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We consider physical parameters of Levin and Perez-Giz’s “periodic table of orbits” around the
Schwarzschild black hole, where each periodic orbit is classified according to three integers ðz; w; vÞ. In
particular, we chart its distribution in terms of its angular momenta L and energy E. In the ðL; EÞ-parameter
space, the set of all periodic orbits can be partitioned into domains according to their whirl number w, where
the limit of infinite w approaches the branch of unstable circular orbits. Within each domain of a given whirl
number w, the infinite zoom limit limz→∞ðz; w; vÞ converges to the common boundary with the adjacent
domain of whirl number w − 1. The distribution of the periodic orbit branches can also be inferred from
perturbing stable circular orbits, using the fact that every stable circular orbit is the zero-eccentricity limit of
some periodic orbit, or arbitrarily close to one.
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I. INTRODUCTION

The study of particle motion in the vicinity of a black
hole is often a useful way to probe the gravitational field of
the black hole itself. For instance, the motion stars was
observed around the galactic black hole in Sgr A* [1–4].
More recently, the direct detection of gravitational waves
[5] and the direct imaging [6,7] of black hole shadows
further makes the case for studying the dynamics of
particles in the vicinity of a black hole.
Indeed, it was the problem of gravitational wave detec-

tion that was one of the motivations to establish the
periodic table of black hole orbits by Levin and Perez-
Giz [8]. In their paper, Levin and Perez-Giz argued that any
generic bound orbit around a Schwarzschild or Kerr black
hole can be seen as arbitrarily close to some periodic,
closed orbit. Thus, the set of all bound orbits can be
understood through the set of periodic ones. To that end,
Levin and Perez-Giz provided a powerful taxonomy
scheme where all periodic orbits can be indexed by three
non-negative integers, ðz; w; vÞ, where z is the zoom
number, w is the whirl number, and v is the vertex number.
Subsequently this procedure has been adopted to study

particle motion for other spacetimes, such as the Kerr black
hole [8–12], Reissner-Nordström black hole [13], the Fisher/
Janis-Newman-Winocour spacetime [14], quantum-corrected
black holes [15], braneworld black holes [16], black hole
surrounded by quintessence [17], Kerr-Sen black holes [18],
Einstein-Æ ther black holes [19], loop quantum gravity [20],
among many others. The typical procedure to obtain a

periodic orbit is by fixing/choosing a value of angular
momentum L, then varying the energy E to find a desired
orbit. The eccentricity of the orbit will be dependent on the
choice ofL. For a givenL, some periodic orbits may not exist
[8]. There will be some inherent trial-and-error in finding a
periodic orbit of a specified eccentricity.
In this paper, we return to the simplest case of the

Schwarzschild spacetime and approach the problem of
periodic orbits from a different angle. The new results to be
reported in this paper are in Secs. III and IV, and we briefly
summarize it as follows: We give a procedure to calculate
precisely the values of L and E required for any choice of
ðz; w; vÞ and eccentricity e. With this procedure, we can
map out the periodic table of orbits in the ðL;EÞ-plane. As a
result, physical interpretations like the nonrelativistic limit
(Keplerian ellipses), circular orbits, (non)existence of
certain orbits, and others are made intuitively clear when
described in terms of these physical quantities. Various
features of periodic orbits derived in [8] can now be easily
read off from the ðL;EÞ-plane.
More precisely, according to the Levin–Perez-Giz

scheme, a bound orbit can be parametrized by a dimen-
sionless number q. If q is a rational number of the form
q ¼ wþ v

z, for non-negative integers ðz; w; vÞ, we have a
periodic orbit which closes after a finite proper time. For a
given periodic q, there is an additional parameter 0 ≤ e < 1
which characterizes the eccentricity of an orbit. Here, we
view e as another independent orbital parameter, so a
periodic orbit is uniquely specified by ðq; eÞ ¼ ðz; v; w; eÞ.
So each periodic orbit ðq; eÞ corresponds to a unique point
in ðL; EÞ parameter space. The main goal of this paper is to
explore the distribution of periodic orbits in ðL;EÞ para-
meter space for the Schwarzschild spacetime.
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An obvious advantage of using ðL; EÞ to chart the
periodic orbits is that they are physical quantities, and
are constants of motion for each orbit. Thus its proximity in
values to other important orbits like the innermost stable
circular orbits (ISCOs), or to the nonrelativistic limits, can
be seen in the ðL; EÞ-plane. In such a diagram, periodic
orbits are represented by an infinite sequence of noninter-
secting curves of positive slope which converges to the
branch of unstable circular orbits. We can parametrize each
branch by its eccentricity e. The endpoint e ¼ 1 is where
the branch intersects E ¼ 1, the limit of an escaping
trajectory. Running downward in E corresponds to decreas-
ing e, until the branch terminates at the branch of stable
circular orbits, for which e ¼ 0. This serves as a graphical
realization of how all stable circular orbits is the zero
eccentricity limit of some periodic orbit ðz; w; vÞ, as was
pointed out in [8]. Furthermore, orbits of different w are
subdivisions of domains in the ðL;EÞ-plane, and that the
z → ∞ limit for each w is the limit toward the boundary of
an adjacent domain w − 1. In the case w ¼ 0, the large-z
limit is precisely the Kepler ellipse. Additionally, the
w → ∞ limit coincides with the branch of unstable circular
orbits.
The rest of this paper is organized as follows. In Sec. II

we review the geodesic equations for the Schwarzschild
spacetime. Readers already familiar with this may skip to
Sec. III, where we describe our procedure to obtain a
periodic orbit of any given ðz; w; v; eÞ. In Sec. IV we
describe the distribution of periodic orbits in the ðL; EÞ
parameter space. The paper concludes in Sec. V. In the
Appendix we briefly review Levin and Perez-Giz’s tax-
onomy scheme for periodic orbits. As such, Sec. II and the
Appendix are reviews of earlier works and can be skipped
by the familiar reader. The contents of Sec. III are based on
the methods of Chandrasekhar’s text [21], but modified to
the context of determining periodic orbits. Section III D
gives new expressions for the high and low eccentricity
periodic orbits. In this sense Secs. III C and III D are
ingredients developed uniquely in order to obtain our main
results to be reported in this paper, which are in Sec. IV.
Unless otherwise stated, we work in geometric units

where c ¼ G ¼ 1 and our convention for Lorentzian
signature is ð−;þ;þ;þÞ.

