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Using Krasnov’s formulation of general relativity, we develop a light cone ansatz for self-dual gravity
(along with linearized anti-self-dual perturbations) in the Poincare patch of de Sitter space. This amounts to
a generalization of Plebanski’s “first heavenly equation” to nonzero cosmological constant. The only
interaction vertices are cubic ones, found previously by Metsaev in a bottom-up light cone approach. We
point out a special feature of these vertices, which leads to “almost conservation” of energy at each
successive order in perturbation theory, despite the time-dependent de Sitter background. Since we embed
the light cone variables into a full spacetime metric, the solutions have a clear geometric interpretation. In
particular, this allows us to read off boundary data on both the past and future horizons of a causal (static)
patch. In this way, we add self-dual general relativity to the program of defining and computing scattering
amplitudes in a causal patch of de Sitter space.
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I. INTRODUCTION AND STRUCTURE
OF THE PAPER

In this paper, we find an exact ansatz for self-dual
general relativity (GR) solutions (as well as linearized
anti-self-dual perturbations on top of these) over a de Sitter
background, using a light cone gauge in Poincare coor-
dinates. While the ansatz can be described in standard
metric language, in its derivation we use Krasnov’s chiral,
metric-free reformulation of GR [1,2]. Our light cone
ansatz reduces each helicity of the gravitational field to
a scalar degree of freedom (as usual in light cone for-
mulations). The dynamics of these scalars is then given by
an action with only cubic vertices, which leads to field
equations that can be solved perturbatively. Such a cubic
action has been worked out previously by Metsaev [3],
in the context of describing the most general cubic
interactions for massless fields in ðAÞdS4 in a light cone
formalism. The novelty in our approach is that we show
how the light cone degrees of freedom are actually related
to components of the spacetime metric and curvature.
Another important historical comparison is to

Plebanski’s “heavenly equations” [4], which describe
solutions of self-dual GR with zero cosmological constant
Λ ¼ 0 in terms of a scalar degree of freedom. Plebanski
found two such equations, which provide alternative
descriptions of self-dual solutions. Both are quadratic in
the scalar variable, corresponding to cubic-only vertices.
The first of the “heavenly equations” was extended to
Λ ≠ 0 by Przanowski in the 1980s [5]. In this extension, the

equation goes from quadratic to nonpolynomial; i.e., we get
interaction vertices of all orders. The present paper’s light
cone ansatz constitutes the (missing up to now) Λ ≠ 0
extension of the second “heavenly equation.” Remarkably,
this extension does preserve the equation’s quadratic
nature. (Note added: shortly after the first version of the
present paper, the same extension was achieved independ-
ently in [6].)
Our motivation for describing this ansatz for self-dual

GR is to add self-dual GR to the list of theories for which
we can define and compute scattering in the de Sitter static
patch—the closest thing to an “asymptotic observable” that
is available to an observer inside de Sitter space. As we
describe below, for full GR, already defining this scattering
problem is difficult, even at the classical level. However, in
the self-dual sector, we find that the scattering problem can
be addressed by methods similar to those we used in [7] for
Yang-Mills theory.
Since our light-cone-gauge results should be of interest

also outside the context of static-patch scattering, the paper
has a somewhat hybrid structure. In Sec. II, we motivate
and pose the static-patch scattering problem. In Sec. III, we
describe the light cone ansatz, sketch the resulting pertur-
bative framework for tree-level computations, and note that
it possesses the curious feature of “almost conserved”
energy (despite the absence of time-translation symmetry in
Poincare coordinates). In Sec. IV, we review Krasnov’s
formulation of GR, and use it to derive our ansatz and its
cubic action. In Sec. V, we return to the static-patch
problem, and show how it is addressed by our Poincare-
patch, light-cone-gauge solutions (as a general reference on
the relationship between tree-level scattering and classical*yashula@icloud.com
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field solutions, see, e.g., [8]). In Sec. VI, we discuss
directions for future work. In an Appendix, we address
the question of our light cone ansatz’s generality, showing
that any perturbation away from it is (at least locally) a
gauge transformation.
Throughout the paper, we use “right-handed/left-

handed” as synonymous with “self-dual/anti-self-dual,”
respectively.

II. SCATTERING IN THE STATIC PATCH

A. Motivation

In theoretical physics, we are generally more comfort-
able with problems posed at spacetime’s asymptotic boun-
dary at infinity. This includes scattering amplitudes in
Minkowski space, as well as boundary correlators in
AdS=CFT. Moreover, in quantum gravity, there is a general
expectation that sharp observables can only be defined at
infinity, since that is where we have a fixed reference
geometry. On the other hand, our world seems to have a
positive cosmological constant Λ > 0. This traps any
physical observers inside a cosmological horizon of finite
size, and challenges us to confront quantum field theory
and gravity in finite regions after all.
The simplest setup in which to approach these issues is

the static patch of de Sitter space, i.e., the largest causally
connected region of the simplest spacetime with positive Λ
(see, e.g., [9–11]). The static patch is a region enclosed by a
pair of cosmological horizons: one in the future, and one in
the past. The past (future) horizon is the light cone of a
point at past (future) asymptotic infinity. In other words, the
static patch is the largest causal diamond in de Sitter space.
Taking a cue from the better-understood observables at
Minkowski or anti–de Sitter (AdS) infinity, we can now try
and compute observables on the static patch’s boundaries.
This leads to the idea of scattering in the static patch, i.e.,
computing the evolution of suitable field data from the past
horizon to the future one [12]. Note that this is quite
different from the more standard problem considered in de
Sitter space, namely of correlators at the future conformal
boundary. The latter only become observable in a universe
that exits its de Sitter phase (as is conjectured to be the case
with inflation).
The static-patch scattering problem has so far been

considered for free massless fields of arbitrary spin [12],
for a scalar with cubic interaction [13], and (with much
greater success) for Yang-Mills theory [7]—all at tree level,
i.e., at the level of classical field solutions. Our present goal
is to add GR to this list. In general, this is a difficult
problem already conceptually, since gravitational perturba-
tions will alter the causal structure of the static patch itself
and its horizon boundaries. Our compromise will be to
consider GR’s self-dual sector, i.e., the sector with vanish-
ing left-handed Weyl curvature. Within this sector, as we
will see shortly, the causal structure remains sufficiently

intact: the horizon maintains the same constant area all the
way to conformal infinity, neither collapsing into caustics
nor expanding to reach causally disconnected points at the
conformal boundary.
The price we pay is that self-dual metrics (in Lorentzian

signature) are necessarily complex, and thus do not
describe physically meaningful geometries. Of course, in
Euclidean signature, self-dual solutions can be real, and
their study is a staple of the GR literature. Such Euclidean
solutions are often called gravitational instantons, and
considered as tunneling-type contributions to the gravita-
tional path integral [14]. Computations in the self-dual
sector are also useful “directly” in Lorentzian signature.
For instance, in Minkowski space, the self-dual sectors of
Yang-Mills and GR form the structure behind maximally
helicity violating (MHV) amplitudes, which are the starting
point for all other amplitude calculations [15–17] (for a
striking example, see the explanation [18] of GR’s two-
loop divergence in terms of a one-loop anomaly in the self-
dual sector). The general point here is that complex
classical solutions become physically meaningful at the
quantum level. In our static-patch case, the technical
simplicity of the self-dual sector is accompanied by a
greater conceptual clarity (due to the horizons maintaining
their causal structure), again hopefully making it a valuable
starting point for future explorations.
Note that, for the more standard inflationary-correlators

problem, the self-dual sector is not sufficient to compute
any correlators. This is because the bulk self-duality
condition is inconsistent with the standard boundary
conditions at future conformal infinity. For the static-patch
problem, this is not the case: as we saw in [7] for
Yang-Mills, the self-dual sector precisely computes the
static-patch analog of MHV (more precisely, N−1MHV)
amplitudes. The situation for self-dual GR is the same.
Despite our ultimate interest in the static patch, we

perform most of the calculation in Poincare coordinates.
This “trick” considerably simplifies our task, thanks to the
higher symmetry of Poincare coordinates, especially spatial
translation invariance. Thus, we set up our calculation in a
Poincare patch whose past boundary coincides with our
static patch’s past horizon. Then, at the very end, we read
off the field data on the static patch’s future horizon, which,
from the point of view of the Poincare patch, is just some
lightlike bulk hypersurface. The price for this “cheating” is
that we need to solve the Poincare-patch evolution not just
in one gauge but in every light cone gauge: to read off the
final data on each separate light ray of the future horizon,
we need a light cone gauge adapted to that light ray (see
Sec. V, as well as the Yang-Mills version [7]).

B. Framework

Let us now formulate the static-patch problem more
concretely. We will need to be more careful than in
previous treatments [7,12,13], which did not involve a
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dynamical geometry. In particular, in [7,12,13] we only
considered the 3D initial/final data on the past/future
horizon, while ignoring any extra data or constraints on
the horizons’ 2D intersection. In the present context, some
constraints on the 2D intersection will prove important
for a proper geometric and causal interpretation of our
scattering problem.

