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In this paper, we study rotating horizonless black shells as an alternative to Kerr black holes. We make
use of Ernst’s potential to solve the Einstein equations perturbatively in the angular momentum a.
Calculating to order a6, we find accurate predictions up to about a ¼ 0.45, where the quadrupole moment is
predicted to be around 1% higher than its Kerr value; higher multipole moments show deviation of the order
of ∼10%. Our analysis takes into account deformations of the black shells, and we propose that it can be
used for numerical simulations comparing gravitational waves emitted by orbiting black shells with those
emitted by orbiting black holes. We find that matter on the rotating shell takes the form of a viscous fluid.
We make extensive use of relativistic hydrodynamics, and discover an intricate structure of circulating
flows of this fluid and heat on the black shell, sustained by the Unruh effect.
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I. INTRODUCTION AND SUMMARY

Given the profound difficulties in formulating a consistent
quantum version of a black hole, it is interesting to study
alternative scenarios, where genuine black holes do not exist.
In [1] we proposed such an alternative that makes use of the
building blocks available in string theory. The key idea is
that the vacuum is unstable against nucleation of bubbles of
true vacuum with a negative cosmological constant. This is
natural in string theory, where there are such anti–de Sitter
(AdS) vacua in abundance. Under normal conditions, the
nucleation is heavily suppressed, consistent with the long
term stability of our vacuum. However, when matter
threatens to collapse into a black hole a new possibility
opens up in phase space. At the same time as the bubble
forms, the infalling matter is converted into a gas of massless
open strings attached to the brane that constitutes the bubble
wall. Again, this is a natural construction from the point of
view of string theory. The gas will be kept at the local Unruh
temperature, and carries an entropy of the order of the
corresponding black hole. This completely overwhelms the
suppression against tunneling, and instead of being highly
unlikely, the nucleation becomes inevitable.

In [1] it was argued that the natural radius for the resulting
bubble will be the Buchdahl radius at RB ¼ 9Rs=8. The
reason was that the energy momentum tensor on the shell,
induced by the extrinsic curvature, takes the form of a
massless gas at this radius. It is well known that such
gravastar like constructions (usually using an interior of
de Sitter(dS) rather then AdS as in our case) are inherently
unstable. The solution, already proposed in [1], was that
there should exist an interaction term that allows the transfer
of energy between the different matter components of the
model. The tension of the brane is supposed to be close to its
critical value, but the idea is that it can release energy to the
gas, and absorb it again, in such a self controlled way that
stability can be achieved. This mechanism was studied in
detail in [2], where it was shown to work with parameters
within a certain range. The criteria for stability were that
vibrations around the equilibrium should be damped, and
that matter accreting on the brane should yield a shell that
grows in radius and relaxes to the new Buchdahl radius.
That this actually is possible is a highly nontrivial test of the
proposal.
In [3,4] we tried to generalize the construction to spinning

black holes with a small angular momentum. This is
important if we want to identify a signal that can be used
to observationally distinguish a black shell from a black
hole. Note that, as argued in [3], the shell is as effective in
absorbing matter as a genuine black hole. This is due to its
energy being carried by a gas at an extremely low temper-
ature (almost as low as the Hawking temperature), and
consequently very high entropy. It is only through Hawking
scale thermal radiation that energy can be released. Hence,
the black shell is as black as a black hole. The absence of a
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true horizon makes a more profound difference if the black
shell is rotating. The uniqueness of the Kerr metric, given
the mass and the angular momentum of the black hole,
depends on the requirement that the horizon is nonsingular.
If the spacetime is cut off before the horizon, there is no
longer any restriction on the higher multipole moments. In
case of the Earth, for instance, the multipole moments of the
surrounding spacetime, depend on the detailed shape of the
Earth and its distribution of mass. As a curiosity, one might
note that the angular momentum of the Earth is three orders
of magnitude larger than the maximum value allowed for a
Kerr metric with the same mass.
In [3,4] we assumed that the matter on top of the brane

was a perfect fluid. This led us to a prediction of a specific
change in the quadrupole moment compared to Kerr. The
coordinates used in [3,4], were, however not well suited for
calculations beyond the lowest order in the angular
momentum. In this paper we introduce a much better set
of coordinates which we use to extend the analysis in a
systematic way to arbitrary order in the angular momen-
tum. In doing so we also discover that the condition of
having a perfect fluid is inconsistent with the condition of a
traceless energy momentum tensor. We therefore reverse
the order of applying the constraints, and start out by
imposing a condition of traceless energy momentum tensor
to identify the gas on top of the brane that the infalling
matter gives rise to. Interestingly, this constraint uniquely
fixes the size and shape of the shell together with the full
external space time. On the other hand, we also discover
that the fluid is far from perfect. Its physical properties are
much more interesting with finite heat conductivity as a
well as nonzero shear viscosity. The latter, as we will
discuss, is intimately connected to the black shell being an
almost perfect absorber.1

The outline of the paper is as follows. In Sec. II, we
review our previous results formulated using the new
coordinates, clearly stating the assumptions that go into
our choice of solutions. We then turn up the spin and
consider contributions at higher orders, discovering the need
to consider a nonperfect fluid. Our results yield useful
predictions for the quadrupole up to a spin of a ¼ 0.45m,
and the analysis can be extended to higher orders. In
Sec. III, we study the hydrodynamics of the model obtaining
a very satisfactory picture of the flow of fluid and heat on
the rotating body. Amazingly, the picture that we find is
very similar to the trade winds blowing on the Earth. In
Sec. IV we present an argument as to why the black shell is
stable against small perturbations. In the final section we
briefly discuss the observational consequences.

II. ROTATING BLACK SHELLS

The stationary black shell, as reviewed in the introduc-
tion, is described by Israel’s junction conditions across the
shell. To find our solution we need to make a number of
choices based on physical intuition.

(i) We assume that the nucleated piece of AdS-space is
not rotating. The intuition behind the assumption is
that the fresh piece of space appearing through the
tunneling should not have any prior knowledge of
the surrounding space time that it will attach to.

(ii) We assume that the bubble wall and the matter
attached to it contains radiation with a traceless
energy momentum tensor.2 Here we define the
energy momentum tensor by performing a subtrac-
tion of the empty space. Remarkably, this uniquely
fixes the exterior space time, as well as the radius
and shape of the shell. The exterior will be a
modification of the Kerr spacetime, fully specified
by its multiple moments.

Amusingly, there is a very similar story going all the way
back to work by Einstein in 1913, as well as by Lense and
Thirring in [6–8]. The goal at the time was to see if Mach’s
principle can be realized inside of a rotating shell of matter.
Already in these early works, it was clear that space-time
was dragged along by the rotating shell at least to some
extent. However, it was not until the mid 1980s [9,10] that
the problem was fully solved. In [9] it was shown that a
piece of flat space time can be glued on as the interior
of a thin shell that is rotating compared to an exterior,
asymptotic observer. Inside of the shell, space-time is
exactlyMinkowski without any Coriolis forces. An observer
inside of the shell would not notice any rotation, but looking
outward would discover the presence of the rotating shell
surrounded by a rotating universe. This is how far Mach’s
principle is implemented in general relativity. As shown
in [9], the exterior metric and its multipole moments are
unique up to the radius of the shell if one imposes perfect
fluid. See Ref. [11] for an illuminating recent review.
Our case is different in two ways. First, the interior of the

bubble is AdS (again without any effects from rotation)
instead of flat space, where we work in the limit of
r ≫ RAdS. On the other hand, to identify the gas attached
to the brane we first make a subtraction, where we compare
to a bubble in flat space. In practice, this first step formally
involves the junction between the exterior rotating solution
and that of nonrotating flat space. This would be just the
same as [9] if we were to impose perfect fluid. Instead, we
demand that the fluid has a traceless energy momentum
tensor. This is actually a stronger condition that completely
fixes everything, even though the fluid is not perfect.

1It has recently been claimed [5] that observations by EHT
prohibit compact objects that are larger than horizon size.
However, to reach this conclusion one must assume an absorption
coefficient close to zero. For good absorbers like our black shell,
there is no meaningful bound on compactness.