II. GEODESIC EQUATIONS

The geodesic equations for the Schwarzschild metric are
well known and has been covered in detail in most
textbooks on GR. (For example, in [21]). Here, we review
its derivation using the Hamilton–Jacobi approach in
Sec. II A and obtain the parameters for circular orbits in
Sec. II B. This gives us the opportunity to establish the
notation to be used in the rest of the paper. Readers already
familiar with Schwarzschild geodesics may perhaps skip
ahead to Sec. III.

A. Equations of motion

The Schwarzschild metric is

ds2¼−fðrÞdt2þfðrÞ−1dr2þr2ðdθ2þsin2θdϕ2Þ; ð2:1aÞ

fðrÞ ¼ 1 −
2M
r

; ð2:1bÞ

where M is the mass of the black hole. In this paper, we
are only interested in the region exterior to the black hole,
that is, r > 2M. Trajectories of timelike particles will
be curves parametrized by its proper time, xμðτÞ ¼
ðtðτÞ; rðτÞ; θðτÞ;ϕðτÞÞ. For a test particle, the Lagrangian
for geodesic motion is Lðx; ẋÞ ¼ 1

2
gμνẋμẋν, where overdots

denote derivatives with respect to proper time τ. In the
Schwarzschild spacetime, it is explicitly

Lðx; ẋÞ ¼ 1

2

�
−fṫ2 þ ṙ2

f
þ r2θ̇2 þ r2 sin2 θϕ̇2

�
: ð2:2Þ

The canonical momenta are pμ ¼ ∂L
∂ẋμ, which gives

pt¼−fṫ; pr¼
ṙ
f
; pθ¼ r2θ̇; pϕ¼ r2 sin2θϕ̇: ð2:3Þ

After taking the Legendre transform to obtain the
Hamiltonian, the Hamilton-Jacobi equation is

1

2

�
−
1

f

�
∂S
∂t

�
2

þ f

�
∂S
∂r

�
2

þ 1

r2

�
∂S
∂θ

�
2

þ 1

r2sin2θ

�
∂S
∂ϕ

�
2
�

þ ∂S
∂τ

¼ 0: ð2:4Þ

Using the standard methods, the Hamilton-Jacobi equation
is completely separated, which results in the equations of
motion

ṫ ¼ −
E
f
; θ ¼ π

2
; ð2:5aÞ

ϕ̇ ¼ L
r2
; ð2:5bÞ

ṙ2¼E2−Ueff ; Ueff ¼
�
1þL2

r2

��
1−

2M
r

�
; ð2:5cÞ

where due to spherical symmetry, we have taken θ ¼ π
2
¼

constant without loss of generality. This also fixes the value
of the separation constant in terms of L. Here, E and L are
the particle’s conserved energy and angular momentum,
respectively. Equation (2.5) are sufficient to determine all
timelike geodesics of interest in this paper. Nevertheless, it
is convenient to have at hand a second order equation for r,

̈r ¼ f0ṙ2

2f
−
f0E2

2f
þ L2f

r3
; ð2:6Þ
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which is obtained by applying the Euler–Lagrange
equation.
A differential equation between r and ϕ can be obtained

by taking ṙ
ϕ̇
¼ dr

dϕ, giving

dr
dϕ

¼ �r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

L2
þ 2M
L2r

−
1

r2
þ 2M

r3

r
: ð2:7Þ

B. Circular orbits and the ðL;EÞ parameter space

As we will see later, all branches of periodic orbits are
continuously connected to the branch of stable circular
orbits. As such let us review the parameters describing
circular orbits in Schwarzschild spacetime.
We define circular orbits as orbits of constant r ¼ r0.

From Eq. (2.5c), this is attained by

E2 ¼ Ueff ; U0
eff ¼ 0: ð2:8Þ

Solving for E and L, we get

E ¼ r0 − 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp ; L ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r0 − 3M

s
; ð2:9Þ

corresponding to a circular orbit of radius r ¼ r0. To check
the stability of circular orbits we turn to the second
derivative of Ueff evaluated at the circular orbits. We find

U00
eff jcircular ¼

2Mðr0 − 6MÞ
r30ðr0 − 3MÞ : ð2:10Þ

Therefore we see that U00
eff > 0 for r0 > 6M, corresponding

to the branch of stable circular orbits, while U00
eff < 0 for

3M < r0 < 6M for the branch of unstable circular orbits.
No circular orbits exist for r < 3M. Following the standard
literature, the critical point r0 ¼ 6M is called the innermost
stable circular orbit (ISCO). The circular orbits (and
subsequently, periodic orbits in the later sections) can be
mapped on a ðL;EÞ-parameter space, as shown in Fig. 1.
The dotted and solid curves represent the branch of stable
and unstable circular orbits, respectively. It can be viewed
as a parametrized curve according to Eq. (2.9), para-
metrized by the circle radius r0.
Let us denote by D the set

D ¼ fvalues of ðL; EÞ of bound; nonplunging orbitsg
ð2:11Þ

In the ðL;EÞ plane, D is the region bounded by the curves
for circular orbits and the line E ¼ 1. (See Fig. 1.) In this
region, the equation E2 ¼ Ueff has three distinct real roots
in r, and there exist a domain of r between two of the roots
for which E2 > Ueff . Hence the particle can be bound in
radii between these two roots without falling into the

horizon. These are the set of bound, nonplunging orbits
and the subject of main interest in this paper. All periodic
orbits will have angular momenta and energies ðL; EÞ
contained in this region. It is also worth recalling where
in the ðL;EÞ-space does the nonrelativistic (i.e., Keplerian)
regime lie. Restoring to standard units,