1. Geometric assumptions on the horizons’ intersection

In pure dS4, the past and future horizons of the static
patch intersect at a two-sphere whose intrinsic curvature
radius equals that of dS4 itself. From here on, we set this
curvature radius to 1. The extrinsic curvature of this two-
sphere vanishes, i.e., the covariant derivative along the
sphere of its two lightlike normals is zero. In our static-
patch scattering problem, we will assume that this intrinsic
and extrinsic geometry of the intersection two-sphere
remains undeformed.
To express these properties in equations, let us denote

points on the two-sphere as unit 3D vectors r̂, and the
lightlike coordinates orthogonal to the two-sphere by u, v,
such that the two-sphere is at u ¼ v ¼ 0. We take the u
coordinate to be future pointing, and v past pointing. We
define basis vectors with respect to our coordinates as

l≡ ∂

∂u
; n≡ ∂

∂v
; m≡m ·

∂

∂r̂
; m̄≡m̄ ·

∂

∂r̂
; ð1Þ

where

r̂ · r̂¼1; m · r̂¼ m̄ · r̂¼m ·m¼ m̄ ·m̄¼0; m ·m̄¼1

2
:

ð2Þ

We fix the inner product of the lightlike normals as gln ¼ 1
2
,

and we take the bivector l ∧ m to be left-handed. The two-
sphere’s intrinsic and extrinsic geometry can now be
expressed by the following relations at u ¼ v ¼ 0:

gll ¼ gnn ¼ glm ¼ glm̄ ¼ gnm ¼ gnm̄ ¼ gmm ¼ gm̄ m̄ ¼ 0;

gln ¼ gmm̄ ¼ 1

2
; ð3Þ

∂ugmm ¼ ∂ugm̄ m̄ ¼ ∂ugmm̄ ¼ ∂ugnm ¼ ∂ugnm̄ ¼ 0; ð4Þ

∂vgmm ¼ ∂vgm̄ m̄ ¼ ∂vgmm̄ ¼ ∂vglm ¼ ∂vglm̄ ¼ 0: ð5Þ

We note that these properties fix the two-sphere’s coor-
dinates and the basis vectors (1), up to a SOð1; 1Þ × SOð3Þ
global symmetry and a Uð1Þ local symmetry. Here, the
SOð3Þ are spatial rotations of the r̂ coordinates, the
SOð1; 1Þ are rescalings of u and v (or, equivalently, l
and n) by equal and opposite factors, and the Uð1Þ are
phase rotations [or, equivalently, SOð2Þ geometric rotations
around r̂] of the basis vectors m; m̄ at each point r̂.

Note that the global SOð1; 1Þ × SOð3Þ is precisely the
isometry group of the static patch in pure dS4 [the SOð1; 1Þ
being the static-patch time translations], while the
local Uð1Þ is the standard “little group” of helicity
transformations.

2. Geometry and dynamical data on the past
and future horizons

With the above assumptions on the intersection two-
sphere, we can now draw, e.g., the future horizon by
parallel transporting the lightlike normal l≡ ∂u along
itself, while keeping the v coordinate fixed. The future
horizon is then the lightlike hypersurface v ¼ 0, coordin-
atized by ðu; r̂Þ with u ≥ 0, where the light rays are the
lines of constant r̂, and u is an affine coordinate along them.
These properties are encoded by the following metric
elements at v ¼ 0:

gll ¼ glm ¼ glm̄ ¼ 0; gln ¼
1

2
; ð6Þ

where the constancy of gln encodes the affine nature of
the lightlike vector l (and its associated coordinate u).
Similarly, we draw the past horizon at ðu ¼ 0; v ≥ 0Þ, with

gnn ¼ gnm ¼ gnm̄ ¼ 0; gln ¼
1

2
: ð7Þ

We now come to a key property of self-dual GR. On a
solution of self-dual GR, our assumptions (3)–(5) viz. the
intrinsic and extrinsic geometry at u ¼ v ¼ 0 have conse-
quences that hold throughout the horizons. Specifically, on,
e.g., the v ¼ 0 future horizon, in addition to (6), we have

gmm ¼ 0; gmm̄ ¼ 1

2
: ð8Þ

On other words, the only element of the horizon metric that
is deformed from its pure-dS4 value is gm̄ m̄. Equation (8)
implies that the horizon’s expansion rate vanishes θ ¼ 0, as
does its left-handed shear σmm ¼ 0, with only the right-
handed shear σm̄ m̄ ¼ ∂ugm̄ m̄ nonvanishing. To see that (8)
indeed follows from our assumptions and from self-dual
GR, note that
(1) The initial values gmm ¼ 0, gmm̄ ¼ 1

2
and first deriv-

atives σmm ¼ ∂ugmm ¼ 0, θ ¼ 2∂ugmm̄ ¼ 0 at u ¼ 0
are fixed by the assumptions (3)–(4).

(2) The second derivative ∂uσmm is governed by the
product θσmm and the left-handed Weyl curvature
element Clmlm, which vanishes on solutions of
self-dual GR.

(3) The second derivative ∂uθ is governed by the
products θ2; σmmσm̄ m̄ and the traceless Ricci curva-
ture element Rll, which vanishes on vacuum sol-
utions of GR.
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In this way, the field equations of self-dual GR fix the
metric elements (8) throughout the horizon, by propagating
the initial conditions σmm ¼ θ ¼ 0 from the intersection
two-sphere.
Furthermore, the nontrivial metric element gm̄ m̄ on the

future horizon v ¼ 0 can now be simply related to a right-
handed Weyl curvature element Clm̄lm̄ ¼ ∂

2
ugm̄ m̄. Fixing

Clm̄lm̄ on the horizon is equivalent to fixing gm̄ m̄, since
Eqs. (3) and (4) set gm̄ m̄ ¼ ∂ugm̄ m̄ ¼ 0 at u ¼ 0.
Finally, in addition to the right-handed horizon data

Clm̄lm̄ðu; r̂Þ, we consider linearized left-handed data: the
component clmlmðu; r̂Þ of a linearized left-handed Weyl
curvature perturbation. Unlike the right-handed Weyl
tensor C, we treat this c not as derived from the deformed
metric but merely as propagating on top of it.
The same remarks apply to the past horizon, with the

replacements

u ↔ v;
�
l≡ ∂

∂u

�
↔

�
n≡ ∂

∂v

�
; m ↔ m̄: ð9Þ

3. The scattering problem

The horizons’ vanishing expansion θ ¼ 0 has important
consequences for their causal structure:
(1) The horizons continue to infinite values of affine

lightlike time (v → ∞ for the past horizon, u → ∞
for the future horizon).

(2) The area density remains constant along the
horizons’ light rays.

This means that our deformed static patch remains bounded
by lightlike horizons of constant finite area, just like in
pure dS4. It therefore remains the “largest” causally closed
region in the deformed spacetime, which keeps us faithful
to the motivation of Sec. II A. We stress again that this is a
special feature of self-dual GR, where we can have non-
trivial right-handed shear (σmm or σm̄ m̄ on the past/future
horizon, respectively), but vanishing left-handed shear
(σm̄ m̄ or σmm, respectively). In any real GR solution other
than pure dS4, the horizons would not maintain their
constant area, due to the nonzero gravitational-wave energy
density ∼σmmσm̄ m̄.
With this understanding, we define our (classical)

static-patch scattering problem as computing the data
Clm̄lm̄ðu; r̂Þ and clmlmðu; r̂Þ on the future horizon from
(the self-dual GR solution defined by) their counterparts
Cnmnmðv; r̂Þ and cnm̄nm̄ðv; r̂Þ on the past horizon.
One can now ask whether this scattering problem is well

defined. Specifically:
(1) Given our initial data and assumptions on the past

horizon, is there a self-dual GR solution whose
future horizon satisfies our extrinsic curvature con-
straints ðm ·∇Þl ¼ ðm̄ ·∇Þl ¼ 0 at the intersection
two-sphere?

(2) Is this solution unique?

At the coarse-grained level of only considering 3D data,
i.e., functions of all three coordinates on the past/future
horizon, it is easy to guess that the answer is “yes” since
(1) The Weyl curvature components that we defined as

our initial/final data are the standard ones for the
characteristic-value problem in GR, and in massless
theories more generally [12,19–21].

(2) Self-dual GR should be a self-contained sector, i.e.,
initial data consistent with self-duality should lead to
a self-dual solution.

However, at the more fine-grained level of lower-
dimensional data (i.e., 2D data at the intersection two-
sphere), the answer is less obvious. In Sec. V, we will
constructively demonstrate existence, by building initial
data (89) for a solution in the light cone ansatz (16). As for
uniqueness, it follows in three steps:
(1) In the Appendix, we will show that the light cone

ansatz (16) is (locally) the most general solution to
self-dual GR, up to gauge and diffeomorphisms.

(2) From the construction in Sec. V, it will be clear that
the initial data (89) for the ansatz (16) is uniquely
determined by (i) the curvature data Cnmnmðv; r̂Þ on
the past horizon and (ii) the constraints (3)–(5) on
the intersection two-sphere.

(3) The field equation (17) governing the ansatz (16)
has a hyperbolic linear term, i.e., it is a hyperbolic
equation at each order in perturbation theory. This
guarantees that, at least perturbatively, a solution is
uniquely specified by the initial data at v ≥ 0 as
provided by (89).

4. Reference example: Pure de Sitter space

It will be useful to have explicit formulas for the ðu; v; r̂Þ
coordinates in pure de Sitter space dS4. To achieve this, we
consider flat 5D spacetime R1;4, parametrized by “light
cone” coordinates ðu; v; rÞ with metric ds2 ¼ dudvþ dr2.
Here, u and v are lightlike coordinates, and r∈R3 is an
ordinary Euclidean vector. De Sitter space dS4 is then the
hyperboloid uvþ r2 ¼ 1 within R1;4. Defining r̂≡ r=jrj,
we obtain the desired ðu; v; r̂Þ coordinates for dS4. The
metric in these coordinates reads

ds2 ¼ v2du2 þ 2ð2− uvÞdudvþ u2dv2

4ð1− uvÞ þ ð1− uvÞdr̂ · dr̂;

ð10Þ

where dr̂ · dr̂ is the metric of the unit two-sphere, and the u,
v coordinate range is restricted by uv ≤ 1. The hyper-
surfaces u ¼ 0 and v ¼ 0 are lightlike horizons that define
a static patch, and have all the properties described in
Secs. II B 1–II B 2. Of course, in pure dS4, both the initial
and final data for the Weyl curvature vanish.
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III. THE LIGHT-CONE-GAUGE ANSATZ AND
ITS PERTURBATION THEORY

We now forget temporarily about static-patch scattering,
and turn to present our light-cone-gauge ansatz for self-dual
GR solutions in the Poincare patch. The present section
merely describes the ansatz and its associated perturbation
theory. In Sec. IV, we derive the ansatz’s validity using the
Krasnov formulation of GR. In Sec. V, we tie it back to
the static-patch problem. In the Appendix, we discuss the
ansatz’s generality up to gauge and diffeomorphisms.

