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Quantum gravity theories predict deformations of black hole solutions relative to their classical
counterparts. A model-independent approach was advocated in Binetti et al. [Effective theory of quantum
black holes, Phys. Rev. D 106, 046006 (2022)] that uses metric deformations parametrized in terms of
physical quantities, such as the proper distance. While such a description manifestly preserves the
invariance of the space-time under coordinate transformations, concrete computations are hard to tackle
since the distance is defined in terms of the deformed metric itself. In this work, for spherically symmetric
and static metrics, we provide a self-consistent framework allowing us to compute the distance function
in close vicinity to the event horizon of a black hole. By assuming a minimal degree of regularity at the
horizon, we provide explicit (series) expansions of the metric. This allows us to compute important
thermodynamical quantities of the black hole, such as the Hawking temperature and entropy, for which
we provide model-independent expressions, beyond a large mass expansion. Moreover, imposing for
example the absence of curvature singularities at the event horizon leads to nontrivial consistency
conditions for the metric deformations themselves, which we find to be violated by some models in the
literature.
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I. INTRODUCTION

Black holes are solutions of general relativity (GR) with
an event horizon, which potentially conceals a central
singularity. While quantum corrections are expected to
modify these solutions, our lack of a comprehensive theory
of quantum gravity makes it challenging to provide precise
details about these corrections. Over the years, numerous
proposals for black hole deformations have emerged,
drawing from both fundamental theories of gravity and
effective approaches [1–15]. Notably, certain previous
works [1,3] have put forward deformations of the
Schwarzschild space-time geometry, incorporating quan-
tum corrections in a manner that allows for the formulation
of universal statements.
Concretely, spherically symmetric and static space-time

metrics are characterized by two functions f, h of a radial
coordinate [16–19]. We shall measure the latter in units of
the Planck length lP and denote it z. In general, assuming

that h ≠ f allows for the description of a wide range of
classical scenarios [20]. This includes the Tolman-
Oppenheimer-Volkov space-time for compact objects
and stellar environments [21–24]. A horizon in these
geometries corresponds to a zero of the functions f and
h, which, for simplicity, in this work, we shall consider to
be a simple zero. Asymptotically flat geometries are
characterized by the fact that both f and h tend to 1 for
large values of z.
Quantum corrections to the geometries mentioned

above can be incorporated as deformations of the classical
functions f and h and the precise form evidently depends
on a concrete model of quantum gravity. Nevertheless,
inspired by the renormalization group framework [25–27]
it has been argued in [1,3,28] that universal, model-
independent statements about physical quantities in
spherically symmetric and static quantum black holes
can be made by demanding independence with respect to
spurious scales. Notably, in order to preserve the invari-
ance of the geometry under coordinate transformations
(similar to those in GR), it has been advocated to write the
deformation functions in terms of a physical quantity.
While the concrete choice of the latter is to some degree
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ambiguous,1 a natural choice in the context of static,
spherically symmetric geometries is the proper distance
from the center of the black hole. However, since the
proper distance is defined in terms of the (deformed)
metric function f, this prescription leads to an implicit
definition of the quantum geometry. This issue has been
addressed in previous works through different approx-
imations: either by replacing the proper distance with a
simpler function of z (see [3]) or by assuming a very heavy
black hole [1]. In the former case, the approximated
distance generally no longer represents a physical quantity
and therefore constitutes a conceptual departure from the
above-mentioned logic. In the latter case, quantum cor-
rections to physical quantities are suppressed by inverse
powers of the mass.
In this work, we provide a framework that allows us to

compute the proper distance near the event horizon in a
self-consistent fashion without the need for approxima-
tions. The framework assumes a certain degree of regularity
of either the metric functions or the proper distance, such
that they afford series expansions, at least up to some order.
Furthermore, apart from the proper distance of the horizon
from the center of the black hole dH, the framework only
requires information about the black hole exterior, which is
encoded in the deformations of the metric functions.
Concretely, within this setup, we find explicit solutions
of the nonlinear first-order differential equation that defines
the proper distance in terms of the metric functions. These
solutions completely determine the space-time geometry
near the event horizon, which in turn allows us to compute
the thermodynamical properties of the black hole, namely
its Hawking temperature and entropy. Further assuming a
dependence of dH on the mass of the black hole, we
calculate mass expansions of the Hawking temperature,
correcting previous results in [1].
Furthermore, using this framework we find nontrivial

conditions of the quantum-deformed black hole geometries.
On the one hand, regularity of the first derivative of the
metric functions is required to render the surface gravity
well-defined, which in turn is required for the Hawking
temperature to be well-defined [34]. However, this is not
automatic but requires conditions on the metric deforma-
tions. On the other hand, the absence of curvature singu-
larities at the event horizon also imposes nontrivial
constraints: these can either be found by demanding finite-
ness of the second derivatives of the metric functions (which
provides sufficient conditions) or by calculating series
expansions of the Ricci and Kretschmann scalar close to
(but outside of) the exterior event horizon. These generically
exhibit divergent contributions which can only be removed

if certain conditions for the metric deformations are met. We
formulate these various conditions in the form of constraints
on the original input parameters of the black hole geometry
as mentioned before. Checking these conditions for certain
examples in the literature, we find that they are not always
respected. Indeed, the quantum black hole model proposed
in [3] (which we shall refer to as the Bonanno-Reuter space-
time) is based on a deformation of the metric functions that
violate the above-mentioned conditions. This means, treat-
ing the Bonanno-Reuter space-time in a self-consistent
fashion leads to an ill-defined Hawking temperature as
well as a divergence of the Ricci scalar at the event horizon.
While approximations to this space-time that were proposed
in [3] do not suffer from such unphysical singularities, they
should be interpreted as metric deformations different from
the original ones, which comply with our consistency
conditions. To further show the flexibility of our approach,
we discuss as a different model a minimal solution to our
conditions along with its physical properties.
Finally, in order to make closer contact with our previous

work [1] we consider asymptotic expansions of the metric
deformations in inverse powers of the proper distance.
Assuming that the radius of convergence of these expan-
sions is large enough to be still valid at the event horizon,
we use them as input to the framework explained above.
Concretely, we formulate the consistency conditions for the
absence of an unphysical singularity in terms of the
asymptotic expansion coefficients. Solving these condi-
tions, we furthermore provide self-consistent expressions
for the Hawking temperature and (upon assuming a mass-
dependence of dH) the entropy.
While our results are derived with a black hole geometry

in mind, they can be generalized in a straightforward
manner to spherically symmetric and static space-times.
Therefore, we foresee the further impact of the framework
presented here in the description of quantum effects in
gravitational experiments and cosmology. Furthermore,
while in this work we mainly have deformations of black
holes in mind that are due to quantum effects, our approach
is versatile enough to also describe other types of deforma-
tions. We, therefore, expect our work to be useful for
studying space-time corrections in theories of modified
gravity.
This paper is organized as follows. In Sec. II we introduce

our notation for deformations of the spherically symmetric
and static Schwarzschild geometry. We derive nontrivial
conditions for these deformations by imposing finiteness of
the first and second derivative of the metric functions at the
horizon: the first derivative is a necessary condition for the
existence of the surface gravity and the second provides
sufficient conditions for the absence of a singularity of the
Ricci scalar at the horizon. In Sec. III, we develop a more
general framework for computing the distance function for
deformations of the Schwarzschild metric. Assuming the
existence of a series expansion of the proper distance, we

1From the perspective of the renormalization group approach a
different choice of this physical quantity (see e.g. [11,29–32])
corresponds to a different scheme. We shall elaborate on this
connection in future work [33].
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provide a recursive relation for all expansion coefficients.
The consistency of this approach and the finiteness of the
Ricci scalar at the horizon impose nontrivial conditions on
the metric deformations. In Sec. IV we apply these con-
ditions to concrete examples of black hole solutions. We
show that the Bonanno-Reuter space-time does not abide by
the conditions and indeed exhibits a singular behavior at the
horizon. We also provide a novel model based on a
minimalistic solution of the conditions derived previously.
In Sec. V we consider asymptotic expansions of the metric
deformations and (assuming that they can be extended all
the way to the black hole horizon) show how to integrate
them into the framework developed in previous sections.
Finally, Sec. VI contains our conclusions and an outlook for
further applications. This work is complemented by five
Appendixes; Appendix A generalizes the approach of
Sec. II by deriving conditions imposed by assuming that
an arbitrarily high order N of derivatives of the metric
function is finite at the horizon. Appendix B provides a
minimal solution for the system of equations established in
Appendix A and shows that this solution for N → ∞ tends
to the Schwarzschild space-time. Appendix C contains
several derivations of series identities that have been
deemed too technical for the main body of the paper.
Appendix D discusses further examples of deformed black
hole metrics, namely the Hayward black hole and the
Dymnikova space-time. Finally Appendix E gives a brief
outline of how to generalize the conditions derived in Sec. II
to interior black hole horizons.

II. REGULAR GEOMETRY CLOSE
TO THE BLACK HOLE HORIZON

Our starting point is the general form of a spherically
symmetric and static space-time in four dimensions with
Lorentzian signature

ds2 ¼ gμνdxμdxν ¼−hðrÞdt2þ dr2

fðrÞþ r2dθ2þ r2 sin2 θdϕ2;

ð1Þ

where the metric is given by

gμν ¼ diagð−hðrÞ; fðrÞ−1; r2; r2 sin2 θÞ; ð2Þ

with h and f, a priori, general functions of the radial
coordinate r. The classical Schwarzschild space-time [35],
which is a solution of the Einstein equations in vacuum, is
recovered for hðrÞ ¼ fðrÞ ¼ ð1 − rS=rÞ, with rS ¼ 2GNM
the Schwarzschild radius (and GN Newton’s constant). For
r ≥ rS, this metric describes the space-time outside of a
central body of mass M. In the following, we shall be
interested in deformations of this metric, which specifically
represent black holes and which are characterized by
(particular) modifications of the metric functions f and h.

To describe these modifications, we first simplify the
notation by casting (1) into a dimensionless form; similar
to [1], we write the radial coordinate (and the mass
parameter M) in units of the Planck length lP ¼ 1=MP
(with MP the Planck mass), by defining

z ≔ MPr ¼
r
lP

and χ ≔
M
MP

: ð3Þ

We shall further choose units such that Newton’s constant is
equal to 1, i.e. GNM2

P ¼ 1. In this notation, we shall
parametrize deformations of the Schwarzschild geometry
by writing the functions f and h as

fðzÞ ¼ 1 −
2χ

z
eΦ̃ðzÞ; hðzÞ ¼ 1 −

2χ

z
eΨ̃ðzÞ; ð4Þ

where Φ̃ and Ψ̃ encode corrections due to physical effects
beyond GR, either classical or quantum in nature. In order
to describe a black hole, we first require that the geometry
is still asymptotically flat. Concretely, we assume that the
geometry approaches the Schwarzschild metric (with mass
parameter χ) for very large distances from the origin

lim
z→∞

Φ̃ðzÞ ¼ 0 ¼ lim
z→∞

Ψ̃ðzÞ: ð5Þ

Furthermore, in order for coordinate transformations of the
undeformed space-time to be also realized in the deformed
case, we demand that Ψ̃ and Φ̃ are invariant quantities. This
can be achieved by writing them as functions of a physical
quantity, for which in [1,3] the proper distance from the
origin was proposed.2 The proper (radial) distance between
two spatial points within the space-time (1) is

dðz; z0Þ ≔
Z

z

z0

dz̃ffiffiffiffiffiffiffiffiffiffiffiffijfðz̃Þjp and dðzÞ ¼ dðz; 0Þ: ð6Þ

We thus replace in (8)

Φ̃ðzÞ; Ψ̃ðzÞ → Φð1=dðzÞÞ;Ψð1=dðzÞÞ; ð7Þ

where Φ and Ψ are functions of the inverse distance such
that

fðzÞ ¼ 1−
2χ

z
eΦð1=dðzÞÞ; hðzÞ ¼ 1−

2χ

z
eΨð1=dðzÞÞ; ð8Þ

Here we choose a dependence on 1=d, such that asymp-
totical flatness (5) amounts to the simple relation

2One can choose a more general geodesic distance to prove a
Taylor theorem for general tensor calculus shown in [36–38].
However, as mentioned in these works, explicit computations
become rapidly involved.
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Φð0Þ ¼ 0 ¼ Ψð0Þ: ð9Þ

Furthermore, in order to describe a black hole geometry, we
require that the metric (1) has (at least one) horizon, i.e. we
impose that the functions f and h have a zero at a
coordinate zH ∈ ð0;∞Þ

fH ≔ fðzHÞ ¼ 0 ¼ hðzHÞ≕ hH: ð10Þ

In this paper, we shall assume that (10) are simple zeros
and that

fðzÞ > 0; and hðzÞ > 0 ∀ z > zH; ð11Þ

i.e. that zH is the location of the outer horizon of the black
hole. Furthermore, we introduce the notation

dH ≔ dðzHÞ; and dðzÞ ¼ dH þ ρðzÞ; ð12Þ

where ρðzÞ ¼ dðz; zHÞ has the interpretation as the proper
distance measured from the horizon of the black hole. With
this notation, the condition (10) can equally be written in
the form

Φ
�

1

dH

�
¼ Ψ

�
1

dH

�
¼ log

zH
2χ

: ð13Þ

This ensures the vanishing of the norm of timelike Killing
vector ðKtÞμ ¼ δμ0 required for the existence of an event
horizon

ðKtÞμðKtÞμjz¼zH ¼g00ðKtÞ0ðKtÞ0jz¼zH ¼−hðzHÞ¼0: ð14Þ

We remark that in the remainder of this paper, unless
otherwise specified, we shall consider the space-time
outside of the horizon of the black hole, i.e. we shall only
consider the region z ≥ zH (or equivalently ρ ≥ 0).
Furthermore, we consider dH as an additional input into
the (exterior) black hole geometry, which is in fact the only
information about the interior of the black hole that is
required in the following.
The surface gravity and the Ricci scalar are fundamental

quantities that must be well-defined at and near the
horizon. We shall discuss the surface gravity in more
detail in Sec. II B, while here we give the definition of the
Ricci scalar as a geometric quantity, which directly
follows from (1); it is a scalar quantity which appears
in the equation of motion of the gravitational field (i.e. the
Einstein equations). Therefore, its regularity (notably at
the horizon) in the deformed metric ensures that in the
deformed case no additional singularities arise beyond the

classical ones, which shall be a central point in the
analysis of this paper. The Ricci scalar in terms of f
and h is3

R ¼ −
ðzfð1Þ þ 4fÞhð1Þ

2zh
þ fhð2Þ

h
−
2ðzfð1Þ þ f − 1Þ

z2

þ fðhð1ÞÞ2
2h2

: ð17Þ

We mainly focus on the finiteness of the Ricci scalar at the
horizon but, in some examples, we shall also examine the
behavior of the Kretschmann scalar, given by

K ¼ RρσμνRρσμν; ð18Þ

where Rρσμν ¼ gρλRλ
σμν is the fully covariant Riemann

tensor.

