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Current searches for signals of departures from the fundamental symmetries of general relativity using
gravitational waves are largely dominated by propagation effects like dispersion and birefringence from
highly dynamic sources, such as coalescing binary black holes and neutron stars. In this paper we take steps
toward probing the nature of spacetime symmetries in the generation stage of gravitational waves; by using a
generic effective field theory, we solve the modified Einstein equations order by order (in the coefficients for
the symmetry breaking) for a generic source, and we write down the first post-Newtonian corrections, which
include contributions from the spacetime symmetry breaking terms. Choosing as the source a system of
point particles allows us to write down a simple toy solution explicitly, and we see that, in contrast to general
relativity, the monopolar and dipolar contributions are nonvanishing. We comment on the detectability of
such signals by the Laser Interferometer Space Antenna space mission, which has high signal-to-noise
Galactic binaries (which can be modeled as point particles) well inside its predicted sensitivity band, sources
that are inaccessible for current ground-based detectors. We also discuss the possibility of going beyond the
quadrupole formula and the first post-Newtonian order, which would reveal effects that could be probed by
ground-based detectors observing coalescence events.
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I. INTRODUCTION

The detection of gravitational waves by the Laser
Interferometer Gravitational-Wave Observatory and Virgo
Collaborations not only confirmed long-sought-after pre-
dictions by General Relativity (GR), but also opened an
entirely new window to the Universe through gravitational-
wave astronomy. With the detections of binary coalescence
events soon numbering 102, a number which is expected to
skyrocket during the fourth observing run,1 gravitational
waves are now able to probe the nature of the gravitational
interaction in truly extreme environments; moreover, since
they travel virtually unimpeded through space, high-
precision bounds on the propagation speed of gravity as
compared to photons are now possible [1]. On the astro-
physical side, gravitational waves have enabled discoveries
such as the existence of heavy stellar-mass black holes and
precise constraints on the mass and radius of neutron
stars [2–4].
When searching for a theory unifying GR and the

Standard Model of particle physics (SM), it may be
necessary to relax some of the underlying tenets linking
the two paradigms; indeed, many proposals of quantum

gravity predict (or allow) that Lorentz symmetry and CPT
symmetry are not exact at energy scales relevant for
quantum gravity [5–11], and signals of such spacetime
symmetry breaking may be accessible to highly sensitive
tests. Since Lorentz symmetry is a combination of rotation
and boost invariance, its breaking results in nonstandard
preferred directions and velocity-dependent quantities.
Using gravitational-wave observations, several tests of
GR have been performed, for example, [1,12,13], which
so far has revealed no departure from known physics.
Given that GR holds to very high accuracy, any spacetime
symmetry breaking in nature must be very small at the
energy scales available to us, and with very little exper-
imental guidance to direct theoretical model building, a
practical approach is to search for features of the under-
lying theory through effective field theory. In the past
decades, an effective field theory known as the Standard-
Model Extension (SME) has emerged as one of the de
facto standard tools for testing Lorentz and CPT sym-
metry; the SME contains GR, SM, and every possible local
Lorentz, CPT, and/or diffeomorphism-breaking term sup-
pressed by increasing inverse orders of the Planck mass
[14–22]. The SME has inspired a large research effort, with
constraints on the gravitational sector being obtained using
gravitational waves [1,23–28], Solar System tests [29–31],
lunar laser ranging [32–34], pulsar tests [35,36], and many
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more. An exhaustive list2 of all constraints obtained on
SME coefficients in all sectors can be found in [37]. A
generic term in the SME gravitational sector can be written
schematically as