2In [4] we started out by demanding a perfect fluid. This, it
turns out, is incompatible with a traceless fluid at higher orders.
We are therefore forced to relax the condition that the fluid should
be perfect.
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After this general description of our strategy, let us move
on to solving the Einstein equations and the junction
conditions.

A. Rotating metrics using the method by Ernst

The most general stationary axially symmetric solution
of vacuum Einstein equations is given by the Weyl-Lewis-
Papapetrou line element, which in prolate spheroidal
coordinates (with x ≥ 1;−1 ≤ y ≤ 1) reads

ds2 ¼ −fðdt−ωdϕÞ2 þ σ2

f

�
e2γðx2 − y2Þ

×

�
dx2

x2 − 1
þ dy2

1− y2

�
þ ðx2 − 1Þð1− y2Þdϕ2

�
; ð1Þ

where the functions f ≡ fðx; yÞ;ω≡ ωðx; yÞ; γ ≡ γðx; yÞ
depend on coordinates ðx; yÞ only, and σ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
.

Using a scalar Ω defined in terms of the metric functions
f and ω

σðx2 − 1Þ∂xΩ¼ f2∂yω; σð1− y2Þ∂yΩ¼ −f2∂xω; ð2Þ

we can now define a complex function (Ernst’s potential)

ξ ¼ 1 − E
1þ E

; with E ¼ f þ iΩ: ð3Þ

Einstein’s equations for f and ω can be recast into a
compact form (called Ernst’s equation) in terms of this
potential

ðξξ� − 1Þ∇2ξ ¼ 2ξ�∇ξ · ∇ξ; ð4Þ

where ∇ and ∇2 are two-dimensional gradient and
Laplacian in ðx; yÞ coordinates i.e.

ðξξ� − 1Þf∂x½ðx2 − 1Þ∂xξ� þ ∂y½ð1 − y2Þ∂yξ�g
¼ 2ξ�½ðx2 − 1Þ∂xxξþ ð1 − y2Þ∂yyξ�: ð5Þ

ξ is symmetric under the exchange x ↔ y. The simplest
solution to Ernst’s equation is ξ−1 ¼ x, which gives the
Scwharzschild spacetime. Symmetry of the Ernst potential
then dictates that ξ−1 ¼ y is also a solution. The linear
combination ξ−1 ¼ ðσ=mÞðxþ iyÞ also solves Ernst’s
equation and corresponds to the Kerr solution, which is
explicitly given by

f ¼ σ2x2 þ a2y2 −m2

ðσxþmÞ2 þ a2y2
;

ω ¼ 2am
ðσxþmÞð1 − y2Þ
σ2x2 þ a2y2 −m2

;

e2γ ¼ σ2x2 þ a2y2 −m2

σ2ðx2 − y2Þ : ð6Þ

For a ¼ 0, this reduces to the Schwarzschild solution

f ¼ x − 1

xþ 1
; ω ¼ 0; e2γ ¼ x2 − 1

x2 − y2
: ð7Þ

Prolate spheroidal and Boyer-Lindqvist coordinates are
related by the transformation

x ¼ r −m
σ

; y ¼ cos θ: ð8Þ

Starting from the general static and axisymmetric solution
in (1), Quevedo and Mashhoon [12,13] found a general
solution by introducing an arbitrary Zipoy-Voorhees (ZV)
parameter δ, and applying Hoenselaers-Kinnersley-
Xanthopoulos transformations [14] which introduces an
infinite number of multipole moments. We will refer to this
solution as the (Quevedo-Mashhoon) QM solution from
hereon. Explicitly, the solution reads

f ¼ R
L
e−2δψ̂ ;

ω ¼ 2a − 2σ
M
R

e2δψ̂ ;

e2γ ¼ 1

4

�
1þm

σ

�
2 R
ðx2 − 1Þδ e

2δ2 γ̂; ð9Þ

where the quantities involved are defined below

R¼aþa−þbþb−;

L¼a2þþb2þ;

ψ̂ ¼
X∞
n¼1

qnQnPn;

M¼ðxþ1Þδ−1½xð1−y2ÞðλþμÞaþþyðx2−1Þð1−λμÞbþ�;

γ̂¼
X∞
m;n¼0

ð−1Þmþnqmqn

Z
y

−1
Γm;n: ð10Þ

These are further defined in terms of
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a� ¼ ðx� 1Þδ−1½xð1 − λþλ−Þ � ð1þ λþλ−Þ�;
b� ¼ ðx� 1Þδ−1½yðλþ þ λ−Þ � ðλþ − λ−Þ�;

λ� ¼ αðx2 − 1Þ1−δðx ∓ yÞ2ðδ−1Þ exp
�
2δ
X∞
n¼1

ð−1Þnqnβ�n
�
;

β�n ¼ ð�1Þn
�
1

2
ln
ðx ∓ yÞ2
x2 − 1

−Q1

�
þ PnQn−1 −

Xn−1
k¼1

ð�1ÞkPn−kðQn−kþ1 −Qn−k−1Þ;

Γm;n ¼ ðx2 − 1ÞP0
mQ0

mð2xPnQ0
n − yP0

nQnÞ þ
ðx2 − 1Þ2
x2 − y2

½PmQ0
mðyPnQ0

n − xP0
nQnÞ þ P0

mQmðyP0
nQn − xPnQ0

nÞ�: ð11Þ

In the above, qn with n ¼ 0; 1; 2;… are constant parameters. Pn ≡ PnðyÞ; Qn ≡QnðxÞ, are Legendre polynomials of the
first and second kind (in the domain x2 ≥ 1; y2 ≤ 1), and P0

n; Q0
n are their derivatives respectively. Explicitly,

P0 ¼ 1; P1 ¼ y; P2 ¼
1

2
ð3y2 − 1Þ;…

Q0 ¼
1

2
ln
xþ 1

x − 1
; Q1 ¼ xQ0 − 1;

Q2 ¼
1

2
ð3x2 − 1ÞQ0 −

3x
2
;…

P0
n ≔ ∂yPn; Q0

n ≔ ∂xQn: ð12Þ

Before even making an ansatz for solving the junction conditions, it is useful to take a look at the multipole moments.
To study the multipolar structure of this spacetime, we can compute the Geroch-Hansen multipole moments using
the prescription by Fodor-Hoenselaers-Perjés [15] which uses Ernst’s potential. We choose the parameters
q0 ¼ 1; q2n ≠ 0; q2nþ1 ¼ 0. Below we list the first few multipole moments for arbitrary δ; qn.

M0 ¼ mþ ðδ − 1Þσ;

M2 ¼ −m3 − 3ðδ − 1Þm2σ − ðδ − 2Þδmσ2 þ σ3
�
−
δ3

3
þ δ2 þ 2

15
δðq2 þ 10Þ − 2

�
;

M4 ¼ m5 þ 5ðδ − 1Þm4σ þ 2ð3δ2 − 6δþ 2Þm3σ2 þ 2

105
m2σ3½115δ3 − 345δ2 − 2δð11q2 þ 35Þ þ 300�

þ 1

105
mσ4½95δ4 − 380δ3 þ δ2ð10 − 32q2Þ þ 4δð8q2 þ 185Þ − 360� þ 1

315
σ5½57δ5 − 285δ4 − 6δ3ð8q2 − 55Þ

þ 6δ2ð16q2 þ 25Þ þ δð72q2 þ 8q4 þ 468Þ − 720�;

M6 ¼ −m7 − 7ðδ − 1Þm6σ − 3ð5δ2 − 10δþ 4Þm5σ2

−
1

63
m4σ3½775δ3 − 2325δ2 þ δð1232 − 46q2Þ þ 318� − 1

105
m3σ4½625δ4 − 2500δ3 þ δ2ð970 − 176q2Þ

þ 4δð44q2 þ 765Þ − 1840� − mσ6

3465
½2723δ6 − 16338δ5 þ δ4ð27510 − 2024q2Þ þ 8δ3ð759q2 − 140Þ

þ 8δ2ð6q22 − 73q2 þ 34q4 þ 29Þ − 8δð433q2 þ 34q4 þ 5224Þ þ 25320� −m2σ5

3465
½7623δ5 − 38115δ4

þ δ3ð33610 − 3456q2Þ þ 6δ2ð1152q2 þ 8605Þ þ 4δð284q2 þ 78q4 − 10687Þ − 12000� þ σ7

45045
½−5057δ7

þ 35399δ6 þ 26δ5ð253q2 − 3725Þ − 52δ4ð506q2 − 2505Þ − 52δ3ð12q22 − 441q2 þ 34q4 þ 2189Þ
þ 52δ2ð12q22 þ 130q2 þ 68q4 þ 1993Þ þ 40δð416q2 þ 52q4 þ 6q6 þ 1625Þ − 118560�;

..