A. Near horizon constraints

By examining the expression of the Ricci scalar (17) and
the Kretschmann scalar (18), it is evident that derivatives of
the functions f and h up to the second order [in ðz − zHÞ]
are required. Hence, we start by assuming that in the
vicinity of the black hole horizon, located at zH, they can be
expanded using a Taylor series up to the second order,
given by

fðzÞ ¼ fð1ÞH ðz− zHÞ þ
fð2ÞH

2
ðz− zHÞ2 þ oððz− zHÞ2Þ; ð19Þ

hðzÞ ¼ hð1ÞH ðz− zHÞ þ
hð2ÞH

2
ðz− zHÞ2 þ oððz− zHÞ2Þ: ð20Þ

We remark that similar expansions have been already
considered in the literature, for example in [39,40]. In

the following, we shall assume fð1ÞH > 0 and hð1ÞH > 0 such

3To save writing factors of lP, we have defined a dimension-
less form of R (and K), i.e. it is measured in units of lP.
Furthermore, from here on out we use the notation FðnÞ to
indicate the nth derivative of a function F with respect to its
argument. For example, we define

fðnÞðzÞ ≔ dnfðzÞ
dzn

; and ΦðnÞ
�
1

x

�
≔

dnΦðyÞ
dyn

����
y¼1

x

: ð15Þ

The subscript H denotes the evaluation of a quantity at
the horizon, which corresponds to taking z ¼ zH , d ¼ dH , or
ρ ¼ 0, e.g.

fðnÞH ≔ fðnÞðz ¼ zHÞ; and ΦðnÞ
H ≔ ΦðnÞð1=dHÞ: ð16Þ
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that zH is a simple zero of both f and h, as well as
the position of the outer event horizon of the black hole
space-time (i.e. f and h have no further zeros for z > zH
and both change signs at z ¼ zH).
The expansions (19) and (20) also afford the following

form of the infinitesimal proper distance (6) from the
horizon

dρ¼ dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1ÞH ðz− zHÞþ fð2ÞH

2
ðz− zHÞ2

q þ oððz− zHÞ2Þ; ð21Þ

which yields explicitly

ρðzÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
z− zH

p ffiffiffiffiffiffiffiffi
fð1ÞH

q −
fð2ÞH ðz− zHÞ3=2
6ðfð1ÞH Þ3=2

þ oððz− zHÞ3=2Þ: ð22Þ

The latter can be locally inverted so that we can write zðρÞ,
which up to the fourth order reads,

zðρÞ ¼ zH þ fð1ÞH

4
ρ2 þ fð1ÞH fð2ÞH

96
ρ4 þ oðρ4Þ: ð23Þ

This allows us to rewrite the Taylor expansions for f and h
in terms of the physical, and therefore coordinate-invariant,
distance ρ as follows4:

fðρÞ ¼ ðfð1ÞH Þ2
4

ρ2 þ ðfð1ÞH Þ2fð2ÞH

24
ρ4 þ oðρ4Þ; ð24Þ

hðρÞ ¼ fð1ÞH hð1ÞH

4
ρ2 þ fð1ÞH ð3fð1ÞH hð2ÞH þ fð2ÞH hð1ÞH Þ

96
ρ4 þ oðρ4Þ:

ð25Þ

The derivatives of f with respect to z are consequently
computed as [see (15) for the notation]

fð1ÞðzÞ ¼ df
dz

¼ dfðρðzÞÞ
dρ

dρ
dz

¼ 1ffiffiffiffiffiffiffiffiffi
fðρÞp dfðρÞ

dρ
; ð26Þ

and similarly for hð1Þ. In terms of the functions Φ and Ψ in
(8) we therefore find

fð1ÞðzÞ ¼ ð1 − fÞ

0
B@1

z
þ

Φð1Þ
�

1
dHþρ

�
ðdH þ ρÞ2 ffiffiffi

f
p

1
CA;

and hð1ÞðzÞ ¼ ð1 − hÞ

0
B@1

z
þ

Ψð1Þ
�

1
dHþρ

�
ðdH þ ρÞ2 ffiffiffi

f
p

1
CA: ð27Þ

It is clear from the above that the first derivative shows a
divergence at the horizon due to the second term in the
parenthesis ∝ f−1=2. Using (23)–(25) we can provide a
series expansion around ρ ¼ 0, concretely for fð1Þ,

fð1Þ ¼ 2Φð1Þ
H

d2Hf
ð1Þ
H

1

ρ
þ 1

zH
−
2ð2dHΦð1Þ

H þΦð2Þ
H Þ

d4Hf
ð1Þ
H

þ oðρ0Þ; ð28Þ

and similarly for hð1Þ. Therefore, we conclude that con-
sistency with the first order in (19) and (20) requires

Φð1Þ
H ¼ 0; and Ψð1Þ

H ¼ 0; ð29Þ

which removes the singularity in (27). With these con-
ditions, we get the expressions of the first derivatives of the
metric functions at the event horizon5

fð1ÞH ¼ 1þϖ

2zH
and hð1ÞH ¼ 1

zH
−

2Ψð2Þ
H

d4Hf
ð1Þ
H

; ð30Þ

where for later use we have introduced the shorthand
notation

ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8z2HΦ
ð2Þ
H

d4H

s
: ð31Þ

Reality of fð1ÞH requires that ϖ ∈R. Furthermore, in order
for zH to be the position of (a simple) outer event horizon,

both fð1ÞH > 0 and hð1ÞH > 0. These conditions together

impose upper bounds for the derivatives Φð2Þ
H and Ψð2Þ

H ,

Φð2Þ
H ≤

d4H
8z2H

and Ψð2Þ
H <

d4Hð1þϖÞ
4z2H

: ð32Þ

Moving to the second order of the Taylor polynomials in
(19) and (20), we find for the second derivatives

4By abuse of notation we shall write in the following fðρÞ
instead of fðzðρÞÞ.

5We remark that fð1ÞH ¼ 1−ϖ
2zH

is also a solution compatible with
(28). In the following, we shall use the result (30), which leads to
the classical Schwarzschild metric for Φð2Þ

H ¼ 0.
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fð2Þ ¼ −fð1Þ

0
@1

z
þ

Φð1Þ
�

1
dHþρ

�
ðdH þ ρÞ2 ffiffiffi

f
p
1
A − ð1 − fÞ

0
@ 1

z2
þ
2Φð1Þ

�
1

dHþρ

�
ðdH þ ρÞ3f þ

fð1ÞΦð1Þ
�

1
dHþρ

�
2ðdH þ ρÞ2f3=2 þ

Φð2Þ
�

1
dHþρ

�
ðdH þ ρÞ4f3=2

1
A;

hð2Þ ¼ −hð1Þ

0
@1

z
þ

Ψð1Þ
�

1
dHþρ

�
ðdH þ ρÞ2 ffiffiffi

f
p
1
A − ð1 − hÞ

0
@ 1

z2
þ
2Ψð1Þ

�
1

dHþρ

�
ðdH þ ρÞ3f þ

fð1ÞΨð1Þ
�

1
dHþρ

�
2ðdH þ ρÞ2f3=2 þ

Ψð2Þ
�

1
dHþρ

�
ðdH þ ρÞ4f3=2

1
A; ð33Þ

which we can equally expand around ρ ¼ 0, similar to

Eq. (27). By utilizing (29) and the expressions for fð1ÞH and

hð1ÞH given in Eq. (30), we can eliminate the divergent terms
by imposing that

Φð3Þ
H ¼ −6dHΦ

ð2Þ
H and Ψð3Þ

H ¼ −6dHΨ
ð2Þ
H : ð34Þ

As explained in Appendix A 2, demanding the finiteness of
even higher-order derivatives at the horizon (i.e. beyond
second order), one can iterate the above procedure of
removing divergent terms in the Taylor expansion, leading
to the general result (A12).
Summarizing the result for imposing finiteness of the

first and second derivatives of f and h [as in (19) and (20)],
as well as the reality and positiveness of the first deriva-
tives, we have obtained the following general constraints
and upper bounds:

ΦH ¼ ΨH ¼ log
zH
2χ

; Φð1Þ
H ¼ Ψð1Þ

H ¼ 0;

Φð3Þ
H ¼ −6dHΦ

ð2Þ
H ; Ψð3Þ

H ¼ −6dHΨ
ð2Þ
H ;

Φð2Þ
H ≤

d4H
8z2H

; Ψð2Þ
H <

d4Hð1þϖÞ
4z2H

: ð35Þ

By imposing these conditions, we ensure that there are no
curvature singularities at the horizon: indeed, with (17)
(and (18) it can be verified that the Ricci and Kretschmann

scalars attain finite values, which depend on Φð2Þ
H , Φð4Þ

H ,

Ψð2Þ
H , and Ψð4Þ

H .6

However, to provide a more comprehensive and gener-
alized framework, we delve into a broader approach that
encompasses these conditions in Sec. III B.

B. Impact on the thermodynamics

One of the main applications of the general constraints
discussed above is black hole thermodynamics. To deter-
mine the temperature of a black hole we introduce the
surface gravity which is expressed via the timelike Killing
vector ðKtÞμ introduced earlier [see Eq. (14)] and reads
[40–44]

κ2 ¼ −
l2
P

2
∇μðKtÞν∇μðKtÞνj

z¼zH
¼ 1

4

f · ðhð1ÞÞ2
h

����
z¼zH

: ð36Þ

Using the constraints in (35) the Hawking temperature
[43,45] is then given by7

TH ¼ κ

2π
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1ÞH hð1ÞH

q
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þϖ

2z2H
−
2Ψð2Þ

H

d4H

s
;

with ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8z2HΦ
ð2Þ
H

d4H

s
: ð37Þ

Notice that due to the upper bound on Ψð2Þ
H , the Hawking

temperature is strictly positive TH > 0 for dH > 0 (and thus

zH > 0). Indeed, TH ¼ 0 would require fð1ÞH ¼ 0 and/or

hð1ÞH . With (19) and (20), this would, however, imply that f
and/or h would have a double zero at the horizon, which is
thus not compatible with our initial assumption in this
approach.
For the expression of the entropy, we use the first law of

thermodynamics

dχ ¼ THdS: ð38Þ

such that the entropy can be written as

S ¼
Z

dχ
THðχÞ

: ð39Þ

To perform the integration over the black hole mass χ, one

has to provide the explicit dependence of dH, zH, Ψ
ð2Þ
H and

Φð2Þ
H on χ itself.

III. SERIES EXPANSIONS OF THE DISTANCE
FUNCTION

In the previous section, we have provided the conditions
(35) for the functions Φ, Ψ appearing in Eq. (8) that
guarantee finite first and second derivatives of the metric

6Due to their complexity, we refrain from presenting the
complete expressions of R and K.

7In order to avoid factors of lP in the following, we have
defined dimensionless versions of both the surface gravity (36)
and the Hawking temperature (37), which are measured in units
of lP.
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functions at the event horizon. These in turn are sufficient
conditions that also the Ricci and Kretschmann scalar are
finite. In this section, we shall recover more general (but
compatible) results by using a different approach, namely
by solving (6) assuming that a solution in the form of a
series expansion exists.

A. Solving the distance function

1. Series expansion of the radial coordinate

In Eq. (22) we have already given a limited series
expansion of the distance to the BH horizon ρ as a function
of z − zH, the inversion of which is given in (23). In this
section, we shall provide a general form of these expan-
sions under the assumption that z can be written as a
(convergent) series in ρ for ρ ≥ 0. Indeed, we shall start
from a general (integer) series of the form8

zðρÞ ¼ zH þ
X∞
n¼1

anρn with an ∈R ∀ n∈N ð40Þ

which we assume to have an interval of convergence
ρ∈ ½0; ρAÞ for some ρA > 0. We shall determine the series
coefficients an recursively by solving the differential
equation

dρ
dz

¼
�
1 −

2χ

z
eΦð 1

dHþρÞ
�

−1=2
; ∀ z ≥ zH: ð41Þ

However, we shall consider z as a function of ρ, i.e. we
consider (41) in the form

z

�
1 −

�
dz
dρ

�
2
�

¼ 2χeΦð 1
dHþρÞ; ∀ ρ ≥ 0: ð42Þ

We next assume that 2χeΦ affords a series expansion in
powers of ρ

2χeΦð 1
dHþρÞ ¼

X∞
n¼0

ξnρ
n; with

ξ0 ¼ zH;

ξn ∈R ∀ n∈N
; ð43Þ

which has an interval of convergence I ⊇ ½0; ρAÞ.
Concretely, the coefficients ξn can be related to the ΦðnÞ

H
as introduced in (15). Starting from the expansion

Φ
�

1

dH þ ρ

�
¼
X∞
n¼0

κnρ
n; ð44Þ

with the coefficients

κn ¼
ð−1Þn
n!

"
ΦðnÞ

H

d2nH
þ
Xn
k¼1

ðQk−1
i¼1ðn − iÞÞðQk

j¼0ðn − jÞÞ
k!d2n−kH

Φðn−kÞ
H

#
; ð45Þ

we have verified the following relation up to order n ¼ 8

ξn ¼ 2χeΦH

Xn
k¼0

X
fu1;…;ung

κn−k1

Q
n
i¼2 κ

ui
i

ðn − kÞ!Qn
j¼2ðuj!Þ

; with uj ∈N ∪ f0g such that
Xn
j¼2

juj ¼ k: ð46Þ

For example, we find for the first three coefficients

ξ0 ¼ 2χeΦH ¼ zH; ξ1 ¼ −
2χeΦH

d2H
Φð1Þ

H ; ξ2 ¼
χeΦH

d4H
ð2dHΦð1Þ

H þ ðΦð1Þ
H Þ2 þΦð2Þ

H Þ: ð47Þ

In the following, we shall consider the coefficients ξn [or equivalently the derivatives ΦðnÞ
H of Φ at the horizon] along with

dH as fixed and as input for the Eq. (42). We can then expand the left-hand side of the latter into a series expansion in ρ. To
this end, we consider

�
dz
dρ

�
2

¼
X∞
n;m¼1

nmanamρmþn−2 ¼ a21 þ
X∞
n¼1

 Xnþ1

m¼1

ðn −mþ 2Þmaman−mþ2

!
ρn:

Inserting this expansion into the left-hand side of (42) we find

8Other than in the previous section, we presently do not make any assumptions on (derivatives of) f or h.
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z

�
1 −

�
dz
dρ

�
2
�

¼ zHð1 − a21Þ þ
X∞
n¼1

"
ð1 − a21Þan − zH

Xnþ1

m¼1

ðn −mþ 2Þmaman−mþ2

#
ρn

−
X∞
p¼1

"Xp−1
n¼1

Xnþ1

m¼1

ðn −mþ 2Þmap−naman−mþ2

#
ρp; ð48Þ

such that Eq. (42) becomes

X∞
p¼0

ξpρ
p ¼ zHð1 − a21Þ þ

X∞
p¼1

"
ð1 − a21Þap − zH

Xpþ1

m¼1

ðp −mþ 2Þmamap−mþ2

−
Xp−1
n¼1

Xnþ1

m¼1

ðn −mþ 2Þmap−naman−mþ2

#
ρp: ð49Þ

Identifying the series coefficients order by order for
p∈ f0; 1; 2g leads to

ξ0 ¼ zH ¼ zHð1 − a21Þ;
ξ1 ¼ ð1 − a21Þa1 − 4zHa1a2;

ξ2 ¼ ð1 − a21Þa2 − ½zHð6a1a3 þ 4a22Þ þ 4a21a2�: ð50Þ

The first of these equations requires a1 ¼ 0, which imposes

the condition ξ1 ¼ 0.9 Using (47), this requires Φð1Þ
H ¼ 0,

which is in fact the second relation in (35). The last
equation in (50) then becomes

ξ2 ¼ a2ð1 − 4zHa2Þ; ð51Þ

which has solution

a2 ¼
1�ϖ

8zH
with ϖ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16zHξ2

p
: ð52Þ

For ξ1 ¼ 0 [and thus Φð1Þ
H ¼ 0], ϖ is identical to the

definition in (31), since in this case ξ2 ¼ zHΦ
ð2Þ
H

2d4H
, which

follows from (47). The solution (52) is in agreement with
(23) using (30).10 Similar to (32), the requirement for ϖ to
be real (such that a2 ∈R) imposes an upper bound on
ξ2 ≤ 1=ð16zHÞ.
Equating the remaining powers of ρp (for p > 2) in (49)

then becomes a recursive equation, which allows to express
ap in terms of coefficients ap0 with p0 < p (and ξp),

ap ¼
1

1− 4zHpa2

�
ξp þ zH

Xp−1
n¼3

ðp− nþ 2Þnanap−nþ2

þ
Xp−2
n¼2

Xn
m¼2

ðn−mþ 2Þmap−naman−mþ2

	
: ∀ p ≥ 3:

ð53Þ

Equation (53) allow us to compute the coefficients ap
explicitly up to arbitrary order as functions of the ξn.