LSME ⊇ ðSME coefficientÞ × ðdimension-d operatorÞ

and is built by contracting a conventional mass dimension-d
operator with a coefficient tensor that parametrizes Lorentz
and/orCPT violation; these coefficients transform as scalars
under so-called “particle rotations” [16], and to lowest mass
dimension in the gravitational sector (mass dimension
d ¼ 4), the relevant curvature quantity is the Riemann
tensor. The values of the SME coefficients are then put
to experimental tests, where any nonzero value indicates
that the spacetime symmetries are broken. Since known
physics is contained within the SME, and with the sym-
metry-breaking terms being constructed from quite generic
operators, specific models can be realized by specifying the
values of the SME coefficients; several maps to models have
been found, for example, [38] (noncommutative gravity)
and [22] (Hořava-Lifshitz gravity).
In general, there are two mechanisms through which

nonzero SME coefficients can arise, called spontaneous
and explicit breaking [19]: in the case of spontaneous
breaking, the underlying Lagrange density is still Lorentz
invariant and the symmetry breaking occurs through a
Higgs-like mechanism at the level of the Euler-Lagrange
equations.3 In this case, the SME coefficients need to be
considered as dynamical fields with equations of motion of
their own. In contrast, should the symmetry breaking arise
explicitly, the coefficients are instead fixed at the level of
the action and play no dynamical role.4 In general, explicit
symmetry breaking in the gravitational sector is incompat-
ible with Riemannian geometry through highly nontrivial
complications at the level of the Bianchi identities [16], but
exceptions exist; see, for example, [22,28,40,41]. In this
work, we shall focus our attention on the case of sponta-
neous origin of the symmetry breaking, which is compat-
ible with several theoretical scenarios, for example, string
theory [5,6], random dynamics [42], and more (see, for
example, [7,43,44]). Awell-known example of a candidate
quantum-gravity model that incorporates explicit spacetime
symmetry breaking is Hořava-Lifshitz gravity [11].
The Laser Interferometer Space Antenna (LISA) mission5

is the European Space Agency’s future space-based gravi-
tational-wave detector, which will be highly sensitive to

low-frequency gravitational waves in the band < 10−4– >
10−1 Hz [45,46]. Within this band lie a multitude of
Galactic sources composed of white dwarfs and neutron
stars in different combinations, known as Galactic binaries.
These noncoalescing, relatively slow-moving sources emit
continuous, quasimonochromatic gravitational waves with a
period of minutes to hours, which will be observable by
LISA throughout the entire mission lifetime [47]. The fact
that these are “weak” and slow-moving sources means that
they can be treated using a post-Newtonian expansion,
without the need to employ numerical relativity and
computationally expensive waveform modeling. A number
of Galactic binaries with exceptional signal-to-noise ratio
are known as verification binaries, which are guaranteed
sources for LISA, with simulations predicting Oð104Þ
sources within the Milky Way [47]; the use of sources
within our own Galaxy also precludes the need to take
cosmology into account. These sources are of significantly
lower energy than the mergers detected by ground-based
detectors, but they are plentiful and continuously observ-
able, and so the amount of statistics that LISA can gather
will be considerable. The formalism developed in this paper
would be well suited for tests with such sources (see
Sec. VI), but can also be used for the inspiral phase of
binary coalescence events as observed by ground-based
detectors.
A common denominator for most spacetime symmetry

tests with gravitational waves is that they rely on propa-
gation effects such as birefringence and dispersion through
the use of modified dispersion relations of the form

ω ¼ jpjð1� correctionsÞ;

in terms of the components of the 4-momentum
pμ ¼ ðω;pÞ; in this paper, we outline the steps for obtaining
constraints from the generation stage of gravitational waves
as a complement to the more common propagation studies.6

Starting with a generic source, we write down the field
equations in the presence of spacetime symmetry-breaking
terms at arbitrary order in mass dimension d. We later
specify the source as a system of point particles and provide
sample solutions for a simple case, and we briefly comment
on their detectability with the future LISA space mission, as
well as with current ground-based detectors.
The paper is organized as follows: In Sec. II, we write

down the theoretical framework and formal solutions to the
relaxed field equations. In Sec. III, we perform the post-
Newtonian (PN) expansion in the near zone and discuss the
PN order required in our solutions. In Sec. IV, we discuss
the contributions from the wave-zone integrals. In Sec. V,
we introduce the quadrupole formula for a generic source.