E →
E

mc2
þ 1; L →

J
mc

; M →
GM
c2

; ð2:12Þ

where E, J, and m are the test particle’s energy, angular
momentum, and mass in standard units. M is the black
hole mass, and c and G are the speed of light and
gravitational constant, respectively. To recover the non-
relativistic limit, we take

E2 ¼
�

E
mc2

þ 1

�
2

≃ 1þ 2E
mc2

þO
��

E
mc2

�
2
�
;

GM
c2r

≪ 1:

This latter condition occurs at large r far away from the
black hole. In this limit, Eq. (2.7) reduces to

dr
dϕ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE
J2

−
1

r2
þ 2GMm2

J2r

s
;

which is precisely the Keplerian equation of motion, for
which the exact solutions are ellipses. In terms to our ðL; EÞ
plane, which is in geometric units, the nonrelativistic limit

FIG. 1. Values of angular momenta L and energy E for circular
orbits in Schwarzschild spacetime. The domain D is the region
bounded by the two branches of circular orbits and the line E¼1.
The nonrelativistic, or Keplerian limit is where L=M → ∞
and E → 1.

ENERGIES AND ANGULAR MOMENTA OF PERIODIC … PHYS. REV. D 109, 024037 (2024)

024037-3



is where E → 1 and L=M ¼ Jc=GM → ∞, as indicated
by “nonrel. limit” in Fig. 1.

III. PERIODIC ORBITS AND THEIR
ECCENTRICITIES

In Ref. [8], Levin and Perez-Giz gave a powerful classi-
fication scheme where a triplet of integers ðz; w; vÞ is
associated to each periodic orbit. In the present paper, we
are mainly interested in the set of possible angular momenta
L and energies E for an orbit of given ðz; w; vÞ. Here we
review the procedure to obtain periodic orbits, but modifying
it to place some emphasis on the eccentricity and latus rectum
of the orbits. Thiswill be useful to establish amap of periodic
orbits in the ðL;EÞ-plane.

A. Analytical solution

Introducing the substitution u ¼ 1=r, Eq. (2.7) becomes

du
dϕ

¼ �
ffiffiffiffiffiffiffiffiffiffi
PðuÞ

p
;

PðuÞ ¼ −
1 − E2

L2
þ 2M

L2
u − u2 þ 2Mu3: ð3:1Þ

Clearly, the physically allowable domain for u is such that
PðuÞ ≥ 0. In particular, the roots of P specify the boundary
of these domains and represent the turning point in the r-
motion, as ṙ ¼ 0 at these points. We restrict our attention to
parameters such that PðuÞ has three real roots, ordered by

u1 ≤ u2 ≤ u3: ð3:2Þ

Since the leading coefficient of P is positive, PðuÞ is non-
negative for u1 ≤ u ≤ u2 and u ≥ u3. In this paper, we are
only interested in bound orbits which do not fall into the
black-hole horizon. Hence we seek trajectories lying in a
finite domain, which is

u1 ≤ u ≤ u2: ð3:3Þ
In other words, r1 ¼ 1=u1 corresponds to the aphelion and
r2 ¼ 1=u2 corresponds to the perihelion, and the trajectory
oscillates between these two radii. The largest root u3 goes
to infinity in the nonrelativistic limit where PðuÞ becomes
quadratic.
In terms of these roots, the polynomial P can be we

rewritten such that

du
dϕ

¼�
ffiffiffiffiffiffiffiffiffiffi
PðuÞ

p
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mðu3−uÞðu2−uÞðu−u1Þ

p
: ð3:4Þ

We choose initial conditions u ¼ u1 at ϕ ¼ 0. With L > 0,
this means the subsequent motion is u increasing while ϕ
increases and implies that du

dϕ > 0 as u evolves from u1
toward u2. For this domain we take the positive branch of
the square root. Then Eq. (3.1) can be integrated to give

1ffiffiffiffiffiffiffi
2M

p
Z

u

u1

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu3 − u0Þðu2 − u0Þðu0 − u1Þ
p ¼ ϕ:

This integral is evaluated exactly as1

ϕðuÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mðu3 − u1Þ

p F

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − u1
u2 − u1

r
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u1
u3 − u1

r �
;

where Fðx; kÞ is the incomplete elliptic integral of the first
kind. This can be inverted to give

uðϕÞ ¼ u1 þ ðu2 − u1Þsn2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mðu3 − u1Þ
p ϕ

2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u1
u3 − u1

r �
;

ð3:5Þ
where snðθ; kÞ is the Jacobi elliptic sine function. Restoring
r ¼ 1=u, the exact solution for the trajectory is

rðϕÞ ¼ 1

u1 þ ðu2 − u1Þsn2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mðu3 − u1Þ
p

ϕ
2
;
ffiffiffiffiffiffiffiffiffi
u2−u1
u3−u1

q � :
ð3:6Þ

B. Eccentricity and latus rectum

Following Chandrasekhar [21] [page 103, Eq. (114)], we
parametrize the roots with

u3 ¼
1

2M
−
2

λ
; u2 ¼

1þ e
λ

; u1 ¼
1 − e
λ

; ð3:7Þ

where e is the eccentricity and λ is the latus rectum. Note
that e ¼ u2−u1

u2þu1
, which is the same definition of eccentricity

used in [8]. By comparing coefficients with (3.1), they are
related to E, L, and M by

1 − E2

L2
¼ ðλ − 4MÞð1 − e2Þ

λ3
;