.
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J1 ¼ amþ 2aðδ − 1Þσ;

J3 ¼ −3am3ðδ − 1Þ2 þ a3mð3δ2 − 6δþ 2Þ − 4aðδ − 1Þm2σ þ 2

15
aσ3ð−5δ3 þ 15δ2 þ δð2q2 þ 5Þ − 15Þ;

J5 ¼ am5 þ 6aðδ − 1Þm4σ þ 2að5δ2 − 10δþ 4Þm3σ2 þ 4

7
am2σ3ð10δ3 − 30δ2 − δðq2 − 14Þ þ 6Þ

þ 1

63
amσ4½145δ4 − 580δ3 þ δ2ð350 − 52q2Þ þ δð52q2 þ 460Þ − 312� þ 2

315
aσ5½37δ5

− 185δ4 − 40δ3ðq2 − 6Þ þ 20δ2ð4q2 þ 1Þ þ δð38q2 þ 8q4 þ 278Þ − 390�;
..
.

M2kþ1 ¼ J2k ¼ 0; k ¼ 0; 1; 2;… ð13Þ

The odd mass multipole moments and even current multi-
pole moments vanish because of the equatorial symmetry
of the spacetime (y ↔ −y). In the limit δ ¼ 1 and qn ¼ 0,
the QM metric reduces to Kerr, and so do the multipole
moments. It is also interesting to note that in the extremal
limit a → m ⇒ σ → 0, the multipoles reduce to those of
extremal Kerr regardless of the values of the parameters
δ and q2n.
The QMmetric is asymptotically flat and smooth outside

the sphere x ¼ 1which is a naked singularity. It is therefore
a good description of the spacetime outside an axisym-
metric rotating object. Our shell sits outside this singular
surface. We will therefore use this metric to describe the
spacetime outside the rotating black shell. To find a
complete description of the internal structure of the black
shell, we will use Israel’s junction conditions to find the
energy momentum tensor on the shell that can support the
AdS vacuum in its interior.
Spacetime inside the shell is AdS (with cosmological

constant Λ ¼ −3k2) which, in prolate spheroidal coordi-
nates, can be written as

ds2AdS ¼ −
x̃þ 1

x̃ − 1
dt̃2 þ dx̃2

2k2ðx̃ − 1Þ2ðx̃þ 1Þ

þ 2dỹ2

k2ðx̃ − 1Þð1 − ỹ2Þ þ dϕ2
2ð1 − ỹ2Þ
k2ðx̃ − 1Þ ; ð14Þ

This is related to global coordinates by the change of
coordinates

x̃ ¼ 1þ 2k−2r̃−2; ỹ ¼ cos θ̃: ð15Þ

Before proceeding, let us make a quick comment on how
the QM metric relates to the exterior metric in [4]. For a
choice of parameters, the exterior spacetime there can be
chosen to be the Hartle-Thorne (HT) metric [16], which is
an approximate solution to vacuum Einstein’s equations to

order a2, and represents the spacetime outside a slowly
rotating object. The QMmetric reduces to the HTmetric for
δ ¼ 1; q0 ¼ 1; q2 ≠ 0; qn≥4 ¼ 0. Being an exact solution of
Einstein’s equations in vacuum, the QM metric can be
thought of as an extension of the HT metric to all orders in
spin. Since we intend to extend our results in [4] (which
were to order a2) to all orders in spin, the QM metric is
indeed a natural choice. This metric has been well studied,
and its properties well understood. See Ref. [17] for a
recent discussion.

B. Junction conditions

Having specified the spacetimes inside and outside the
bubble in their respective coordinate systems: ðt; x; y;ϕÞ
outside and ðt̃; x̃; ỹ; ϕ̃Þ inside, let us now proceed to solve
Israel’s junction conditions on the shell which involves:

(i) first junction condition: ensuring continuity of the
induced metric across the shell.

(ii) second junction condition: computing the energy-
momentum tensor on the shell (Sab) from the
difference in the extrinsic curvatures (Ka

b) across
the shell

−8πSab ¼ ΔKa
b − ΔKδab: ð16Þ

To do this, we first need to pick a coordinate system on the
shell. For simplicity, let us use the coordinates from
the outside: ðt; y;ϕÞ. We will parametrize the position of
the shell as an expansion in spin, with the zeroth order
coefficients given by our a ¼ 0 result from [1]. We choose
this expansion only for ease of computation. The bulk
metrics are exact vacuum solutions of Einstein’s equations,
so it is possible to extend the solution to all orders in a. For
simplicity, we will restrict ourselves to an expansion to
order a6 in this paper and treat the problem perturbatively
order by order in a. We take the embedding of the shell in
the coordinate system at infinity to be
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x ¼ 5

4
þ
X3
m¼1

a2m
Xm
n¼0

x2m;2ny2n: ð17Þ

With respect to the coordinate system at the center of the
bubble, we take the embedding to be

x̃ ¼
�
1þ 32

81k2m2

�
þ
X3
m¼1

a2m
Xm
n¼0

x̃2m;2ny2n;

ỹ ¼ y; ϕ̃ ¼ ϕ; t̃ ¼ 4tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 81k2m2

p : ð18Þ

Zeroth order position of the shell x and x̃ are simply the
Buchdahl radius r ¼ 9m=4 in the respective coordinate
systems obtained using (8) and (15) respectively. We will
make two further simplifying assumptions on the exterior
spacetime which ensure that the multipole moments start
receiving corrections at the same order as Kerr, and the
corrections vanish when qn ¼ 0.

(i) we will restrict ourselves to a constrained class of the
QM solution where the ZV parameter δ and qn are
related via

δ−1 ¼
X∞
n¼0

qn ¼ 1þ
X∞
k¼1

q2k: ð19Þ

(ii) We assume that the parameters qn start contributing
at order an in spin and have an expansion of the form

q2k ¼
X∞
i¼0

q2k;2ia2ðkþiÞ: ð20Þ

With these assumptions, the solution for all a will be
uniquely fixed by having the nonrotating black shell with
a ¼ 0 to sit at the Buchdahl radius.

C. Solving order by order in spin

To solve the first junction condition, we compute the
metric induced on the shell from both sides and demand
that they are equal up to a coordinate transformation of the
form3

8><
>:

tin ¼ tout þ
P

3
m¼1 a

2mg2mðtout;ϕoutÞ;
yin ¼ yout þ

P
3
m¼1 a

2my2mðyoutÞ;
ϕin ¼ ϕout þ

P
2
m¼0 a

2mþ1f2mðtout;ϕoutÞ:
ð21Þ

To order a2, this determines the functions in (21)

g2
tout

¼ 3ð41 ln 3 − 20Þð81k2m2 þ 8Þ
32ð81k2m2 þ 16Þ q2;2

þ ð972k2m2 þ 256Þ
729k2m2 þ 144

x1 −
37503k2m2 þ 9536

1458m2ð81k2m2 þ 16Þ ;

y2 ¼ youtð1 − y2outÞ
ð2187m2q2;2ð5 ln 3 − 4Þ − 544Þ

2916m2
;

f2 ¼
128

729m2
tout; ð22Þ

and the embedding parameters

x̃2;0 ¼
81m2ð27q2;2ð41 ln3− 20Þ− 256x1Þþ 4256

59049k2m4
;

x̃2;2 ¼ −
ð81k2m2þ 16Þð81m2q2;2ð615 ln3− 556Þ− 2048Þ

2187k2m4ð243k2m2þ 64Þ ;

x2 ¼
243m2k2ð729m2q2;2ð99 ln3− 92Þ− 2816Þ

10368m2ð243k2m2þ 64Þ

þ 17496m2q2;2ð59 ln3− 60Þ− 32768

10368m2ð243k2m2þ 64Þ ð23Þ

This can be done order by order in a to arbitrary orders.
Since the higher order expressions are not particularly
illuminating, instead of reproducing them here, we have
included all results up to order a6 in the included Wolfram
Mathematica notebook [27].4

Next, we compute the extrinsic curvature of the shell Ka
b

from both sides using the embedding in (17) and (18). To
use Israel’s junction condition (16) we need them both in the
same coordinate system. So we transform Kin using the
coordinate transformation (21). Now, we can finally com-
pute the stress tensor on the shell Sab. The full expression is
complicated, so below we present it in the large k limit that
is relevant to the problem at hand. The full stress tensor to
order a6 can be found in the includedWolframMathematica
notebook [27].