2Updated annually.
3With the associated Nambu-Goldstone modes and massive

modes [39].
4Where it should be noted that the Lagrangian itself is no

longer Lorentz invariant.
5https://www.elisascience.org/.

6It should be noted that modified generation has been partially
explored in a vector subset of the SME known as the bumblebee
model [48,49].
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In Sec. VI, we present a simple sample solution to our
equations for point particles; we briefly discuss the pos-
sibilities of detection by LISA and ground-based telescopes,
outline future work, and conclude in Sec. VII. We use greek
letters (μ; ν;…) for spacetime indices and latin letters
(i; j; k;…) to denote spatial indices. When referring to
mass dimension d we use natural units where c ¼ ℏ ¼ 1,
but we write out c explicitly in our equations, as it helps the
counting of post-Newtonian orders. In this paper, we
employ several notions of perturbative orders; we have
made every attempt at clarity, but caution is needed. In
places where we do not specify the type of order, it should
be understood that we are referring to the order-by-order
solution scheme that we adopt in Eq. (11).

II. THEORETICAL FRAMEWORK

We define the metric potentials as fluctuations around
the Minkowski metric7 as

hαβ ≡ ηαβ − gαβ: ð1Þ

Ensuring that the usual linear gauge symmetry hαβ →
hαβ þ ∂αξβ þ ∂βξα is satisfied, we can write the general and
complete Lagrange density quadratic in the metric poten-
tials hαβ as [24]

L ¼ 1

8κ
ϵμρακϵνσβληκλhμν∂α∂βhρσ

þ 1

8κ
hμν

�
ŝμρνσ þ q̂μρνσ þ k̂μρνσ

�
hρσ; ð2Þ

which includes GR and all spacetime symmetry-breaking
terms at arbitrary mass dimension d. Here, κ ¼ 8πG, ϵμρακ

is the totally antisymmetric Levi-Civita tensor density, and
the first term gives the linearized Einstein tensor for GR (to
first order in h). The hatted quantities are the gauge-
invariant SME operators defined as

ŝμρνσ ¼ sðdÞμρϵ1νσϵ2���ϵd−2∂ϵ1 � � � ∂ϵd−2 ;
q̂μρνσ ¼ qðdÞμρϵ1νϵ2σϵ3���ϵd−2∂ϵ1 � � � ∂ϵd−2 ;
k̂μρνσ ¼ kðdÞμϵ1νϵ2ρϵ3σϵ4���ϵd−2∂ϵ1 � � � ∂ϵd−2 ; ð3Þ

where ŝμρνσ is CPT even with d ≥ 4, q̂μρνσ is CPT odd with
d ≥ 5, and k̂μρνσ is CPT even with d ≥ 6. The symmetry
properties of the hatted operators can be read off the Young
tableaux in Fig. 1.
Since they are in essence duals (of codimension 2) to the

widely used barred SME coefficients of linearized gravity,
it is possible to map between them using [24]

ŝμρνσ ¼ −ϵμρακϵνσβλs̄κλ∂α∂β; ð4Þ

and similarly for q̂μρνσ and k̂μρνσ. Therefore, a single
component of a hatted operator represents a specific
combination of barred coefficients with associated partial
derivatives, which together make up irreducible pieces of
the hatted operators.
The Euler-Lagrange equations read

Gμν
L þMμνρσhρσ −

κ

c4
τμν ¼ 0; ð5Þ

where τμν is the matter stress-energy tensor, Gμν
L is the

linearized Einstein tensor

Gμν
L ¼ −

1

2
ηρσϵ

μρακϵνσβλ∂α∂βhκλ; ð6Þ

and Mμνρσ is

Mμνρσ ¼ −
1

2

�
1

2
ðŝμρνσ þ ŝμσνρÞ þ k̂μρνσ

þ 1

4
ðq̂μρνσ þ q̂νρμσ þ q̂μσνρ þ q̂νσμρÞ

�
; ð7Þ

which is symmetric in the first and last pairs of indices.
Similar modifications to the Einstein equations were found
in the context of Chern-Simons gravity, where the non-
standard terms were recast as a modified dynamical matter
source [50].
In order to make the field equations more tractable, we

