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We present a simple analytical model for studying the collapse of an ultracompact stellar object (regular
black hole mimicker with infinite redshift surface) to form a (integrable) black hole, in the framework of
general relativity. Both initial and final configurations have the same ADM mass, so the transition
represents an internal redistribution of matter without emission of energy. The model, despite being quite
idealized, can be viewed as a good starting point to investigate near-horizon quantum physics.
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I. INTRODUCTION

Ultracompact stellar objects are matter distributions with
radii ever so slightly larger than their gravitational
(Schwarzschild) radius. Therefore, their luminosity is
subjected to a very large (perhaps even infinite) redshift,
and they turn out to be excellent candidates for black hole
(BH) mimickers [1–4]. Understanding the formation and
possible existence of such astrophysical systems is a
pending task. In fact, there are still many open questions,
regarding their stability, in particular, and what would
prevent them from collapsing further into a BH.
One way to avoid this fate is with the antigravitational

effect generated by anisotropic pressures within the stellar
structure [see Eq. (6) below]. On the other hand, if such
ultracompact stellar objects do exist and begin to gain mass
from the surrounding environment, they could eventually
become unstable and collapse to an even more compact and
more stable configuration. In fact, the final stage of the
gravitational collapse in general relativity is quite generi-
cally predicted to be a BH singularity hidden behind the
event horizon.
For the above reasons, studying the transition from

mimickers to BH appears to be an attractive issue.
However, dynamical processes of this type are highly
complex due to the nonlinearity of general relativity, to
the point that numerical calculations often remain the only
viable option. Nonetheless, in this work, we will describe a
simple analytical model for an ultracompact object (with

infinite redshift surface) that further collapses into an
integrable BH, which is a BH characterized by an energy
density that is regular enough to make the mass function
vanish at the center [5]. This condition may be sufficient to
avoid the existence of inner horizons [6–8] and still
preserve some desirable features of regular black holes [9].
In the next section, we briefly review properties of Kerr-

Schild spacetimes which will serve to construct the interior
and exterior geometries for a class of integrable BHs and
mimickers in Sec. III; a model for the transition from such
mimickers to BHs is then described in Sec. IV, and finale
remarks are given in Sec. V.

II. KERR-SCHILD SPACETIMES

For spherically symmetric and static spacetimes, the
general solution of the Einstein field equations,1

Rμν −
1

2
Rgμν ¼ κTμν; ð1Þ

can be written as [10]

ds2 ¼ −eΦðrÞfðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð2Þ

where

f ¼ 1 −
2mðrÞ

r
; ð3Þ

with m the Misner-Sharp-Hernandez mass [11,12]. The
case Φ ¼ 0 corresponds to spacetimes of the so-called*Corresponding author: jorge.ovalle@physics.slu.cz
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Kerr-Schild class [13], for which Eq. (1) yields the energy-
momentum tensor

Tμ
ν ¼ diag½−ϵ; pr; pθ; pθ�; ð4Þ

with energy density ϵ, radial pressure pr, and transverse
pressure pθ given by

ϵ¼ 2m0

κr2
; pr¼−

2m0

κr2
¼−ϵ; pθ ¼−

m00

κr
; ð5Þ

where primes denote derivatives with respect to r. This
source must be covariantly conserved, ∇μTμν ¼ 0, which
yields

p0
r ¼ −

�
Φ0

2
þ m − rm0

rðr − 2mÞ
�
ðϵþ prÞ þ

2

r
ðpθ − prÞ

¼ 2

r
ðpθ − prÞ; ð6Þ

where we used Φ ¼ 0 and the second of Eqs. (5).
We also note that the Einstein field equations (5) are

linear in the mass function. Two solutions with m ¼ m1ðrÞ
and m ¼ m2ðrÞ can therefore be combined to generate a
new solution with

mðrÞ ¼ m1ðrÞ þm2ðrÞ: ð7Þ

Equation (7) represents a trivial case of the so-called
gravitational decoupling [14,15].
If we use a metric of the form in Eq. (2) with Φ ¼ 0 to