3This is equivalent to the freedom to choosing a different
parametrization of the shell as seen from inside in (18). The
reason for this choice is purely the technical ease of solving the
equations. It should be possible to reformulate the analysis to
eliminate this, but since it makes no difference to the result and is
much easier to work with, for the purpose of this already tedious
computation, we have chosen this route.

4It is straightforward to extend this beyond a6 with the only
trade-off being that the metric and higher corrections become
increasingly complicated to work with. We stop at a6 in this paper
as this is enough to study qualitative properties of the black shell,
as well as make accurate predictions to spin a6 ∼ 1% ⇒
a ∼ 0.45m.
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Stt ¼−
k
4π

þ 1

27πm

þa2
27m2ðq2;2ð5724− 5859 ln3Þþ 256x1Þ− 736

139968πm3

þa2y2
ð2187m2q2;2ð733 ln3− 676Þ− 40960Þ

419904πm3
;

Syy ¼−
k
4π

þ 5

54πm

þa2
m2ð135q2;2ð44− 39 ln3Þ− 5376x1Þþ 800

31104πm3

−a2y2
ð729m2q2;2ð93 ln3−164Þþ 2048Þ

839808πm3
;

Sϕϕ ¼−
k
4π

þ 5

54πm

þa2
10592− 9m2ð9q2;2ð1239 ln3− 1004Þþ 1792x1Þ

93312πm3

þa2y2
ð729m2q2;2ð951 ln3− 620Þ− 75776Þ

839808πm3
;

Stϕ ¼
2aðy2− 1Þ

9πm
; Sϕt ¼

32a
2187πm3

: ð24Þ

The energy-momentum tensor is not fully fixed, but rather
depends on a set of free parameters: q2m;2n and the
embedding of the shell in the coordinate system outside
the shell x2m;0. This is just like [4], where demanding certain
properties of the stress-tensor fixed the quadrupole moment,
while leaving the radius at order a2 unfixed.

D. Perfect fluid

As a first check of our approach using the Ernst potential,
let us follow in the same vein as [1,3,4], and demand that
the stress tensor obtained above is a perfect fluid5 i.e.

Sab ¼ ρuaub þ pðδab þ uaubÞ; ð25Þ

where ua is the velocity vector of the fluid element. This
can be easily read off from Sab by recalling that ua is an
eigenvector with eigenvalue −ρ (i.e., projecting along ua

gives Sabub ¼ −ρua). This determines q2;2

q2;2 ¼
2048

243m2ð261 ln 3 − 196Þ þOðm−3k−1Þ: ð26Þ

Using (13), we see that this uniquely determines the
quadrupole moment at order a2. At leading order in a
and k,

M0 ¼ m − a2mq2;2

¼ m −
2048a2

243mð261 ln 3 − 196Þ

¼ m −
0.0928828a2

m
þOð1=kÞ;

J1 ¼ am;

M2 ¼ −a2mþ 4

5
a2m3q2;2

¼ −a2mþ 8192a2m
1215ð261 ln 3 − 196Þ

¼ −0.925694a2mþOða2=kÞ: ð27Þ

To identify the metric parameters m and a with physical
mass and angular momentum respectively, we redefine

m ¼ 2048A2

243Mð261 ln 3 − 196Þ þM; a ¼ A; ð28Þ

which gives

M0 ¼M; J1 ¼ AM; M2 ¼ −0.925694A2M: ð29Þ

It is satisfying that the quadrupole thus obtained is precisely
the one that was obtained in [4] using a very different
analysis. Using (17) and (23), this fixes the shape of the
shell, but leaves the size at order a2 arbitrary.

x ¼ 5

4
þ a2

�
x1 −

2y2ð52þ 495 ln 3Þ
81m2ð261 ln 3 − 196Þ

�

¼ 1.25þ a2
�
x1 −

0.162131y2

m2
þOðk−1m−1Þ

�
: ð30Þ

This situation is completely analogous to the result
obtained in [4]. This perfect fluid on the shell can be
decomposed into pieces corresponding to tension, radia-
tion, and stiff matter.

Sfull ¼ Sgas þ Sbrane þ Sstiff : ð31Þ

At leading order in spin (i.e., a2) and k, energy-momentum
tensor of the traceless radiation with equation of state ρ ¼
p=2 is given by (32), while the nonzero elements of the
piece corresponding to the brane tension with equation of
state ρ ¼ −p is given in (33).

5As we will see in the next section, it will be necessary to relax
this assumption, with very interesting consequences.
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ðSgasÞtt ¼ −
1

27π
þ a2ð1944x1ð261 ln 3 − 196Þ þ 128y2ð1071 ln 3 − 1228Þ þ 170620 − 208395 ln 3Þ

13122πð261 ln 3 − 196Þ ;

ðSgasÞθθ ¼
1

54π
þ a2ð−1944x1ð261 ln 3 − 196Þ þ 128y2ð52þ 495 ln 3Þ − 20092þ 7947 ln 3Þ

26244πð261 ln 3 − 196Þ ;

ðSgasÞϕϕ ¼ ðSgasÞθθ −
128a2ðy2 − 1Þ
2187πm3

; ðSgasÞtϕ ¼ 2aðy2 − 1Þ
9π

; ðSgasÞϕt ¼
32a
2187π

; ð32Þ

ðStensionÞtt ¼ ðStensionÞθθ ¼ ðStensionÞϕϕ
¼ −

k
4π

þ 2

27π
−
a2ð648x1ð261 ln 3 − 196Þ þ 32y2ð765 ln 3 − 292Þ þ 17492 − 32697 ln 3Þ

6561πð261 ln 3 − 196Þ ; ð33Þ

The stiff matter part of Sab starts at order 1=k, and is
therefore sub-leading to the order that we are working.
Repeating the analysis in [4], we also find the same values
for the flux coefficients α, β, completing a highly nontrivial
consistency check of our formulation.
We can now extend the analysis of the previous sections

to order a6. Requiring that the stress-tensor is a perfect fluid
to that order determines the multipolar parameters qm;n

whose numerical values are listed below.

q2;2 ¼
0.0928828

m2
;

q2;4 ¼
0.339375

m2
x1 þ

0.0704772
m4

;

q2;6 ¼
0.379561

m4
x1 −

0.0729619
m6

;

q4;4 ¼ −
0.0547387

m4
;

q4;6 ¼ −
0.385026

m4
x1 þ

0.0117411
m6

;

q6;6 ¼
0.0790248

m6
: ð34Þ

The full expressions for these, as well as the analysis of this
section repeated to order a6 can be found in the included
Wolfram Mathematica notebook [27].