M
L2

¼ λ − 3M −Me2

λ2
: ð3:8Þ

This parametrization also leads to

u3 − u1 ¼
1

2M
þ e − 3

λ
; u2 − u1 ¼

2e
λ
; ð3:9Þ

so that the exact solution (3.6) can be expressed in terms of
the orbital parameters as

rðϕÞ ¼ λ

1 − eþ 2esn2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Mðe−3Þ
λ

q
ϕ
2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Me
λþ2Mðe−3Þ

q � :
ð3:10Þ

1See, for instance, [22] (pp. 254, 3.131-3).
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This completes the exact solution to the equations of
motion.
However, to seek periodic orbits, we shall use Eq. (3.5)

instead where ϕ is treated as a function of u ¼ 1=r. During
the trajectory, the radial coordinate of the particle oscillates
between its maximum and minimum values 1=u2 ≤ r ≤
1=u1. During the time it executes one period of this
oscillation, the evolution of the azimuthal angle is

Δϕr ¼ 2ϕðu2Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mðu3 − u1Þ
p K

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u1
u3 − u1

r �

¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M

λ ðe − 3Þ
q K

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Me

λþ 2Mðe − 3Þ

s !
; ð3:11Þ

where KðkÞ is the complete elliptic integral of the first kind
with elliptic modulus k. Furthermore, a parameter q can be
defined by [8]

qþ1¼Δϕr

2π

¼ 2

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M

λ ðe−3Þ
q K

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Me

λþ2Mðe−3Þ

s !
: ð3:12Þ

A periodic orbit occurs if Δϕr is a rational multiple of 2π,
which means that q is a rational number. More precisely,
this is when q ¼ wþ v

z for three non-negative integers
ðz; w; vÞ where z, w, and w are the zoom, whirl, and vertex
numbers, respectively, according to the taxonomy scheme
of Levin and Perez-Giz [8].
We recall that the zoom number z gives the number of

“leaves,” or “petals” of the periodic orbit. The vertex
number v determines order of how each petal is traced
out for a given z. The integer v must be relatively prime to
z. Furthermore in the case z ¼ 1, there is only one petal and
v is defined to be 0 in this case. Therefore v and z have the
following relationship:

1 ≤ v ≤ z − 1; if z and v are co-prime;

v ¼ 0; if z ¼ 1: ð3:13Þ

Finally, the whirl number w tells us the number of laps it
executes around the black hole in the time between
successive petals. Further details about the basic notions
of the Levin–Perez-Giz taxonomy is reviewed in the
Appendix.

C. Obtaining a periodic orbit of a desired ðz;v;wÞ and e

From Eq. (3.12), we see that periodic orbits occur if

Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Me
λþ2Mðe−3Þ

q
Þ is a rationalmultiple of ðπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2M

λ ðe−3Þ
q

Þ−1.
Since KðkÞ is a monotonic function of its argument, we can
typically find a λ for a desired periodic orbit ðz; w; vÞ of

eccentricity e. For each pair ðe; λÞ, its corresponding energy
and angular momentum found using Eq. (3.8) to give

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4Mλþ 4M2 − 4M2e2

λðλ − 3M −Me2Þ

s
;

L ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

λ − 3M −Me2

r
: ð3:14Þ

Therefore, a practical recipe for obtaining a desired
periodic orbit is as follows: Choose a periodic orbit
ðz; w; vÞ and its eccentricity e, then q ¼ wþ v

z. With the
required q and e at hand, use Eq. (3.12) to solve for λ. The
corresponding physical parameters E and L which creates
the orbit are then given by the formulas in (3.14). Only the
determination of λ requires numerical root-finding.
As an example, let us obtain the orbit (3,0,1) for three

choices of eccentricities, e ¼ 0.2, e ¼ 0.5 and e ¼ 0.8.
For this orbit, q ¼ 1. Solving Eq. (3.12) gives λ ¼
13.73203531M for e ¼ 0.2, λ ¼ 13.82431376M for
e ¼ 0.5, and λ ¼ 13.99183759M for e ¼ 0.8. Next, using
Eq. (3.14) gives the corresponding energies and angular
momenta:

e ¼ 0.2∶ E ¼ 0.9676607923; L ¼ 4.199568983M;

e ¼ 0.5∶ E ¼ 0.9744720033; L ¼ 4.251258230M;

e ¼ 0.8∶ E ¼ 0.9875046762; L ¼ 4.348765909M:

ð3:15Þ
The orbits for these three choices of e’s are plotted in
Cartesian coordinates in Figs. 2(a)–(c).

D. High and low eccentricity limits

The limit e → 0. Given any periodic orbit, the limit
e → 0 reduces to that of a stable circular orbit. In fact, this
was the prescription given by Levin and Perez-Giz to assign
a ðz; w; vÞ triplet for each circular orbit [8]. Our present task
here is to obtain and explore an explicit formula based on
this prescription. With this formula one can determine the
radius r0 of the resulting circular-orbit limit of any given
q ¼ wþ v

z. As will be seen in the following section, this
will be useful in understanding the distribution of periodic
orbits in D.
Let a circular orbit be characterized by its radius r0. Its

energy and angular momentum are as given by Eq. (2.9).
We then introduce a small perturbation by writing

rðτÞ ¼ r0 þ εr1ðτÞ: ð3:16Þ
Substituting (3.16) into Eq. (2.6) and keeping up to first
order in ε, we find2

2Equivalently,U00
eff jcircular ¼ 2

r0
Ω2, as can be seen by comparing

with Eq. (2.10).
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̈r1 ¼ −Ω2r1; Ω ¼ 1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr0 − 6MÞ
r0ðr0 − 3MÞ

s
:

Suppose we choose initial conditions such that r1ðτÞ ¼
A cosΩτ, where A ∼Oð1Þ. Putting this solution into
Eq. (2.5b) leads to

ϕðτÞ ¼ L0

r20

�
τ −

2εA
Ωr0

sinΩτ þ…

�
: ð3:17Þ

Therefore, the increment in ϕ as the particle returns to its
starting radius is when τ ¼ 2π