introduce the trace-reversed metric potentials (henceforth
denoted with a bar) as

hαβ ¼ h̄αβ −
1

2
h̄ηαβ; h ¼ −h̄; ð8Þ

and we note that the field equations expressed using the
trace-reversed potentials are equivalent to the first-order
(in h̄) limit of the relaxed Einstein equations in the Landau-
Lifshitz formulation of general relativity, i.e., using the
gothic metric gμν ¼ ffiffiffiffiffiffi−gp

gμν and

h̄αβ ≡ ηαβ − gαβ þOðh2Þ: ð9Þ

Thanks to this equivalence, we will be able to use the
powerful machinery presented in the book [51] in the
following sections, the limitation being that we may only
consider terms that are first order in h̄μν. In the Einstein

FIG. 1. Young tableaux for sðdÞμρ∘νσ∘∘d−4 (left), qðdÞμρ∘ν∘σ∘∘d−5

(middle), and kðdÞμ∘ν∘ρ∘σ∘∘d−6 (right).

7We use the East Coast signature ð−þþþÞ.

SPACETIME SYMMETRY BREAKING EFFECTS IN … PHYS. REV. D 109, 024035 (2024)

024035-3



equations, this appends two terms to the energy-momentum
tensor (now a pseudotensor), which now reads

τμν ¼ Tμν þ τμνH þ τμνLL; ð10Þ

where Tμν is the stress-energy tensor of the source, and τμνH
and τμνLL are the harmonic gauge and Landau-Lifshitz
contribution to the energy-momentum pseudotensor,
respectively. In GR, τμνH and τμνLL contain terms at second
order in the metric potential h such as ∂h∂h and h∂h, but
since our approach is only valid to linear order in h, we must
discard these quadratic contributions. In the vacuum case,
plane wave solutions to the modified Einstein equations (5)
in momentum space admit a dispersion relation of the form
ω ¼ jpjð1 − ζ0 � ζ1Þ, where ζ0;1 consist of contracted
combinations of ŝμρνσ, q̂μρνσ, and k̂μρνσ suppressed by higher
inverse orders of momentum jpj [23,52]. Here, the � sign
shows the appearance of birefringence of the propagating
modes, an effect that occurs for odd mass dimension d ≥ 5
operators. Because of the highly suppressed nature of the
propagation effects, cosmological distances are normally
required for the effects to build up sufficiently, as was used
for gravitational waves in [23,52,53] and for photon
propagation in [54,55]. In this paper, we focus on generation
effects only, although corrections from propagation can, in
principle, be applied to the resulting waveforms when
considering extragalactic sources.
Considering small departures from the symmetries of GR

to linear order in the metric potentials, we now solve Eq. (5)
expressed in terms of the trace-reversed potentials h̄μν by
splitting the potential h̄μν into two parts as8

h̄μν ¼ h̄ð0Þμν þ h̄ð1Þμν; ð11Þ

where h̄ð0Þμν is the trace-reversed GR solution and h̄ð1Þμν
contains the symmetry-breaking terms, which is a similar
approach to that of [24]. We choose the harmonic gauge,
which with the above equation in mind reads

∂μh̄μν ¼ ∂μ

�
h̄ð0Þμν þ h̄ð1Þμν

�
¼ 0: ð12Þ

Since the GR metric potential satisfies this condition on
its own, ∂μh̄ð0Þμν ¼ 0, the above choice implies that
the harmonic gauge condition also holds at first order
∂μhð1Þμν ¼ 0. The equations of motion for the potentials
read

□h̄ð0Þμν ¼ −
2κ

c4
τμν;

□h̄ð1Þμν ¼ 2M̄μνρσh̄ð0Þρσ ; ð13Þ

with the GR solution acting as the source for first
order h̄ð1Þμν; the full solution will be the sum of the
two contributions. Here, we have introduced the trace-
reversed M̄μνρσ and the trace-reversal operator Aκλ

ρσ

following [24] as

M̄μνρσ ¼ MμνκλAκλ
ρσ;