A. Poincare coordinates and spinors

We use Poincare coordinates xa ¼ ðt;xÞ for pure dS4,
with the metric

ds2 ¼ 1

t2
ηabdxadxb ¼

1

t2
ð−dt2 þ dx2Þ; ð11Þ

where ηab is the flat 4D Minkowski metric. The Poincare
coordinates xa are related to the embedding-space coor-
dinates of Sec. II B 4 via

ðu; v; rÞ ¼ −
1

t
ð1; t2 − x2;xÞ: ð12Þ

The t coordinate ranges from t ¼ −∞ (the past boundary of
the Poincare patch) to t ¼ 0 (the conformal future boundary
of dS4). It will be very convenient to introduce spinor
indices for the “flat” Poincare coordinates xa via the Pauli
matrices σαα̇a :

xαα̇ ≡ σαα̇a xa; ηabxaxb ¼ −
1

2
xαα̇xαα̇;

∂
αα̇ ≡ ηabσαα̇a

∂

∂xb
¼ −2

∂

∂xαα̇
: ð13Þ

The left-handed spinor indices ðα; β;…Þ are raised and
lowered with the flat antisymmetric spinor metric ϵαβ, and
likewise for the right-handed indices ðα̇; β̇;…Þ:

ζα ¼ ϵαβζ
β; ζα ¼ ζβϵ

βα; ζ̄α̇ ¼ ϵα̇ β̇ζ̄
β̇; ζ̄α̇ ¼ ζ̄β̇ϵ

β̇ α̇; ð14Þ

for any spinors ζα; ζ̄α̇.
We define a basis vector t̂αα̇ ≡ ∂αα̇t along the t axis (with

respect to the flat metric ηab, this is a constant, past-
pointing unit vector). In addition, to define our light cone
ansatz, we fix an arbitrary left-handed spinor qα (again,
constant with respect to the flat ηab).

B. The light cone ansatz

We are now ready to write our light cone ansatz for a
self-dual deformed metric over dS4:

ds2 ¼ 1

4
gαα̇ββ̇ðxÞdxαα̇dxββ̇; ð15Þ

gαα̇ββ̇ðxÞ ¼ −
2

t2
ϵαβϵα̇ β̇

−
1

t
qαqβqγqδ

�
∂
γ
α̇∂

δ
β̇ −

2

t
t̂γðα̇∂δβ̇Þ

�
ϕðxÞ: ð16Þ

The first term in (16) is the pure dS4 metric, while the
second term is the self-dual deformation, generated by a
scalar prepotential ϕðxaÞ. We stress that Eq. (16) is exact,
rather than a linear approximation in ϕðxÞ. The prepotential
ϕðxÞ is subject to a field equation:

□ϕ¼−
1

8
qαqβqγqδðt∂αα̇∂ββ̇ϕ−4t̂αα̇∂ββ̇ϕÞð∂γ α̇∂δβ̇ϕÞ; ð17Þ

where □ is the flat d’Alembertian:

□≡ ηab
∂
2

∂xa∂xb
¼ −

1

2
∂αα̇∂

αα̇: ð18Þ

Equation (17) is again exact, consistent with the fact that
self-dual GR has only cubic interactions [22]. The field
equation (17) can be extracted from Metsaev’s (A)dS light
cone formalism [3], but the actual metric ansatz (16) is, to
our knowledge, new (see [23] for some related work). It is
instructive to compare Eqs. (16) and (17) to their counter-
parts in self-dual GR over Minkowski space [4,24,25], i.e.,
to Plebanski’s second “heavenly equation”:

gαα̇ββ̇ðxÞ ¼ −2ϵαβϵα̇ β̇ þ qαqβqγqδ∂γα̇∂δβ̇ϕðxÞ;
□ϕ ∼ qαqβqγqδð∂αα̇∂ββ̇ϕÞð∂γ α̇∂δβ̇ϕÞ: ð19Þ

We also list for comparison the corresponding ansatz and
equation for self-dual Yang-Mills theory [15,16] (here,
there is no distinction between Minkowski and de Sitter,
since the classical theory is conformal):

Aαα̇ðxÞ ¼ qαqβ∂βα̇ϕðxÞ; □ϕ ∼ qαqβð∂αα̇ϕÞð∂βα̇ϕÞ; ð20Þ
and for a conformally massless scalar in dS4 with cubic
interaction:

ΦðxÞ ¼ 1

t
ϕðxÞ; □ϕ ∼

1

t
ϕ2: ð21Þ

We see that the de Sitter equations (16)–(17) are just a
(surprisingly simple) modification of the Minkowski
ones (19), which in turn are the “square” of the Yang-
Mills equations (20).
Returning now to our field equation (17), we note that it

can trivially be encoded as the variation of an action:

S ¼ 1

32πG

Z
d4xψ

�
□ϕþ 1

8
qαqβqγqδðt∂αα̇∂ββ̇ϕ

− 4t̂αα̇∂ββ̇ϕÞð∂γ α̇∂δβ̇ϕÞ
�

ð22Þ
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with respect to the Lagrange multiplier ψðxÞ. The overall
factor in (22), along with Eqs. (16) and (17) themselves,
will be justified in Sec. IV. In fact, as we will see, the
action (22) is smarter than it appears. In particular, we will
see that ψðxÞ is actually a component of a linearized left-
handed Weyl curvature perturbation:

ψðxÞ ¼ −
1

t3
qαqβqγqδΨαβγδðxÞ; ð23Þ

where the left-handed Weyl tensor ΨαβγδðxÞ is written in an
orthonormal basis with respect to the curved metric (16).
Varying the action (22) with respect to ϕðxÞ, we obtain the
field equation for ψðxÞ as

□ψ ¼ −
1

4
qαqβqγqδððt∂αα̇∂ββ̇ϕ − 2t̂αα̇∂ββ̇ϕÞð∂γ α̇∂δβ̇ψÞ

þ 4ð∂αα̇∂ββ̇ϕÞðt̂γ α̇∂δβ̇ψÞÞ: ð24Þ

This equation is linearized in ψðxÞ but exact in ϕðxÞ.

C. Perturbation theory and “almost conservation”
of energy

The cubic action (22) and its field equations (17), (24)
can be studied with the usual perturbative methods. Since
we are working at the classical level, we will ignore the
overall coefficient in front of the action.
At linear order, the field equations become simply

□ϕ ¼ □ψ ¼ 0, with the general solution given by a
superposition of plane waves:

ϕð1ÞðxÞ ¼
Z
k2¼0

d3k
2ω

aðkÞeikaxa ;

ψ ð1ÞðxÞ ¼
Z
k2¼0

d3k
2ω

bðkÞeikaxa : ð25Þ

Here, ka ¼ ð−ω;kÞ is a lightlike 4-momentum, aðkaÞ are
mode coefficients, and the integration range is understood
to include both positive and negative frequencies:

Z
k2¼0

≡
Z
ω¼jkj

þ
Z
ω¼−jkj

: ð26Þ

In spinor language, we can write the lightlike 4-momenta as

ka¼−
1

2
σαα̇a kαα̇; kαα̇¼ λαλ̃α̇; λ̃α̇¼ signðωÞλ̄α̇: ð27Þ

At higher orders in perturbation theory, we get off-shell
propagators with nonlightlike 4-momenta Ka. Every such
propagator converts a ψ leg into a ϕ leg, and is associated
with a factor of

R
d4K 1

K2, where K2 ≡ ηabKaKb. Finally,
we have a cubic vertex that couples two ϕ legs with
4-momenta Pa, Qa to a ψ leg with 4-momentum Ka (all
with the outgoing sign convention):

1

2i
qαqβqγqδPαα̇Pββ̇Q

γα̇

�
t̂δβ̇−

1

4
Qδβ̇ ∂

∂Kt

�
δ4ðKaþPaþQaÞ

þðP↔QÞ: ð28Þ

What is remarkable here is that, in addition to the con-
servation of spatial momentum Kþ PþQ (due to the
spatial translation symmetry of the Poincare coordinates), we
also have an “almost-conservation” of energyKt þ Pt þQt:
the energy-conserving delta function is present in (28), and is
merely acted on by a derivative. This happens because
the background metric’s t dependence is expressed in (17),
(22), (24) in a particularly “mild”way: as a factor of t in front
of one of the terms. To see that this behavior of self-dual
GR is special, compare it, e.g., to the cubic scalar case (21).
There, we have a negative power of t in the field equation,
which translates into an integral over energies, destroying
energy conservation completely.
To close this section with an explicit example, we

write out the second-order correction to the linearized
solutions (25):

ϕð2ÞðxÞ ¼ i
2

Z
d4K

1

K2
eiKaxa

Z
k2
1
¼0

d3k1

2ω1

aðk1Þ

×
Z
k2
2
¼0

d3k2

2ω2

aðk2Þhqλ1ihqλ2i½λ̃1λ̃2�
�
hqλ2ihqt̂λ̃2� þ

1

4
hqλ1ihqλ2i½λ̃1λ̃2�

∂

∂Kt

�
δ4ðK − k1 − k2Þ; ð29Þ

ψ ð2ÞðxÞ ¼ i
2

Z
d4K

1

K2
eiKaxa

Z
k2
1
¼0

d3k1

2ω1

aðk1Þ
Z
k2
2
¼0

d3k2

2ω2

bðk2Þhqλ1ihqλ2i½λ̃1λ̃2�

×

�
hqλ2ihqt̂λ̃2� þ 2hqλ1ihqt̂λ̃1� þ

1

2
hqλ1ihqλ2i½λ̃1λ̃2�

∂

∂Kt

�
δ4ðK − k1 − k2Þ; ð30Þ
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where we used shorthands for spinor inner products:

hqλi≡qαλα; ½q̄ λ̄�≡ q̄α̇λ̄α̇; hqt̂ λ̄�¼qαtαα̇λ̄α̇: ð31Þ

IV. DERIVING THE LIGHT CONE ANSATZ
FROM KRASNOV’S FORMALISM

In this section, we derive our light cone ansatz (16) and
the associated action (22), using Krasnov’s chiral formu-
lation of GR [1,2] (see important precursors in [26,27]).
In Secs. IVA–IV B, we review the formulation itself. In
Sec. IV C, we use it to study the light cone ansatz. In the
Appendix, we show that our ansatz is in fact the most
general solution of self-dual GR in the sense that any
perturbation away from it (that preserves the equations of
self-dual GR) is pure gauge.