2. Series expansion of the distance and metric function

In order to expand the metric function f in a series in
z − zH [as in Eq. (19)], we first assume an expansion of ρ in
(half-integer) powers of z − zH

ρ ¼
X∞
n¼1

bnðz − zHÞn=2; ð54Þ

The coefficients bn can be computed from (53) to arbitrarily
high order using series reversion. Indeed, generalizing a
result of Whittaker [46] for the reversion of integer series
with a1 ≠ 0 to the current case, we have verified up to order
n ¼ 8

b1 ¼
1

a1=22

; b2 ¼ −
a3
2a22

;

bn ¼
ð−1Þn−1

2n−1n!an=22

detðMnÞ ∀ n ≥ 3; ð55Þ

where Mn is the following ðn − 1Þ × ðn − 1Þ matrix

9We remark in passing that a series expansion for z to match
the case ξ1 ≠ 0 requires half-integer powers in Eq. (40), as is
discussed in Appendix C 3. We shall consider such a case in more
detail in the context of a specific example in Appendix C 4 b. As
we shall see, however, ξ1 ≠ 0 [and thusΦð1Þ

H ≠ 0] leads in general
to a curvature singularity at the horizon.

10Indeed, in (30) the solution with the þ sign has been chosen
to recover the classical result in the limit Φð2Þ

H → 0. In the
following, we shall make the same choice.
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Mn¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

na3
a2

1 0 0 0 0 0 0 ��� 0

4na4
a2

ðnþ2Þa3a2 2 0 0 0 0 0 ��� 0

12na5
a2

ð4nþ4Þa4a2 ðnþ4Þa3a2 3 0 0 0 0 ��� 0

32na6
a2

ð12nþ8Þa5a2 ð4nþ8Þa4a2 ðnþ6Þa3a2 4 0 0 0 ��� 0

80na7
a2

ð32nþ16Þa6a2 ð12nþ16Þa5a2 ð4nþ12Þa4a2 ðnþ8Þa3a2 5 0 0 ��� 0

..

. ..
. ..

. ..
. ..

. . .
. . .

. ��� ��� ..
.

2k−1knakþ2

a2
2k−2ððk−1Þnþ2Þakþ1

a2
2k−3ððk−2Þnþ4Þaka2 ��� ��� ��� ðnþ2k−1Þa3a2 k ��� 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. . .

. ..
.

2n−3nðn−2Þana2
..
. ..

. ..
. ..

. ..
. ..

. . .
. . .

.
n−2

2n−2nðn−1Þanþ1

a2
2n−3ðnðn−2Þþ2Þana2 ��� ��� ��� ��� ��� ��� ��� ðnþ2n−2Þa3a2

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

Concretely, we find for the first few coefficients with n ≥ 3

b3¼
5a23−4a2a4

8a7=22

; b4¼
3a2a3a4−2a33−a22a5

2a52
;

b5¼
231a43−504a2a23a4þ224a22a3a5þ112a22a

2
4−64a32a6

128a13=22

:

ð56Þ

B. Metric functions and curvature

In the previous subsection, we solved the differential
equation (40), assuming an integer series expansion of the
radial coordinate as a function of the distance (from the
event horizon) ρ. In this subsection, we use this result to
compute the Ricci scalar.

1. Metric functions

As a first step, similar to (43), we also introduce a series
expansion for the deformation of the metric function h

2χeΨð
1

dHþρÞ ¼
X∞
n¼0

θnρ
n; with

θ0 ¼ zH;

θn∈R ∀ n∈N
: ð57Þ

The coefficients θn can be related to the derivatives ΨðnÞ
H in

exactly the same way as the coefficients ξn are related to the

ΦðnÞ
H in Eq. (46). For the moment, we shall keep θ1 generic

and not mimic the constraint ξ1 ¼ 0, which was required
for consistency of the series expansion (40) with (43).
Using (43) and (57), as well as the expansion 1=z in (C1)

[with the coefficients pm given recursively in Eq. (C5)], we
can express the metric functions as power series in ρ

f¼ 1−
X∞
k¼0

ρk
Xk
n¼0

pnξk−n; and h¼ 1−
X∞
k¼0

ρk
Xk
n¼0

pnθk−n;

∀ ρ≥ 0; ð58Þ

which reads explicitly to leading orders

f ¼ a2 − ξ2
zH

ρ2 þ a3 − ξ3
zH

ρ3 þOðρ4Þ; ð59Þ

h ¼ −
θ1
zH

ρþ a2 − θ2
zH

ρ2 þ ða3 − θ3ÞzH þ a2θ1
z2H

ρ3 þOðρ4Þ:

ð60Þ

We can equivalently write these as expansions in ðz − zHÞ

f ¼ a2 − ξ2
a2zH

ðz − zHÞ þ
a3ξ2 − a2ξ3
ða2Þ5=2zH

ðz − zHÞ3=2

þOððz − zHÞ2Þ; ð61Þ

h ¼ −
θ1ffiffiffi
a

p
2zH

ðz − zHÞ1=2 þ
2a22 þ a3θ1 − 2a2θ2

2a22zH
ðz − zHÞ

þOððz − zHÞ3=2Þ; ð62Þ

which shows certain similarities with the results of Sec. II A,
but also some differences. On the one hand, comparing the
expansion for the function f with (24), since

a2 − ξ2
a2zH

¼ 4a2 ¼
1þϖ

2zH
¼ fð1ÞH ; ð63Þ

[see (30)] we find agreement with the leading term in (61).
On the other hand, (61) contains a term of order ðz − zHÞ3=2
[and (59) a term of order ρ3], which is absent in (19)
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[and (24), respectively]. Indeed (61) is not an integer series
expansion and therefore more general than (19). Similarly,
(since we have not imposed θ1 ¼ 0), the function h even
starts from a term ðz − zHÞ1=2 in (62) [order ρ in (60)], which
is absent in (20) [and (25), respectively]. Our result (58) is
therefore more general than (24) and (25). We remark,
however, that for generic values of ξ3 and θ1 we have

lim
z→zH

fð2ÞðzÞ → ∞ and lim
z→zH

hð1ÞðzÞ → ∞: ð64Þ

Indeed, in contrast to Sec. II A finiteness of the derivatives of
the metric functions at the horizon was not our initial
assumption and we shall impose in the next Sec. III B 2
absence of a physical curvature singularity instead as a more
general condition. Before doing so, however, we comment
that we can deduce the conditions for the absence of the
singularities (64) from (61) and (62) in a straightforward
manner:

θ1 ¼ 0; a3ξ2 ¼ a2ξ3; and a3θ2 ¼ a2θ3: ð65Þ

Using (53), the second of these relations implies

1 − 8zHξ2 þϖ

2zHð1þ 3ϖÞ ξ3 ¼ 0; ð66Þ

which has as only solution ξ3 ¼ 0, which further implies
θ3 ¼ 0. Notice that the conditions

ξ1 ¼ ξ3 ¼ θ1 ¼ θ3 ¼ 0; ð67Þ

which guarantee existence of the first and second derivative
of f and h for z ¼ zH [which are necessary for the
expansions (19) and (20)] are precisely the same as (35).
In this case, the positivity of the first derivative of h leads to
an upper bound on θ2 < 1þϖ

8zH
, which agrees with the second

relation in (32). The upper bound ξ2 ≤ 1=ð16zHÞ was
already obtained previously to guarantee reality ofϖ in (52).

2. Ricci scalar and Hawking temperature

We next consider the Ricci scalar, however, for simplic-
ity, we shall work out its series expansions only to leading
order. Moreover, we shall start out by only assuming ξ1 ¼ 0
[which is required for the consistent expansion (40)], but
we shall not assume the remaining conditions in (67). We
notably first consider θ1 ≠ 0. Inserting (61) and (62) into
(17), we obtain the following series expansion (for z ≥ zH)

R ¼ a2 − ξ2
8a2zH

ðz− zHÞ−1 þ
ð2a22 þ a3θ1 − 2a2θ2Þða2 − ξ2Þ

8a5=22 θ1zH

× ðz− zHÞ−1=2 þOððz− zHÞ0Þ: ð68Þ

Using (53) the coefficient of the leading term becomes

a2 − ξ2
8a2zH

¼ 1 − 8zHξ2 þϖ

8zHð1þϖÞ ; ð69Þ

which is nonvanishing for all values of ξ2 ≤ 1=ð16zHÞ and
therefore signals a curvature singularity at the event
horizon. To avoid the latter, we impose θ1 ¼ 0, which
also leads to a well-defined derivative hð1ÞðzHÞ,

hð1ÞðzHÞ ¼
a2 − θ2
a2zH

: ð70Þ

Moreover, the condition θ1 ¼ 0 also changes the series
expansion in (68)

R ¼ 4
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zHð1þϖÞp ðð1þ 3ϖÞθ3 þ 2ξ3Þ

ð1þ 3ϖÞð1 − 8zHθ2 þϖÞ ðz − zHÞ−1=2

þOððz − zHÞ0Þ: ð71Þ

We have furthermore verified that the singularity of R
at z ¼ zH cannot be removed if 1 − 8zHθ2 þϖ ¼ 0 and
we, therefore, require θ2 ≠ a2.

11 In this case, the necessary
condition for regularity of R at the horizon is
ð1þ 3ϖÞθ3 þ 2ξ3 ¼ 0. We have also verified that under
the same condition also the Kretschmann scalar is finite
at the horizon. To summarize, the consistency conditions
for the approach outlined in Sec. III A 1, the conditions for
the absence of a singularity of the Ricci scalar, and the
bounds for positive metric functions f and h for z > zH are
therefore

ξ1 ¼ 0; θ1 ¼ 0; ξ3 ¼ −
1

2
ð1þ 3ϖÞθ3;

ξ2 ≤
1

16zH
; θ2 <

1þϖ

8zH
: ð72Þ

As remarked previously [see (67)], the regularity condition
(35) found in the previous section is compatible with this
result and is the particular case ξ3 ¼ θ3 ¼ 0.
We further remark that the series coefficients (53)

and (55) along with the expansions (58) allow to compute
the (finite) value of R at the horizon. While the general form
is rather complicated, here we only give the expression
in the particular case f ¼ h (i.e. ξn ¼ θn ∀ n ≥ 1) with
ξ1 ¼ ξ3 ¼ 0

Rjz¼zH ¼ ð1 −ϖ2Þða22 − a4zHÞ
8z3Ha

3
2

þ 2ξ4
zHa22

¼ 3þ ð2 − 5ϖÞϖ
2z2Hð1þ 2ϖÞ þ 192zHξ4

1þ 3ϖ þ 2ϖ2
; ð73Þ

11This condition is compatible with θ2 <
1þϖ
8zH

which guaran-
tees that hð1ÞðzHÞ > 0 in (70). The latter is necessary such that
hðzÞ > 0 for z > zH (with a simple zero at z ¼ zH).
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which we shall use in the examples of the following
section.
Before closing this section, we also provide the expres-

sion for the Hawking temperature

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1ÞH hð1ÞH

q
4π

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þϖ − 8zHθ2

p

4π
ffiffiffi
2

p
zH

; ð74Þ

which agrees with the expression (37) found in the previous
section. The upper bound on θ2 in (72) guarantees that

TH > 0. Indeed, TH ¼ 0 would require fð1ÞH ¼ 0 and/or

hð1ÞH ¼ 0, which translate into a2 ¼ ξ2 and a2 ¼ θ2, respec-
tively. The former has no real solution, while the latter leads
to a singularity of the Ricci scalar at the horizon. We
remark, however, that black hole solutions with TH ¼ 0 are
possible upon choosing the solution a2 ¼ 1−ϖ

8zH
in (52).

IV. EXAMPLES

To illustrate further the approach presented in the
previous sections, in particular, the conditions (35) and
(72) which are sufficient for a finite Ricci scalar at the
horizon, we shall consider two concrete examples; the first
one is the Bonanno-Reuter [3] black hole, while the second
one is specifically constructed to satisfy (35) in a minimal
fashion. Further examples from the literature are discussed
in Appendix D.