Aκλ
ρσ ¼ 1

2
ðηκρηλσ þ ηκ

σηλ
ρ − ηκλη

ρσÞ: ð14Þ

At the GR level, the formal solution reads

h̄ð0ÞμνðxÞ ¼ κ

4πc4

Z
d4yGðx − yÞτμνðyÞ; ð15Þ

where Gðx − yÞ is the retarded Green’s function associated
with the Minkowski d’Alembertian operator □≡ ∂

α
∂α

defined as

□Gðx − yÞ ¼ −4πδð4Þðx − yÞ: ð16Þ

By inserting the GR solution (15) into the first-order wave
equation (13), the full solution can now be schematically
written as

h̄ð1Þμν ¼−
κ

8π2c4

Z
d4yd4zGðx− yÞGðy− zÞM̄μναβταβðzÞ;

ð17Þ

which bears some similarity to integrals appearing in
loop calculations [56] and tails-of-memory effects [57].
Equation (17) is a troublesome integral with potentially
nonlocal and acausal pieces; this can be seen by applying the
d’Alembertian to the second equation in (13), leading to
□

2h̄ð1Þ ∼ M̄τ. The right-hand side of this equation is a
source with compact support, but the left-hand side is a
nonlocal operator, which was discussed in some detail
in [58,59]. At zeroth order (the GR solution), the retarded
solution must be considered the physical one, and we apply
the same logic at first order and only focus on the retarded
solutions. Moreover, since the source in the first-order wave
equation in (13) is the GR wave solution hð0Þ, this equation
does not have a compact source, as hð0Þ is defined over all
space. The rest of the paper will be devoted to finding ways
to evaluate the integral in Eq. (17).

A. GR solution

The solution to Eq. (16) gives the retarded (and
advanced) Green’s function related to the inverse
Minkowski d’Alembertian, which we can write as

Gðx − x0Þ≡ δð3Þððct − ct0Þ − jx − x0jÞ
jx − x0j ; ð18Þ8This should not be confused with the post-Minkowskian

expansion that generally uses similar notation.
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which simplifies Eq. (15) to

h̄ð0ÞμνðxÞ ¼ κ

4πc4

Z
d3x0

τμνðτ;x0Þ
jx − x0j ; ð19Þ

where τ denotes the retarded time coordinate, defined as

τ≡ t −
1

c
jx − x0j; ð20Þ

where jx − x0j is the Euclidean distance. We integrate
Eq. (19) over the entire past light cone of the point x,
which we call CðxÞ. Now, it is possible to split the integral
over the “near zone”N ðxÞ and the “wave zone”WðxÞ (see
Fig. 2 for definitions of the integration regions) of the
source as

h̄ð0ÞμνðxÞ ¼ κ

4πc4

Z
N ðxÞ

d3x0
τμνðτ;x0Þ
jx − x0j

þ κ

4πc4

Z
WðxÞ

d3x0
τμνðτ;x0Þ
jx − x0j ; ð21Þ

where the wave-zone integral can safely be neglected to the
level of accuracy we require in this paper; the remaining
integral is over the near zone N ðxÞ. We stress here that we
will place the field point inWðxÞ for the first-order solution
h̄ð1Þ, but since this will involve an integral of h̄ð0Þ over
N ðxÞ, the “source” (which contains the GR solution) must
be evaluated with the field point in the near zone. Once we
have the first-order solution for a wave-zone field point, we
add it to the known GR solution evaluated for the same
field point.
Since we will be manipulating the source and field

points, we introduce the following notation to denote their

locations to avoid confusion: for example,
R
NWðxÞ is an

integral over the near zone when the field point x is in the
wave zone, and so on. A diagram showing the different
integration regions can be seen in Fig. 2. In the following
sections, we will solve the above integrals using a post-
Newtonian expansion.