A. The Krasnov formulation of GR

The Krasnov formulation of GR makes crucial use of
the spacetime dimension being D ¼ 4, and a nonzero
cosmological constant Λ ≠ 0 (however, see [28] for a
formulation of the self-dual sector with Λ ¼ 0). As
before, we normalize Λ ¼ 3, so as to have a unit de
Sitter radius. As in the Cartan (vielbein) formulation,
coordinate indices enter only via totally antisymmetric
differential forms. As in Sec. III, we denote coordinate
indices by ða; b;…Þ (these need not refer to Poincare
coordinates, but later on they will). As in the Cartan
formulation, we also use internal indices that refer to a
flat tangent spacetime at every point. In the Cartan
formulation, these are vector indices, which can be
decomposed into left-handed and right-handed spinor
indices as usual. In contrast, in the Krasnov formulation,
we use only left-handed spinor indices for the internal
flat spacetime. As before, we denote left-handed spinor
indices by ðα; β;…Þ. In the present context, these refer
not to the Poincare coordinates of Sec. III but to an
orthonormal basis in the internal flat tangent spacetime.
The fundamental variables in Krasnov’s formulation are
(1) The left-handed half ωαβ

a ¼ ωðαβÞ
a of the spin con-

nection (a 1-form on the spacetime manifold).
(2) The left-handed half Ψαβγδ ¼ ΨðαβγδÞ of the Weyl

curvature tensor (a 0-form on the spacetime
manifold).

Crucially, neither the metric gab nor the vielbein eαα̇a enter
as fundamental variables.
From the connection ωαβ

a , we construct its curvature Fαβ
ab

in the usual way:

Fαβ
ab ¼ 2∂½aω

αβ
b� − ωα

γ½aωγβ
b�: ð32Þ

The left-handed Weyl tensor Ψαβ
γδ can be viewed as a matrix

over the 3D space of symmetric rank-2 left-handed spinors.

Adding to this the identity matrix 1αβγδ ≡ δαðγδ
β
δÞ and taking

the matrix inverse, we obtain the geometric series:
��

1 −
1

2
Ψ
�

−1
�

αβ

γδ

¼ δαðγδ
β
δÞ þ

1

2
Ψαβ

γδ þOðΨ2Þ: ð33Þ

From these objects, the GR action can now be
constructed as

S ¼ i
128πG

Z
d4xϵabcd

�
1 −

1

2
Ψ
�

−1

αβγδ

Fαβ
abF

γδ
cd: ð34Þ

To relate this unusual formulation to the standard metric
language, we define the chiral 2-form:

Σαβ
ab ¼

��
1 −

1

2
Ψ
�

−1
�

αβ

γδ

Fγδ
ab; ð35Þ

which is related to the vielbein eαα̇a via

Σαβ
ab ¼ −eαα̇½ae

βα̇
b� : ð36Þ

There is no closed-form expression for eαα̇a , since the
formalism never fixes a frame for right-handed spinors.
However, the metric gab ¼ − 1

2
eαα̇aeαα̇b can be derived in

closed form, as [29]:

gab¼
ĝab

ð−det ĝÞ1=6 ; ĝab¼
1

24i
ϵcdefðΣα

βÞacðΣβ
γÞbdðΣγ

αÞef:

ð37Þ
The remarkable statement [1,2,22] is that, on solutions to

the Euler-Lagrange equations of (34), this metric satisfies
the vacuum Einstein equations with cosmological constant,
and is consistent with the left-handed connection ωαβ

a and
Weyl curvature Ψαβγδ.

B. Self-dual sector and all-spinor indices

The full GR action (34) can be treated as a perturbative
expansion around the self-dual sector by expanding in
powers of the left-handed Weyl curvature Ψαβγδ. The
zeroth-order term is topological. Self-dual GR (along with
linearized anti-self-dual perturbations) is contained in the
first-order term:

S ¼ i
256πG

Z
d4xϵabcdΨαβγδF

αβ
abF

γδ
cd: ð38Þ

At leading order in Ψαβγδ, the chiral 2-form (35) is given by
the curvature Fαβ

ab itself, so the metric (37) becomes

gab¼
ĝab

ð−det ĝÞ1=6 ; ĝab¼
1

24i
ϵcdefðFα

βÞacðFβ
γÞbdðFγ

αÞef:

ð39Þ
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This metric now describes a self-dual solution of GR with
cosmological constant, with vanishing left-handed Weyl
curvature. The field Ψαβγδ then describes a linearized left-
handed Weyl tensor, not derived from gab, but propagating
on top of it. Using (36) and Σαβ

ab ¼ Fαβ
ab, we can relate Ψαβγδ

to its counterpart cabcd with coordinate indices as

cabcd ¼
1

16
Fαβ
abF

γδ
cdΨαβγδ: ð40Þ

The field equation for the self-dual solution is obtained by
varying (38) with respect to Ψαβγδ:

Fðαβ
½abF

γδÞ
cd� ¼ 0: ð41Þ

The field equation for the anti-self-dual perturbation is
similarly obtained by varying with respect to ωαβ

a , but we
will not need the full form of that equation here.
Now, let us reintroduce spinor notation xa → xαα̇ for the

spacetime coordinates, as in (13). In doing so, we risk
confusion between the curved coordinate indices and the
flat internal spinor indices. To minimize such risk, we will
always place the internal indices before the coordinate
ones, as in (32), (37), (39). Raising and lowering of indices
will always be performed with the flat spinor metrics ϵαβ
and ϵα̇ β̇, with no regard to the curved spacetime metric.

Thus, ωαβ
a and Fαβ

ab become expressed as ωαβ
γγ̇ ¼ ωðαβÞ

γγ̇ ,
Fαβ

γδ ¼ FðαβÞðγδÞ, and F̃αβ
γ̇ δ̇ ¼ F̃ðαβÞðγ̇ δ̇Þ, where

ωαβ
a ¼−

1

2
σγγ̇a ωαβ

γγ̇; Fαβ
ab¼

1

4
ðσγγ̇a σbδγ̇Fαβ

γδþσγγ̇a σbγ
δ̇F̃αβ

γ̇ δ̇Þ:
ð42Þ

In these variables, Eqs. (32), (38), (41) become

Fαβ
γδ ¼ ∂ðγ γ̇ωαβ

δÞγ̇ −
1

2
ωα

εðγ γ̇ωεβ
δÞγ̇;

F̃αβ
γ̇ δ̇ ¼ ∂

γðγ̇ωαβ
γδ̇Þ −

1

2
ωα

ε
γðγ̇ωεβ

γδ̇Þ; ð43Þ

S ¼ 1

256πG

Z
d4xΨαβγδðFαβ

εζFγδεζ − F̃αβ
ε̇ ζ̇F̃

γδε̇ ζ̇Þ; ð44Þ

Fðαβ
εζFγδÞεζ − F̃ðαβ

ε̇ ζ̇F̃
γδÞε̇ ζ̇ ¼ 0; ð45Þ

while the metric (39) becomes

gαα̇ββ̇ ¼
ĝαα̇ββ̇

ð− det ĝabÞ1=6
; ð46Þ

ĝαα̇ββ̇ ¼ −
1

48

�
ϵα̇ β̇F

γ
δαζFδ

ε
ζ
ξFε

γ
ξ
β þ 3Fγ

δαζFδ
ε
ζ
βF̃ε

γα̇ β̇

− 3Fγ
δαβF̃δ

εα̇ γ̇F̃ε
γ
γ̇
β̇ − ϵαβF̃γ

δα̇ γ̇F̃δ
ε
γ̇
δ̇F̃

ε
γ
δ̇
β̇

�
: ð47Þ

We did not bother to write out det ĝab in spinor form, since
it will end up trivial in our application below. Finally,
Eq. (40) can be translated into all-spinor indices as

cabcd ¼
1

16

�
σαα̇a σb

β
α̇σ

γγ̇
c σd

δ
γ̇cαβγδ

þ ðσαα̇a σb
β
α̇σ

γγ̇
c σdγ

δ̇ þ σγγ̇a σbγ
δ̇σαα̇c σd

β
α̇Þcαβγ̇ δ̇

þ σαα̇a σbα
β̇σγγ̇c σdγ

δ̇cα̇ β̇ γ̇ δ̇
�
;

cαβγδ ¼
1

16
Fεζ

αβFξη
γδΨεζξη;

cαβγ̇ δ̇ ¼
1

16
Fεζ

αβF̃γδ
γ̇ δ̇Ψεζγδ;

cα̇ β̇ γ̇ δ̇ ¼
1

16
F̃αβ

α̇ β̇F̃
γδ
γ̇ δ̇Ψαβγδ: ð48Þ

C. The light cone ansatz

Having reviewed the Krasnov formulation, we are now
ready to construct the light cone ansatz of Sec. III.
Following Sec. IV B, we will construct a connection
ωαβ

γγ̇ for a self-dual solution, derive from it the solution’s
metric gαα̇ββ̇, and treat the anti-self-dual perturbation Ψαβγδ

as a field propagating on this self-dual geometry.
Following [1], we separate ωαβ

γγ̇ into a background term
Aαβ

γγ̇ that describes pure dS4, plus a deformation aαβγγ̇
(note that we are not implying a linearized approximation):

ωαβ
γγ̇ ¼ Aαβ

γγ̇ þ aαβγγ̇; Aαβ
γγ̇ ¼

2

t
δðαγ t̂βÞ γ̇: ð49Þ

We then choose the following light cone ansatz for the
deformation aαβγγ̇ , inspired by the Yang-Mills ansatz (20):

aαβγγ̇ ¼
1

t
qαqβqγqδ∂δγ̇ϕ: ð50Þ

Here, ϕðxÞ will end up as the right-handed prepotential
from Sec. III. For any choice of qα, the ansatz (50) satisfies
a pair of gauge conditions:

aαβγγ̇ ¼ aðαβγÞγ̇; ∂γγ̇ðtaαβγγ̇Þ ¼ 0: ð51Þ
These coincide with the gauge conditions introduced in [1],
except that in [1], the factor of t is absent, as a result of
taking a high-energy (effectively, flat-spacetime) limit.
The curvature (43) of the connection (49) takes the

schematic form F ¼ dAþ AAþ daþ fA; ag þ aa. The
term aa quadratic in the deformation vanishes, since it
involves a contraction of qα with itself. We are left with

Fαβ
γδ ¼

4

t2
δαðγδ

β
δÞ −

1

t
qαqβqγqδ□ϕ −

1

t2

�
qαqβqðγ t̂δÞ γ̇

− qγqδqðαt̂βÞγ̇ þ δðαðγq
βÞqδÞqζ t̂ζ γ̇

�
qε∂εγ̇ϕ; ð52Þ
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F̃αβ
γ̇ δ̇ ¼ −

