (Z mpm pm—l>
n=2 m=1

= - <Z ‘pm pm> (Z nay pn—l> .
m=0 n=2

&)

(C3)

— 1 "
pP=t N _E (

Rearranging both sides of this equation, we find

0= zypy +2(zuPs + axpo)p + Z(P +1)

p=2
p-1
X | ZaPp1 + Podpir + Z‘pmap+l—m pr. (C4)
m=1
Order by order we therefore obtain the relations
)
a, a, 1¢
:Os —— 5, i e a,_p, V 23.
‘pl p2 Z%—] 'pp Z%—] ZHmzz:IPm p—m p
(C5)

2. Power of a power series

For pe€[0,dy) and neN, we consider the following
power series

S S

k=0

For the coefficients ¢, we find the following explicit

expression

0 k\ n
o= (S (-2 IR AWE Y A
! k=0 dy pP dy p

B 1\ (n+p-1)
"\ dy] pln-11"

For p = 0, we indeed have ¢y = 1. In order to show (C7)
for p €N, we begin by demonstrating

For p > 1 it can be verified for all (finitely) many values of £ € {0, ..., p}, concretely:
(i) For £ = 0 both sides are vanishing, since we use the convention 1/((—1)!) — 0.

(i) For £ =1 we find directly

which indeed agrees with (C8).

(p—1)! v peN,
p=O (-1 vV £€/0,...,p}. (C8)
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(iii) For general 2 < # < p we have
pp—l’—uz—u-—uf )

X - X ... X -
k=0 dy P k=0 dy

The last summation can be rewritten in the form

1 p_f p—f
=(-— 1.

up+-tup<p==t

p=t =t ki kes p=¢ ki ke_3 kpy +1
SIRES DD DIEES 3D I SLED ) DD B (i |
w,.. =0 3. =0 =0k,=0  ky_;=0 =0k,=0  ky_r=0 =2

uy+tup<p==t u3+ Fup<ky

which, upon using the identity

S () () veen 10
leads to
PO e T e

uy+-tup<p=t

This result therefore indeed demonstrates (C8).
With the result (C8) we can prove (C7) (for p > 1). To this end, we consider

S4)) SEC)EC))
LS
OIEE))

PP

] ] (C12)

E(-2))

1minn,p) n p 1 p n+p—1
TO0- ) e

3. Series expansions for & # 0

which indeed demonstrates (C7).

For completeness, we shall generalize the approach of Sec. IIl A also to accommodate functions e® such that the
coefficient &; # 0 in Eq. (43) is nonzero. Indeed, assuming that z ~ z5 + O(p?) for some p € R_, for the left-hand side of
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Eq. (42) to have a term of order O(p) requires either p = 1 or p = 3/2. Since we have seen in Sec. IIl A that p = 1 still
requires &£; = 0, we shall here explore the case p = 3/2, i.e. instead of (40) we shall consider the expansion

=z + Y a,p% with a,€R V neN, (C14)
n=1

which as before we assume to have an interval of convergence p € [0, p,) (with some p, > 0). We then obtain

dz\? 9 o as AA 2| A ;o 15
z| 1= & =2~ P +p (a1 = 625018y) + p° |8y — 2y 4az+70103

am&p—k—m—2:| . (CIS)

9 . o . . 15, .
g =&0.61 = —ZZHCI%7 0=a, —6zya,a, b =a—zy (441% +_a1a3>’ (C16)

2 1 1-18
4 =2, -5t 4= 7 :%Hf? (C17)
3 H 6zy 135a,z3

The coefficient @, is real only for £; < 0. In the case &; > 0, there exists no real solution of (42), which is of the form (C14).
In the following, we shall assume &; < 0 and furthermore pick the positive sign for @, in (C17); indeed, for the negative
sign, the function z(p) would not be monotonically growing for p > 0.

Comparing the remaining terms in (C15) order by order, we can express a,_; in terms of a; with k < p —1

which has solution

[\

|
Q

(oY)

. 2 . Z”‘2<m+z><p—m+zx .
ap 1 = 57— 15 |4p—2—7% A Qo
PN Bagz(p 1) | 4 4
P E m+2)(p—k-m), 0 if p &€ Nogq
- ag 4 Anlp_f—m-2| — 28, if N (Cls)
k=1 m=1 3,z (p+1) I p € Neyen-

4. Examples

To showcase the approach developed in Sec. III A, we consider three simple examples, corresponding to different choices
of the coefficients &,.