Ω , or, to leading order,

Δϕr

2π
≃

L0

r20Ω
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

r0 − 6M

r
: ð3:18Þ

In other words, this is an approximate formula for qþ 1 for
perturbed circular orbits. If q is a rational number, we then
have periodic orbits for low eccentricities:

qþ1¼wþv
z
þ1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

r0−6M

r
; 0≲e≪ 1: ð3:19Þ

This furnishes an explicit formula for the prescription of a
ðz; w; vÞ-triplet for a circular orbit according to [8]. Since
stable circular orbits are characterized by r0 > 6M, then the
set of all stable circular orbits can be mapped to the positive
real line Rþ. Just as every point along Rþ is arbitrarily
close to some rational number, for every stable circular
orbit of radius r0, there exist a periodic orbit whose e → 0
limit is arbitrarily close to it.
The limit e → 1. Unlike the zero eccentricity limit, the

case e → 1 does not admit a nice perturbative expression
for a given q analogous to Eq. (3.19). However, we can
instead consider the limit e → 1 for some fixed L. From
Eq. (3.14), at fixed L, the latus rectum is

λ� ¼ LðL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 16M2

p
Þ

2M
: ð3:20Þ

Using this expression for λ, one can use Eq. (3.12) to check
the value of q. We find that λ− leads to complex values of q,
so we discard it. Taking λþ and assuming L ≥ 4M, this
gives

qmax ¼ −1þ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 16M2

p
Þ

L2 − 8M2 þ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 16M2

p
s

× K

 
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

L2 − 8M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 16M2

p
s !

: ð3:21Þ

We denote by qmax as the orbit q with e → 1 at a given L.
Thus, Eq. (3.21) gives an explicit formula for qmax which
appears in Eq. (12) of [8].

IV. DISTRIBUTION OF PERIODIC
SCHWARZSCHILD ORBITS IN ðL;EÞ

PARAMETER SPACE

With the tools developed and reviewed in the previous
sections, our task in this section is to establish a map of
periodic orbits in ðL;EÞ-parameter space. This involves
understanding how the energy and angular momenta of
periodic orbits are distributed in the domain D in Fig. 1.

A. Preliminary observations

As a starting point, consider the concrete example of the
orbit (3,0,1). In the previous section, we have explicitly
calculated the energies and angular momenta of the cases
e ¼ 0.2, 0.5, and 0.8 in Eq. (3.15). Their values are marked
in ðL; EÞ-space shown in Fig. 3. Now, obtaining the
corresponding L and E for all eccentricities 0 < e < 1
gives all the points along the solid blue curve in Fig. 3.
In the following, let us refer to the set all orbits of a given
q—whether it is rational or irrational—as a q-branch, or
simply a branch.3 For periodic orbits, q is rational and we
call the set a periodic orbit branch.

FIG. 2. The (3,0,1) orbits for different eccentricities. (a) e ¼ 0.2. (b) e ¼ 0.5. (c) e ¼ 0.8.

3We choose the word branch because from Fig. 3 it is a curve
that branches off from the curve of stable circular orbits.
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This example of the (3,0,1)-branch makes clear the
following observations:
(1) The branch all orbits with taxonomy (3,0,1) lie along

a curve that starts from the curve of stable circular
orbits and terminates at E ¼ 1.

(2) The branch meets the branch of stable circular orbits
in the limit e → 0. In the small neighborhood of
e ≃ 0, the orbit is a perturbation of a stable circular
orbit. So the values of L and E at the intersection
point can be found with Eq. (2.9), where r0 is
determined from ðz; w; vÞ using Eq. (4.1).

(3) In the other direction, the branch meets the line
E ¼ 1 in the limit e → 1.

While the above discussion was for the explicit case
(3,0,1), the above statements also hold for any generic
q ¼ wþ v

z. In particular, each periodic orbit branch is a
curve lying in domain D. It is a one-dimensional curve
parametrized by eccentricity e. The endpoint e → 0 is the
zero-eccentricity limit where the branch meets the curve of
stable circular orbits at a point unique to each ðz; w; vÞ. The
specific point ðL;EÞ is determined from (2.9) with r0
determined from Eq. (3.19).
In other words, each periodic orbit branch emanates from

the curve of stable circular orbits at different points. That is,
there is no single point on the stable circular orbit curve
where two or more periodic branches emanate from.
Conversely, no distinct periodic branches have the same
zero-eccentricity limit leading to circular orbits of the same
radius.
Furthermore, these periodic orbit branches do not inter-

sect each other anywhere else in D. If periodic orbit
branches intersect, the intersection point implies a value

of L and E whose orbit has multiple distinct taxonomies,
which is impossible.
All orbits have the extreme eccentricity limit e → 1,

which is the limit to an escaping trajectory. Therefore all the
periodic orbit branches meet the line E ¼ 1, also at unique
points due to the arguments of the previous paragraph.
From these discussions, we conclude that in the

ðL;EÞ-plane, the set of all periodic orbits consists of a
family of nonintersecting curves, each emanating from
unique points on the curve of stable circular orbits, and
terminating at the line E ¼ 1. Because the branches do not
intersect, the distribution and ordering of the branches can
be understood through its distribution and ordering of
points of emanation from the curve of stable circular orbits.
These points can be easily obtained using Eq. (3.19). We
shall turn to this task in the following subsection.

B. Parametrization of periodic orbits along stable
circular orbits

In ðL;EÞ-space, the branches of periodic orbits are all
represented by nonintersecting curves which connects the
branch of stable circular orbits to the curve E ¼ 1. All the
curves do not intersect each other, so the ordering among
periodic orbits is preserved in the domain D for any
eccentricity e. This means that it suffices to study the
sequence of periodic orbits in the limit e → 0. In this limit,
the radius of the resulting circular orbits can be found by
solving Eq. (3.19) for the radius, giving

r0q ¼ r0ðz;w;vÞ ¼
6Mðqþ 1Þ2
qðqþ 2Þ ¼ 6Mðzþ vþwzÞ2

ðwzþ vÞðwzþ vþ 2zÞ :

ð4:1Þ

Since for periodic orbits q ¼ wþ v
z, we use the notations r0q

and r0ðz; w; vÞ interchangeably. In particular the latterwill be
useful when viewing the sequence orbits increasing z, but
fixed w and v, for example. In any case Eq. (4.1) gives the
radius of the zero-eccentricity limit of a periodic orbit of a
givenq ¼ wþ v

z. Using the r0q calculated from a givenq, the
energy and angular momenta (hence, the point along the
stable circular orbit curve) is determined using Eq. (2.9).
Using Eq. (4.1), one can see the precise sequence of

branches in the ðL;EÞ space based on its intersection point
with the stable circular orbit branch. Hence the description
of the branches can be put on a more precise footing.
Subdivision of D according to whirl number. We can

now see how D can be partitioned according to whirl

number w. From Eq. (3.19), we have wþ v
z ¼

ffiffiffiffiffiffiffiffiffiffi
r0q

r0−6M

q
− 1.