describe the interior and exterior of a stellar object of radius
rs, the two regions will join smoothly at r ¼ rs, provided
the interior mass function m satisfies

mðrsÞ ¼ m̃ðrsÞ and m0ðrsÞ ¼ m̃0ðrsÞ; ð8Þ

where m̃ stands for the exterior mass function and FðrsÞ≡
FðrÞjr¼rs for any function FðrÞ. Therefore, from Eqs. (5)
and (8), we conclude that the density and radial pressure are
continuous at the boundary r ¼ rs; that is,

ϵðrsÞ ¼ ϵ̃ðrsÞ and prðrsÞ ¼ p̃rðrsÞ; ð9Þ

where ϵ̃ and p̃r are the energy density and radial pressure
for the exterior region, respectively. Finally, notice that the
transverse pressure pθ is, in general, discontinuous
across rs.

III. BLACK HOLES AND MIMICKERS

The existence of BHs with a single horizon was recently
investigated in Ref. [16], by combining different Kerr-
Schild configurations like in Eq. (7). Here, we shall
consider some solutions found therein as candidates of
BHs and their mimickers.

A. Interiors

In Ref. [16], a nonsingular line element representing the
interior of an ultracompact configuration of radius rs was
found that does not contain Cauchy horizons. This is given
by the metric (2) with Φ ¼ 0 and

f ¼ f�ðrÞ ¼ 1 −
2m�ðrÞ

r
; ð10Þ

with mass function

m�ðrÞ¼ r
2

�
1�
�
1−
�
r
rs

�
n
�
k
�
; 0≤ r≤ rs; ð11Þ

where k and n are constants. The analysis of the causal
structure of this metric shows that it represents a BH for
m ¼ mþðrÞ and an ultracompact configuration with an
infinite redshift surface for m ¼ m−ðrÞ. For both cases, the
mass M of the system,2

M≡mðrsÞ ¼ rs=2; ð12Þ

is contained inside the Schwarzschild radius rs ¼ 2M.
The energy-momentum Tμν of the source generating

these metrics is simply obtained by replacing the mass
function m� in Eq. (5).

1. Black hole

For m ¼ mþ, the metric function

fþ ¼ −
�
1 −

�
r
rs

�
n
�
k
; ð13Þ

with fþðrsÞ ¼ 0, and the metric signature is ðþ −þþÞ for
r < rs if n > 0. In fact, the density ϵðrÞ will decrease for
increasing r only if (i) k ¼ 1 and n∈ ½0; 1Þ or (ii) k > 1 and
n∈ ð1; 2�. Even though we should expect that some energy
conditions are violated [18], we find that the dominant
energy condition,

ϵ≥ 0; ϵ≥ jpij ði¼ r;θÞ; ð14Þ

holds for k > 6, whereas the strong energy condition,

ϵþprþ2pθ ≥ 0; ϵþpi ≥ 0 ði¼ r;θÞ; ð15Þ

is satisfied for k ¼ 1.

2. Mimicker

For m ¼ m−, the metric function

f− ¼ −fþ; ð16Þ

2This is not the ADM mass [17], as we will see in Sec. III B.
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and the metric signature is ð−þþþÞ for r < rs if n > 0
again. The density gradient and compactness are propor-
tional to k, with k ¼ 1 being the case for an isotropic object
of uniform density (incompressible fluid). A monotonic
decrease of the density ϵðrÞ with increasing r is only
possible for k > 1 and n∈ ð1; 2�. The dominant energy
condition is satisfied for k > 3 and n ¼ 2.