a. Schwarzschild distance

The simplest choice is to set £, =2y and £, =0 V n > 0, which corresponds to the Schwarzschild black hole (i.e.
e® = 1). In this case, we also choose z; = 2y and dy; = my. Using (52) and (53), the first few coefficients a,, (and their
reversions b,) can be tabulated as follows:

n=1 n=2 n=3 n=4 n=>5 n==~6
a 1 _ 1 11 _ 73 887 _ 136883
2n 8y 384y° 92160y° 103219207 1857945600,° 3923981107200y
b VoXy _1 __ 1 L __ 5 1
2n—1 2v2y WG 072 24,3 1608V, 252801
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P
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15 |-
10}
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10 12 14 16 18 20

FIG. 6. Comparison of the series expansion (54) up to order
O((z = z7)°~1/2) (dashed black line) to the analytic result
(C20) (red curve) for y = 5. The blue line 4y =20 denotes
the boundary of the interval of convergence for the series
expansion.

which allows to compute a series expansion of the distance
function, as in Eq. (54). These coefficients have previously
been obtained in [70,71] (see also [72]) in a different context,
namely solutions for free-falling bodies in Newtonian
gravity. We have verified up to (z — 2y)3*~1/2 that these
coefficients follow the pattern

(=1)" (21— 5)11
V2 47 22n - 1)(n = 1)

bous = (C19)

such that the series expansion of p in terms of (z — zH)l/ 2

has an interval of convergence of z €[0,4y]. A graphical
example (for y = 5) is shown in Fig. 6, with an expansion up
to order (z — z7)°®~!/2. We have furthermore verified that
the coefficients b, agree with a series expansion of p(z);
indeed, in the case of the Schwarzschild geometry, the
distance p can in fact be computed in closed form as a
function of z [see Eq. (81)]

2
= \/z(z —2y) + 2y arctanhy/ 1 — /4 for z > 2y,
z

(C20)

allowing us to verify whether (54) is indeed a good
representation of the distance function (see Fig. 6).

b. Bonanno-Reuter black hole

For the choice (77) of the metric deformation (along
with f = h), the coefficients £, in the expansion (43) are
given by

peo

2d,
50 - ~ 9’
@+ dy
(5+1]
(—l)”2}( ¢ ‘ n+1 > ok -
[ L . A — _1 dn+ k k’
= ot ) ,;( Maxoy ) o
Y n>1. (C21)

Here the interval of convergence (for @ < 0) is given by

|d%+a| 4 d
,dﬁi@). since & = " ”2 #0, the

results of Sec. III A cannot be directly apphed. However,
as explained in Appendix C 3, for @ < 0 (such that £; < 0),
this approach can be adapted, leading to a series expansion
(C14) with coefficients a, in (C17) and (C18). This
expansion provides a solution of the differential equa-

Moreover,

tion (42) [albeit with a divergent first derivative fg) of f at
the horizon]. Inversion of the series (C14) leads to an
expansion of the proper distance to the horizon of the form

o0

PBr(Z b,(z— ZH ,
n=0

(C22)

where for concreteness, we provide explicitly the first few
coefficients

1 35 (dy + @)

L ,
0 &%/3 24/3( dH)(CO)l/S
L 24, (dy+@)? . 742 — 64,4s
by =75= 71161d poal) by=—2 103 - (C23)
3a1 HX @ 9(11

A numerical plot of the three different distance functions
used in Sec. [IVA for the Bonanno-Reuter black hole is
shown in Fig. 7.

o
— ()
06+ — (i)
—— (iii)

0.4}

. : —_— 5
10.085 10.090 10.095 10.100

FIG.7. Comparison of three different distance functions for the
Bonanno-Reuter space-time: (i) pgr [represented by the expan-
sion (C22)], (ii) the Schwarzschild proper distance ps = dg — dy,
and (iii) the approximating function xgg — dy in Eq. (84). Here
we have chosen ® = —1, y = 5 and zy = 10.08 and dy = 12.96.
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¢. Minimal example

As a last example, we consider the metric function
characterized by the minimal choice (89), leading to the
function @ in Eq. (91). In order to make contact with the
approach in Sec. I1I, we first remark that the coefficients «,,
in the series expansion of (91) [see (44)] are explicitly
given by

(=D)"(n=1)(n=3)

2dt?

Ky = — $r. V¥ n>0. (C24)

Therefore, the series expansion (44) of (91) has interval of
convergence p € [0,dy). Using (46), the coefficients «,
allow to calculate the expansion coefficients &, of e®. The
first few &, read explicitly

34, D

2 % 5
So=2ye li’, &1 =0, fzzd—4¢2e d?*, &=
H

0, (C25)

which therefore satisfy the conditions (67), as expected.
The leading coefficients a,, in the expansion of z(p) in (40)
therefore become

a0 — 1+w de — — ZH¢2
T 8y T d (14 3w)’
1 ((1+@) 92113
_ , C26
“4 1—|—2w< 25675, d5(1+ 3w)? (C26)

where we have again used the shorthand notation
w = +/1 — 16z4&,. The series inversion yields the follow-
ing coefficients for the distance function (54)

b 222y B 32730,
TVt o 2T (1 + w1 +3m)

d4(1 4+ @) (1 + 3w)3 + 2562%(19 + 29w )3
22zud5, (1 +@)*(1 + 2w)(1 + 3w)?