1

t
qαqβqγqδ

�
∂
γ
γ̇∂

δ
δ̇ϕ −

2

t
tγðγ̇∂δδ̇Þϕ

�
; ð53Þ

where the dS4 background is described by the first term
in (52). Let us now plug (52)–(53) into the lhs of the
self-dual field equation (45). The pure-dS4 contribution
vanishes (as it must, since pure dS4 is a solution to the
self-dual equation). We are thus left with terms linear and
quadratic in ϕ. Moreover, we find that the∼1=t4 terms from
the FF and F̃ F̃ pieces cancel. Overall, we get

Fðαβ
εζFγδÞεζ − F̃ðαβ

ε̇ ζ̇F̃
γδÞε̇ ζ̇

¼ −
1

t3
qαqβqγqδð8□ϕþ qεqζqξqηðt∂εα̇∂ζβ̇ϕ

− 4t̂εα̇∂ζβ̇ϕÞð∂ξα̇∂ηβ̇ϕÞÞ: ð54Þ

We recognize this as the scalar equation (17), multiplied by
an overall tensor factor ∼qαqβqγqδ=t3. The fact that we end
up with one scalar equation for the scalar degree of freedom
ϕðxÞ confirms the consistency of our ansatz (50) for aαβγγ̇.
Plugging (54) into (44), we recover the action (22) in terms
of the right-handed degree of freedom ϕðxÞ and the left-
handed degree of freedom ψðxÞ, defined via (23).
Finally, let us derive the explicit metric of our self-dual

solution. To do this, we plug (52)–(53) into (47). It is easy
to see that most of the terms vanish. Indeed, the free left-
handed spinor indices in (52)–(53) are all packaged in
factors of qα and δαβ . Since the result ĝαα̇ββ̇ has only two left-
handed indices, this means that any product of terms with
more than two factors of qα must involve a contraction of
qα with itself, and therefore will vanish. Moreover, in the
first (i.e., FFF) term in (47), index symmetry requires the
free indices to be arranged as ϵαβ, which rules out any
factors of qα. We are thus left with only the FFF and FFF̃
terms, and with only the pure-dS4 term in each factor of F.
The result for the “densitized” metric ĝαα̇ββ̇ reads

ĝαα̇ββ̇ ¼−
2

t6
ϵαβϵα̇ β̇ −

1

t5
qαqβqγqδ

�
∂
γ
α̇∂

δ
β̇ −

2

t
t̂γðα̇∂δβ̇Þ

�
ϕðxÞ:

ð55Þ

Now, we note that the determinant of (55) only receives
contributions from the first term. To see this, note that the
second term has its free left-handed indices all packaged
in factors of qα. As a result, it can contribute to the
determinant only via contractions of qα with itself, which
vanish. Since the first term in (55) is just the pure dS4
metric multiplied by 1=t4, we conclude that the determi-
nant is

det ĝab ¼ −
1

t24
: ð56Þ

Plugging (55)–(56) into (46), we recover the ansatz (16)
for the metric of the self-dual solution. We have thus
established
(1) The relationship (16) between the right-handed

degree of freedom ϕðxÞ and a complete self-dual
metric solution.

(2) The relationship (23) between the left-handed degree
of freedom ψðxÞ and a linearized left-handed Weyl
tensor.

(3) The light-cone-gauge action (22) that governs ϕðxÞ
and ψðxÞ.

For completeness, we also present the vielbein associated
with the metric (16) and spin connection (49)–(50):

eββ̇a ¼ −
1

2
σαα̇a eββ̇αα̇;

eββ̇αα̇ ¼ −
2

t
δβαδ

β̇
α̇ −

1

2
qαqβqγqδ

�
∂δ

β̇
∂γα̇ −

2

t
t̂δβ̇∂γα̇

�
ϕðxÞ:

ð57Þ

It is easy to check that this squares into the metric (16)
via gab ¼ − 1

2
eγγ̇ae

γγ̇
b , as well as into the 2-form (52) via

Fαβ
ab ¼ Σαβ

ab ¼ −eαα̇½ae
βα̇
b� . We found (57) by first taking

the “naive” square root of (16) [given by (57) with the
αα̇ ↔ ββ̇ index pairs symmetrized], and then looking
for an internal left-handed rotation that would reproduce
(52). Note that, as everywhere in the Krasnov formalism,
the freedom of right-handed internal rotations remains.
The explicit vielbein (57) represents a particular (simple
but not unique) choice of the internal right-handed frame.

V. EXTRACTING STATIC-PATCH
SCATTERING DATA

A. Overview

Having justified the light cone ansatz of Sec. III, we
are now ready to discuss its relation to the static-patch
scattering problem from Sec. II. In Sec. III’s Poincare
coordinates, the static patch’s future horizon is simply the
past light cone t ¼ −jxj of the origin—a regular lightlike
bulk hypersurface. On the other hand, the past horizon is
(the past half of) the Poincare coordinates’ past lightlike
infinity (t ¼ −∞, jxj ¼ ∞, −∞ < tþ jxj ≤ 0). As usual,
a boundary at infinity (in this case, only in the coordinate
sense) ultimately simplifies matters, but it requires some
extra care.
We proceed as follows. In Sec. V B, we discuss the

behavior of ϕðxÞ and ψðxÞ near the past horizon, translating
from the (singular on the horizon) Poincare coordinates to
(regular on the horizon) coordinates ðu; v; r̂Þ, defined via
the pure-dS4 coordinate transformation (12). Then, in
Sec. V C, we describe how our Poincare-patch solutions
induce right-handed initial data on the past horizon, as
defined in Sec. II B. In particular, we show that the metric
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in ðu; v; r̂Þ coordinates satisfies the appropriate constraints
(7) on the past horizon, and also, with appropriate initial
conditions for the prepotential ϕðxÞ, the constraints (3)–(5)
on the intersection 2-sphere. Next, in Sec. V D, we describe
how ψðxÞ induces left-handed initial data on the past
horizon.
Finally, in Sec. V E, we describe how the Poincare-

patch solutions induce final data on the future horizon.
Here, the constraints (6) that ensure the lightlike and
affine structure of the horizon’s light rays are generally
not satisfied in our ðu; v; r̂Þ coordinates. However, there is
one particular light ray of the future horizon that remains
undeformed from pure dS4: the one aligned with the fixed
spinor qα that defines our light cone gauge. This is good
enough: we can probe the future horizon one light ray at a
time by varying qα and thus changing the light cone
gauge. Note that the same situation occurred in the Yang-
Mills case [7] (however, in that case we could handle the
full theory, whereas here we are restricted to the self-dual
sector).
As in [7,12,13], we can mostly ignore the distinction

between the geodesically complete horizons ðu ¼ 0;
v∈RÞ; ðu∈R; v ¼ 0Þ and the “halved” horizons ðu ≥ 0;
v ¼ 0Þ; ðu ¼ 0; v ≥ 0Þ that actually bound the static patch.
In particular, we can arbitrarily extend the physical initial
data at v ≥ 0 into the v < 0 range, and then just throw away
the unphysical u < 0 half of the final data. This is justified,
at least in perturbation theory, by the hyperbolic (i.e.,
causal) structure of the linear term in the field equation (17).
On the other hand, unlike in [7,12,13], we will be forced to
impose some constraints on the intersection 2-sphere
u ¼ v ¼ 0, so as to ensure Eqs. (3)–(5).

B. The behavior of ϕðxÞ and ψðxÞ near u= 0

1. Coordinate transformations

We begin by copying the coordinate relation (12) as

ðu; v; r̂Þ ¼
�
−
1

t
;
x2 − t2

t
;
x
jxj

�
: ð58Þ

Taking derivatives, we get

∂u
∂xa

¼ ðu2; 0⃗Þ; ∂v
∂xa

¼ −2
�
1 −

uv
2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uv

p
r̂

�
;

∂r̂
∂xa

¼ uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uv

p ð0; δij − r̂ir̂jÞ: ð59Þ

Near the past horizon u ¼ 0, this becomes

∂u
∂xa

¼ Oðu2Þ; ∂v
∂xa

¼ −2ð1; r̂Þ þOðuÞ;
∂r̂
∂xa

¼ uð0; δij − r̂ir̂jÞ þOðu2Þ: ð60Þ

Now, the 2-sphere point r̂ and its tangent vectors m; m̄ can
be parametrized in terms of spinors χα; χ̄α̇ (normalized as
t̂αα̇χαχ̄α̇ ¼ −1):

ðσt − r̂ · σÞαα̇ ¼ 2χαχ̄α̇; m · σαα̇ ¼ χαχβ t̂βα̇;

m̄ · σαα̇ ¼ χ̄α̇χ̄β̇ t̂αβ̇: ð61Þ
In terms of these spinors, the derivatives (60) near u ¼ 0
become

∂αα̇u¼Oðu2Þ; ∂αα̇v¼4χαχ̄α̇þOðuÞ; ∂αα̇r̂¼OðuÞ; ð62Þ
where, for the moment, we omitted the details of the OðuÞ
term in ∂αα̇r̂. Rewriting r̂ in terms of χαχ̄α̇ as in (61), this
term reads

∂αα̇ðχβχ̄β̇Þ ¼ −uχγχ̄γ̇ðt̂γα̇t̂βγ̇χαχ̄β̇ þ t̂γβ̇ t̂αγ̇χβχ̄α̇Þ þOðu2Þ:
ð63Þ

2. Small-u behavior of ϕðxÞ and ψðxÞ
Now, consider the linearized solution ϕð1ÞðxÞ from (25)

for the right-handed degree of freedom ϕðxÞ. Recall that
this ϕð1ÞðxÞ is just a superposition of lightlike plane waves
in the Poincare coordinates. It is well known (see, e.g.,
[13]) that its rescaled version u−1ϕð1ÞðxÞ ¼ −tϕð1ÞðxÞ is a
regular function of ðu; v; r̂Þ near u ¼ 0; this is essentially
the statement that a radiative field in flat spacetime can be
expanded in positive integer powers of 1=r. In particular, at
leading order in u, we have

lim
u→0

u−1ϕð1ÞðxÞ ¼ −πi
Z

∞

−∞
dωað−ω;ωr̂Þeiωv=2; ð64Þ

where aðkaÞ are the mode coefficients from (25).
We can now show, order by order in perturbation theory,

that the nonlinear corrections to ϕðxÞ preserve the regu-
larity of u−1ϕðxÞ at u ¼ 0. Using the conformal relation
between the flat and de Sitter d’Alembertians:

□ϕ ¼ 1

t3
ð□dS − 2ÞðtϕÞ ¼ u3ð□dS − 2Þϕ

u
ð65Þ

and the relation ∂αα̇u−1 ¼ −∂αα̇t ¼ −t̂αα̇, we rewrite the
field equation (17) as

ð□dS − 2Þϕ
u
¼ 1

8
qαqβqγqδ

�
1

u2

�
∂αα̇∂ββ̇

ϕ

u

��
∂γ

α̇
∂δ

β̇ ϕ

u

�

þ 8

u
t̂αα̇

�
∂ββ̇

ϕ

u

��
∂γ

α̇
∂δ

β̇ ϕ

u

�

þ 8t̂αα̇t̂ββ̇
ϕ

u

�
∂γ

α̇
∂δ

β̇ ϕ

u

�

− 6t̂αα̇t̂ββ̇

�
∂γ

β̇ ϕ

u

��
∂δ

α̇ ϕ

u

��
: ð66Þ
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Now, assume by induction that u−1ϕ is a regular function
of ðu; v; r̂Þ near u ¼ 0, up to some order in perturbation
theory. Recall that near u ¼ 0, the Poincare-coordinate
gradients ∂αα̇ of the ðu; v; r̂Þ coordinates scale as in (62).
Therefore, the gradient of u−1ϕ (at the given order in
perturbation theory) behaves as

∂αα̇
ϕ

u
¼ 4χαχ̄α̇∂v

ϕ

u
þ ufαα̇; ð67Þ

where fαα̇ is a regular function of ðu; v; r̂Þ near u ¼ 0.
Taking another gradient, and using Eq. (63) to take the
gradient of χαχ̄α̇ in (67), we get

∂αα̇∂ββ̇

ϕ

u
¼ 16χαχ̄α̇χβχ̄β̇∂

2
v
ϕ

u

− 4uχγχ̄γ̇ðt̂γα̇t̂βγ̇χαχ̄β̇ þ t̂γβ̇ t̂αγ̇χβχ̄α̇Þ∂v
ϕ

u
þ 4uχαχ̄α̇∂vfαα̇ þOðu2Þ: ð68Þ

Now, using the fact that χ̄α̇ contracted with itself gives zero,
we can see that the contractions of derivatives that appear
on the rhs of (66) satisfy

�
∂ββ̇

ϕ

u

��
∂γ

α̇
∂δ

β̇ ϕ

u

�
¼ OðuÞ;

�
∂αα̇∂ββ̇

ϕ

u

��
∂γ

α̇
∂δ

β̇ ϕ

u

�
¼ Oðu2Þ: ð69Þ

This implies that the rhs of (66) is a regular function of
ðu; v; r̂Þ near u ¼ 0, despite the negative powers of u that
appear in it. We conclude that u−1ϕ remains regular near
u ¼ 0 at each successive order in perturbation theory, as
desired. Moreover, if we use the retarded propagator to
invert the□dS − 2 on the lhs of (66) (which is equivalent to
using retarded propagators in the Poincare perturbation
theory of Sec. III C), then the linearized value (64) of u−1ϕ
at u ¼ 0 becomes the exact initial data for the full nonlinear
solution.
The same analysis can be applied to the left-handed

degree of freedom ψðxÞ, with its field equation (24).
The upshot is that u−1ϕðxÞ and u−1ψðxÞ are both regular
functions of ðu; v; r̂Þ near the past horizon u ¼ 0, with
initial data given by

ϕ̂ðv; r̂Þ≡ lim
u→0

u−1ϕðu; v; r̂Þ ¼ −πi
Z

∞

−∞
dωað−ω;ωr̂Þeiωv=2;

ð70Þ

ψ̂ðv; r̂Þ≡ lim
u→0

u−1ψðu; v; r̂Þ ¼ −πi
Z

∞

−∞
dωbð−ω;ωr̂Þeiωv=2:

ð71Þ

A priori, the initial data (70)–(71) are arbitrary functions of
the coordinates ðv; r̂Þ on the past horizon. As we will see
below, to satisfy the geometric constraints (3)–(5) on the
intersection 2-sphere u ¼ v ¼ 0, we should set ϕ̂ðv; r̂Þ and
its first three ∂v derivatives at v ¼ 0 to zero:

ϕ̂ðv; r̂Þjv¼0 ¼ ∂vϕ̂ðv; r̂Þjv¼0 ¼ ∂
2
vϕ̂ðv; r̂Þjv¼0

¼ ∂
3
vϕ̂ðv; r̂Þjv¼0 ¼ 0: ð72Þ

3. Behavior of the d’Alembertian at u = v = 0

To conclude this subsection, we spell out a consequence
of the first three constraints in (72), which will prove useful
below. Let us return to the field equation (66). Using
the dS4 metric in the form (10), we can express the
d’Alembertian □dS at u ¼ v ¼ 0 as

□dS ¼ 4∂u∂v þ□S2 ; ð73Þ

where □S2 is the 2-sphere Laplacian. Plugging this
into (66), we get, at u ¼ v ¼ 0,

∂u∂v
ϕ

u
¼ 1

4
ð2 −□S2Þ

ϕ

u

þ 1

32
qαqβqγqδ

�
1

u2

�
∂αα̇∂ββ̇

ϕ

u

��
∂γ

α̇
∂δ

β̇ ϕ

u

�

þ 8

u
t̂αα̇

�
∂ββ̇

ϕ

u

��
∂γ

α̇
∂δ

β̇ ϕ

u

�

þ 8t̂αα̇t̂ββ̇
ϕ

u

�
∂γ

α̇
∂δ

β̇ ϕ

u

�

− 6t̂αα̇t̂ββ̇

�
∂γ

β̇ ϕ

u

��
∂δ

α̇ ϕ

u

��
: ð74Þ

Now, let us assume the first three constraints in (72). These
imply that u−1ϕ and its first two ∂v derivatives at v ¼ 0
scale as OðuÞ at small u. Plugging this into (67)–(68),
we get the following small-u scaling at v ¼ 0 for the
gradients (67)–(68) and their contractions (69):

ϕ

u
¼OðuÞ; ∂αα̇

ϕ

u
¼OðuÞ; ∂αα̇∂ββ̇

ϕ

u
¼OðuÞ; ð75Þ

�
∂αα̇∂ββ̇

ϕ

u

��
∂γ

α̇
∂δ

β̇ ϕ

u

�
¼ Oðu3Þ; ð76Þ

where, to obtain the last relation, we again used the fact
that the contraction of χ̄α̇ with itself vanishes. Plugging
(75)–(76) into the rhs of (74), we obtain

lim
u→0

∂u∂v
ϕ

u

����
v¼0

¼ 0: ð77Þ
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C. Right-handed initial data on the past horizon,
and constraints on the intersection 2-sphere

Let us now invert the coordinate relation (58):

xa ¼ ðt;xÞ ¼ 1

u

�
−1;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uv

p
r̂
�
: ð78Þ

The basis vectors ðl; m; m̄; nÞ from (1) can now be written
in Poincare coordinates as

na≡∂xa

∂v
¼
�
0;−

1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1−uv

p r̂

�
¼−

1

2
ð0; r̂ÞþOðuÞ;

la≡∂xa

∂u
¼ 1

u2

�
1;−

1− 1
2
uvffiffiffiffiffiffiffiffiffiffiffiffi

1−uv
p r̂

�
¼ 1

u2
ð1;−r̂Þþv2

4
naþOðuÞ;

ma≡m ·
∂xa

∂r̂
¼ 1

u
ð0;

ffiffiffiffiffiffiffiffiffiffiffiffi
1−uv

p
mÞ¼ 1

u
ð0;mÞþOð1Þ;

m̄a≡m̄ ·
∂xa

∂r̂
¼ 1

u
ð0;

ffiffiffiffiffiffiffiffiffiffiffiffi
1−uv

p
m̄Þ¼ 1

u
ð0;mÞþOð1Þ; ð79Þ

where we present both the exact expressions and their
expansion in powers of u near the past horizon u ¼ 0. In
spinor indices, Eq. (79) becomes

nαα̇¼ χαχ̄α̇þ1

2
t̂αα̇þOðuÞ; lαα̇¼ 2

u2
χαχ̄α̇þv2

4
nαα̇þOðuÞ;

ð80Þ

mαα̇¼ 1

u
χαχβ t̂βα̇þOð1Þ; m̄αα̇¼ 1

u
χ̄α̇χ̄β̇ t̂αβ̇þOð1Þ: ð81Þ

Now, let us rewrite our self-dual deformed metric (16) in
terms of the function u−1ϕ, which is regular at u ¼ 0:

gαα̇ββ̇ðxÞ ¼ u2
�
−2ϵαβϵα̇ β̇ þ qαqβqγqδð∂γ α̇∂δβ̇ þ 4ut̂γðα̇∂δβ̇Þ

þ 4u2t̂γ α̇t̂δβ̇Þ
ϕðxÞ
u

�
: ð82Þ

We now plug in the initial data (70) for u−1ϕ along with the
gradient behavior (62), and contract with the basis vectors
(80) and (81). We obtain the leading-order [namely Oð1Þ]
contribution to the metric elements at small u as

gnn ¼ gnm ¼ gnm̄ ¼ gm̄ m̄ ¼ glm̄ ¼ 0;

gln ¼ gmm̄ ¼ 1

2
; gmm ¼ 4hχqi4∂2v

ϕ

u
; ð83Þ

gll ¼ v2

8
þ 4hχqi2ðhqt̂ χ̄� þ hχqiðm̄ · ∂r̂ÞÞ2

ϕ

u
;

glm ¼ −4hχqi4ðm̄ · ∂r̂Þ∂v
ϕ

u
: ð84Þ

From this, we immediately see that the constraints (7) on
the past horizon are satisfied. Assuming (72), the con-
straints (3), (5) on the metric and its ∂v derivatives on the
intersection 2-sphere u ¼ v ¼ 0 are immediately satisfied
as well. It remains to check the constraints (4) on the
metric’s ∂u derivatives at u ¼ v ¼ 0. For the pure-dS4
metric −2u2ϵαβϵα̇ β̇, these are of course satisfied, as can be
checked directly. As for the deformation, since u−1ϕ and its
first two ∂v derivatives vanish at u ¼ v ¼ 0, we can directly
roll over the deformation terms in (83)–(84) to the next
order in u, obtaining