A. Example 1: Bonanno-Reuter asymptotically safe
black hole

We first consider as an example the black hole metric
introduced by Bonanno-Reuter [3] as a renormalization
group improved generalization of the Schwarzschild space-
time. Indeed, in this work, it has been proposed to replace
the (dimensionful) Newton constant GNewton by a running
Newton constant

GNewton → GðkÞ ¼ Gðk ¼ 0Þ
1þ ωGðk ¼ 0Þk2 ; ð75Þ

where ω∈R is a constant and k a (position dependent)
scale (with reference scale k ¼ 0). The choice of the latter
is ambiguous, but it has been proposed in [3] to use an
inverse physical distance from the center of the black hole12

kðzÞ ¼ ξ=dðzÞ; ð76Þ

with ξ a suitable (dimensionful) constant. Such a distance
has physical meaning, independent of a specific choice of
coordinates. Adapting to our notation, the metric proposed
in [3] can be written in the form (1) with

hðzÞ ¼ fðzÞ ¼ fBRðzÞ ≔ 1 −
2χ

z
1

1þ ω̃=dðzÞ2 ; ð77Þ

where ω̃ ¼ ωξ2 is a dimensionless constant. In [3] the
concrete value ω̃ ¼ 118

15π was given, however, subsequent
works in the literature [47–51] potentially point towards
different values (and a different sign). In the following, we
shall consider ω̃ a generic parameter and discover marked
differences between positive and negative values.
Furthermore, we shall consider (77) to be valid only
outside of the event horizon, which is located at dBH;H
(which we take as an input of the model).13 In order for f to
remain well-defined at the horizon, we shall assume

ω̃þ d2BR;H ¼ 2χd2BR;H
zH

≠ 0.
For concrete computations, a choice for the physical

distance needs to be made. Here we shall discuss three
different possibilities that lead to a geometry with an (outer)
event horizon, for which we can verify whether the
conditions (35) are satisfied and whether therefore the
Ricci scalar is finite, namely: (i) the proper distance
computed from the metric (1); (ii) the proper distance
computed from the Schwarzschild metric; and (iii) an
interpolating function. We shall discuss all three possibil-
ities in the following:

(i) Choosing dðzÞ as the proper distance dðzÞ in Eq. (6):

dBRðzÞ ¼
Z

z

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijfBRðzÞj
p ; ∀ z ≥ 0: ð78Þ

This is a self-consistent choice in the sense that the
proper distance is compatible with the metric (1).
As discussed in [1], this guarantees that the modi-
fied metric exhibits the same diffeomorphism
invariance as the (classical) Schwarzschild black
hole. However, explicitly computing the distance
becomes more involved [since (78) is an implicit
definition]. For negative values of ω̃, a series
expansion close to the horizon is developed in
Appendix C 4 b. However, for our purposes, this is
not in fact required, since we can simply verify the
regularity conditions developed in the previous
sections, i.e. Eqs. (35) or (72). For the concrete
function (77) with dðzÞ ¼ dBRðzÞ ¼ dBR;H þ ρðzÞ,
we obtain

12Other options discussed in [3] include distances of the formR
C

ffiffiffiffiffiffiffiffiffiffi
jds2j

p
, for different choices of contours C (for example the

world line of a free-falling observer). We shall discuss in future
work (see also [28]) that different such choices correspond to
different schemes from the perspective of the renormalization
group approach.

13Here we are allowing for the possibility that the metric inside
of the black hole is different from (77) in which case dBH;H would
need to be computed as a separate input to the model. As we shall
see, our conclusions will be entirely independent of this choice
and thus the concrete value of dBH;H.
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Φð1Þ
H ¼ Ψð1Þ

H ¼ −
2ω̃

dBR;Hðd2BR;H þ ω̃Þ ≠ 0; ξ1 ¼ θ1 ¼
4χω̃dBR;H

ðω̃þ d2BR;HÞ2
≠ 0; ð79Þ

such that neither (72) nor (35) are satisfied. In fact, (79) implies that already the first derivative of fBR

fð1ÞBRðzÞ ¼ ð1 − fBRðzÞÞ
�
1

z
−

2ω̃

dBRðzÞðdBRðzÞ2 þ ω̃Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fBRðzÞ
p �

; ∀ z ≥ zBR;H;

diverges at the horizon

lim
ϵ→0þ

fð1ÞBRðzBR;H þ ϵÞ → ∞: ð80Þ

This is due to the fact that fBRðzBR;HÞ ¼ 0. Following the discussion of Sec. II B, this poses problems with the
interpretation of the black hole’s thermodynamical properties, notably the Hawking temperature’s definition.
Furthermore, it also leads to a curvature singularity at the horizon, since for example, the Ricci scalar becomes

R ¼ ω̃ðfBR − 1ÞðdBRðd2BR þ ω̃Þð1 − 5fBRÞf1=2BR þ 6zd2BRfBR − 2ω̃zÞ
zd2BRðd2BR þ ω̃Þ2f2BR

; ∀ z ≥ zH:

This expression diverges at the event horizon due to the factor f2BR in the denominator (while the numerator at the
horizon assumes the finite value 2ω̃2zH).
Finally, we remark since ξ1 ≠ 0, the results of the series expansion approach developed in Sec. III are not

directly applicable. In Appendix C 3, we show how it can be generalized in this case, and the consequences for the
Bonanno-Reuter space-time for ω̃ < 0, are discussed in Appendix C 4 b (confirming further our above conclusions
in this case).

(ii) Choosing dðzÞ as the proper distance of the (classical) Schwarzschild geometry, i.e.

dSðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 2χ

z

����
s ¼

8><
>:

πχ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð2χ − zÞp

− 2χ arctan
ffiffiffiffiffiffiffiffiffiffiffiffi
2χ
z − 1

q
if 0 < z < 2χ;

πχ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz − 2χÞp þ 2χarctanh

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2χ

z

q
if 2χ < z:

ð81Þ

This option was initially advocated in [3] and has the
advantage that it can be computed as a closed
expression in terms of z. This geometry possesses
a horizon, whose position is corrected by ω̃, e.g. for
large mass χ of the black hole

zBR;H ¼ 2χ −
2

π2
ω̃

χ
þOðjω̃j3=2=χ2Þ: ð82Þ

For fBR to be well-defined at the horizon, we assume
that ω̃þ d2Sðz ¼ zBR;HÞ ≠ 0. The derivative of f in
this case becomes

fð1ÞBRðzÞ ¼
2χ

z2ð1þ ω
d2S
Þ −

4χω

zd3Sj1 − 2χ
z jð1þ ω

d2S
Þ2 ; ð83Þ

which is finite at the horizon zBR;H, but diverges for
z ¼ 2χ (which for ω̃ > 0 lies outside the horizon of
the black hole). Because of this, while the Ricci

scalar is finite at z ¼ zBR;H, the geometry has a
curvature singularity at z ¼ 2χ.

(iii) Although a closed function of z, the Schwarzschild
proper distance (81) is still difficult to work with for
concrete computations. Therefore, in [3] the follow-
ing approximation for (81) was proposed14

dSðzÞ ≃ κBRðzÞ ¼
�

z3

zþ γχ

�
1=2

;

such that
lim
z→0

κBRðzÞ ∼ z3=2ffiffiffiffi
γχ

p ;

lim
z→∞

κBRðzÞ ∼ z:
ð84Þ

Here γ ∈R is a constant, which in order to mimic the
same behavior as (81) at the origin (z → 0) needs to
be chosen as γ ¼ 9=2. The function κBR has no
inflection points, and thus does not feature the same

14We are using a notation adapted to the current paper.
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behavior as a proper distance at a horizon for any
value of z.
Identifying d in (77) with κBR leads to a zero of

fBR at

zBR;H ¼ 2χ −
2þ γ

4

ω

χ
þOðω2=χ3Þ: ð85Þ

At this horizon, both the first and second derivatives
of fBR are finite implying that the Ricci scalar takes
a finite value.

To summarize, treating (77) in a self-consistent fashion by
identifying d by the proper distance calculated from fBR
itself leads to a divergent first derivative of the metric
function at the horizon, which in turn leads to significant
problems for physical quantities. Notably, it poses prob-
lems for defining a finite Hawking temperature and leads to
a curvature singularity at the (outer) event horizon. This is
in line with the results of Secs. II and III, due to the fact that
the function 2χ

1þω̃=ðdBR;HþρÞ2 does not satisfy the conditions

(35), independent of the geometry of the black hole inside
the event horizon (i.e. independent of the value of dBR;H).
The choices (ii) and (iii) constitute a departure from the
original idea presented in [3] (proposed as an approxima-
tion in this work) by replacing d by a function of the radial
coordinate z, which does not represent a physical distance
that has been consistently calculated from the metric
characterized by (77).
While (ii), depending on the sign of ω̃, may have a

curvature singularity outside of the event horizon, choice
(iii) is at least well-behaved from this perspective.
However, from the point of view of the original motivation
to deform the Schwarzschild metric by a function of a
(consistently calculated) distance function, the choice
(iii) corresponds to a different deformation function than
(77). Using the approach outlined in Sec. III, we can
determine this modified deformation function by reverse
engineering the coefficients ξn: indeed, by integrating
Eq. (41) we find the coefficients bn in Eq. (54)

b1 ¼
ffiffiffi
2

p jz3BR;H þ ω̃ðzBR;H þ γχÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zBR;Hχðz3BR;H − ω̃ðzBR;H þ 2γχÞÞ

q ; b2 ¼ 0;

b3 ¼
b31χðz6BR;H − 3z4BR;Hω̃ − 7z3BR;Hγχω̃þ γ2χ2ω̃2Þ

24
ffiffiffi
2

p ðz3BR;H þ ω̃ðγχ þ zBR;HÞÞ3
;

b4 ¼ 0: ð86Þ

Therefore, with

a1 ¼ 0; a2 ¼
1

b21
; a3 ¼ 0; a4 ¼ −

2b3
b51

; ð87Þ

we obtain for the leading coefficients of ξn (which are
equal to θn)

ξ1¼0; ξ2¼
2z2BR;Hχð2zBR;Hþ3γχÞω̃

b21ðz3BR;Hþ ω̃ðzBR;HþγχÞÞ2 ; ξ3¼0: ð88Þ

These indeed satisfy the conditions (72). Therefore, the
“approximation” to use (84) for d in (77) instead of the
self-consistently calculated proper distance, corresponds to
changing the metric function (77), in a way characterized
by the above expansion coefficients.

B. Example 2: Minimal metric deformation

As a further (novel) example, we consider the following
minimal solution of the conditions (35)

ΦH ¼ΨH ¼ ϕ0; Φð1Þ
H ¼Ψð1Þ

H ¼ 0; Φð2Þ
H ¼Ψð2Þ

H ¼ ϕ2;

Φð3Þ
H ¼Ψð3Þ

H ¼−6dHϕ2; ð89Þ

and ΦðnÞ
H ¼ 0 ∀ n ≥ 4. Here ϕ0;ϕ2 ∈R are arbitrary

parameters, which, however, are not independent; indeed,
in order for the metric to asymptotically, approach the
Schwarzschild one (with mass parameter χ), we require the
asymptotic limit

lim
ρ→∞

eΦð 1
dHþρÞ ¼ e

ϕ0þ3ϕ2
2d2

H¼! 1 ⇒ ϕ0 ¼ −
3ϕ2

2d2H
: ð90Þ

Here we also consider dH as a parameter of the model,
which encodes information about the interior of the black
hole. With this, the solution (89) of (35) can be written
compactly in the form

Φ
�

1

dH þ ρ

�
¼ Ψ

�
1

dH þ ρ

�
¼ −

3ϕ2

2d2H
þ ρ2ðdH þ 3ρÞϕ2

2d2HðdH þ ρÞ3 :

ð91Þ

Choosing ΦðnÞ
H ≠ 0 [or ΨðnÞ

H ≠ 0] for n ≥ 4 in (89) would
yield higher modifications of eΦ of order Oðρ4Þ, which are
negligible close to the horizon. The position of the latter is
located at

zH ¼ 2χeϕ0 ¼ 2χ exp

�
−
3ϕ2

2d2H

�
: ð92Þ

A schematic plot of eΦ as a function of ρ is shown in Fig. 1.
Here we have plotted eΦ in the entire space-time (i.e. also
inside of the event horizon for ρ < 0); following our
general philosophy, we shall discuss the metric function
(and all associated quantities) only outside of the horizon
(i.e. for ρ ≥ 0) and only make a few brief remarks on the
physics inside of the black hole in Sec. IV B 2. The
coefficients κn in a series expansion of Φ in powers of ρ
[see Eq. (44)] are worked out in Eq. (C24), while the
leading coefficients ξn [stemming from the series expansion
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of 2χeΦ in Eq. (43)] are exhibited in (C25). In particular,
due to the choice (89), we find ξ1 ¼ 0 ¼ ξ3, which there-
fore satisfies (35) and (72). Moreover, since (89) also
implies Φ ¼ Ψ (and thus ξn ¼ θn), the condition (72) is
also trivially satisfied, such that we expect the Ricci scalar
of this model to be finite at the event horizon zH.

1. Curvature and temperature

As a first step to calculating physical quantities for the
space-time metric characterized by (89), we compute the
derivative (30) of the functions f and h at the horizon
zH ¼ 2χeϕ0

fð1ÞH ¼ hð1ÞH ¼ e−ϕ0

4χ

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

32e2ϕ0χ2ϕ2

d4H

s 1
CA

with ϕ0 ¼ −
3ϕ2

2d2H
; ð93Þ

which imposes the condition ϕ2 ≤
d4H

32e2ϕ0 χ2
, which with (90)

therefore becomes the nonlinear relation for ϕ2

ϕ2e3ϕ2=d2H ≤
d4H
32χ2

: ð94Þ

The Ricci scalar at the horizon is finite in this model and
takes the value

RjzH ¼ 3þ ð2− 5ϖÞϖ
2z2Hð1þ 2ϖÞ þ 48e

−3ϕ2
2d2

HzHχϕ2ðϕ2 − 12d2HÞ
d8Hð1þϖÞð1þ 2ϖÞ ;

with ϖ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

16zHϕ2χe
−3ϕ2
2d2

H

d4H

vuut
: ð95Þ

Finiteness of the derivatives (93) (at the event horizon) is
a necessary requirement for well-behaved thermodynamical

properties of the black hole. Indeed, the Hawking temper-
ature is given by

TH ¼ fð1ÞH

4π
¼ 1

8πzH

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8z2Hϕ2

d4H

s 1
CA: ð96Þ

Determining the entropy using Eq. (39) requires specifying
the χ-dependence of dH and ϕ2 and thus requires further
refinement of the model. To give a concrete example, we
shall consider χ ≫ 1 along with

ϕ2 ¼ Oðχ0Þ and dH ¼ πχ þOðχ0Þ; ð97Þ

that is, we are assuming only subleading corrections to the
classical Schwarzschild metric. We, therefore, find the
horizon position

zH ¼ 2χ −
3ϕ2

π2χ
þOðχ−2Þ; ð98Þ

and thus for the Hawking temperature

TH ¼ 1

8πχ

�
1þ ð3π2 − 16Þϕ2

2π4χ2
þOðχ−3Þ

	
; ð99Þ

and the entropy

S ¼ 4πχ2
�
1 −

ð3π2 − 16Þϕ2

3π2χ2
logðχ2Þ þO

�
1

χ4

�	
þ const:

ð100Þ

This approximation exhibits a logarithmic correction, com-
patible with previous results in the literature [52–62]. We
remind the reader, however, that (100) is based on the
assumptions (97), which are related to the interior of the
black hole solution.

2. Extending the metric inside the horizon

Following our general philosophy, so far we have
considered the metric function only outside of the black
hole horizon and have used the horizon distance dH (and
zH) as the only additional input that is required for the
interior of the black hole. Indeed, due to its definition (6),
the calculation of dH requires knowing the metric in the
interior of the black hole, which we have not specified up to
this point. In the current example, since the function (91)
can in fact be extended to the entire space-time (i.e. also for
ρ < 0), as is showcased in Fig. 1, one can contemplate the
possibility to use (91) as a model for the entire space-time.
Although this discussion is generally outside of the scope
of this paper, here we shall nevertheless make a few
remarks regarding this possibility. For concreteness, we
shall focus on ϕ2 > 0 in the entire Sec. IV B 2.

FIG. 1. Function eΦ in Eq. (91) with ϕ0 ¼ −3ϕ2=2d2H and
dH ¼ 1.