3. de Sitter and anti–de Sitter

It is straightforward to interpret the geometry determined
by the mass function in Eq. (11) for n ¼ 2 in terms of
vacuum energy. First, we notice that k ¼ 1 and n ¼ 2 yield
the curvature scalar

R ¼
� 4

r2 − 4Λ for m ¼ mþ ðBHÞ
4Λ for m ¼ m− ðmimickerÞ; ð17Þ

where

Λ ¼ 3=r2s ð18Þ

is the (effective) cosmological constant. These expressions
correspond to anti–de Sitter (AdS) spacetime filled with
some matter producing a scalar singularity at the origin, and
de Sitter spacetime, respectively.
For n ¼ 2 and any real k > 1, we obtain deformations of

the two basic configurations in Eq. (17), and we can argue
that k > 1 parametrizes deviations from dS or AdS. In
particular, for k∈N, the deformed dS or AdS has a simple
interpretation in terms of compositions of configurations of
the kind in Eq. (7) with Eq. (11). This can be seen clearly
from the energy density (5) for the two cases m� in
Eq. (11), namely,

κϵþk ¼ 2

r2
þ k!

Xk
p¼1

ð−1Þp 2pþ 1

p!ðk − pÞ!
r2ðp−1Þ

r2ps

¼ 1

r2
− kΛþ ϵð2Þk − ϵð3Þk þ � � � þ ð−1ÞkϵðkÞk ð19Þ

and

κϵ−k ¼ k!
Xk
p¼1

ð−1Þpþ1
2pþ 1

p!ðk − pÞ!
r2ðp−1Þ

r2ps

¼ kΛ − ϵð2Þk þ � � � þ ð−1Þkþ1ϵðkÞk ; ð20Þ

where

ϵð1<p≤kÞk ≡ k!ð2pþ 1Þ
p!ðk − pÞ!r2

�
r
rs

�
2p

ð21Þ

and ϵð1Þk ¼ Λ, with Λ defined in Eq. (18). Since the ϵðpÞk
appear with alternating signs, we can interpret (19) as a

superposition of “fluctuations” around the basic dS and
AdS configurations.
It is important to remark that the leading behavior of ϵ−k

for r → 0 is always given by a constant dS-like term,
whereas ϵþk ∼ r−2. The latter result confirms that the BH
metric is integrable, so one indeed has

m�ðrÞ ¼ 4πκ

Z
r

0

r̄2 dr̄ϵ�k ðr̄Þ; ð22Þ

both for mimickers and BHs (see Appendix A for more
details).

B. Exterior

The next step is to extend our solutions (2) with Φ ¼ 0

and m ¼ m�ðrÞ to the region r > rs. First, it is easy to
prove that these solutions cannot be smoothly joined with
the Schwarzschild vacuum at r ¼ rs [16]. In fact, the metric
of this vacuum is also of the form in Eq. (2) withΦ ¼ 0 and
constant mass function m ¼ M. Hence, m0ðrþs Þ ¼ 0 can-
not equal the derivative of m�ðr−s Þ.
An exterior metric (for r > rs) of the form in Eq. (2) with

Φ ¼ 0, which smoothly matches the interiors with the mass
functions m ¼ m�ðrÞ at r ¼ rs and approaches the
Schwarzschild metric for r≳ rs, is given by3

fext ¼ 1 −
2M
r

−
�
1 −

2M
rs

�
exp

�
−2

r − rs
2M − l

�
; ð23Þ

where M is the ADM mass (measured by an asymptotic
observer) and l a length scale which must satisfy M ≤
l < 2M in order to ensure asymptotic flatness and
also have

rs ¼ 2M ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lM −M2

p
: ð24Þ

It is important to remark the difference between M and
M in Eq. (12). The former is the total mass of the
configuration, while the latter is the fraction of mass
confined within the region r ≤ rs. Indeed, from the
expression in Eq. (24), we see that M < M ≤ 2M, with

l → 2M ⇒ M → M: ð25Þ

Hence, we conclude that l controls the amount of mass
M contained within the trapping surface r ¼ rs. The
case l → 2M in Eq. (25) would correspond to the
Schwarzschild BH with the total mass M ¼ M confined
within the region r ≤ rs. However, we have seen that this
limiting case is excluded, and we can conclude that both
integrable BHs and mimickers are dressed with a shell of
matter of (arbitrarily small) thickness Δ ≃ 2M − l > 0

3For details, see Refs. [16,19].
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and (arbitrarily small) mass M −M ≃ Δ=4 (for example,
Δ=rs ≃ 0.05 in Figs. 1 and 2).