B. Symmetry-breaking solution

Once the GR solution is safely in hand, we can turn our
attention to the first order, i.e., the symmetry-breaking
solution; here, derivatives of the full GR solution make up
the source term, essentially replacing τμν, up to 1PN order,
since the formalism we employ does not allow us to go
higher.
The formal solution for h̄ð1Þμν reads

h̄ð1ÞμνðxÞ ¼ −
1

2π

Z
NWðxÞ

d3x0
M̄μνρσh̄ð0Þρσ ðτ;x0Þ

jx − x0j

−
1

2π

Z
WWðxÞ

d3x0
M̄μνρσh̄ð0Þρσ ðτ;x0Þ

jx − x0j ; ð22Þ

where the numerical prefactors are contained inside h̄ð0Þμν .
The second integral term is evaluated in the wave zone
(with the field point also in the wave zone), where we need
to be careful with the field point, since this integral will
receive contributions from the GR solution in the near zone
as well as the wave zone. We can write the second term in
Eq. (22) as (suppressing some notation)

Z
WWðxÞ

d3x0
M̄μνρσ½ðh̄ð0Þρσ ðx0ÞÞNW

þ ðh̄ð0Þρσ ðx0ÞÞWW
�

jx − x0j ; ð23Þ

where we now have two terms with wave-zone field points;
in the first-order solution, these will be the source points

(see also Fig. 3). The second term ðh̄ð0Þρσ ðx0ÞÞWW
, the GR

solution in W with a W field point, is a 1.5PN term (a tail
effect). This can be seen through explicit evaluation of the
GR potential in W, the result of which is proportional to
c−3 [51].
We are left with the NW contribution. We can therefore

write the integral (22) as

h̄ð1ÞμνðxÞ ¼ −
1

2π

Z
NWðxÞ

d3x0
M̄μνρσðh̄ð0Þρσ ðτ;x0ÞÞNN

jx − x0j

−
1

2π

Z
WWðxÞ

d3x0
M̄μνρσðh̄ð0Þρσ ðτ;x0ÞÞNW

jx − x0j ; ð24Þ

FIG. 2. The past light cone CðxÞ of the field point x, where D is
the world tube traced by a codimension-1 sphere of radius R.
CðxÞ is split into the near zoneN ðxÞ (which lies on the surface of
the light cone and is contained within D) and the wave zone
WðxÞ. The constant-time surfaceMðxÞ is the relevant integration
region in the near zone. Figure inspired by illustrations in Chap. 6
of [51].
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where the numerator of the integrands can be expanded as

M̄μνρσðh̄ð0Þρσ ðτ;x0ÞÞNN
¼ M̄μν00ðhð0Þ00 ðτ;x0ÞÞNN

þ 2M̄μν0jðh̄ð0Þ0j ðτ;x0ÞÞNN

þ M̄μνjkðh̄ð0Þjk ðτ;x0ÞÞNN
; ð25Þ

and analogously for NW, which we write out to make it
clear that we will need all components of the GR solution9;
these expressions can be highly nontrivial, depending on
the source. This first-order source term appears inside
integrals and is expressed using the retarded time
τ ¼ t − jx − x0j=c, and since the source term is now of
the form ∂∂ � � � h̄ð0ÞðxÞ, the transformation to retarded time
has to take place after the explicit evaluation of the
derivatives.
The components of Eq. (24) could use some clarification:

bearing in mind that we are interested in the first corrections
to GR (at the quadrupole level, since we are working at
linear order in the metric potentials), and we have already
discarded the GR wave-zone integral, since the WWðxÞ
piece lies beyond 1PN order.10 The remaining piece is the
integral over the near zone with a wave-zone field point x,
which we call NWðxÞ. The source of h̄ð1Þμν is now
composed of derivatives of the GR solution h̄ð0Þμν; here,
we keep the near-zone solution, but the field point is now in
the near zone as well, since the field point in Eq. (15)
becomes the source point in the integral (24). In general, the
source is defined over all space and does not necessarily

have compact support. The chart in Fig. 3 shows the
algorithm we use to find solutions.