∂ugnn ¼ ∂ugnm ¼ ∂ugnm̄ ¼ ∂ugm̄ m̄ ¼ ∂uglm̄

¼ ∂ugln ¼ ∂ugmm̄ ¼ 0; ð85Þ

∂ugmm ¼ 4hχqi4∂u∂2v
ϕ

u
; ð86Þ

∂ugll ¼ 4hχqi2ðhqt̂ χ̄� þ hχqiðm̄ · ∂r̂ÞÞ2∂u
ϕ

u
;

∂uglm ¼ −4hχqi4ðm̄ · ∂r̂Þ∂u∂v
ϕ

u
: ð87Þ

The vanishing (77) of ∂u∂vðu−1ϕÞ now implies that the
remaining constraints (4) at u ¼ v ¼ 0 are indeed satisfied.
With the constraints on the past horizon and intersection

2-sphere verified, we proceed to identify the initial data on
the past horizon, as defined in Sec. II B 2. For the right-
handed data, we use (83) to write

Cnmnmðv; r̂Þ ¼ ∂
2
vgmmð0; v; r̂Þ ¼ 4hχqi4∂4vϕ̂ðv; r̂Þ: ð88Þ

Together with the constraints (72), this uniquely determines
the prepotential data ϕ̂ðv; r̂Þ as a fourfold definite integral
of the Weyl curvature data Cnmnmðv; r̂Þ:

ϕ̂ðv; r̂Þ ¼ 1

4hχqi4
Z

v

0

dv0
Z

v0

0

dv00
Z

v00

0

dv000

×
Z

v000

0

dv⁗Cnmnmðv⁗; r̂Þ: ð89Þ

D. Left-handed initial data on the past horizon

Let us now extract the left-handed initial data cnm̄nm̄ from
the initial data (71) for ψðxÞ. First, we will need to convert
the Weyl tensor Ψαβγδ from the internal spinor basis to the
Poincare coordinate basis, via (48). Then we will need to
contract the left-handed Weyl tensor with two copies of the
bivector n ∧ m̄. In Poincare coordinates, at leading order in
u → 0, this bivector reads:

nαα̇m̄ββ̇−nββ̇m̄αα̇¼−
1

2u
ðt̂αγ̇ χ̄γ̇ t̂βδ̇χ̄δ̇ϵα̇β̇þ χ̄α̇χ̄β̇ϵαβÞ: ð90Þ
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Now, as a regular field in dS4, the left-handed Weyl tensor
should have finite components in the ðl; m; m̄; nÞ basis,
which is regular at the past horizon u ¼ 0. Therefore, it will
have vanishing contraction with any bivector whose com-
ponents in the ðl; m; m̄; nÞ vanish at u ¼ 0. In particular, its
contraction with n ∧ m̄ should not change upon shifting
n ∧ m̄ by any finite multiples of the bivectors
uðl ∧ nþm ∧ m̄Þ, u2ðl ∧ mÞ or u2ðl ∧ m̄Þ, which read

uðlαα̇nββ̇ − lββ̇nαα̇ þmαα̇m̄ββ̇ −mββ̇m̄αα̇Þ ¼ 2

u
χðαt̂βÞ γ̇ χ̄ γ̇ϵα̇ β̇;

ð91Þ

u2ðlαα̇mββ̇ − lββ̇mαα̇Þ ¼ −
2

u
χαχβϵα̇ β̇; ð92Þ

u2ðlαα̇m̄ββ̇ − lββ̇m̄αα̇Þ ¼ −
2

u
χ̄α̇χ̄β̇ϵαβ: ð93Þ

By adding appropriate multiples of these bivectors, we can
cancel the right-handed term in (90), and tune the left-
handed term to anything that has the same inner product
with χαχβ. To make contact with Eq. (23), it will be
particularly convenient to replace (90) in this way by a
multiple of qαqβ:

nαα̇m̄ββ̇ − nββ̇m̄αα̇ þ shifts ¼ −
qαqβϵα̇ β̇

2uhχqi2 : ð94Þ

The actual shift terms in (94) can be found by demanding
that the shifted bivector have vanishing contraction with qα.
Explicitly, they read

shifts ¼ 2hχ̄qiu
hχqi ðlαα̇nββ̇ − lββ̇nαα̇ þmαα̇m̄ββ̇ −mββ̇m̄αα̇Þ

þ hχ̄qi2u2
hχqi2 ðlαα̇mββ̇ − lββ̇mαα̇Þ

−
u2

4
ðlαα̇m̄ββ̇ − lββ̇m̄αα̇Þ: ð95Þ

Now, plugging the shifted bivector (94) into (48), we see
that we need only the “fully left-handed part” Fαβ

γδ of the

2-form Fαβ
ab:

cnm̄nm̄¼ qαqβqγqδ

16u2hχqi4cαβγδ; cαβγδ¼
1

16
Fεζ

αβFξη
γδΨεζξη: ð96Þ

Analyzing our expression (52) for Fαβ
γδ with the same

power-counting methods as we used for the metric, we see
that at leading order in u → 0, it is given by the unde-
formed, pure-dS4 value:

Fαβ
γδ ¼ 4u2δαðγδ

β
δÞ: ð97Þ

We thus have simply cαβγδ ¼ u4Ψαβγδ, and the left-handed
Weyl component (96) reads

cnm̄nm̄ ¼ u2qαqβqγqδ

16hχqi4 Ψαβγδ: ð98Þ

Comparing with Eq. (23), we finally obtain the relation
between the left-handed initial data on the past horizon and
the initial data (71) for ψðxÞ:

ψ̂ðv; r̂Þ ¼ 16hχqi4cnm̄nm̄ðv; r̂Þ: ð99Þ

E. Future horizon data, one light ray at a time

We now set out to extract the final data on the future
horizon v ¼ 0. As mentioned in Sec. VA, this becomes
easy if we focus on a single one of the horizon’s light
rays—the one aligned with our gauge spinor qα. We can
then vary qα, scanning through different light cone gauges,
and thus extract the data on any desired light ray.
Let us then choose qα normalized as t̂αα̇qαq̄α̇ ¼ −1, and

focus on the particular light ray (with respect to the pure
dS4 metric) parametrized by (61) with ðχα; χ̄α̇Þ ¼ ðqα; q̄α̇Þ,
i.e., defined by ðv; r̂Þ ¼ ð0; σαα̇qαq̄α̇Þ. We claim that this
remains a light ray also in the deformed metric (16), and
that u remains an affine parameter along it.
To see that this is true, we begin by writing the basis

vectors (79) on our light ray:

lαα̇ ¼ 2

u2
qαq̄α̇; mαα̇ ¼ 1

u
qαqβ t̂βα̇;

m̄αα̇ ¼ 1

u
q̄α̇q̄β̇ t̂αβ̇; nαα̇ ¼ qαq̄α̇ þ 1

2
t̂αα̇: ð100Þ

Contracting with the metric (16), we immediately find
that the metric elements gll; glm; glm̄; gln are undeformed
from their pure-dS4 values, so that the constraints (6) are
satisfied; in particular, la remains lightlike. We must be
careful, though: the constraints (6) imply affinely para-
metrized light rays only when they hold on an entire
hypersurface, not just on a single ray. Therefore, we still
need to demonstrate that the covariant derivative of la

along itself vanishes. Luckily, this is easy to show. Wewrite
out the covariant derivative as

lb∇bla ¼ lb
∂bla þ gadlblc

�
∂bgcd −

1

2
∂dgbc

�
: ð101Þ

Now, the metric deformation in (16) has both its left-
handed spinor indices along qα. Since the metric-dependent
terms in (101) have at least one of the metric’s indices
contracted with lαα̇ ∼ qαq̄α̇, we conclude that the covariant
derivative (101) remains underformed.
Having established that we are indeed dealing with an

affinely parametrized light ray of the future horizon, we can
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proceed to read off the final data on it. Contracting m̄αα̇

from (100) with the metric (16), we get

gm̄ m̄ ¼ 1

4u
ðqαqα̇∂αα̇Þ2ϕ −

1

2
qαqα̇∂αα̇ϕ; ð102Þ

where we recall the relation u ¼ −1=t. Noticing qαq̄α̇ ¼
ðu2=2Þlαα̇ and lαα̇

∂αα̇ ¼ −2∂u, the metric component (102)
becomes

gm̄ m̄ ¼ u3

4
∂
2
uϕþ u2∂uϕ: ð103Þ

Taking two more ∂u derivatives, we obtain the final data
for the right-handed Weyl curvature component Clm̄lm̄ in
terms of the right-handed degree of freedom ϕðxÞ:

Clm̄lm̄ðu; r̂Þ ¼
�
1

4
u3∂4u þ

5

2
u2∂3u þ

11

2
u∂2u þ 2∂u

�
ϕðxÞ:

ð104Þ

This relation is morally similar to, though a bit more
complicated than, its counterpart (88) on the past horizon.
Finally, we turn to the left-handed final data clmlmðu; r̂Þ

in terms of our left-handed degree of freedom ψðxÞ. As in
Sec. V D, we plug into (23), (48), (52) to translate between
clmlm, Ψαβγδ, and ψ , and we again find that only the pure-
dS4 part of the curvature (52) contributes. Altogether, the
left-handed final data reads

clmlmðu; r̂Þ ¼
qαqβqγqδcαβγδ

4u6

¼ qαqβqγqδFεζ
αβFξη

γδΨεζξη

64u6

¼ qαqβqγqδΨαβγδ

4u2
¼ ψðxÞ

4u5
: ð105Þ

VI. OUTLOOK

In this paper, we developed an exact light cone ansatz
for self-dual GR in dS4, along with linearized anti-self-dual
perturbations on top of it. In addition, we carefully
formulated the static-patch scattering problem for this
sector of GR, and showed how its solution at tree level
is encoded within our light cone ansatz.
There are a number of avenues for future work. First, it

would be interesting to compute loop corrections to our
classical static-patch scattering. In fact, it is likely that this
problem can be solved completely, since self-dual GR is
one-loop exact [22]. Second, it would of course be valuable
to go from self-dual (complex) GR to full (real) GR.
However, as discussed in Sec. II, we expect this to be
difficult both technically and conceptually.