3 =

(C27)

APPENDIX D: FURTHER EXAMPLES

In this appendix, we discuss two further examples from
the literature that describe nonsingular, static, and spheri-
cally symmetric black holes: the first is the Hayward black
hole [8] and the second one is the Dymnikova space-time
[73]. Although we are aware that these examples do not
exhibit any divergent physical quantities, it is still interest-
ing to demonstrate how our approach can be applied to
deformation functions that explicitly depend on coordinates
other than the proper distance.

1. Hayward black hole

We begin by examining the Hayward black hole, which
was introduced in [8] as the first model to describe a

nonsingular black hole (notably at the origin) without
committing to any specific modification of general rela-
tivity. The metric function for the Hayward space-time can
be written as

(D1)

f(z2)=h(z) , ¥V 2€[0,00),

2yz
= = 1 —_——

where y is a free parameter that determines the scale at
which the departure from the classical Schwarzschild
solution becomes significant [74]. Here we assume fi,,
to hold in the entire space-time. From the metric element,
we can directly deduce the form of the deformation
function, which explicitly depends on the coordinate z
rather than the proper distance d,

3
= a0 D2
b + 2y (D2)

The Hayward space-time exhibits two event horizons,

indicated by the existence of two zeros of the function
S Hay- The position of the outer horizon is

2 1 2
g = % (1 + 2cos [garccos (1 —%)]) (D3)

Furthermore, the proper distance can be computed using
the integral expression (6),

=[]z

Numerical evaluation of this integral suggests the fol-
lowing form of the distance of the horizon for large values
of y

24 2y
2 -2 +7)

‘di (D4)

dy =mr+ciy?Iny + O(°).
¢, = 0.3334 =+ 0.0002,

with (D5)
c; = 0.4999 £+ 0.0002.

More importantly, the distance (for a generic point outside
of the horizon) can be expanded in powers of (z —zy ),
which takes the explicit form

| V2 20T
%&u%@%+—4m0
x5 =142 vr + 477
3V2(zu 424 = 410))?
+0((z = z..)7?).

= dH,+

dHay,ex

(z— ZH,+)3/2

(D6)

024045-27



DEL PIANO, HOHENEGGER, and SANNINO

PHYS. REV. D 109, 024045 (2024)

A comparison between the numerical solution for the
distance function (D4) and (D6) is shown in Fig. 8.
Using expansion (54) we can read off the coefficients b,
from Eq. (D6) and express them in terms of the a,,’s using
the recursive relation listed in (55)

o V20 +2n) as
2 - 5 — VU,
\/ 2+ x(2hy 4 —4rx) 24;
5a3 —4ayay  x(2, — 14z vy +4r%°)

8ay/? 3V2(zux (G —4rx)¥?

(D7)
Solving this system yields the solutions for a,, a;
and ay

_ ik (Ey —4)
2z +2r0)*

az a; =0, (D8)

=Pz + 18y 2 — 60y 167 P 7y

801 —— diyy

60
50

D
SAO| dy

30

20

FIG. 8. Comparison between the proper distance in the
Hayward space-time [blue, calculated using Eq. (D4)] and
the proper distance in the Schwarzschild space-time dg (green)
for specific parameter values: y = 10 and y = 3. The dashed
orange line corresponds to the Taylor series expansion of the
proper distance from the event horizon, obtained from Eq. (D6).

2,44

Qg

3845y + 1225, + 120722, + 48077220, + 96073725, + 9607 5 Ty,

(D9)

Plugging these coefficients into the series (54) allows us to write z as a power series in p and then expand around p = 0

2xz(p)’?

ZH+

2(p)* + 27 2yy + 3;.,)*

N vt (T2 + T2ypayy = 20477228, + 11275723, L)

67)(32;1,+ (Z?-I.+ —4yy) 2

from which we can read the coefficients &,. In particular,
we obtain

_orzy (T — )

1 O>p°), D10
|
2}( ey
£2) = h(z) = Foym(2) =1 = Z (1 = e22)
with & 2% (D12)
and £&=0. (DI11) vV z2>0,

£ =0, &=
' ? Qrr+z3.)*

Alternatively, we can use the last relation in Eq. (50) and the
recursive relation in Eq. (53) for p = 3 to determine the
values of the coefficients &, and &;. By doing so, we can
establish that the Hayward space-time satisfies the condition
(67). Consequently, it is not surprising that the Ricci scalar
and the Hawking temperature in this space-time are well-
defined and free from singularities at the event horizon z . .