E. Traceless fluid

It is tempting to stop here and declare victory. We have
reproduced our lowest order results from before, obtained
new results to sub-subleading order in spin, and provided a
prescription to construct arbitrarily fast spinning black
shells. However, it is clearly unsatisfactory that the radius
remains unfixed at higher orders in spin. Could there be a
physical principle that we have missed?
Let us pause and look back at the original construction

of a static black shell in [1]. If one only considers the black
shell after it has been formed, its radius remains a free
parameter. What pins the shell to its Buchdahl radius is

further consideration of the physics of the problem. A
crucial input to the model is that the degrees of freedom of
a collapsing shell of matter are converted to radiation
(traceless fluid) right on top of the shell. The easiest way
to account for this is to consider energy-momentum of the
Schwarzschild bubble that is in excess of a vacuum
Minkowski solution. This was identified with ρb, pb in [1]
and gave the Buchdahl radius. Consistency of the analysis
was further confirmed by the considering the entropy and
thermodynamics of the bubble in that article.
For the rotating black shell that we are now considering,

it is natural to follow the same reasoning and require that
the stress tensor associated to the infalling matter is
traceless. This is obtained by performing a subtraction
with empty space, as discussed at the beginning of Sec. II.
Although tracelessness was commensurate with Sab being a
perfect fluid for the stationary black shell in [1], this is no
longer the case even to lowest order in spin. So we will now
impose tracelessness without requiring the stress tensor to
be a perfect fluid. This can be done to arbitrary order in a
and fixes all the remaining free parameters, resulting in a
shell with a unique size and shape. To order a6, these are
(presenting only numerical values here for brevity)

q2;2 ¼ −
0.045
m2

; q2;4 ¼ −
0.070
m4

; q2;6 ¼ −
0.178
m6

;

q4;4 ¼
0.408
m4

; q4;6 ¼ −
0.008
m6

; q6;6 ¼ −
0.327
m6

;

x2;0 ¼
0.332
m2

; x4;0 ¼ −
0.107
m4

; x6;0 ¼
0.808
m6

: ð35Þ

Note that the parameters above differ from those in (34)
that were obtained for a perfect fluid on the shell. This
fixes the multipolar structure of the metric completely.
Redefining the metric parameters m and a to coincide with
the physical mass and angular momentum as before gives
(for large k) yields
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M0 ¼ M; M2 ¼ −1.036A2M þ 0.271A4

M
−
0.719A6

M3
;

M4 ¼ 1.142A4M −
0.968A6

M
; M6 ¼ −1.309A6M;

J1 ¼ AM; J3 ¼
0.544A5

M
− 1.073A3M;

J5 ¼ 1.213A5M: ð36Þ

The shell, as seen from outside, now sits at

x ¼ 1.25þ a2

m2
ð0.332 − 0.325y2Þ

þ a4

m4
ð−0.108 − 0.229y2 þ 0.436y4Þ

þ a6

m6
ð0.808 − 0.403y2 − 0.113y4 − 0.510y6Þ

þOða8=m8Þ: ð37Þ

This shows that the shell starts to shrink and gets more and
more oblate as it rotates faster. The polar and equatorial
radii of the shell are shown with solid blue and red lines in
Fig. 1. While we can make accurate predictions only to
order a6, we cannot help but speculate about the ultimate
fate of the shell as it approaches extremality. Since σ → 0
as a → m, the multipole moments given in (13) suggest
that the metric approaches that of extremal Kerr. By
naively extrapolating the radius as a → m, the shell seems
to approach the horizon in this limit. Curiously enough,
this is exactly what was found for an extremal Reissner-

Nordström shell in [1]. The exterior metric, being very
close to Kerr turns out to have an ergosphere that is almost
identical to that of a Kerr black hole. This is shown with
black lines in Fig. 1. Let us now make some speculative
comments based on the extrapolation above. Around
a ∼ 0.6m, the shell seems to shrink beyond its ergosphere,
and one would expect to see a sliver of the ergosphere
peeping out around the equator, with more of it showing as
the shell approaches extremality. At extremality, the shell
seems to sit very close to the Kerr horizon, with a fully
formed ergosphere.6 It was argued in [18] that a compact
object with an ergoregion but without a horizon suffers
from instabilities. However, [19] showed that the role of
the horizon in removing the instability is by effectively
absorbing incoming negative energy states. They show that
a compact object with an absorption coefficient as small as
1% can avert this instability. Black shells are expected to
be excellent absorbers; it is therefore reasonable to expect
that they are immune to an ergoregion instability. Since the
ergoregion is expected to appear around a ∼ 0.6m, one
would need to go to at least order a10 to do a concrete
computation. This is a challenging computation that is
beyond the scope of the present paper, but certainly
something that we would like to return to in the future.
To summarize this section, we have used an additional

physical input: the rotating shell of matter that collapses to
form the black shell contributes a traceless fluid on top of
the shell. This determines the shape and size of the shell,
and fixes the multipolar structure of the spacetime outside a
black shell. Having done the analysis to order a6, the above
expressions are accurate to a6 ∼ 1% ⇒ a ∼ 0.45m. This
predicts percentage level deviation in multipole moments
with respect to Kerr (where δMn ≔ ðMn=MKerrÞ − 1)

δM2∼ 1.13%; δM4∼−6.65%; δM6∼ 30.8%: ð38Þ

The quadrupole moment obtained here is different from the
one obtained using a perfect fluid in (29) and [4], since two
results are obtained using different arguments. Both argu-
ments are mathematically consistent, but given the physics
of the problem, we believe that requiring the collapsing
matter to form a traceless fluid on top of the shell is staying
true to the spirit of the original spherically symmetric
configuration in [1]. In Sec. IV we will elaborate on the
physics behind this condition and argue for a thermody-
namic explanation for it, at least for the nonrotating case.
Let us now explore the far reaching consequence of the
black shell fluid not being perfect. This will involve the full
power of relativistic hydrodynamics.

FIG. 1. The polar and equatorial radii of the spinning shell as a
function of its spin are shown with blue and red lines respectively.
Radius of the horizon and ergosphere are shown with black lines.
Since the deviation from the Kerr geometry is small, these are
very close to the Kerr values. We have computed explicitly to
order a6, and our results are accurate for 0 ≤ a ≤ 0.45m. As a
speculative estimate, we have extrapolated the functional form of
the radii for 0.45m ≤ a < m. Curiously, this indicates that the
shell asymptotes to the horizon in the extremal limit, just like it
does for extremal Reissner-Nordström in [1].

6Since the location of the Kerr horizon is actually a naked
singularity for the QM metric, it would be interesting to study the
physics as the shell approaches this location.
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III. RELATIVISTIC HYDRODYNAMICS
OF A ROTATING BLACK SHELL

In Sec. II E we obtained the fully fixed energy momen-
tum tensor Sab of the fluid supporting the black shell. To
understand the physical properties of this fluid, we will
resort to relativistic hydrodynamics. This is challenging,
given that the subject is still not fully developed.
It is easy to check that the explicit Sab that we have found

can not be a perfect fluid. This is not a surprise. For
instance, as discussed in [20] it is a very general result that
the shear of a relativistic fluid is related to its capability to
absorb gravitational waves. For systems involving black
branes, you typically expect the shear to be proportional to
the entropy density. The total absorption cross section of
the black shell is proportional to its area, as is the total
entropy which is of order R2=l2

4 (where R is the radius of
the shell, and l4 is the 4d Planck length). The entropy
density goes as s ∼ 1=l2

4, and we expect the shear to be of a
similar size η ∼ 1=l2

4.
For a relativistic fluid system, there are two conserved

quantities: the particle current Ja and the energy-momen-
tum tensor Sab:

∇aSab ¼ 0 ¼ ∇aJa: ð39Þ

The most general way of decomposing the energy-
momentum tensor in terms of a timelike unit vector ua

(i.e., uaua ¼ −1) is as follows:

Sab ¼ Euaub þ PΔa
b þ uaQb þ ubQa þ T a

b; ð40Þ

where Δa
b ≔ δab þ uaub. The scalars defined above

are E≡Sabuaub, P≡Δa
bSab=2, the vector is Qa≡

−Δc
aScdud, and the symmetric traceless tensor is T ab≡

Δab
cdScd, where Δab

cd ≔ ð1=2ÞðΔa
cΔb

d þ Δa
dΔb

c−
ΔabΔcdÞ Physically, E, P, Q, and T a

b are (out of equilib-
rium) energy density, pressure, heat flow, and the shear,
respectively. On the other hand, the particle number flow Ja

can be decomposed in terms of ua as

Ja ¼ N ua þ J a; ð41Þ

whereN is the number density of particles in the fluid, while
J a is an additional current. In the absence of the second
term, conservation of the particle current implies particle
number conservation. But for nonzero J a, the change in
particle number can be compensated by this flow vector.
At equilibrium, a fluid can be parametrized by temper-

ature Teq, flow velocity uaeq, and the chemical potential μeq.
Out of equilibrium, these quantities T; ua; μ are not well
defined. Different out-of-equilibrium values of these quan-
tities are allowed as long as their equilibrium values agree.
A particular choice of how one defines T; ua; μ in an out-of-
equilibrium fluid is called a choice of hydrodynamic frame

or simply frame. A change of frame is just a field
redefinition of T; ua; μ by derivative corrections. Viscous
hydrodynamics is studied as a derivative expansion, with
gradients of T; ua; μ parametrizing deviation from
equilibrium.
Historically, there are two famous frame choices:

(i) Eckart’s frame, where one chooses E ¼ ε;N ¼ n;
J a ¼ 0; (ii) Landau-Lifschitz’s frame, where one chooses
instead E ¼ ε;N ¼ n;Qa ¼ 0. Here ε and n are the
equilibrium energy and number of particles respectively.
However, more recently, it has been realized that neither of
these frames result in a causal and well defined theory. A
first order gradient expansion that includes first derivatives
of the temperature, velocity, and chemical potential in all
quantities (40) and (41) was proposed by BDNK [20,21].
This theory is causal and hyperbolic.

E ¼ εþ ε1ua
∇aT
T

þ ε2∇aua þ ε3ua∇aðμ=TÞ;

P ¼ Pþ π1ua
∇aT
T

þ π2∇aua þ π3ua∇aðμ=TÞ;

N ¼ nþ ν1ua
∇aT
T

þ ν2∇aua þ ν3ua∇aðμ=TÞ;

Qa ¼ θ1Δab ∇bT
T

þ θ2ub∇bua þ θ3Δab∇bðμ=TÞ;

J a ¼ γ1Δab ∇bT
T

þ γ2ub∇bua þ γ3Δab∇bðμ=TÞ;
T ab ¼ −2ηΔabcd∇cud: ð42Þ

The equilibrium state characterized by ε, P, n above
corresponds to the static shell, which is a perfect fluid.
The quantities E, P, Q, and T a

b, appearing in the energy
momentum tensor, are all of order 1=ðl2

4RÞ, compatible with
the mass of the black shell given by M ∼ ϵ × R2 ∼ R=l2

4.
Since T, ua and μ vary over the size of the shell, we have
∇a ∼ 1=R, from which it follows that the scales of the
parameters ϵi, πi, θi, γi, and η are set by 1=l2

4. To further
understand the system, it is also necessary to make an
expansion in powers of derivatives, including contributions
such as ð∇uÞ2 and ∇2u. The zeroth order case is the perfect
fluid, while keeping first order in the derivatives as we did
above correspond to a viscous fluid. Keeping higher
derivatives corresponds to kth order thermodynamics. By
dimensional analysis such terms will be suppressed by
powers of l=R, where l is a scale determined by the
microscopic physics of the fluid. It is not important for
us whether this scale is set by the Planck scale l4, or the
AdS-scale of the interior. In any case, these corrections will
be small for a macroscopic black hole and we can expect the
viscous fluid to describe the rotating black shell for any
value of the angular momentum. Before trying to match the
energy momentum tensor to this form, let us figure out what
to expect. The temperature of the fluid will be given by the
Unruh temperature, and as we will see in Fig. 3(d), the poles
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have a higher Unruh temperature than the equator. The
resulting temperature gradient will drive a flow of heat from
the poles toward the equator. Given that we have a stationary
situation with a net energy flow only in the direction of
rotation, this implies that the fluid must be flowing toward
the poles to compensate. There is, then, a circulating current
of energy flux toward the poles in form of the fluid and away
from the poles as heat. The circulation is sustained by the
Unruh effect that makes sure that the difference in temper-
ature remains despite the flow of heat. Note that the energy
as well as the entropy remains constant over a very long
time. It is only due to the loss of radiation to the bulk, at
timescales of order of Hawking evaporation, that the system
eventually dissipates. Amusingly, this reminds us of the
trade winds on the rotating Earth, except that the flow is
reversed. The trade winds blow toward the equator, where
the air masses are heated up, rise, and flow back toward the
poles at high altitudes. This is very much like what the fluid
does on the shell, except that it flows toward the poles, and
the heat flows back to the equator. Just as the sun is the
source of heat for the weather systems on the Earth, it is the
Unruh effect that drives the circulation on the black shell.
See Fig. 2.
An interesting aspect of relativistic fluid flow is that, as a

consequence of (39), the combined effect of fluid flow and
the heat flow is conserved, rather than the number density
of the fluid itself being conserved. As a consequence, we
need J a ≠ 0 and cannot choose Eckart’s frame.7 J a is
often called the conductive particle current, and compen-
sates for the nonconserved particle number to retain a
conserved current. The result is that the conserved current
Ja will point only in the direction of rotation without any
latitudinal component. Since Sty ¼ Sϕy ¼ 0, any observer
not moving in the y-direction, will observe an energy flux

S0μ in the direction of the rotation of the shell, with S0y ¼ 0.
Since uy ≠ 0, and Qy ≠ 0, the observer concludes that the
flow of heat compensates for the flow of the fluid such that
there is no net energy flux along the latitudes.
Let us now see how this works out in more detail. Unlike

the case of a perfect fluid, ua is no longer an eigenvector of
Sab, but is instead determined so that the shear piece of the
explicit Sab we obtained in the previous section, becomes
of the form given just below (40). This fixes ua up to
integration constants, and higher order constants that would
be determined at the next order in a. If we, furthermore,
require the full Sab to be of the form given (40) with the first
order gradient expansion in (42), most of these parameters
are fixed, with two remaining free parameters at this order
θ12, θ22; and we find

ua ¼ f3þ a2f1;2ðyÞ þ a4f1;4ðyÞ;
a2f2;2ðyÞ þ a4f2;4ðyÞ;
af3;1ðyÞ þ a3f3;3ðyÞg þOða5Þ; ð43Þ

where the functions fi;jðyÞ are given by

f1;2ðyÞ ¼
1

m2
ð−0.132y2 − 0.255Þ;

f2;2ðyÞ ¼
1

m3
0.273yð1 − y2Þ;

f3;1ðyÞ ¼ −
0.658
m2

;

f1;4ðyÞ ¼
1

m4
ð−0.5y4 þ 0.388y2 þ 1.21Þ;

f3;3ðyÞ ¼
1

m4
ð−0.0073þ 0.029y2Þ;

f2;4ðyÞ ¼
yð1 − y2Þ

m5
½1.827 − 0.539y2

−m2ð1.275θ12 þ 0.49θ22Þ�: ð44Þ

The ua above is plotted in Fig. 3, and we see that the y-
component of the fluid velocity vanishes at the poles and on
the equator. This is in agreement with our general discussion
at the beginning of the section, with the particle number of
the fluid not conserved. At the poles particles are dissolved
into heat that flows back to the equator [Fig. 2(b)], while on
the equator, heat is converted into fluid that flows back to
the poles [Fig. 2(a)]. All is driven by the temperature
difference sustained by the Unruh effect [Fig. 3(d)].
The gradient expansion determines the shear viscosity η,

and thermal transport coefficients θi to be8

FIG. 2. Velocity vector of the traceless fluid on a rotating black
shell. Matter flows from the equator to the poles, with a rotational
component due to spin. The shell is oblate, so the poles have
higher Unruh temperature than the equator. Heat flows from the
poles (hotter) to the equator (cooler).

7It was observed in [21] that Eckart’s frame (where J a ¼ 0) is
only compatible with a conserved particle number. Such fluids
are often called charged, and the conservation of Ja is the same as
conservation of charge.