DEL PIANO, HOHENEGGER, and SANNINO PHYS. REV. D 109, 024045 (2024)

024045-14



As a first question, we may ask the behavior of the metric
at the origin. In order to get a better understanding of the
space-time described by (91) for z ≪ 1, we may use a right
rectangular approximation for the integral of the proper
distance (6)

dðzÞ ≃ zffiffiffiffiffiffiffiffiffiffiffiffijfðzÞjp ∀ z ≪ 1; ð101Þ

which is an algebraic equation. Numerical analysis sug-
gests that there are no real positive values for ðz; dðzÞÞ that
satisfy this relation for small z when fðzÞ < 0. We have,
however, obtained the following solution of (101) for zðdÞ
in the case fðzÞ > 0

z
d
¼

ffiffiffi
d

p ð31=3d2=3 þ
�
−9eΦχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3d2 þ 81e2Φχ2

p ��
2=3

32=3
�
−9eΦχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3d2 þ 81e2Φχ2

p �
1=3

¼ cos

�
1

3
arcsin

�
3
ffiffiffi
3

p
eΦχ
d

�	

−
1ffiffiffi
3

p sin

�
1

3
arcsin

�
3
ffiffiffi
3

p
eΦχ
d

�	
: ð102Þ

The function f, therefore, approaches þ1 for d → 0, which
hints towards the absence of a singularity at the origin. To
verify this, we realize that the function z in (102) cannot be
expanded in a Taylor series for d. However, noting that [for
Φ given in (91)] for ϕ2 > 0 we have the limit limρ→−dH e

Φ

in an exponential fashion, we can (formally) write z=d as a
series expansion in powers of eΦ

z=d¼ 1−
X∞
n¼1

2n−1Γð3n−1
2
Þ

n!Γðnþ1
2
Þ
�
χeΦ

d

�
n

for
χeΦ

d
∈
�
0;

1

3
ffiffiffi
3

p
�
:

ð103Þ

We then find the Ricci scalar close to the origin

R ¼ 2χeΦϕ2

d2Hd
9

½d2Hd3ð7d − 6dHÞ þ ð3dH − 4dÞ2ðd − dHÞ2ϕ2�

þOðe2ΦÞ; ð104Þ

which is indeed finite in the limit d → 0, due to the
exponential suppression of eΦ. 15While the above result of
the absence of a curvature singularity at the origin is very
encouraging conceptually, it also highlights another prob-
lem; indeed, if fðzÞ > 0 close to the origin and fðzÞ > 0
for z > zH, with a simple zero at zH, f necessarily has (at
least) one further zero in the interval z∈ ð0; zHÞ, more
concretely for ρ ≤ −dH=3. In other words, the space-time

described by (91) has at least one more inner horizon. At
the latter, we have to verify again if all necessary con-
ditions are met for the absence of a curvature singularity.
However, since (89) is only a minimal solution of the
conditions (35) (which are tailored to remove unphysical
singularities at ρ ¼ 0), we cannot guarantee the absence of
a curvature singularity at this inner horizon. This problem

can be circumvented by allowing some of the ΦðnÞ
H (for

n ≥ 4) to be nonzero. While we leave a more detailed
discussion for the black hole interior to further work, we
show in Appendix E how to derive conditions for the
absence of curvature singularities at an inner horizon.

V. LARGE DISTANCE EXPANSION

So far, we have focused on the consistency conditions
arising at and near the event horizon for generic static and
spherically symmetric black hole metrics. More generally
we have investigated the impact of these conditions on an
effective metric expanded in terms of a physical distance
from the event horizon. The range of applicability of this
theory is visualized via the green box in Fig. 2. The generic
metric (1) in (8) covers any distance from the black hole
horizon as represented in the blue box.
We now investigate an asymptotic expansion from an

infinite distance valid in the red box. This was considered
in [1] and extended in [28]

fðzÞ ¼ 1 −
2χ

z

�
1þ

X∞
n¼1

ωn

dðzÞn
�

and hðzÞ ¼ 1 −
2χ

z

�
1þ

X∞
n¼1

γn
dðzÞn

�
; ð105Þ

FIG. 2. Schematic division of the space outside of the black
hole in three main regions. The curved dashed line represents the
position of the event horizon. The blue region is where the full
nonperturbative form of the metric functions, given in Eq. (8) is
expected to hold (i.e. the whole space-time outside the event
horizon). For simplicity, we only give the expressions for f in the
figure, but a similar form also holds for h. The green region is
where the metric is expanded as a convergent series in the proper
distance from the event horizon ρ, as given in Eqs. (43) and (57).
Finally, the red region refers to the asymptotically large distances
from the event horizon, where the metric can be expanded in
inverse powers of the proper distance, as given in Eq. (105).

15We have also verified that the Kretschmann scalar is finite at
the origin in this model.
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where ωn, γn are effective coefficients encoding the
deformation from the Schwarzschild solution, and the
physical distance dðzÞ is defined in Eq. (6). For n even
and γn ¼ ωn we recover the metric and results of [1]. By
construction, the expansion ensures that the classical
black hole metric is recovered at an infinite distance while
its radius of convergence depends on the ωn and γn
coefficients.

A. Convergence criteria and derivatives

We now investigate the impact of the event horizon
constraints (35) and (72) on the large distance expansion
coefficients ωn and γn under the assumption that (105) is
convergent up to the horizon. In other words, we assume
that the red box in Fig. 2 extends all the way to the event
horizon. This imposes certain conditions on the coefficients
ωn and γn, namely that the radius of convergence of the
series (105) is larger than the inverse distance of the horizon

lim sup
n→∞

jωnj1n ≤ dH and lim sup
n→∞

jγnj1n ≤ dH; ð106Þ

where lim sup denotes the limit superior. In the following,
we shall find it useful to rescale the coefficients ωn and γn
by dnH

16

ωn ¼ ω̄ndnH and γn ¼ γ̄ndnH; ∀ n∈N; ð107Þ

where ω̄n and γ̄n are coefficients of a series with radius of
convergence ≥ 1.
The position of the horizon zH is determined by

hðzHÞ ¼ 1 −
2χ

zH

�
1þ

X∞
n¼1

γ̄n

�
¼ 0

and fðzHÞ ¼ 1 −
2χ

zH

�
1þ

X∞
n¼1

ω̄n

�
¼ 0; ð108Þ

which leads to the following relation for the (convergent)
series

X∞
n¼1

ω̄n ¼
X∞
n¼1

γ̄n ¼
zH
2χ

− 1: ð109Þ

We also have

ΦH ¼ log
X∞
n¼0

ω̄n and ΨH ¼ log
X∞
n¼0

γ̄n: ð110Þ

The first derivative of f for z ≥ zH reads

fð1ÞðzÞ≔ df
dz

¼ 1

z

�
1−fðzÞþ 2χffiffiffiffiffiffiffiffiffi

fðzÞp X∞
n¼1

nωn

dðzÞnþ1

�
: ð111Þ

Even assuming (106), such that the sum is convergent for
all values of dðzÞ up to the horizon, this equation is still
divergent at z ¼ zH due to the

ffiffiffiffiffiffiffiffiffi
fðzÞp

in the denominator. A
similar problem occurs for the first derivative of h.
Concretely, expanding both derivatives fð1Þ and hð1Þ in
terms of ρ [similar to Eq. (27)], we obtain

fð1Þ ¼ 1

zH

 
1þ 4χ

ρdHf
ð1Þ
H

X∞
n¼1

nω̄n

−
2

d2Hf
ð1Þ
H

X∞
n¼1

nðnþ 1Þω̄n þOðρÞ
!
;

hð1Þ ¼ 1

zH

 
1þ 4χ

ρdHf
ð1Þ
H

X∞
n¼0

nγ̄n

−
4χ

d2Hf
ð1Þ
H

X∞
n¼0

nðnþ 1Þγ̄n þOðρÞ
!
; ð112Þ

which contain terms of order ρ−1 ∼ ðz − zHÞ−1=2 ∼ f−1=2

that become divergent at the horizon. These can be
removed by requiring

X∞
n¼1

nω̄n ¼ 0 and
X∞
n¼0

nγ̄n ¼ 0: ð113Þ

From the remainder of (112) we now find

fð1ÞH ¼ 1

2zH

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16zHχ
d2H

X∞
n¼1

n2ω̄n

s 1
A

and hð1ÞH ¼ 1

zH
−

4χ

zHd2Hf
ð1Þ
H

X∞
n¼0

n2γ̄n; ð114Þ

where we have again chosen a solution for fð1ÞH which
corresponds to the Schwarzschild geometry for ωn →
0 ∀ n ≥ 1. Comparing to the first equation in Eq. (30),
we have

Φð2Þ
H ¼ 2χd2H

zH

X∞
n¼1

n2ω̄n and Ψð2Þ
H ¼ 2χd2H

zH

X∞
n¼1

n2γ̄n: ð115Þ

B. Horizon constraints

In order to make contact with the regularity condition
(72) in Sec. III A, we first need to express the coefficients
ξn in (43) in terms of the ω̄n. For ρ∈ ½0; dHÞ we can write

16For the purpose of a large χ expansion (see Sec. V C),
one could equally rescale by powers of the classical horizon
distance πχ.
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1

2χ

X∞
p¼0

ξpρ
p ¼ 1þ

X∞
n¼1

ωn

ðdH þ ρÞn

¼ 1þ
X∞
n¼1

ω̄n

�X∞
k¼0

�
−

ρ

dH

�
k
�n

: ð116Þ

In order to extract the term of order ρp on the right-hand
side of this equation, we use relation (C7), such that

ξ0 ¼ 2χ

�
1þ

X∞
n¼1

ω̄n

�
¼ zH;

ξp ¼ 2χ

ð−dHÞpp!
X∞
n¼1

ω̄n
ðnþ p − 1Þ!
ðn − 1Þ! ∀ p ≥ 1: ð117Þ

A similar analysis allows to express the coefficients θp in
Eq. (57) in terms of the γ̄n

θ0 ¼ 2χ

�
1þ

X∞
n¼1

γ̄n

�
¼ zH;

θp ¼ 2χ

ð−dHÞpp!
X∞
n¼1

γ̄n
ðnþ p − 1Þ!
ðn − 1Þ! ∀ p ≥ 1: ð118Þ

Furthermore, the quantity ϖ in (52) takes the form

ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

16χzH
d2H

X∞
n¼1

nðnþ 1Þω̄n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

16χzH
d2H

X∞
n¼1

n2ω̄n

s
;

ð119Þ

where in the last relation we have used (113). More
generally, the conditions (35) which guarantee the finite-
ness of the first and second derivatives of the metric
functions at the horizon, translate into

X∞
n¼1

nω̄n ¼ 0 ¼
X∞
n¼1

n2ðnþ 3Þω̄n;

X∞
n¼1

nγ̄n ¼ 0 ¼
X∞
n¼1

n2ðnþ 3Þγ̄n;

X∞
n¼1

n2ω̄n ≤
d2H

16zHχ
;

X∞
n¼1

n2γ̄n <
ð1þϖÞd2H

8χzH
: ð120Þ

In Appendix B, we delve into the consequences of
imposing the condition that the function fðzÞ belongs to the
class CNðΣÞ, where Σ is the submanifold defined by z ≥ zH
and N ≥ 2. We also remark that the more general con-
ditions (72) can be translated into conditions for the ωn and
γn, using the identifications (117) and (118). Furthermore,
Appendix B provides a minimal solution for the system of
equations obtained by truncating the series in (105) after N
terms while imposing regularity of N derivatives of the
metric functions at the horizon. It also discusses the
limit N → ∞.

C. Thermodynamics

Next we consider the Hawking temperature (37). Using
expressions (114) and eliminating zH through the relations
(109) we have

TH ¼ 1

8
ffiffiffi
2

p
πχð1þP∞

n¼1 ω̄nÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16χ2

d2H

 
1þ

X∞
n¼1

γ̄n

! X∞
n¼1

n2γ̄n

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

32χ2

d2H

 
1þ

X∞
n¼1

ω̄n

! X∞
n¼1

n2ω̄n

!vuut
vuuut ; ð121Þ

which is still complicated to evaluate directly. However, we
can gain more intuition into this temperature by expanding
for large mass χ ≫ 1. In this case, we expect that the
distance of the horizon compared to the classical case is only
modified by subleading terms, i.e. dH ¼ πχ þ oðχÞ, which
we assume to also hold true for the position of the horizon
itself, zH ¼ 2χ þ oðχÞ. With relation (109) this implies

2χ
X∞
n¼1

ω̄n ¼ oðχÞ ¼ 2χ
X∞
n¼1

γ̄n;

i:e: lim
χ→∞

X∞
n¼1

ω̄n ¼ 0 ¼ lim
χ→∞

X∞
n¼1

γ̄n: ð122Þ

In the following, we shall furthermore assume that this is due
to a genuine scaling property of the coefficients ω̄n and γ̄n
such that

lim
χ→∞

X∞
n¼1

nrω̄n ¼ 0 ¼ lim
χ→∞

X∞
n¼1

nrγ̄n; ∀ r∈N: ð123Þ

Under these assumptions, the leading correction to the
Hawking temperature arises from the terms

TH ¼ 1

8πχ

�
1−

1

π2
X∞
n¼1

ð4n2ðω̄nþ γ̄nÞþπ2ω̄nÞþ…

	
: ð124Þ
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As an example, suppose that the proper distance can be
expanded for large masses as

dH ¼ πχ

�
1þ y1ffiffiffi

χ
p þO

�
1

χ

��
; with y1 ∈R: ð125Þ

We then find for particular cases:
(i) For ðω1; γ1Þ ≠ ð0; 0Þ

TH ¼ 1

8πχ

�
1−

π2ω1þ 4ðγ1þω1Þ
π3χ

þðπ2ω1þ 12ðγ1þω1ÞÞy1
π3χ3=2

þO
�
1

χ2

��
. ð126Þ

(ii) For ω1 ¼ 0 ¼ γ1 and ðω2; γ2Þ ≠ ð0; 0Þ

TH ¼ 1

8πχ

�
1 −

π2ω2 þ 16ðγ2 þ ω2Þ
π4χ2

þ ð2π2ω2 þ 64ðγ2 þ ω2ÞÞy1
π4χ5=2

þO
�
1

χ3

��
.

ð127Þ

We observe that the leading correction to the Hawking
temperature is determined solely by the classical term in the
expansion (125) of the proper distance, with no dependence
on higher-order terms.
To compute the entropy, we resort to the first law of

thermodynamics (39), and we consider the two cases
examined above:

(i) For ðω1; γ1Þ ≠ ð0; 0Þ

S ¼ 4πχ2
�
1þ 8γ1 þ 2ð4þ π2Þω1

π3χ

þ 2ð4γ1 þ ð4þ π2Þω1Þ2
π6χ2

logðπ3χ − 4γ1

− ð4þ π2Þω1Þ þO
�
1

χ3

��
: ð128Þ

(ii) For ω1 ¼ 0 ¼ γ1 and ðω2; γ2Þ ≠ ð0; 0Þ

S ¼ 4πχ2
�
1þ ð16γ2 þ ð16þ π2Þω2Þ2

π4χ2
logðπ4χ2

− 16γ2 − ð16þ π2Þω2Þ þO
�
1

χ3

��
: ð129Þ

We remark that this result corrects the mass ex-
pansion of the entropy provided in the previous
paper [1]. There, rather than using a self-consistent
approach as in the current work, an approximation of
the distance function (based on the distance function
of the Schwarzschild black hole) was considered.