2. Dymnikova black hole

We now turn our attention to the Dymnikova space-time,
which was proposed in [73,75]. This space-time describes a
static, spherically symmetric nonsingular black hole
embedded in an effective energy-momentum tensor. The
metric function in the Dymnikova space-time is given by

which (as for the Hayward black hole) we take to hold for
the entire space-time. Also, similar to the Hayward black
hole, the parameter z, ensures the regularity of the
solution near the origin. Additionally, the density profile
of the effective energy-momentum tensor is chosen such
that the metric possesses a de Sitter core. Furthermore, the
Dymnikova space-time possesses two horizons, which for
large masses are located at

2 =2(1=O(e™/%)) and zp_ :2)(<1 —(’)(é—;)).

(D13)

We find from (22) that the power series expansion of the
proper distance has the following form
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dDymn,ex = dH,+ =+

+0((z = z1.4)?)-

22T T A il Vs RS Y
) 2 3/2 \X T <H +
V2w - e Ry 3gy ) 24+ T (=2 =32/ 2)
(D14)

In Fig. 9 we provide a numerical approximation of the proper distance using the definition (6) and compare this expansion
for z > zy ;. Furthermore, we can recover the coefficients a,, a; and ay

e‘zim/z)‘z(z’(ZXZ%(eZ;"*/Zﬂ(Z’ —1) =32 )

a, = , a; =0, D15
2 4Z(2)Z%.1’+ 3 ( )

eI (D022 (%3 — 1) = 373, )(976 | — 8274 (/5% —
. i ) - 35h,) (0% = 87 ) o16)

384)(10ZH’+
As for the Hayward space-time, we can expand the function 2y (1 — ¢=%?)’/%') around p = 0,
36_1?1*/)“3 2 22 ezi1.+/2){zé -1) - 323
(1 = /) =y 4 Grler V230 2 o (D17)
20
from which we read off the coefficients &, &, and &;
3e T 15 (222 (e /%5 — 1) — 323 .,)

§1 =0, &= =~ and & =0. (D18)

We observe that the conditions stated in Eq. (67) are
satisfied in the Dymnikova space-time as well, leading to
the same conclusions as those drawn for the Hayward
black hole. These conditions ensure that the Ricci scalar
and the Hawking temperature remain well-defined and
free from singularities at the event horizons, which is
indeed the case for this space-time.

801 — dpymn
== dpymnex
701 — ds

T 404 dut

ZH.+

FIG. 9. Comparison of the proper distance in the Dymnikova
space-time, computed using the definition (6) (blue), with the
proper distance in the Schwarzschild space-time dg (green) for
x = 10 and z; = 3. The dashed orange line represents the Taylor
series expansion of the proper distance from the event horizon, as
given by Eq. (D14).

4zg

APPENDIX E: CONDITIONS FOR REGULARITY
AT INNER HORIZONS

The sufficient conditions (35) in Sec. II for regularity of
the Ricci tensor at z;, have been derived assuming that the
latter is the position of the outer horizon; notably, we have
assumed in various instances that f(z) > 0 for z > zg.
Generalized Schwarzschild BHs, however, may have fur-
ther horizons, which are characterized by a vanishing of the
function f(z) in (1), such that the derivative of the distance
(6) diverges. The latter can (in the same way as discussed in
Sec. II) lead to curvature singularities that are physically
not acceptable. Assuming that the form of the metric
functions f, h are still of the form (8), the presence of
an inner horizon, therefore, puts further conditions on the
functions @ and W. We can obtain these conditions by
straightforwardly generalizing the discussion of Sec. IL
Here we shall briefly exhibit them, assuming a black hole
with two (simple) horizons at zy 4 (withzy . > z H,_)19 and
distances dy . and dj _, respectively.

For simplicity, we consider the conditions that f, :=
f(zg—) and f, == f"(zy._) are both finite, with f; < 0.
Concretely, we write

"Here Zy+ 1S understood to be the position of the
outer horizon, which we denote by z, throughout the remainder
of this paper.
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70 = file = 2 + 2 (= 20 2 4 0l(z = 20 )
for z >z _. (El)

Furthermore, we define

d=:dy_+&(z), with &(z) = 2‘2_sz’_
-
_ 32
e !

For z > zy _ we therefore find

_h

z2=12 52

Mo iae).  ®@)

and thus we have the following conditions

do do d’o
I - 0, —3 + H—- 712 - 0, (ES)
dy Y=o dy dy
which can be expressed in terms of the @) [where we have
already taken into account (35)]
0= (7dy,d 3d? 4d?, ) e
= H, H,— —_ . —_ - _—
+ H+ H dH,J[%{,_
S dH v —dp )" (n)
* “— (n—1)dy Lay! '
0= 42(dH_ - dH+)<I>(2)
I zoo: n+4)dy, —6dy_|(dyy —dy )" Q)
n= L(n = 1)d}2dj;?
(E4)
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