C. Complete geometries

By matching the interior for m ¼ mþ with the exterior
(23), one obtains a complete BH geometry. Likewise, a
mimicker is obtained by joining the exterior (23) to the
interior withm ¼ m− (see Figs. 1 and 2 for an example). In
particular, we note that the continuity of the mass function
across rs ¼ 2M means that f�intðr−s Þ ¼ 0 ¼ fextðrþs Þ, and
the continuity ofm0 implies that f0extðrþs Þ ¼ 0 ¼ ðf�intÞ0ðr−s Þ.
We highlight a few more features of these two solutions:
(i) Both solutions contain only two charges, i.e., the

ADM mass M and the length scale l ¼ 2M − Δ.
(ii) A BH and a mimicker can have the same exterior

geometry with ADM mass M, provided the interior
massM ¼ m�ðrsÞ (equivalently l) is also the same.

(iii) The sphere r ¼ rs is an event horizon for the BH and
an infinite redshift hypersurface for the mimicker.

(iv) The interior r ≤ rs is quite different in the two cases:
The BH has one horizon (there is no Cauchy inner
horizon) and contains an integrable singularity at
r ¼ 0 [see Eq. (17)]; the mimicker is completely
regular inside.

We also remark that there is a discontinuity in the tangential
pressure pθ ∼m00 at r ¼ rs [16,19].

IV. FROM DE SITTER TO ANTI–DE SITTER

We have seen that the mass functions in Eq. (11) can
correspond to static BHs and mimickers. We now consider
the possibility of dynamical processes that result in the
transition between two such configurations. In general, the
ADMmassM and radius rs ¼ 2M (equivalently, the length
scale l) could change in time. However, it is easier to
consider cases in which both parameters remain constant.
In particular, since the BH metric with mass function

m ¼ mþ involves a larger fraction of the total mass near the
center than the mimicker with m ¼ m− (see Fig. 2), it
makes sense to assume that the mimicker represents the
initial configuration and the BH is the final configuration
for this process (the opposite may be more interesting for
cosmology, see Appendix B). This means that the mass
function for 0 ≤ r ≤ rs must be time dependent, m ¼
mðr; tÞ (see also Appendix C), and start from the mimicker
with f ¼ f−, say, at t ¼ 0,

mðr; t ¼ 0Þ ¼ m−ðr; rsÞ; ð26Þ

to evolve into the BH with f ¼ fþ, at least in an infinite
amount of time,

mðr; t → ∞Þ ¼ mþðr; rsÞ; ð27Þ

with rs ¼ 2M at all times. The exterior geometry is instead
static and described by fext in Eq. (23) with constant M
and l related to rs according to Eq. (24).
An example of a time-dependent mass function for the

interior with the above features is given by

mðr; tÞ ¼ r
2

�
1þ ð1 − 2e−ωtÞ

�
1 −

�
r
rs

�
2
�
k
�
; ð28Þ

where ω−1 is a timescale associated with the transition. In
this respect, it is interesting to note that the complete
spacetime metric changes signature across r ¼ rs (and the
surface r ¼ rs becomes a horizon) at a time

tc ¼ lnð2Þω−1; ð29Þ

when fðrÞ ¼ 0 and m ¼ r=2 for 0 ≤ r ≤ rs (see Figs. 3
and 4 for an example).
Since the exterior geometry does not change, one can

look at this process as being consistent with the fact that
r ¼ rs is a sphere of infinite redshift for all t > 0.