This leads to a different conclusion for the sublead-
ing corrections of the entropy [as well as the
Hawking temperature (127)].

VI. CONCULSIONS

In this paper, we have provided regularity conditions
for generic deformations of static and spherically sym-
metric black hole metrics. Following [1,3] we have
considered deformations of the radially-symmetric and
static Schwarzschild space-time, which are described by
corrections of the metric functions as in Eq. (8). In order to
remain invariant under the same coordinate reparametri-
zations as the classical geometry, it has been proposed
[1,3] that these deformations are not arbitrary functions of
the radial variable z, but only depend on a physical
distance. Focusing on the exterior of the black hole
(i.e. outside of its event horizon), we have chosen the
latter to be the proper distance ρ measured from the
horizon.17 Since ρ is defined through the metric function f
itself [concretely through the differential equation (41)], it
needs to be computed in a self-consistent fashion. In this
paper we have solved this problem in a region just outside
of the event horizon (which we assume to be located at zH
with distance dH) in two different fashions:
(1) In a first approach (see Sec. II A) we have assumed

that the first and second derivative (with respect to
the radial coordinate z) of both f and h at zH are
finite such that both functions can be approximated
by their Taylor polynomials (19) and (20) [which
also affords a finite expansion of the distance
function in Eq. (22)]. On the one hand, since the
derivative of ρ with respect to z is divergent at the
horizon, these assumptions lead to nontrivial con-
ditions on the deformations of the metric functions
as shown in Eq. (35).18 On the other hand, these
also ensure that important physical quantities are
well-behaved; indeed, the existence of the first
derivative of f and h (at the horizon) is required
for the finiteness of the Hawking temperature and
the existence of the second derivatives guarantees
that the Ricci-scalar (and Kretschmann scalar) are
finite (such that the black hole is free of curvature
singularities) at the horizon.

(2) The second approach (see Sec. III) is schematically
summarized in Fig. 3; we assume that (outside of the
horizon of the black hole) the deformations of the
metric functions allow for a series expansion in ρ,
as in Eqs. (43) and (57), respectively. Taking the
expansion coefficients fξng and fθng, respectively,

17Other choices shall be considered in upcoming work [33]
(see also [32]).

18We have generalized these conditions in Appendix A by
assuming arbitrarily high derivatives of f to remain finite at the
event horizon.
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as well as dH as input, we look for a solution of the
nonlinear differential equation (42) [which is equiv-
alent to (41)] in the form of an integer series; more
precisely, writing the radial coordinate z as an
integer series in powers of ρ [see Eq. (40)] we
determine all coefficients fang recursively in terms
of the coefficients fξng and dH [see Eqs. (52) and
(53)]. Through series reversion, this allows to write ρ
as the series (54) in half-integer powers of ðz − zHÞ,
whose coefficients fbng are given in (55). These
expressions finally allow us to compute the Ricci
scalar (as well as other physical quantities) in the
vicinity of the black hole horizon. Finally, the
consistency of this procedure, as well as the absence
of a singularity of the Ricci scalar at the horizon
impose the nontrivial conditions (72) on the ex-
pansion coefficients fξng and fθng of the deforma-
tion of the metric functions.

Both methods yield compatible results. They are based on
assuming regularity of certain quantities (up to a given
order) at the horizon and (apart from dH) only require
information about the black hole outside of the event
horizon. They allow us, however, to derive non-trivial
physical quantities of the geometry (curvature scalars such
as the Ricci and Kretschmann scalar) and the thermody-
namics (notably the Hawking temperature and the entropy
of the black hole). We have tested the conditions (35) in
the case of the black hole metric proposed in [3] and find
that they are violated: indeed if considered as a geometry
that is self-consistently defined, it leads to a divergent first
derivative of the metric functions at the horizon, which
poses problems for the thermodynamic interpretation, as
well as a curvature singularity at the horizon. While in [3]
“approximations” have been proposed that indeed render
the geometry well-defined, these correspond to a modi-
fication of the metric deformations that adhere to the
conditions we have found in (72). Along these lines, other
examples can be studied and we have discussed a minimal
solution to these conditions.

Finally, making contact with [1], we have considered a
(generic) asymptotic expansion of the metric deformations
in inverse powers of the proper distance (105). Assuming
that the radius of convergence of the latter is sufficiently
large such that these series are still valid at the event
horizon, we have used the previous formalism to convert
the conditions (35) on the deformation functions into
nontrivial relations among the asymptotic coefficients
(120). We have furthermore also expressed the Hawking
temperature in terms of these coefficients in a consistent
manner in Eq. (121), thereby correcting previous approx-
imations in [1].
In this paper, we have established a framework that is

applicable to (quantum) deformations of the classical
Schwarzschild space-time in a model-independent
fashion and moreover allows to extract certain physical
quantities. We have established nontrivial conditions for the
deformations themselves, which can be translated into
constraints in the context of concrete quantum gravity
models.
One of the most intriguing future directions is to extend

our methodology to include charged and spinning black
holes. It would therefore be interesting to revisit the
work of [36–38], on Taylor expansions for generic tensor
on curved backgrounds. Generalizing our deformation
approach to the classical Kerr and Reissner-Nordström
geometries is a natural next step, which could reveal new
insights into the behavior of quantum-deformed black holes
with other hair parameters [16,17]. Beyond black holes, our
approach is applicable to various other space-times, such as
anti–de Sitter spaces and even models of cosmology, for
example in the context of cosmic inflation [63–66].
Additionally, our work opens up intriguing possibilities
for studying the interior of black holes (a first hint of which
is provided in Appendix E) and the fate of the singularity
at the origin within the context of quantum-deformed
geometries [67].
From a broader perspective, our framework offers an

exciting opportunity for quantum gravity phenomenology.
By systematically extracting physical quantities and com-
paring them with observations, we can test and constrain
concrete quantum gravity models, bridging the gap
between theoretical concepts and experimental verifiability
[68,69]. Finally, it is interesting to explore the applicability
of our approach beyond the realm of (quantum) gravity, for
example in the context of dyons and monopoles in gauge
theories.
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APPENDIX A: REGULAR HIGHER-ORDER
DERIVATIVES

In Sec. II A we have derived the conditions (35) by
assuming that the first and second derivatives of the metric
functions f and h are finite at the horizon zH. In this
appendix, we explore further conditions that stem from
assuming that also higher derivatives (i.e. beyond the
second) are finite. For simplicity, we shall focus on the
function f, while the same considerations also apply to h.
Concretely, let N ∈N and let us assume that all derivatives

fðkÞH for k∈ f1;…; Ng at z ¼ zH are finite. This allows us to
go beyond (19) and write

fðzÞ ¼
XN
k¼1

fðkÞH

k!
ðz − zHÞk þOððz − zHÞnþ1Þ;

with fðkÞH ≔
dnf
dzk

����
z¼zH

: ðA1Þ

1. Distance function

Inserting the expansion (A1) into the differential equa-
tion (41) yields a series expansion of ρ in powers of z − zH

ρ ¼
X2N−1

k¼1

bkðz − zHÞk=2 þOððz − zHÞNÞ; ðA2Þ

which generalizes (22). The coefficients bk of this series
can be found as the solutions of the differential equa-
tion (41) up to order N, which we rewrite in the form

�
dz
dρ

�
2

¼ 1

fðzÞ : ðA3Þ

The right-hand side of this equation has a simple pole at
z ¼ zH and we can write the Laurent series expansion

1

fðzÞ ¼
XN−2

m¼−1
lmðz − zHÞm þOððz − zHÞN−1Þ;

with lm ∈R: ðA4Þ

Multiplying both sides of this equation by ðz − zHÞ and
taking the limit z → zH, we find for the leading coefficient

l−1 ¼ 1=fð1ÞH . To extract the remaining coefficients, we
consider the relation

fðzÞ d
dz

1

fðzÞ ¼ −
1

fðzÞ
df
dz

ðA5Þ

and expand both sides in powers of ðz − zHÞ. Comparing
order by order we then find

l0 ¼ −
l−1f

ð2Þ
H

2fð1ÞH

¼ −
fð2ÞH

2ðfð1ÞH Þ2
;

lp ¼ −1

ðpþ 1Þfð1ÞH

"
ðpþ 1Þl−1f

ðpþ2Þ
H

ðpþ 2Þ! þ
Xp−1
k¼1

klkf
ðp−kþ1Þ
H

ðp − kþ 1Þ!þ
Xpþ1

k¼2

lp−kþ1f
ðkÞ
H

ðk − 1Þ!

#
; 1 ≤ p ≤ N − 2; ðA6Þ

which fixes the coefficients lp iteratively (in terms of the fðnÞH ). Inserting (A4) into (A3), we find the following recursive
structure for the coefficients bp

b1 ¼ 2
ffiffiffiffiffiffiffi
l−1

p
¼ 2ffiffiffiffiffiffiffiffi

fð1ÞH

q b2 ¼ 0;

bp ¼

8><
>:

2
ð2sþ3Þb1

h
lp −

P
2sþ2
n¼2

nð2s−nþ4Þ
4

bnb2s−nþ4

i
if p ¼ 2sþ 3∈Nodd;

− 1
ðsþ1Þb1

P
2sþ1
n¼2

nð2s−nþ3Þ
4

bnb2s−nþ3 if p ¼ 2sþ 2∈Nodd;
3 ≤ p ≤ 2N − 1; ðA7Þ
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which allows to fix them iteratively in terms of the fðnÞH .
Since b2 ¼ 0, the recursive structure in (A7) implies that
b2s ¼ 0 for s∈ f1;…; N − 2g. For the odd coefficients, we
find for the first few instances (for sufficiently large N)

b1 ¼
2

ðfð1ÞH Þ1=2
; b3 ¼ −

fð2ÞH

6ðfð1ÞH Þ3=2
;

b5 ¼
9ðfð2ÞH Þ2 − 8fð1ÞH fð3ÞH

240ðfð1ÞH Þ5=2
: ðA8Þ

These results are indeed compatible with (22) for the
case N ¼ 2.

2. Conditions for the regularity of higher
derivatives f ðnÞ

The results of the previous subsection can be used to
derive necessary conditions for the function eΦ such that
the first N derivatives of the function f (with respect to z)
are finite, which is required for (A1). Assuming an
expansion of the latter of the form (43), we have with (A2)

fðzÞ ¼ 1−
1

z

X2N
n¼0

ξn

 X2N−1

k¼1

bkðz− zHÞk=2
!

n

þOððz− zHÞNÞ;

ðA9Þ

which is only a function of z. Due to the fact that this
expression contains half-integer powers of ðz − zHÞ, deriv-
atives of f can contain negative powers unless certain
conditions for the coefficients ξn are satisfied. To understand
these conditions, we first rewrite the summation in (A9),
taking into account that b2s ¼ 0 for s∈ f1;…; N − 2g

fðzÞ ¼ 1 −
1

z

XN
m¼0

ξ2mðz − zHÞm
 XN−1

r¼0

b2rþ1ðz − zHÞr
!

2m

−
1

z

XN
m¼1

ξ2m−1

 XN−1

r¼0

b2r−1ðz − zHÞrþ1=2

!
2m−1

þOððz − zHÞNÞ: ðA10Þ

With the expansion of 1=z

1

z
¼ 1

zH

XN
n¼0

ð−1Þn
znH

ðz − zHÞn þOððz − zHÞNþ1Þ; ðA11Þ

it is clear that the terms in the first line of (A10) contain no
half-integer powers of ðz − zHÞ and thus cannot contribute
to singularities of derivatives of f at z ¼ zH. The terms in
the second line of (A10), however, contain terms that lead
to negative powers of ðz − zHÞ for derivatives of f.

The conditions to eliminate these singular terms for all

fðkÞH for k∈ f1;…; Ng are therefore

ξ2n−1 ¼ 0 ∀ n∈ f1;…; Ng: ðA12Þ

To see this, let s∈ f1;…; Ng and assume that ξ2s−1 ≠ 0,

while ξ2m−1 ¼ 0 ∀ m∈ f1;…; s − 1g. In this case, fðsÞH

has a singularity of the form ðz − zHÞ−1=2

ds

dzs
fðzÞ ¼ −

ξ2s−1
zH

b2s−11

ds

dzs
ðz − zHÞs−1=2 þOððz − zHÞ0Þ

¼ −
ð2s − 1Þ!!

2szH
ξ2s−1b2s−11 ðz − zHÞ−1=2

þOððz − zHÞ0Þ: ðA13Þ

Absence of this singular contribution therefore requires
ξ2s−1 ¼ 0.
Using (46), the conditions (A12) can also be rewritten

as conditions for the derivatives ΦðnÞ
H . For completeness,

we exhibit the first few such conditions (for sufficiently
large N)

Φð1Þ
H ¼ 0; Φð3Þ

H ¼ −6dHΦ
ð2Þ
H ;

Φð5Þ
H ¼ 480d3HΦ

ð2Þ
H − 20dHΦ

ð4Þ
H ; ðA14Þ

which are indeed compatible with (35).