Since 0 ≤ v
z < 1, we have w ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
r0q

r0q−6M

q
− 1 < wþ 1, or

6Mðwþ 2Þ2
ðwþ 1Þðwþ 3Þ < r0q ≤

6Mðwþ 1Þ2
wðwþ 2Þ : ð4:2Þ

FIG. 3. The blue solid curve in shows the values of angular
momentum and energies for the orbit (3,0,1); orbits with e → 1
approaches E ¼ 1 and orbits with e → 0 approaches the dotted
black curve corresponding to circular orbits.
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So all periodic orbits of a given w are branches which
emanate from the stable circular branch at the domain
specified by Eq. (4.2). The ranges for the first few w are
shown here:

w ¼ 0∶ 8M < r0q < ∞;

w ¼ 1∶
27

4
M < r0q ≤ 8M;

w ¼ 2∶
32

5
M < r0q ≤

27

4
M;

w ¼ 3∶
25

4
M < r0q ≤

32

5
M;

..

.

The corresponding subdivisions ofD are sketched in Fig. 4.
Next, we observe that within each fixed w, the orbit

ð1; w; 0Þ is

r0q ¼
6Mðwþ 1Þ2
wðwþ 2Þ ; ð4:3Þ

which is the upper bound of (4.2). In other words, within
each w, the orbit with the largest r0q is the single-petal
orbit z ¼ 1.
Large z limit at fixed w and v ¼ 1. For z ≥ 2, and still

with fixed w, we have the sequence

r0ð2; w; vÞ; r0ð3; w; vÞ;…; r0ðz; w; vÞ;…; ð4:4Þ

where for each z, we additionally have a finite subsequence
where v takes the possible values relatively prime to z. Let
us first consider the case of fixed v ¼ 1. We find that the
sequence fr0ðz; w; 1Þg is increasing, since

r0ðzþ1;w;1Þ− r0ðz;w;1Þ

¼ 6Mð1þ2wzþ2wz2þ2z2þ4zÞ
ðwzþwþ1Þðwzþwþ3þ2zÞðwzþ1Þðwzþ1þ2zÞ ;

ð4:5Þ

which is positive. So the periodic orbit ðzþ 1; w; 1Þ always
lies to the right of ðz; w; 1Þ in the ðL;EÞ-plane. As z is
increased to infinity, the sequence of branches converges to
the right boundary of its w subdomain. On the other hand,
as we have shown in Eq. (4.3), the boundary corresponds to
the z ¼ 1 orbit. Therefore the infinite-z limit of the
sequence converges to ð1; w; 0Þ. We can verify this using
Eq. (4.1):

lim
z→∞

r0ðz; w; 1Þ ¼ lim
z→∞

6Mðzþ vþ wzÞ2
ðwzþ vÞðwzþ vþ 2zÞ

¼ 6Mðwþ 1Þ
wðwþ 2Þ

¼ r0ð1; w; 0Þ: ð4:6Þ

Or, in terms of the branches themselves,

lim
z→∞

ðz; w; 1Þ ¼ ð1; w; 0Þ: ð4:7Þ

For the case w ¼ 0, we find limz→∞ r0ðz; 0; 1Þ ¼ ∞.
However, recall that the infinite r0 circular orbit coin-
cides with L → ∞ and E → 1, which is the nonrelativistic
limit. Therefore setting w ¼ 0 in Eq. (4.7) to write
limz→∞ðz; 0; 1Þ ¼ ð1; 0; 0Þ is consistent with the statement
that (1,0,0) is the nonrelativistic Kepler ellipse.
Large w limit. Returning to Eq. (4.1), we also have

lim
w→∞

r0ðz; w; vÞ ¼ 6M; ð4:8Þ

for any z and v. This shows that the infinite whirl limit is the
branch of unstable circular orbits. Intuitively, this can
perhaps be understood as follows: Unstable circular orbits,
when perturbed outward,4 will typically result in bound
orbits with many whirls. These perturbed unstable orbits
are the homoclinic orbits. More details these orbits,
including the more general case of Kerr spacetime, were
studied in Refs. [9,23]. In terms of branches in the
ðL;EÞ-plane, this also suggests the interpretation that the
branch of unstable circular orbit is itself a periodic orbit.
More specifically, the limit w → ∞ of the sequence of
periodic orbits.

FIG. 4. (Not to scale.) A sketch of the subdivision of the
domain D of periodic bound orbits according to whirl number w.
Note that this sketch is not to scale, as otherwise the domains with
w ≥ 2 onward would be too narrow to be seen.

4Of course, inward perturbations of unstable circular orbits
will typically send the particle plunging into the horizon.