8Note that, since these are proportional to derivative terms
(which themselves start at order a2), the transport coefficients
η; θi; εi; πi are only determined to order a2 although we are
matching the heat flow and shear to order a4.
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η¼ 0.0078þ a2
�
0.036θ12þ 0.014θ22 −

0.072
m2

�
þOða4Þ;

θ1 ¼ −0.214þ a2θ12þOða4Þ;
θ2 ¼ 0.000712þ a2θ22 þOða4Þ: ð45Þ

We furthermore find that (40) with (42) for the energy,
pressure and particle number implies

ε¼ 0.023
m

−0.0118
a2

m3
þ0.022

a4

m5
þOða6Þ;

ε1¼ 0.0573þa2ε12þOða4Þ;

ε2¼ 0.00139−a2
�
0.00652θ12þ0.0025θ22þ

0.00567
m2

�
þOða4Þ;

P¼ 0.0118
m

−0.0059
a2

m3
þ0.011

a4

m5
þOða6Þ;

π1¼ 0.0286þa2π12þOða4Þ;

π2¼−0.000697−a2
�
0.00326θ12þ0.00125θ22þ

0.0028
m2

�
þOða4Þ;

n¼ 0.0354
m

−0.0192
a2

m3
þ0.0376

a4

m5
þOða6Þ;

ν1¼−0.06þOða2Þ;

ν2¼−0.0047−a2
�
0.022θ12þ0.0084θ22−

0.012
m2

�
þOða4Þ: ð46Þ

ε, P, n that we have recovered above represent the
equilibrium values. Interestingly, we see that in addition
to the stationary values of ε, P from [1], there are additional
spin dependent contributions. The equation of state is P ¼
ε=2 corresponding to radiation, as required by traceleness
imposed in Sec. II E. Here we have assumed the temper-
ature to be the local Unruh temperature in the frame of the
fluid, which is shown in Fig. 3(d).
Let us look at our results in somewhat more detail, and

compare with expectations. In [21] it was argued that the

constants in (42) must satisfy a number of constraints in
order for the equilibrium of the system to make sense. In
particular, it was argued that the temperature (as well as the
chemical potential) should be proportional to 1=

ffiffiffiffiffi
gtt

p
. It

was also argued, based on this, that the divergence of the
velocity of the fluid, the heat flow as well as the shear,
should vanish at equilibrium. These are all sensible con-
ditions which, among other things, imply that θ1 ¼ θ2 and
γ1 ¼ γ2. As we see from (45) this constraint is not satisfied
by our fluid. It is easy to see why.
For the subtraction discussed in Sec. II, we match the

metric induced by the nontrivial bulk metric, to the metric
on a (deformed) shell embedded into empty Minkowski
space. Making sure this is possible, together with requiring
the resulting energy momentum tensor to be traceless,
determines the metric of the bulk as well as the induced
metric and the embedding. In particular, it is true by
construction that

ffiffiffiffiffi
gtt

p
on the brane is constant. This is a

very sensible result, implying that the shell deforms such
that there are no gravitational gradient across the surface of
the shell. That is, the surface is fully relaxed without any
mountains. Following the logic of [21], one would expect
the temperature to be constant and there to be no heat flow.
As we have seen, this is not compatible with the form of Sab
that we have found. We already know why. In ordinary
circumstances quantum effects such as the Unruh temper-
ature can be ignored since it is too small. In our case this is
no longer possible. Our system has a particle number
density close to Planckian, and the temperature is dominated
by the Unruh effect. Even though the gravitational potential
is constant across the shell, the Unruh effect sets up a
temperature gradient even at equilibrium. This means that
the rules of the game change, and we in general find θ1 ≠ θ2
and γ1 ≠ γ2. One can speculate about other physical
equilibria, not related to black shells, where the density
is lower and the temperature much higher than the Unruh
temperature. Since θi and γi can depend on the temperature
and density, we expect them to approach θ1 ¼ θ2 and
γ1 ¼ γ2 in this limit.
Let us conclude this section by pointing out an important

simplification that we have made in the analysis of this
section. We have not included the gradient of the chemical
potential in this analysis. We have assumed that these terms

FIG. 3. (a),(b),(c) show components of the velocity vector of the radiation fluid as a function of the polar angle θ. (d) shows
the Unruh temperature in the frame of the fluid for a ¼ 0.3, m ¼ 1. As a function of a, and y, this is given by
T ¼ 0.094þ a2ð0.011y2 − 0.055Þ þ a4ð−0.0083y4 þ 0.057y2 þ 0.066Þ þOða6Þ.
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can be absorbed in a choice of frame or, alternatively, that
they can be traded for gradients of temperature and the
velocity vector using on-shell relations. As a next step to
our current analysis, we would like to study nonlinear
stability of perturbations of the black shell numerically
along the lines of [2]. There, it will be necessary to choose a
good frame where the system is causal and well-posed. We
have not addressed these considerations here since it is not
important for our present analysis, but it may then become
necessary to revisit this point and refine our choice
of frame.

IV. WHY THE BLACK SHELL IS STABLE

Perhaps the most difficult challenge when constructing a
horizon-less alternative to a black hole is its stability. In
case of the black shell, we conjectured already in [1] that a
nontrivial transfer of energy between the brane with its
tension and the radiation sitting on top of it could result in
stability. This was further explored in [2], where it was
shown, in the nonrotating case, that such processes allow a
black shell to absorb infalling matter and grow to a new,
stable, radius.
In this section we will propose a detailed microscopic

model for the brane constituting the shell, and verify that it
does stabilize the system. Some ideas in this direction were
discussed in [1], but what we will argue for here will be
somewhat different. For this particular analysis, we will
limit ourselves to the nonrotating case, but expect that our
arguments will go through in a similar way if the black shell
is rotating. Wewill return to this question in more detail in a
future work.
There are two crucial properties of the black shell that

need to be understood before we can address the issue of
stability.

(i) First, the number of degrees of freedom of the gas
must have a physical explanation.

(ii) Second, the tension of the brane must be able to
change.

In [1] we assumed a single brane, which nucleated with its
tension at its critical value, given by τ ¼ k=4π (where we
are working in units such that G4 ¼ 1). Here, k is the
energy scale of the interior AdS. Let us now instead assume
that there are N branes that nucleate when the black shell is
formed. Each of these branes has critical tension, such that
Nτ ¼ NΔk=4π. Here, Δk is the difference in AdS-scale
between adjacent vacua in a series of ever deeper AdS-
vacua. The larger the value of N, the more negative is the
vacuum energy of the interior AdS.
The main difference with N branes, is that it is now

natural to associate the number of degrees of freedom of the
massless gas with N2. In this way we can answer the first
question posed above. In addition, we expect, in the large
N-limit, an important correction to the total tension of the
stack of N-branes. Similar to the discussion in [22], in the
context of the dark bubble construction of a 4d expanding

universe with a positive cosmological constant, we expect
there to be 1=N corrections to the effective tension.9 These
should reduce the tension compared to the critical one,
facilitating nucleation in line with the Weak Gravity
Conjecture. To be precise, if the physics of the stack of
branes is dual to that of, e.g., N ¼ 4 SYM, the tension
of the branes could be expected to receive a negative shift of
order 1=N2 (since N2 is counting the number of degrees of
freedom in the adjoint). The total tension then becomes

Nτ → Nτð1 − α=N2Þ ¼ Nτ − ατ=N; ð47Þ

where α is a constant of order 1. The shift makes the tension
of the stack slightly less than its critical value, allowing the
branes to nucleate at a finite radius. When N, which
governs the number of degrees of freedom in the gas,
changes so does the effective tension of the stack of branes.
Let us now compare with the junction conditions. For a

shell of radius r, these are given by

Nτ þ ρ ¼ NΔk
4π

−
1

4πr
þ ρb;

−Nτ þ p ¼ −
NΔk
4π

þ 1

8πr
þ pb; ð48Þ

where the first condition is associated with energy density,
while the second one is associated with pressure. On the
right-hand side of the relations we find contributions from
extrinsic curvature,