III. POST-NEWTONIAN EXPANSION
IN THE NEAR ZONE

Using standard tools, we write the GR solution in the
near zone in terms of the post-Newtonian potentials; the
solution (to 1PN-order accuracy) reads [51]

h̄ð0Þ00 ¼ 4

c2
U þ 1

c4

�
7U2 þ 4ψ − 4V þ 2

∂
2X
∂t2

�
þOðc−5Þ;

h̄ð0Þ0j ¼ 4

c3
Uj þOðc−5Þ;

h̄ð0Þij ¼ 1

c4
ð4Wjk þ U2δjk þ 4χjkÞ þOðc−5Þ; ð26Þ

where the potentials satisfy the following Poisson-like
equations:

∇2U ¼ −4πGρ�;

∇2Uj ¼ −4πGρ�vj;

∇2X ¼ 2U;

∇2ψ ¼ −4πGρ�
�
3

2
v2 −U þ Πþ 3p=ρ�

�
;

∇2V ¼ −4πGρ�
�
v2 −

1

2
U þ 3p=ρ�

�
;

∇2Wjk ¼ −4πG
�
ρ�vivj −

1

2
ρ�Upδjk

�
;

∇2χjk ¼ −∂jU∂
kU; ð27Þ

the solutions for which are displayed in the Appendix. It
should be noted that this GR solution goes beyond linear
order in the metric potentials, which can be seen by the
appearance of terms such as U2 and χjk; we write down
these terms for completeness. In Eq. (26), ρ� represents the
conserved energy density, which to Oðc−4Þ reads
ρ� ¼ ½1 − ðv2=2þ 3UÞ=c2�ρ. The quantities X, V, Wjk,
and χjk are known as superpotentials, since they are defined
using the potential U. Therefore, we can view the quantity

M̄μνρσh̄ð0Þρσ as a combination of a “superduper” potential and
a superlative potential.11

Now that we have assembled the GR solution in the near
zone to the correct PN order, we turn to the source term for
first order, which we can write in a schematic way as

M̄μνρσh̄ð0Þρσ ¼ ∂∂h̄ð0Þ þ ∂∂∂h̄ð0Þ þ � � � ; ð28Þ

FIG. 3. The solution-generating algorithm used when evaluat-
ing Eq. (22). Similar logic applies to the wave-zone solutions,
but there we will have an extra contribution from the near zone
à la Eq. (24).

9Note that some components of h̄ð1Þμν only show up at mass
dimension d ≥ 6, due to the symmetries of M̄μνρσ .

10So we also avoid tail effects. 11In the language adopted in the book [51].
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where the solution space already satisfies the generalized
first-order gauge condition (12). Now, we note that, in the
near zone, spatial derivatives ∂i leave the PN order
unaffected, whereas temporal derivatives do not; indeed,
since we can write them as

∂0 ≡ ∂

∂ct
¼ 1

c
∂t; ð29Þ

we see that each consecutive time derivative in (28) adds 1
2

post-Newtonian order. Looking again at the GR solution as

h̄ð0Þ00 ∼
4

c2
U þ 1

c4
ð� � �Þ; ð30Þ

we see that the first term can be acted on by up to two time
derivatives, while the second term can only be acted on
with spatial derivatives, if we want to keep terms up to
1PN.12 We also have

h̄ð0Þ0j ∼
4

c3
Uj; h̄ð0Þjk ¼ 1

c4
ð� � �Þ; ð31Þ

so h̄ð0Þ0j can take one time derivative, and h̄ð0Þjk can only
take spatial derivatives. This will somewhat simplify the
following calculations in the near zone. Because of the use
of the retarded time in the wave zone, we will not have the
freedom in spatial derivatives as in the near zone, which is
shown in Eq. (35).