YEN-KHENG LIM and ZHI CHENG YEO PHYS. REV. D 109, 024037 (2024)

024037-8



Periodic orbits in the ðL;EÞ-plane and the case v > 1.
So far, we have inferred the distribution of orbits by
studying the intersection points with the stable circular
orbits at low eccentricity limits, primarily with the use of
Eq. (4.1). We now verify the descriptions by obtaining the
full structure of branches using the procedure discussed in
Sec. III C to obtain the precise values of L and E of the
branches. We start with Fig. 5 where we plot the full
branches of v ¼ 0 orbits.
As shown in Fig. 5, the branches of periodic orbits can be

partitioned according to the values of w. The orbits with
w ¼ 0 occupy most of the space in the ðL;EÞ-plane, with
w ≥ 1 are tightly packed in the vicinity near the curve of
unstable circular orbits. The resolution used in Fig. 5 is just
barely able to show the w ¼ 1 and w ¼ 2 orbits. Going to
higher w > 2, the branches are packed even more closely
together such that they are almost indistinguishible from the
branch of unstable circular orbits when viewed at this scale.
Finally, we turn to the orbits of v > 1. According to

Eq. (3.13), the set of possible v’s depend on z. To reiterate,
unless z ¼ 0, thewe have 1 ≤ v < z and vmust be relatively
prime to z. Therefore itmakes sense to view thevarious v’s as
a subsequences depending oneachgiven z.With this inmind,
let us consider some fixed w and z. The possible values of v
are the integers relatively prime to z.
We can show using Eq. (4.1), the sequence r0ðz; w; vÞ is

a decreasing (finite) sequence. Let r0ðz; w; vÞ be a particu-
lar term of the sequence, and the next term is r0ðz; w; vþ kÞ
for an appropriate k. Then

r0ðz;w;vþkÞ−r0ðz;w;vÞ

¼−
6Mz2kðkþ2zþ2wzþ2vÞ

ðwzþvþkÞðwzþvþkþ2zÞðwzþvÞðwzþvþ2zÞ ;

ð4:9Þ

which is negative. So the subsequent branch ðz; w; vþ kÞ
always lies to the left of ðz; w; vÞ. Of course, if z is large, the
subsequence ðz; w; vÞ will have more branches. In Fig. 6,
we show the subsequence of v’s for z ¼ 7 and z ¼ 9, for
w ¼ 0 and w ¼ 1, respectively. We observe that as v
increases, the branches quickly approach the left boundary
of their respective w subdomains.
Orbits with fixed L. We now investigate the set of

allowed orbits for fixed L. This corresponds to a vertical
line in the ðL;EÞ-plane. Such a line will intersect various
q-branches. Let us denote by qc the branch of smallest q
which intersects this line, and qmax the branch with largest
q. In other words, the vertical line of some fixed L,
intersects the branches whose q-values lie in

qc ≤ q ≤ qmax:

This is Eq. (12) in [8]. Since each rational q correspond to a
periodic branch which are curves of positive slope ema-
nating from the stable circular orbit branch in ðL; EÞ-space,
one can directly see either from Eq. (3.21) or Fig. 7 that the
set of allowed orbits depend on whether L is greater or less
than 4M. In particular,

qc ≤ q ≤ ∞; for 2
ffiffiffi
3

p
M < L < 4M;

qc ≤ q ≤ qmax < ∞; for L > 4M: ð4:10Þ

In closing this subsection, we provide a summary of the
discussions so far: We can see that the domain D of bound
orbits in the ðL;EÞ-space can be partitioned into subdo-
mains for each w, as sketched in Fig. 4. The sequence of
subdomains Dw ⊂ D is an infinite sequence, as w → ∞.
The zero-whirl orbits D0 is the largest domain and contains
the nonrelativistic limit L=M → ∞ and E → 1. Whereas
Dw>1 is a sequence of decreasing size. Each domain can be

FIG. 5. Angular momenta L and energies E of periodic orbits of v ¼ 1, 1 ≤ z ≤ 9 with w ¼ 0 (dotted, red), w ¼ 1 (dash-dotted, blue),
and w ¼ 2 (solid, orange). Here the horizontal axis is given in terms of dimensionless units L=M, where M is the Schwarzschild mass
parameter. The black squares shows the points where the periodic orbits meet the branch of stable circular orbits. For each w, the
sequence of curves from left to right correspond to orbits of increasing z. As can be seen in the left panel, the orbits for w ¼ 1 and w ¼ 2
are closely packed near the curve of unstable circular orbits. The right panel shows the region near the ISCO in more detail.
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seen has having a left and right boundary. Within each Dw,
the right boundary is the limit limz→∞ðz; w; vÞ ¼ ð1; w; 0Þ,
coinciding with the left boundary of Dw−1. It is worth
noting that orbits with nonzero whirl all lie within a very
narrow band in the ðL;EÞ-plane. In that sense, orbits with
w ≥ 1 only occur for a very narrow range of L and E. The
limit Dw→∞ converges to the branch of unstable circular
orbits.

C. Stable vs unstable circular orbits

The observations so far reveal the different roles played by
the stable and unstable circular orbits in the context of Levin
and Perez-Giz’s scheme. Outside of this scheme, the straight-
forward way to understand circular orbits is simply via
Eq. (2.9): they can be plotted as a curve in the ðL;EÞ-plane

parametrized by r0, as was done in Fig. 1. This curve has a
cusp at r0 ¼ 6M representing the ISCO. The cusp separates
the curve into two parts, namely the stable (r0 > 6M) and
unstable (3M < r0 < 6M) circular orbits.
However, the discussions in Sec. IV B shows all

branches of bound orbits terminate at the branch of stable
circular orbits, and that the w → ∞ limit converges to the
unstable circular orbits. So rather than viewing r0 > 6M
and 3M < r0 < 6M as two parts of a single curve, in the
present context it is appropriate to view only r0 > 6M as
the “main branch” parametrizing all branches of bound
orbits. In other words, the set of all periodic orbits are
captured by the blue segment of Fig. 4, because arbitrarily
close to any point on this main branch, there is a branch of
periodic orbit that emanates from it. The red segment of

FIG. 6. Periodic orbits for the case w ¼ 0 (a) and w ¼ 1 (b). The solid blue curves are for ð7; w; vÞ, where the sequence of increasing
v ¼ 1, 2, 3, 4, 5 and 6 are sequence the branches going from right to left. (That is, the larger the v, at fixed z and w, the smaller the
angular momentum.) Similarly, the dotted red curves are for ð9; w; vÞ where the sequence v ¼ 1, 2, 4, 5, 7, and 8 go from right to left.
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Fig. 4 of unstable circular orbit can be viewed the last
branch emanating from the end of the “main” (blue) branch.
In other words, it seems more appropriate to view the
unstable circular orbits part of the set of periodic orbits.
To reiterate previous discussions, all bound orbits can be

associated with a number 0 < q < ∞, and every q corre-
sponds to a branch that emanates from some point on
stable circular orbit branch and ends at the line E ¼ 1.
The unstable circular orbit is simply the branch (loosely
speaking5) q ¼ ∞ that emanates from r0 ¼ 6M.