APPENDIX B: TOWARDS A FULLY
REGULAR SOLUTION

In this appendix, we consider a particular solution for the
consistency conditions found at the end of Appendix A. We
consider a metric function fðzÞ of the form (8), with
deformation eΦðzÞ, which is N-times differentiable (with
N ∈N) in the region z ≥ zH, i.e. outside of the horizon of
the black hole. This allows us to define the Taylor
polynomial of f for large z

fPðzÞ ¼ 1 −
2χ

z

�
1þ θ

�
1

dðzÞ
��

with θ

�
1

dðzÞ
�

¼
XN
n¼1

ωn

dðzÞn ; ðB1Þ

which we shall assume to be a satisfactory approximation
of f for all z ≥ zH. In this case, the consistency conditions
at the horizon take the form of the following linear system

XN
n¼1

ω̄n ¼
zHðNÞ − 2χ

2χ
and

XN
n¼1

ðnþ 2kÞ!
ðn − 1Þ! ω̄n ¼ 0;

∀ k∈ f0;…; N − 2g; ðB2Þ
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where we have used the rescaled coefficients ω̄n defined in
(107). Furthermore, zHðNÞ is the position of the (external)
event horizon computed from the Taylor polynomial (B1),
which is therefore implicitly a function of N.
For fixed N, the system of Eq. (B2) uniquely fixes the

coefficients ω̄n, for n ¼ 1;…; N, and we have found
empirically

ω̄n ¼
zHðNÞ − 2χ

2χ
αnðNÞ; ðB3Þ

with

αnðNÞ ¼
Xn−1
s¼0

ð−1Þs
�
n − 1

s

� ffiffiffi
π

p
ΓðN þ s

2
Þ

ΓðN − 1
2
ÞΓðs

2
þ 1Þ ;

∀ n∈ f1;…; Ng; ðB4Þ

which we have tested up to N ¼ 250. The individual
coefficients αn are plotted for low values of n in the left
panel of Fig. 4.
For N → ∞ individual coefficients are divergent, for

example, the leading contribution behaves as

αn ∼ ð−1Þn−1 ffiffiffi
π

p Nn=2

Γðnþ1
2
Þ for n ≪ N: ðB5Þ

For given N, the largest coefficient (in terms of its absolute
value) appears to be

maxðjα1j;…; jαN jÞ ¼ jαnmax
j with nmax ¼



N − 1

3

�
þ 1:

ðB6Þ

Numerical evaluations (see right panel of Fig. 4) suggest
that this coefficient behaves as

jαnmax
j ∼ α0

�
4

3

�
N

with α0 ≈
3ffiffiffi
5

p : ðB7Þ

Therefore, for (B2) to make sense also for large N, i.e. to
yield finite ω̄n, the difference zHðNÞ − 2χ needs to tend to
zero as well. Indeed, divergent coefficients ω̄n would
indicate the nonexistence of the derivatives of f up to
order N and therefore contradict our initial assumptions.
For example, using (B7), in order for all the coefficients ω̄n
(for n∈ f1;…; Ng) to remain finite (and not tend to 0), we
may choose the following asymptotic form for the differ-
ence of zH and the classical position of the horizon

zHðNÞ − 2χ

2χ
∼ δ0

�
3

4

�
N
; ðB8Þ

for some constant δ0 ∈R. The results are shown in Fig. 5.
Indeed, for large N, i.e. for a metric function that is
infinitely differentiable for all d ≥ dH, the solution simply
approaches θ → 0, i.e. simply leads to the Schwarzschild
black hole.
Notice, that through (B8), the condition of an infinitely

differentiable metric function outside of the horizon,

FIG. 4. Left panel: coefficients αn for low values of n. The black dots represent maxðjα1j;…; jαN jÞ, while the black
dashed curve represents the enveloping value according to Eq. (B7). Right panel: evaluation of jαnmax

j in Eq. (B6). The dashed

line represents the value 3=
ffiffiffi
5

p
.

FIG. 5. Function θ in Eq. (B1) for different N and for the choice
δ0 ¼ 4=3.
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imposes a nontrivial condition for the position of the
horizon. Through

dH ¼
Z

zH

0

dzffiffiffiffiffiffiffiffiffiffiffiffijfðzÞjp and fðzHÞ ¼ 0; ðB9Þ

the latter in principle enters also into relations containing
the metric function inside the black hole horizon.

APPENDIX C: SERIES RELATIONS

For convenience, we compile several series identities in
this appendix, which are too lengthy to be presented in the
main body of the paper.

1. Series expansion of inverse radial coordinate

In this appendix, starting from the series (40), we express
the inverse radial coordinate as a series expansion in ρ.
More precisely, we determine the coefficients pm in

PðρÞ≔ 1

zðρÞ ¼
X∞
m¼0

pm ρm; with
pm∈R∀ m∈N;

p0 ¼ 1=zH:
ðC1Þ

Differentiating both sides with respect to ρ and multiplying
by z, we find

zðρÞPðρÞ0 ¼ −PðρÞ dz
dρ

; ðC2Þ

which with (40) becomes the following series identity 
zH þ

X∞
n¼2

an ρn
! X∞

m¼1

mpm ρm−1

!

¼ −

 X∞
m¼0

pm ρm

! X∞
n¼2

nan ρn−1
!
: ðC3Þ

Rearranging both sides of this equation, we find

0 ¼ zHp1 þ 2ðzHp2 þ a2p0Þρþ
X∞
p¼2

ðpþ 1Þ

×

"
zHppþ1 þ p0apþ1 þ

Xp−1
m¼1

pmapþ1−m

#
ρp: ðC4Þ

Order by order we therefore obtain the relations

p1¼0; p2¼−
a2
z2H

; pp¼−
ap
z2H

−
1

zH

Xp−2
m¼1

pmap−m ∀ p≥3:

ðC5Þ

2. Power of a power series

For ρ∈ ½0; dHÞ and n∈N, we consider the following
power series

�X∞
k¼0

�
−

ρ

dH

�
k
�n

¼
X∞
p¼0

cpρp: ðC6Þ

For the coefficients cn we find the following explicit
expression

cp ≔

 X∞
k¼0

 
−

ρ

dH

!
k
!

n����
ρp

¼
 
−

1

dH

!
p
 
nþ p − 1

p

!

¼
 
−

1

dH

!
p ðnþ p − 1Þ!

p!ðn − 1Þ! : ðC7Þ

For p ¼ 0, we indeed have c0 ¼ 1. In order to show (C7)
for p∈N, we begin by demonstrating

 Xp−l
k¼0

 
−

ρ

dH

!
k
!

l����
ρp−l

¼
 
−

1

dH

!
p−l ðp − 1Þ!

ðp − lÞ!ðl − 1Þ! ;
∀ p∈N;

∀ l∈ f0;…; pg: ðC8Þ

For p ≥ 1 it can be verified for all (finitely) many values of l∈ f0;…; pg, concretely:
(i) For l ¼ 0 both sides are vanishing, since we use the convention 1=ðð−1Þ!Þ → 0.
(ii) For l ¼ 1 we find directly

Xp
k¼0

�
−

ρ

dH

�
k
����
ρp−1

¼
�
−

1

dH

�
p−1

; ðC9Þ

which indeed agrees with (C8).
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(iii) For general 2 ≤ l ≤ p we have Xp−l
k¼0

 
−

ρ

dH

!
k
!

l����
ρp−l

¼
Xp−l

u2;…;l¼0

 Xp−l−u2−���−ul

k1¼0

 
−

ρ

dH

!
k1����

ρp−l−u2−���−ul

!

×

 Xu2
k2¼0

 
−

ρ

dH

!
k2����

ρu2

!
×… ×

 Xul
kl¼0

 
−

ρ

dH

!
kl ����

ρul

!
¼
 
−

1

dH

!
p−l Xp−l

u2;…;l¼0

u2þ���þul≤p−l

1:

The last summation can be rewritten in the form

Xp−l
u2;…;l¼0

u2þ���þul≤p−l

1 ¼
Xp−l
k1¼0

X
u3;…;l¼0

u3þ���þul≤k1

1 ¼
Xp−l
k1¼0

Xk1
k2¼0

…
Xkl−2

kl−1¼0

1 ¼
Xp−l
k1¼0

Xk1
k2¼0

…
Xkl−3

kl−2¼0

�
kl−2 þ 1

kl−2

�
;

which, upon using the identity

Xk
u¼0

�
uþ s

u

�
¼
�
kþ sþ 1

k

�
∀ s∈N; ðC10Þ

leads to

Xp−l
u2;…;l¼0

u2þ���þul≤p−l

1 ¼
�
p − 1

p − l

�
¼ ðp − 1Þ!

ðp − lÞ!ðl − 1Þ! : ðC11Þ

This result therefore indeed demonstrates (C8).
With the result (C8) we can prove (C7) (for p ≥ 1). To this end, we consider

 X∞
k¼0

 
−

ρ

dH

!
k
!

n����
ρp

¼
 Xp

k¼0

 
−

ρ

dH

!
k
!

n����
ρp

¼
Xn
l¼0

 
n

l

! Xp
k¼1

 
−

ρ

dH

!
k
!

l����
ρp

¼
Xn
l¼0

 
−

ρ

dH

!
l
 
n

l

! Xp−1
k¼0

 
−

ρ

dH

!
k
!

l����
ρp

¼
Xn
l¼1

 
−

ρ

dH

!
l
 
n

l

!" Xp−l
k¼0

 
−

ρ

dH

!
k
!

l����
ρp−l

#
: ðC12Þ

With the relation (C8) we therefore obtain

 X∞
k¼0

 
−

ρ

dH

!
k
!

n����
ρp

¼
 
−

1

dH

!
p Xminðn;pÞ

l¼1

 
n

l

!
ðp − 1Þ!

ðp − lÞ!ðl − 1Þ!

¼
 
−

1

dH

!
p
1

p

Xminðn;pÞ

l¼1

l

 
n

l

! 
p

l

!
¼
 
−

1

dH

!
p
 
nþ p − 1

p

!
; ðC13Þ

which indeed demonstrates (C7).

3. Series expansions for ξ1 ≠ 0

For completeness, we shall generalize the approach of Sec. III A also to accommodate functions eΦ such that the
coefficient ξ1 ≠ 0 in Eq. (43) is nonzero. Indeed, assuming that z ∼ zH þOðρpÞ for some p∈Rþ, for the left-hand side of
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Eq. (42) to have a term of order OðρÞ requires either p ¼ 1 or p ¼ 3=2. Since we have seen in Sec. III A that p ¼ 1 still
requires ξ1 ¼ 0, we shall here explore the case p ¼ 3=2, i.e. instead of (40) we shall consider the expansion

z ¼ zH þ
X∞
n¼1

ânρ
nþ2
2 with ân ∈R ∀ n∈N; ðC14Þ

which as before we assume to have an interval of convergence ρ∈ ½0; ρAÞ (with some ρA > 0). We then obtain

z

�
1 −

�
dz
dρ

�
2
�

¼ zH −
9

4
ρzHâ21 þ ρ3=2ðâ1 − 6zHâ1â2Þ þ ρ2

�
â2 − zH

�
4â22 þ

15

2
â1â3

�	

þ
X∞
p¼5

ρp=2
�
âp−2 − zH

Xp−1
m¼1

ðmþ 2Þðp −mþ 2Þ
4

âmâp−m

−
Xp−4
k¼1

âk
Xp−k−3
m¼1

ðmþ 2Þðp − k −mÞ
4

âmâp−k−m−2

	
: ðC15Þ

Comparing the coefficients of ρ0, ρ1, ρ3=2 and ρ2 to (43) yields the relations

zH ¼ ξ0; ξ1 ¼ −
9

4
zHâ21; 0 ¼ â1 − 6zHâ1â2; ξ2 ¼ â2 − zH

�
4â22 þ

15

2
â1â3

�
; ðC16Þ

which has solution

â1 ¼ � 2

3

ffiffiffiffiffiffiffiffiffiffi
−
ξ1
zH

s
; â2 ¼

1

6zH
; â3 ¼

1 − 18zHξ2
135â1z2H

: ðC17Þ

The coefficient â1 is real only for ξ1 < 0. In the case ξ1 > 0, there exists no real solution of (42), which is of the form (C14).
In the following, we shall assume ξ1 < 0 and furthermore pick the positive sign for â1 in (C17); indeed, for the negative
sign, the function zðρÞ would not be monotonically growing for ρ > 0.
Comparing the remaining terms in (C15) order by order, we can express âp−1 in terms of âk with k < p − 1

âp−1 ¼
2

3â1zHðpþ 1Þ

"
âp−2 − zH

Xp−2
m¼2

ðmþ 2Þðp −mþ 2Þ
4

âmâp−m

−
Xp−4
k¼1

âk
Xp−k−3
m¼1

ðmþ 2Þðp − k −mÞ
4

âmâp−k−m−2

#
−

(
0 if p∈Nodd

2ξp=2
3â1zHðpþ1Þ if p∈Neven:

ðC18Þ

4. Examples

To showcase the approach developed in Sec. III A, we consider three simple examples, corresponding to different choices
of the coefficients ξn.

a. Schwarzschild distance

The simplest choice is to set ξ0 ¼ 2χ and ξn ¼ 0 ∀ n > 0, which corresponds to the Schwarzschild black hole (i.e.
eΦ ¼ 1). In this case, we also choose zH ¼ 2χ and dH ¼ πχ. Using (52) and (53), the first few coefficients a2n (and their
reversions bn) can be tabulated as follows:

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6

a2n 1
8χ − 1

384χ3
11

92160χ5
− 73

10321920χ7
887

1857945600χ9
− 136883

3923981107200χ11

b2n−1 2
ffiffiffiffiffi
2χ

p
1

3
ffiffiffiffi
2χ

p − 1
40χ

ffiffiffiffi
2χ

p 1
224χ2

ffiffiffiffi
2χ

p − 5
4608χ3

ffiffiffiffi
2χ

p 7
22528χ4

ffiffiffiffi
2χ

p
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which allows to compute a series expansion of the distance
function, as in Eq. (54). These coefficients have previously
been obtained in [70,71] (see also [72]) in a different context,
namely solutions for free-falling bodies in Newtonian
gravity. We have verified up to ðz − 2χÞ500−1=2 that these
coefficients follow the pattern

b2n−1 ¼
ð−1Þnffiffiffiffiffi

2χ
p ð2n − 5Þ!!

4n−2χn−2ð2n − 1Þðn − 1Þ! ; ðC19Þ

such that the series expansion of ρ in terms of ðz − zHÞ1=2
has an interval of convergence of z∈ ½0; 4χ�. A graphical
example (for χ ¼ 5) is shown in Fig. 6, with an expansion up
to order ðz − zHÞ500−1=2. We have furthermore verified that
the coefficients bn agree with a series expansion of ρðzÞ;
indeed, in the case of the Schwarzschild geometry, the
distance ρ can in fact be computed in closed form as a
function of z [see Eq. (81)]

ρðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz − 2χÞ

p
þ 2χ arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2χ

z

r
for z > 2χ;

ðC20Þ

allowing us to verify whether (54) is indeed a good
representation of the distance function (see Fig. 6).

b. Bonanno-Reuter black hole

For the choice (77) of the metric deformation (along
with f ¼ h), the coefficients ξn in the expansion (43) are
given by

ξ0 ¼
2χd2H
ω̃þ d2H

;

ξn ¼
ð−1Þn2χ

ðω̃þ d2HÞnþ1

Xbn2þ1c

k¼1

ð−1Þk
�

nþ 1

2k − 1

�
dnþ2−2k
H ω̃k;

∀ n ≥ 1: ðC21Þ

Here the interval of convergence (for ω̃ < 0) is given by

ρ∈ ½0; jd2Hþω̃j
dHþ

ffiffiffiffiffi
−ω̃

p Þ. Moreover, since ξ1 ¼ 4χω̃dH
ðω̃þd2HÞ2

≠ 0, the

results of Sec. III A cannot be directly applied. However,
as explained in Appendix C 3, for ω̃ < 0 (such that ξ1 < 0),
this approach can be adapted, leading to a series expansion
(C14) with coefficients ân in (C17) and (C18). This
expansion provides a solution of the differential equa-

tion (42) [albeit with a divergent first derivative fð1ÞH of f at
the horizon]. Inversion of the series (C14) leads to an
expansion of the proper distance to the horizon of the form

ρBRðzÞ ¼
X∞
n¼0

b̂nðz − zHÞ2þn
3 ; ðC22Þ

where for concreteness, we provide explicitly the first few
coefficients

b̂0 ¼
1

â2=31

¼ 32=3z1=3H ðdH þ ω̃Þ2=3
24=3ð−dHχω̃Þ1=3

;

b̂1 ¼
2â2
3â21

¼ ðdH þ ω̃Þ2
16dHχω̃

; b̂2 ¼
7â22 − 6â1â3

9â10=31

: ðC23Þ

A numerical plot of the three different distance functions
used in Sec. IVA for the Bonanno-Reuter black hole is
shown in Fig. 7.