A more straightforward future direction is to continue up
the ladder of spins, and address the static-patch scattering
problem for the self-dual sector [30–34] of higher-spin
gravity [35–37]. The present work should be directly
relevant for this purpose, given that self-dual higher-spin
theory has recently been formulated [38] in a manner
closely analogous to Krasnov’s formulation of GR. It
would be especially interesting to try and make contact
between static-patch scattering and the holographic
description [39] of higher-spin gravity in dS4.
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APPENDIX: GENERALITY OF THE LIGHT
CONE ANSATZ

1. The problem statement

In this Appendix, we discuss the generality of our light
cone ansatz (49)–(50) for the connection ωαβ

a . Our claim is
that this ansatz is general up to gauge and diffeomorphisms,
in the sense that perturbations around (49)–(50) can be
described (at least locally) as gauge transformations. Here,
the deviation (50) from pure dS4 can be large, i.e., non-
perturbative. Our treatment will borrow some ideas from
the analysis [1] of perturbations over pure dS4.
Thus, let us consider the self-dual GR solution (49)–(50)

as a background, with vielbein eαα̇a [given explicitly
by (57)] and covariant derivative ∇αα̇ ≡ eaαα̇∇a. Here and
in the rest of this Appendix, we use strictly internal spinor
indices. This means that the translation between spinor and
coordinate indices is always done using the curved vielbein
eαα̇a , rather than using the “flat” Pauli matrices σαα̇a as we
have done in the main text.
Now, consider a general linear perturbation of ωαβ

a over
our background:

δωαβ
a ¼ −

1

2
eγγ̇a δΦαβ

γγ̇; ðA1Þ

where δΦαβγγ̇ has the index symmetry δΦαβγγ̇ ¼ δΦðαβÞγγ̇.
The perturbation to the curvature Fαβ

ab is δFαβ
ab ¼

2∇½aδω
αβ
b� . To preserve the field equation (41), this must

satisfy Fðαβ
½abδF

γδÞ
cd� ¼ 0. Converting to spinor indices and

recalling that Fαβ
ab is equal to the chiral 2-form (36), we

obtain the field equation for the connection perturbation
(A1) as

∇ðαδ̇δΦβγδÞδ̇ ¼ 0: ðA2Þ
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Some of the solutions to this equation are the linearized
diffeomorphisms δωαβ

a ¼ Fαβ
abξ

b, or, in spinor indices,

δΦαβγγ̇ ¼ 2ϵγðαξβÞγ̇: ðA3Þ

Others are linearized internal left-handed rotations
δωαβ

a ¼ ∇aθ
αβ, or, in spinor indices,

δΦαβγγ̇ ¼ ∇γγ̇θαβ; ðA4Þ

where θαβ ¼ θðαβÞ. Finally, we have solutions that preserve
the ansatz (50), with some perturbation δϕ to the prepo-
tential ϕðxÞ that preserves its field equation (17). These
take the form

δΦαβγγ̇ ¼
1

t
qαqβqγqδ∇δγ̇δϕ: ðA5Þ

Note that in this case, the translation between “coordinate”
spinor indices in (50) and “internal” ones in (A5) ends
up being trivial. This is because the deviation of the
vielbein (57) from pure dS4 is always along qα, which
vanishes when contracted with the qα factors in (50). Our
task now is to show that together, Eqs. (A3)–(A5) span (at
least locally) the most general solution δΦαβγγ̇ðxÞ to the
field equation (A2).

2. Index symmetries

The first step is to recognize a remarkable simplifying
feature [1] of the Krasnov formalism. Algebraically, δΦαβγγ̇

consists of two pieces with different index symmetries:

δΦαβγγ̇ ¼ δΦðαβγÞγ̇ þ
2

3
ϵγðαδΦβÞδδγ̇; ðA6Þ

where all possible values of the second piece are precisely
spanned by the diffeomorphisms (A3). Thus, we can use
diffeomorphisms to restrict to totally symmetric δΦαβγγ̇ ¼
δΦðαβγÞγ̇ . The ansatz-preserving perturbation (A5) is
already of this form, while the internal gauge transforma-
tion (A4) gets index-symmetrized (via an appropriate
diffeomorphism) into

δΦαβγ
γ̇ ¼ ∇ðγ γ̇θαβÞ: ðA7Þ

Thus, our remaining task is to show that Eqs. (A5) and (A7)
span the most general totally symmetric solution to (A2).
Our next step is to unsymmetrize the spinor indices in

the field equation (A2). That is, we aim to bring the field
equation to the stronger form:

∇α
δ̇δΦβγδδ̇ ¼ 0: ðA8Þ

This is equivalent to the original equation (A2) together
with a “Lorentz gauge” condition∇γγ̇δΦαβ

γγ̇ ¼ 0. We claim

that this condition can be ensured by a gauge trans-
formation of the form (A7). To see this, we start by writing
the divergence of (A7) as

∇γγ̇δΦαβ
γγ̇ ¼ 1

3
∇γγ̇ð∇γγ̇θαβ þ 2∇ðαγ̇θβÞγÞ: ðA9Þ

In the second term, we decompose into symmetric and
antisymmetric parts with respect to the spinor indices on
the two derivatives, which gives

∇γγ̇δΦαβ
γγ̇ ¼ 2

3
∇γγ̇∇γγ̇θαβ þ∇ðαjγ̇j∇β

γ̇θγÞγ: ðA10Þ

Now, on a solution to self-dual GR, the only curvature
component that contributes to the commutator ∇ðαγ̇∇βÞγ̇ is
the Ricci scalar, i.e., the cosmological constant:

∇ðαγ̇∇βÞγ̇ζγ ¼ δγðαζβÞ; ðA11Þ

for any left-handed spinor field ζα. Plugging (A11)
into (A10), we get

∇γγ̇δΦαβ
γγ̇ ¼ 2

3
ð∇γγ̇∇γγ̇ − 2Þθαβ: ðA12Þ

Thus, given any δΦαβγγ̇, we can always choose a
gauge transformation (A7) by solving ð∇γγ̇∇γγ̇ − 2Þθαβ ¼
− 3

2
∇γγ̇δΦαβ

γγ̇ , so as to bring us into the “Lorentz
gauge” ∇γγ̇δΦαβ

γγ̇ ¼ 0.
The upshot of this subsection is that the perturbation

δΦαβγγ̇ can be restricted to be totally symmetric
δΦαβγγ̇ ¼ δΦðαβγÞγ̇, and to satisfy the strengthened field
equation (A8). Our remaining task is to show that the
solutions to (A8) are spanned by the ansatz-preserving (A5)
and the residual gauge transformations (A7), where the
gauge parameter is restricted to preserve “Lorentz gauge”:

ð∇γγ̇∇γγ̇ − 2Þθαβ ¼ 0: ðA13Þ

3. Counting unconstrained derivatives

Let us now show that Eqs. (A5) and (A7) indeed span
all solutions to the field equation (A8). Our approach is to
study the tower of derivatives around some fixed space-
time point x, and count the number of unconstrained
components in these derivatives. In other words, at each
order in the derivative expansion, we will count the
components that are not related, by field equations or
constraints, to other components with equal or smaller
number of derivatives.
Before we begin, we note that as usual, the Dirac-like

field equation (A8) implies a Klein-Gordon-like equation:

∇αα̇∇αα̇δΦβγδδ̇ ¼ lower-derivative terms: ðA14Þ
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This follows from acting on (A8) with ∇αα̇, and noting that
∇αðα̇∇α

δ̇Þ is a commutator of covariant derivatives, which
reduces to a derivative-free curvature term.
Now, we are ready to count the unconstrained compo-

nents of the nth derivative of δΦαβγγ̇:

∇α1α̇1…∇αnα̇nδΦβγδδ̇: ðA15Þ

Any commutator of two derivatives again results in a lower-
derivative term. Together with Eqs. (A8) and (A14), this
implies that the only unconstrained components of (A15)
are the ones totally symmetrized over the n left-handed
indices ðα1…αnÞ, as well as over the nþ 1 right-handed
indices ðα̇1…α̇nδ̇Þ. Recalling that the three remaining
indices ðβγδÞ are also symmetrized, and that a rank-k
totally symmetric spinor has kþ 1 independent compo-
nents, we conclude that the number of unconstrained
components in (A15) is 4ðnþ 1Þðnþ 2Þ.
Now, consider the ansatz-preserving perturbation (A5).

Here, the nth derivative of δΦαβγγ̇ is determined by the
nth derivative of qα∇αα̇δϕ:

∇α1α̇1…∇αnα̇nq
β∇ββ̇δϕ; ðA16Þ

where the relevant constraint is a Klein-Gordon-like equa-
tion ∇αα̇∇αα̇δϕ ¼ … that arises from (17). This leaves
unconstrained the components of (A16) that are totally
symmetrized over the n indices ðα1…αnÞ, as well as over
the nþ 1 indices ðα̇1…α̇nβ̇Þ. Thus, the number of uncon-
strained components is (at least) ðnþ 1Þðnþ 2Þ.
It remains to show that the remaining 3ðnþ 1Þðnþ 2Þ

unconstrained components of (A15) can be provided by
the derivative expansion of the gauge transformation (A7).
To make sure that we are not double counting, we
contract (A7) with qα, which annihilates the ansatz-
preserving solutions (A5). The nth derivatives of the result
then take the form

∇α1α̇1…∇αnα̇nq
β∇ðβjβ̇jθγδÞ; ðA17Þ

where θαβ satisfies the Klein-Gordon-like constraint (A13).
This leaves unconstrained the components of (A17) that are
totally symmetrized over ðα1…αnÞ and ðα̇1…α̇nβ̇Þ. Since
the remaining free indices ðγδÞ are also symmetrized,
this makes (at least) 3ðnþ 1Þðnþ 2Þ unconstrained com-
ponents, i.e., just enough to complete the most general
solution to (A8).
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