V. CONCLUSION

We have revisited the problem of periodic orbits in
Schwarzschild spacetime. The geodesic equations for this
spacetime can be solved by compact expressions in terms
of the elliptic integrals of the first kind. By expressing the
parameters of the equations of motion in terms of the
eccentricity e and the latus rectum λ, one can quickly
identify the energy and angular momentum of any periodic
orbits of a specified ðz; w; vÞ and e.
With this procedure, the set of all periodic orbits can be

charted in the ðL;EÞ-plane, where L is the angular
momentum and E is the energy. Each periodic orbit consists
positive-slope curves parametrized by 0 ≤ e < 1. The point
e ¼ 0 is where the branch meets the branch of stable
circular orbits. Running upward (increasing E) along the
curve corresponds to increasing e, until the limit e → 1
where it meets the line E ¼ 1, which is the limit of escaping
trajectories.
The domain D of bound orbits in the ðL;EÞ-plane is

“foliated” by the branches of periodic orbits, and can be
partitioned according to whirl numbers w. The domain

w ¼ 0 contains the nonrelativistic Kepler limit, and increas-
ing w corresponds to the sequence of domains of decreas-
ing area, which converges to the branch of unstable circular
orbits in the limit w → ∞. Each domain has a “left” and
“right” boundary. In particular, the right boundary is the
limit limz→∞ðz; w; vÞ ¼ ð1; w; 0Þ, and also it converges to
the left boundary of the adjacent domain. We find that
orbits of nonzero whirl lie in a very narrow band in the
ðL;EÞ-plane, suggesting that these kinds of orbits are
relatively less probable for a generically chosen L and E
for a particle orbit.

ACKNOWLEDGMENTS

Y.-K. L. is supported by Xiamen University Malaysia
Research Fund (Grant No. XMUMRF/2021-C8/IPHY/0001).

APPENDIX: THE LEVIN–PEREZ-GIZ
TAXONOMY

According to Levin and Perez-Giz’s taxonomy scheme
[8], rational orbits occur for

q ¼ wþ v
z
; ðA1Þ

for positive integers ðz; w; vÞ where

1 ≤ v ≤ z − 1; if z > 1; z and v coprime;

v ¼ 0; if z ¼ 1: ðA2Þ

We briefly review the meanings of the integers z, v, and w
in the following. First, z is the number of “leaves” or
“petals” in the orbit, called zoom by Levin and Perez-Giz.
They are the distinctive lobes which become elongated as e
approaches 1. The leaves are uniformly distributed in angle.
Hence for an orbit with z leaves, each leaves are separated

FIG. 7. Intersection of orbits of various q with (a) L ¼ 3.9M and (b) L ¼ 4.5M. In (a), qc ¼ 0.475387316 and the constant-L line
intersects all branches in the range qc ≤ q ≤ ∞. For (b), qc ¼ 0.251678434 and qmax ¼ 0.310993859 and the constant-L line intersects
the branches in the range qc ≤ q ≤ qmax.

5It is perhaps more precise to describe this branch as the
q → ∞ limit of the sequence of branches.

ENERGIES AND ANGULAR MOMENTA OF PERIODIC … PHYS. REV. D 109, 024037 (2024)

024037-11



by an angle of 2π=z. Figure 8 shows an example of a z ¼ 3

(“three-leaf”) orbit. Some examples for other values of z are
shown in Fig. 9.
The integer v determines how the particle traces out each

z > 1 leaves for a given z. Now, each leaf is located at
angular positions 2πk=z for k ¼ 0;…; z − 1. The integer v
is the how the particles skips each leaf in the sequence

0;
2π

z
;
2πð2Þ
z

;…;
2πðz − 1Þ

z
:

Note that v must be relatively prime to z otherwise there
exist a leaf (or leaves) which are always skipped by the
particle, contradicting the fact that the orbit consists of z
leaves. In Fig. 10, we show an example of an orbit with

FIG. 10. The trajectory of the (3,0,2) orbit after ϕ has evolved by 2π, 4π, 6π, 8π, and 10π, respectively.

FIG. 8. The trajectory of the (3,0,1) orbit after ϕ has evolved by 2π, 4π, 6π, and 8π, respectively.

FIG. 9. Examples of z ¼ 2, z ¼ 4, and z ¼ 5 for orbits ðz; 0; 1Þ.
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z ¼ 3 and v ¼ 2. For z ¼ 3, the sequence of leaves are
located at angles

0;
2π

3
;
4π

3
:

We have fixed initial conditions so that the particle starts at
the tip of the 0-leaf. Here, v ¼ 2 means it skips one leaf in
the sequence (namely 2π

3
) and proceeds to 4π

3
. Then skips one

leaf again (namely 0) and goes out to 2π
3
.

Finally, the integer w is the whirl number. In between
successive leaves (for any v), the particle spends some time
near the minimum radius. Typically the angular velocity
will be relatively large, and it may execute multiple circuits
of ϕ before proceeding to the next leaf. The number of
circuits is w. In Fig. 11, we show an example of a (3,1,1)
orbit. Particularly w ¼ 1 and so in between successive
leaves, we see that the particle executes w ¼ 1 extra circuit
around the black hole before going to the next leaf.
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