FIG. 1. Metric function f ¼ fðrÞ for the BH (dotted line) and
mimicker (dashed line) for M=M ≈ 1.0, n ¼ 2, and k ¼ 4. The
dashed vertical line represents r ¼ rs (in units of M).

FIG. 2. Mass function m ¼ mðrÞ for the BH (dotted line) and
mimicker (dashed line) for M=M ≈ 1.0, n ¼ 2, and k ¼ 4. The
dashed vertical line represents r ¼ rs (in units of M).
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Mechanisms to allow for energy loss must therefore involve
quantum effects, like the Hawking evaporation [20], which
we have neglected here.

V. CONCLUSION AND FINAL REMARKS

Studying the possible evolution from (horizonless) ultra-
compact objects to BHs using purely analytical and exact
models is a great challenge. In this sense, the model
represented by the mass function in Eq. (28) could be
pioneering in this scenario. Its generalization to more
complex and realistic situations could help to shed light
on new aspects of the gravitational collapse, in particular,
on the existence of ultracompact stellar configurations as
the final stage.
Although Eq. (28) represents an advancement, it is fair to

mention that our model is not free from limitations. One of
them is the fact that external observers could never detect
this specific transition from a mimicker to the BH in the
classical theory. This is a direct consequence of the two

(Cauchy horizon free) configurations in Eq. (11), which
represent the initial and final states of our model, respec-
tively. We can see that the BH horizon always coincides
with the infinite redshift surface of the mimicker and,
correspondingly, no energy is emitted (classically) during
the process. In this form, our model is still a valid starting
point to investigate near-horizon quantum physics.
We conclude by emphasizing that we do not mean to

provide a phenomenologically complete model. On the
contrary, our objective is, more humbly but no less
importantly, to lay the foundation for analytically exploring
the collapse of ultracompact configurations into BHs. In
this perspective, there are many aspects that deserve further
studying, such as its stability and extension to include
energy emission and rotating systems. One should also
consider alternative transitions from our mimickers, which
are regular objects, to nonsingular (rather than integrable)
BHs, which will generically contain two horizons, namely,
the event horizon and the Cauchy horizon. All such aspects
go beyond the scope of this article.
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APPENDIX A: PAINLEVÉ-GULLSTRAND
COORDINATES

For the metric (2) with Φ ¼ 0, one can introduce a
Painlevé-Gullstrand time T such that spatial hypersurfaces
of constant T are flat,

ds2 ¼ −fdT2 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
dTdrþ dr2 þ r2dΩ2: ðA1Þ

We can next introduce tetrads which, for the angular
part, read

eμð2Þ ¼
�
0; 0;

1

r
; 0

�
;

eμð3Þ ¼
�
0; 0; 0;

1

r sin θ

�
: ðA2Þ

Where 0 < f ≤ 1, like inside the mimicker with f ¼ f−

and in the exterior with f ¼ fext, one can define two
tetrads,

eμð0Þ ¼
�

1ffiffiffi
f

p ; 0; 0; 0

�
; ðA3Þ

eμð1Þ ¼
 
−

ffiffiffiffiffiffiffiffiffiffiffi
1

f
− 1

s
;
ffiffiffi
f

p
; 0; 0

!
: ðA4Þ

FIG. 3. Metric function f for mimicker-to-BH with k ¼ 2 at
different times (t in units of ω−1) and tc in Eq. (29).

FIG. 4. Mass function m for mimicker-to-BH with k ¼ 2 at
different times (t in units of ω−1) and tc in Eq. (29).
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Where f < 0, like inside the BH with f ¼ fþ, one can
instead use

eμð0Þ ¼
0
@−

ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

f

s
;
ffiffiffiffiffiffi
−f

p
; 0; 0

1
A; ðA5Þ

eμð1Þ ¼
�

1ffiffiffiffiffiffi
−f

p ; 0; 0; 0

�
: ðA6Þ

The effective energy-momentum tensor sourcing the
metric can then be obtained by projecting the Einstein
tensor on the tetrad. From