ρb ¼
1

4πr

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r !
¼ 1

6πr
; ð49Þ

provided that we choose r ¼ RB ¼ 9M=4, where we also
we have pb ¼ ρb=2, thus mimicking the equation of state
of radiation. On the left-hand side, we find the energy
density ρ associated with the fluid on top of the brane,
which is expected to include massless radiation. This

9The connection with the dark bubble model [23] can also be
used to suggest interesting values for the parameters of the black
shell model. For a brief review, see Ref. [24]. For a discussion of
black holes on the dark bubble see Ref. [25]. In [22] it was argued
that RH ∼ Ncl4, L ∼ N1=2

c l4, ls ∼ N1=4
c l4 and l5 ∼ N−1=6

c l4.
Here RH is the horizon scale, L the AdS-scale of extra dimension,
ls the string scale, and l5 the 5d Planck scale. Nc ∼ 1060 from
matching the observed value of the cosmological constant. Note
that l5 ≪ l4 due to the unique way in which the effective 4D
theory is realized. Similarly to how a fundamental string ending
on the world-brane give rise to a point particle with Planckian
mass L=l2s ∼ 1=l4, a D3-brane ending on the world-brane will
give rise to a 2-brane with tension L=l4s ∼ 1=ðLl2

4Þ. From here we
conclude that Δk ∼ 1=L. Furthermore, if we consider the maxi-
mum sized black hole (the Nariai black hole) with its horizon
coinciding with the cosmological one, we need N ¼ Nc. We then
find the total tension of the brane to beNcΔk=l2

4 ∼ 1=l3
5. We plan

to explore these relations in an upcoming work.
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should exactly match the contribution from the subtracted
extrinsic curvature, ρb, on the right. From the argument
given above, we now see that there exists an additional
component in ρ given by −ατ=N, coming from the reduced
tension of the brane. Since we expect that N ∼ R, where R
is the radius of the shell, this has a chance of matching the
remaining term of order −1=ð4πrÞ on the right. Let us now
see how this comes about in detail.
In [26] the thermodynamics of a black brane (even far

from extremality) was understood using an argument based
on a competition between the amount of energy in the form
of brane tension, and the energy in the form of radiation. By
maximizing the entropy in the micro-canonical ensemble
keeping the energy constant, the physically correct proper-
ties of the black brane, including various nontrivial expo-
nents, could be derived. This was achieved for D3-branes
in 10d as well as M2- and M5-branes in 11d. Here,
the situation is much more subtle, since the tension of
the branes is more or less canceled against the shift in the
background. There is no cost, or gain, while creating branes,
except for the 1=N-correction. Just as in [26], we assume
that the total energy at our disposal is fixed to E0, and that it
can be divided between the brane and the gas. We then get
(with the order 1 constants β1 ¼ 4πα and β2)

E0 ¼ β2N2T3R2 − β1τR2=N;

S ¼ 3

2
βN2T2R2; ð50Þ

for the total energy and the total entropy. Solving for the
temperature from the first equation, we find that the entropy
is given by

S ¼ 3

2
β1=32 R2=3N2=3ðE0 þ β1τR2=NÞ2=3

¼ 3

2
β1=32 R2=3ðE0N þ β1τR2Þ2=3: ð51Þ

Following [26], the next step is to find the extremum of S in
terms of N by demanding ∂S=∂N ¼ 0. The situation now
turns out to be a bit more degenerate, and we find that the
only way to have such an extremum is to put E0 ¼ 0. We
will see in a moment why this actually does correspond to
the (physical) maximum of the entropy.
With this in mind, let us start by rearranging, as in [1],

the junction conditions as

ρ ¼ −
1

12πr
−

1

6πr
þ ρb;

p ¼ −
1

24πr
þ 1

6πr
þ pb: ð52Þ

On the right we have made the unique decomposition of the
−1=ð4πrÞ term into a piece corresponding to radiation (the
first) and tension (the second). Given that ρb ¼ 1=ð6πrÞ at
equilibrium, we precisely satisfy the condition obtained
from our consideration of the entropy. The extra piece with

the equation of state of radiation, is a simple consequence of
the fact that the brane can no longer behave as pure tension
if N is supposed to vary with the radius of the shell.
Having made this nontrivial identification, we will now

check that the system not only maximizes the entropy but is
also thermodynamically stable. We start by considering the
case with an imbalance between the two components such
that E0 is perturbed to a nonzero value, holding the radius r
fixed. Since the rest of the junction conditions remain
unchanged, this is only possible for a negative value of E0.
In this case the reduction in energy can be compensated by
kinetic energy from letting the brane move. A positive
value of E0 is impossible to account for in this way. We
note from [26] that a reduction of E0 to negative values,
implies a reduction of the entropy. Hence, thermodynamics
will tend to drive the system back toE0 ¼ 0 by reducing the
kinetic component (through viscous forces) and reheating
the system. The entropy then increases back to its largest
attainable value.
Next, let us consider keeping E0 ¼ 0 but vary N at fixed

r. This does not change the entropy, since it is independent
of N if E0 ¼ 0. The invariance corresponds to a scaling of
N together with a compensating scaling of T such that
S ∼ N2T2 ∼ constant. This, on the other hand will shift the
temperature away from its Unruh value. Letting the system
relax back to its equilibrium implies that the temperature
adjusts to the Unruh temperature at the same time as
the number of branes, N, changes. Perturbing r off its
equilibrium value can be mapped onto changing N, so the
conclusion is the same also in this case.
To summarize, we see that the system is stable against

perturbations around the equilibrium. It is interesting to note
that there are two different processes at work. Onewhere the
Unruh effect restores equilibrium for isoentropic perturba-
tions. And one where viscous forces drives the entropy back
to its maximum. These should match the effective source
terms that were used in the phenomenological approach
of [2].

V. CONCLUSIONS AND OUTLOOK

In this paper we have improved and extended the analysis
of rotating black shells in [4]. We analyze the system to sub-
sub-subleading order in spin: to order a6. The results we
have obtained yield predictions that can be used to dis-
tinguish a black shell from a black hole. The shift in the
quadrupole starts at order a2, and the corrections we omit
are at order a8. An accuracy of 1% at order a6 implies that
we can get accurate results to a ¼ 0.45m. At this spin, we
find an enhancement of the quadrupole moment of ∼1%.
For higher accuracy, one can simply calculate higher
corrections.10 In an upcoming article we will discuss

10While our analysis suggests that the metric approaches Kerr
in the extremal limit, we still need to verify what the final fate of
the shell will be. We plan to address this in upcoming work.
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observations that could be used to detect black shells. While
the shift in the quadropole moment is small, it may still be
measurable through the tracking of lower mass black holes
orbiting supermassive ones. The LISA-observatory is
expected to reach the necessary sensitivity.
An immediate, and pertinent next step is to test these

shells for nonlinear stability against perturbations along the
lines of [2]. Since we are no longer limited by spherical
symmetry, we can examine stability both in the case of
asymmetric accretion of matter where the angular momen-
tum of the shell changes, as well as perturbations with
gravitational waves.
The structure with the circulating flows of fluid and heat

is extremely intriguing. In its form it reminds of out of
equilibrium processes sustained by temperature gradients.
This is also what we have here with the Unruh effect acting
as the heat source. A difference from the familiar case is that
the total system, the gas together with the brane, is to a high
degree of accuracy a closed rather than an open system. The
heat generated by, say, shear viscosity, is used to create new
fluid while keeping the entropy constant and the system in a
stationary state. It is only over timescales of the order
Hawing evaporation time that the system experiences any

real change. As radiation is lost to the bulk, the system
decreases in size, even though the total entropy of the black
shell and the released radiation increases. This rich and
unusual example of relativistic hydrodynamics deserves
further studies. None the least, since the subject of relativ-
istic hydrodynamics is in general not well understood.
Another important topic for further studies, is the stringy

mechanism behind the transfer of energy between the gas
and the brane. We have given some clues to the how and the
why of this process in Sec. IV, which we hope to extend to
more general situations such as rotating and colliding black
shells. We would also like to explore the intriguing
possibility, briefly touched upon in footnote 9, that the
black shell can be naturally incorporated into the dark
bubble model of de Sitter cosmology.
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