FIG. 7. Comparison of three different distance functions for the
Bonanno-Reuter space-time: (i) ρBR [represented by the expan-
sion (C22)], (ii) the Schwarzschild proper distance ρS ¼ dS − dH,
and (iii) the approximating function κBR − dH in Eq. (84). Here
we have chosen ω̃ ¼ −1, χ ¼ 5 and zH ¼ 10.08 and dH ¼ 12.96.

FIG. 6. Comparison of the series expansion (54) up to order
Oððz − zHÞ500−1=2Þ (dashed black line) to the analytic result
(C20) (red curve) for χ ¼ 5. The blue line 4χ ¼ 20 denotes
the boundary of the interval of convergence for the series
expansion.
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c. Minimal example

As a last example, we consider the metric function
characterized by the minimal choice (89), leading to the
function Φ in Eq. (91). In order to make contact with the
approach in Sec. III, we first remark that the coefficients κn
in the series expansion of (91) [see (44)] are explicitly
given by

κn ¼ −
ð−1Þnðn − 1Þðn − 3Þ

2dnþ2
H

ϕ2; ∀ n ≥ 0: ðC24Þ

Therefore, the series expansion (44) of (91) has interval of
convergence ρ∈ ½0; dHÞ. Using (46), the coefficients κn
allow to calculate the expansion coefficients ξn of eΦ. The
first few ξn read explicitly

ξ0¼2χe
−3ϕ2
2d2

H ; ξ1¼0; ξ2¼
2χ

d4H
ϕ2e

−3ϕ2
2d2

H ; ξ3¼0; ðC25Þ

which therefore satisfy the conditions (67), as expected.
The leading coefficients an in the expansion of zðρÞ in (40)
therefore become

a2 ¼
1þϖ

8zH
; a3 ¼ −

zHϕ2

d4Hð1þ 3ϖÞ ;

a4 ¼ −
1

1þ 2ϖ

�ð1þϖÞ3
256z3H

þ 9z3Hϕ
2
2

d8Hð1þ 3ϖÞ2
�
; ðC26Þ

where we have again used the shorthand notation
ϖ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16zHξ2
p

. The series inversion yields the follow-
ing coefficients for the distance function (54)

b1 ¼
2
ffiffiffiffiffiffiffiffi
2zH

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þϖ

p ; b2 ¼
32z3Hϕ2

d4Hð1þϖÞ2ð1þ 3ϖÞ ;

b3 ¼
d8Hð1þϖÞ4ð1þ 3ϖÞ3 þ 256z6Hð19þ 29ϖÞϕ2

2

2
ffiffiffiffiffiffiffiffi
2zH

p
d8Hð1þϖÞ7=2ð1þ 2ϖÞð1þ 3ϖÞ2 :

ðC27Þ

APPENDIX D: FURTHER EXAMPLES

In this appendix, we discuss two further examples from
the literature that describe nonsingular, static, and spheri-
cally symmetric black holes: the first is the Hayward black
hole [8] and the second one is the Dymnikova space-time
[73]. Although we are aware that these examples do not
exhibit any divergent physical quantities, it is still interest-
ing to demonstrate how our approach can be applied to
deformation functions that explicitly depend on coordinates
other than the proper distance.

1. Hayward black hole

We begin by examining the Hayward black hole, which
was introduced in [8] as the first model to describe a

nonsingular black hole (notably at the origin) without
committing to any specific modification of general rela-
tivity. The metric function for the Hayward space-time can
be written as

fðzÞ¼hðzÞ¼fHayðzÞ≔1−
2χz2

z3þ2χγ
; ∀ z∈ ½0;∞Þ; ðD1Þ

where γ is a free parameter that determines the scale at
which the departure from the classical Schwarzschild
solution becomes significant [74]. Here we assume fHay
to hold in the entire space-time. From the metric element,
we can directly deduce the form of the deformation
function, which explicitly depends on the coordinate z
rather than the proper distance d,

eΦð 1
dðzÞÞ ≔

z3

z3 þ 2χγ
: ðD2Þ

The Hayward space-time exhibits two event horizons,
indicated by the existence of two zeros of the function
fHay. The position of the outer horizon is

zH;þ ¼ 2χ

3

�
1þ 2 cos

�
1

3
arccos

�
1 −

27γ

8χ2

�	�
: ðD3Þ

Furthermore, the proper distance can be computed using
the integral expression (6),

dHayðzÞ ¼
Z

z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� z̃3 þ 2χγ

z̃3 − 2χðz̃2 þ γÞ
����

s
dz̃: ðD4Þ

Numerical evaluation of this integral suggests the fol-
lowing form of the distance of the horizon for large values
of χ

dH;þ ¼ πχ þ c1γc2 ln χ þOðχ0Þ;

with
c1 ¼ 0.3334� 0.0002;

c2 ¼ 0.4999� 0.0002:
ðD5Þ

More importantly, the distance (for a generic point outside
of the horizon) can be expanded in powers of ðz − zH;þÞ,
which takes the explicit form

dHay;ex ¼ dH;þ þ
ffiffiffi
2

p ðz3H;þ þ 2γχÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z − zH;þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zH;þχðz3H;þ − 4γχÞ

q

þ χðz6H;þ − 14z3H;þγχ þ 4γ2χ2Þ
3
ffiffiffi
2

p ðzH;þχðz3H;þ − 4γχÞÞ3=2 ðz − zH;þÞ3=2

þOððz − zH;þÞ5=2Þ: ðD6Þ

QUANTUM BLACK HOLE PHYSICS FROM THE EVENT HORIZON PHYS. REV. D 109, 024045 (2024)

024045-27



A comparison between the numerical solution for the
distance function (D4) and (D6) is shown in Fig. 8.
Using expansion (54) we can read off the coefficients bn
from Eq. (D6) and express them in terms of the an’s using
the recursive relation listed in (55)

a−1=22 ¼
ffiffiffi
2

p ðz3H;þ þ 2γχÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zH;þχðz3H;þ − 4γχÞ

q ; −
a3
2a22

¼ 0;

5a23 − 4a2a4
8a7=22

¼ χðz6H;þ − 14z3H;þγχ þ 4γ2χ2Þ
3
ffiffiffi
2

p ðzH;þχðz3H;þ − 4γχÞÞ3=2 : ðD7Þ

Solving this system yields the solutions for a2, a3
and a4

a2 ¼
zH;þχðz3H;þ − 4γχÞ
2ðz3H;þ þ 2γχÞ2 ; a3 ¼ 0; ðD8Þ

a4 ¼
−χ2z10H;þ þ 18γχ3z7H;þ − 60γ2χ4z4H;þ þ 16γ3χ5zH;þ

384γ5χ5 þ 12z15H;þ þ 120γχz12H;þ þ 480γ2χ2z9H;þ þ 960γ3χ3z6H;þ þ 960γ4χ4z3H;þ
: ðD9Þ

Plugging these coefficients into the series (54) allows us to write z as a power series in ρ and then expand around ρ ¼ 0

2χzðρÞ3
zðρÞ3 þ 2χγ

¼ zH;þ þ 6γχ3z3H;þðz3H;þ − 4γχÞ
ð2γχ þ z3H;þÞ4

ρ2

þ γχ4ð−7z12H;þ þ 72γχz9H;þ − 204γ2χ2z6H;þ þ 112γ3χ3z3H;þÞ
ð2γχ þ z3H;þÞ7

ρ4 þOðρ5Þ; ðD10Þ

from which we can read the coefficients ξn. In particular,
we obtain

ξ1¼ 0; ξ2 ¼
6γχ3z3H;þðz3H;þ−4γχÞ

ð2γχþ z3H;þÞ4
and ξ3¼ 0: ðD11Þ

Alternatively, we can use the last relation in Eq. (50) and the
recursive relation in Eq. (53) for p ¼ 3 to determine the
values of the coefficients ξ2 and ξ3. By doing so, we can
establish that the Hayward space-time satisfies the condition
(67). Consequently, it is not surprising that the Ricci scalar
and the Hawking temperature in this space-time are well-
defined and free from singularities at the event horizon zH;þ.

2. Dymnikova black hole

We now turn our attention to the Dymnikova space-time,
which was proposed in [73,75]. This space-time describes a
static, spherically symmetric nonsingular black hole
embedded in an effective energy-momentum tensor. The
metric function in the Dymnikova space-time is given by

fðzÞ ¼ hðzÞ ¼ fDymnðzÞ ≔ 1 −
2χ

z
ð1 − e−z

3=z3� Þ

with
z3� ¼ 2χz20;

∀ z ≥ 0;
ðD12Þ

which (as for the Hayward black hole) we take to hold for
the entire space-time. Also, similar to the Hayward black
hole, the parameter z0 ensures the regularity of the
solution near the origin. Additionally, the density profile
of the effective energy-momentum tensor is chosen such
that the metric possesses a de Sitter core. Furthermore, the
Dymnikova space-time possesses two horizons, which for
large masses are located at

zH;þ ¼ 2χð1−Oðe−4χ2=z20ÞÞ and zH;− ¼ 2χ

�
1−O

�
z0
8χ

��
:

ðD13Þ
We find from (22) that the power series expansion of the
proper distance has the following form

FIG. 8. Comparison between the proper distance in the
Hayward space-time [blue, calculated using Eq. (D4)] and
the proper distance in the Schwarzschild space-time dS (green)
for specific parameter values: χ ¼ 10 and γ ¼ 3. The dashed
orange line corresponds to the Taylor series expansion of the
proper distance from the event horizon, obtained from Eq. (D6).
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dDymn;ex ¼ dH;þ þ 2zH;þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z − zH;þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ − e−z

3
H;þ=2χz

2
0ð2χ þ 3z3H;þ=z

2
0Þ

q þ e−z
3
H;þ=2χz

2
0ð8χ2z40ðez

3
H;þ=2χz

2
0 − 1Þ − 9z6H;þÞ

24χz40ð2χ þ e−z
3
H;þ=2χz

2
0ð−2χ − 3z3H;þ=z

2
0ÞÞ3=2

ðz − zH;þÞ3=2

þOððz − zH;þÞ2Þ: ðD14Þ

In Fig. 9 we provide a numerical approximation of the proper distance using the definition (6) and compare this expansion
for z > zH;þ. Furthermore, we can recover the coefficients a2, a3 and a4

a2 ¼
e−z

3
H;þ=2χz

2
0ð2χz20ðez

3
H;þ=2χz

2
0 − 1Þ − 3z3H;þÞ

4z20z
2
H;þ

; a3 ¼ 0; ðD15Þ

a4 ¼
e−z

3
H;þ=2χz

2
0ð2χz20ðez

3
H;þ=2χz

2
0 − 1Þ − 3z3H;þÞð9z6H;þ − 8χ2z40ðez

3
H;þ=2χz

2
0 − 1ÞÞ

384χz60z
5
H;þ

: ðD16Þ

As for the Hayward space-time, we can expand the function 2χð1 − e−zðρÞ3=z3� Þ around ρ ¼ 0,

2χð1 − e−zðρÞ3=z3� Þ ¼ zH;þ þ 3e−z
3
H;þ=χz

2
0ð2χz20ðez

3
H;þ=2χz

2
0 − 1Þ − 3z3H;þÞ

4z40
ρ2 þOðρ4Þ ðD17Þ

from which we read off the coefficients ξ1, ξ2 and ξ3

ξ1 ¼ 0; ξ2 ¼
3e−z

3
H;þ=χz

2
0ð2χz20ðez

3
H;þ=2χz

2
0 − 1Þ − 3z3H;þÞ

4z40
and ξ3 ¼ 0: ðD18Þ

We observe that the conditions stated in Eq. (67) are
satisfied in the Dymnikova space-time as well, leading to
the same conclusions as those drawn for the Hayward
black hole. These conditions ensure that the Ricci scalar
and the Hawking temperature remain well-defined and
free from singularities at the event horizons, which is
indeed the case for this space-time.

APPENDIX E: CONDITIONS FOR REGULARITY
AT INNER HORIZONS

The sufficient conditions (35) in Sec. II for regularity of
the Ricci tensor at zH, have been derived assuming that the
latter is the position of the outer horizon; notably, we have
assumed in various instances that fðzÞ > 0 for z > zH.
Generalized Schwarzschild BHs, however, may have fur-
ther horizons, which are characterized by a vanishing of the
function fðzÞ in (1), such that the derivative of the distance
(6) diverges. The latter can (in the same way as discussed in
Sec. II) lead to curvature singularities that are physically
not acceptable. Assuming that the form of the metric
functions f, h are still of the form (8), the presence of
an inner horizon, therefore, puts further conditions on the
functions Φ and Ψ. We can obtain these conditions by
straightforwardly generalizing the discussion of Sec. II.
Here we shall briefly exhibit them, assuming a black hole
with two (simple) horizons at zH;� (with zH;þ > zH;−)

19 and
distances dH;þ and dH;−, respectively.
For simplicity, we consider the conditions that f1 ≔

f0ðzH;−Þ and f2 ≔ f00ðzH;−Þ are both finite, with f1 < 0.
Concretely, we writeFIG. 9. Comparison of the proper distance in the Dymnikova

space-time, computed using the definition (6) (blue), with the
proper distance in the Schwarzschild space-time dS (green) for
χ ¼ 10 and z0 ¼ 3. The dashed orange line represents the Taylor
series expansion of the proper distance from the event horizon, as
given by Eq. (D14).

19Here zH;þ is understood to be the position of the
outer horizon, which we denote by zH throughout the remainder
of this paper.
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fðzÞ ¼ f1ðz − zH;−Þ þ
f2
2
ðz − zH;−Þ2 þ oððz − zH;−Þ2Þ

for z > zH;−: ðE1Þ

Furthermore, we define

d≕ dH;− þ ξðzÞ; with ξðzÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z − zH;−

p ffiffiffiffiffiffiffi
−f1

p

þ f2
6

ðz − zH;−Þ3=2
ð−f1Þ3=2

þ oððz − zH;−Þ3=2Þ:

For z > zH;− we therefore find

z ¼ zH;− −
f1
4
ξ2 þ f1f2

96
ξ4 þ oðξ4Þ; ðE2Þ

and thus we have the following conditions

dΦ
dy

����
y¼ 1

dH;−

¼ 0;
d3Φ
dy3

þ 6dH;−
d2Φ
dy2

����
y¼ 1

dH;−

¼ 0; ðE3Þ

which can be expressed in terms of theΦðnÞ [where we have
already taken into account (35)]

0 ¼ ð7dH;þdH;− − 3d2H;þ − 4d2H;−Þ
Φð2Þ

dH;þd2H;−

þ
X∞
n¼4

ðdH;þ − dH;−Þn−1
ðn − 1Þ!dn−1H;þd

n−1
H;−

ΦðnÞ;

0 ¼ 42ðdH;− − dH;þÞΦð2Þ

þ
X∞
n¼4

½ðnþ 4ÞdH;þ − 6dH;−�ðdH;þ − dH;−Þn−3
Γðn − 1Þdn−2H;þd

n−3
H;−

ΦðnÞ:

ðE4Þ
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