GT
T ¼ Gr

r ¼
f þ rf0 − 1

r2
;

Gθ
θ ¼ Gϕ

ϕ ¼ 2f0 þ rf00

2r
; ðA7Þ

one finds

κϵ ¼ Gμνe
μ
ð0Þe

ν
ð0Þ ¼

2m0

r2
: ðA8Þ

Since the spatial metric is flat, it is now easy to see that the
total energy within a sphere of radius r at constant T is
indeed given by Eq. (22), regardless of the sign of f.
Moreover, the spatial volume of these hypersurfaces inside
rs is also constant and equals ð4=3Þπr3s . Furthermore, the
radial pressure

κpr ¼ Gμνe
μ
ð1Þe

ν
ð1Þ ¼ −κϵ; ðA9Þ

and the tangential pressure

κpθ ¼Gμνe
μ
ð2Þe

ν
ð2Þ ¼Gμνe

μ
ð3Þe

ν
ð3Þ ¼ κpϕ¼−

m00

r
: ðA10Þ

All expressions are clearly in agreement with Eq. (5).

APPENDIX B: INSIDE THE BLACK HOLE

Let us consider the geometry inside the horizon r ¼ rs
for n ¼ 2 and k ¼ 1 [see Eq. (17)] as a whole universe, in
the spirit of Ref. [21]. In this case the metric reads

ds2 ¼ dt2

1 − t2=t20
−
�
1 −

t2

t20

�
dr2 − t2dΩ2: ðB1Þ

The components of the Ricci tensor are

Rt
t ¼ Rr

r ¼
3

t20
;

Rθ
θ ¼ Rϕ

ϕ ¼ −
2

t2
þ 3

t20
; ðB2Þ

and the Ricci scalar is

R ¼ 12

t20
−

4

t2
: ðB3Þ

The components of the Einstein tensor therefore read

Gt
t ¼ Gr

r ¼ −
3

t20
þ 2

t2
;

Gθ
θ ¼ Gϕ

ϕ ¼ −
3

t20
: ðB4Þ

Comparing Eqs. (B4) with the expression (4) for the
energy-momentum tensor, we see that this universe is
filled with a negative cosmological constant and an
anisotropic fluid, in agreement with the analysis in
Appendix A.
We can rewrite the metric (B1) in terms of the cosmic

time τ with

t ¼ t0 sin

�
τ

t0

�
; ðB5Þ

which yields

ds2 ¼ dτ2 − cos2
�
τ

t0

�
dr2 − t20sin

2

�
τ

t0

�
dΩ2: ðB6Þ

This metric describes a Kantowski-Sachs universe with a
simple form for the two scale factors [22,23].

APPENDIX C: TIME-DEPENDENT
ENERGY-MOMENTUM TENSOR

The components of the energy-momentum tensor for a
metric of the form (2) with Φ ¼ 0 and m ¼ mðr; tÞ can be
easily obtained from the Einstein equations (1) and read

T0
0 ¼

2m0

κr2
; T1

1 ¼ −
2m0

κr2
¼ −T0

0;

T2
2 ¼ −

m00

κr
−

4rṁ2

κðr − 2mÞ3 −
rm̈2

κðr − 2mÞ2 ; ðC1Þ

where dots denote derivatives with respect to t. These
expressions reduce to those in Appendix A for the static
case ṁ ¼ 0. Moreover, one also finds a flux of energy

T0
1 ¼ −

2ṁ
κðr − 2mÞ2 ; ðC2Þ

which does not appear in the static case.
The (apparently) singular behavior of terms containing

ṁ and m̈ for r → 2m is just due to the choice of
Schwarzschild-like coordinates in Eq. (2). One can remove
this apparent singularity by employing Eddington-
Finkelstein coordinates, in which the metric reads

ds2 ¼ −fdv2 þ 2dvdrþ r2dΩ2; ðC3Þ

and the components of the energy-momentum tensor equal
those in Eq. (5) with T0

1 ¼ 0.
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