IV. WAVE ZONE–WAVE ZONE CONTRIBUTION

At the GR level, the WW contribution appears at 1.5PN
[51], and we will therefore not consider it; however, the
NW term integrated over WW survives. The NN contri-
bution integrated over NW will be our main focus for the
purposes of the toy solution in Sec. VI, but for certain
components of the SME coefficients, the WW contribution
will introduce terms at the same post-Newtonian order.
From Eq. (24) we have that

h̄ð1ÞμνðxÞ ⊇ −
1

2π

Z
WWðxÞ

d3x0
M̄μνρσðh̄ð0Þρσ ðτ;x0ÞÞNW

jx − x0j : ð32Þ

The GR solution in NW reads (up to 1PN accuracy)

h̄ð0Þ00 ¼ 4G
c2

�
M
r
þ 1

2
∂j∂k

I jk

r

�
;

h̄ð0Þ0j ¼ 4G
c3

�
−
1

2

ðn × JÞj
r2

−
1

2
∂k

İ jk

r

�
;

h̄ð0Þjk ¼ 4G
c4

�
1

2

Ï jk

r

�
; ð33Þ

where M is the total Arnowitt-Deser-Misner mass of the
system (which agrees with the difference between the
monopole moment and the near-zone mass to order c−4), J
is the total angular momentum (which agrees with the
near-zone angular momentum to c−2), I jk is the mass
quadrupole moment, n is a normal vector pointing from
the source point to the field point (from source to
detector), and r ¼ jx − x0j is the distance between the
same. Since x is in W, r cannot be considered a small
quantity. Overdots indicate derivatives with respect to
retarded time τ. This expression can be simplified in the
far-away wave zone (when r is much larger than the
characteristic wavelength of the source), and this is what is
generally done for GR solutions; however, since these
potentials make up our source for the first-order equations
and will be integrated over all of W, we must keep their
full form.
The solution (33) will be differentiated partially a

number of times in the same manner as in the near zone,
where spatial derivatives generate more normal vectors
when acting on r−1. When counting post-Newtonian orders
in this region, we note that the total massM contains a 0PN
component, since it is defined as

M¼
Z

d3xρ�
�
1−

1

c2

�
1

2
v2−

1

2
UþΠ

��
þOðc−4Þ; ð34Þ

where Π is the specific internal energy; the PN contribu-
tion here is the velocity-order expansion in v=c. The
retarded-time derivatives of the mass quadrupole moment
can be evaluated using standard formulas.13 When evalu-
ating the partial derivatives present in M̄μνρσ we note that,
in contrast to the NN derivatives, both temporal and
spatial derivatives increase the post-Newtonian order here.
Since the source is now retarded, acting with a non-
retarded derivative [on a generic retarded function fðτÞ]
results in

1

c
∂tfðτÞ ¼

1

c
∂τfðτÞ; ∂ifðτÞ ¼ −

1

c
ni
r
∂τfðτÞ; ð35Þ

and we conclude that we no longer have the same freedom
to add spatial derivatives; any derivatives (both temporal
and spatial derivatives) will add a corresponding factor of
c−1. There is, however, freedom remaining in the factors
of r−1 that appear in Eq. (33), which when acted on with
spatial derivatives will generate normal vectors ni without
increasing the post-Newtonian order.
Now that we have obtained the derivatives of the GR

source and applied the corresponding SME coefficients, we12This will be further complicated by the NW integration
techniques presented in Sec. VI, which contain extra factors
of c−1. 13See box 7.7 in [51].
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note that, when integrating over W with the field point in
W, the general solution to Eq. (32) reads [51]

h̄ð1ÞμνðxÞ ⊇ −
1

2π

nhLi

r

�Z
R

0

dsfðτ − 2s=cÞAðs; rÞ

þ
Z

∞

R
dsfðτ − 2s=cÞBðs; rÞ

�
; ð36Þ

where R denotes the boundary between N and W, and A,
B are integrals of Legendre polynomials. The symbol nhLi
is a symmetric and trace-free (STF) product of radial
vectors; for example, nhjki ¼ njnk − 1

3
δjk. The expressions

depend on the specific form of the source function, in our
case M̄h̄ð0Þ, where we are forced to restrict our attention to
sources of the form (dropping some notation)

fðτÞ ¼ 4π

�
nhLi

rn

�−1
M̄μνρσh̄ð0Þρσ ; ð37Þ

where nhLi can be written as a combination of spherical
harmonics and integrated trivially. Therefore, when con-
structing fðτÞ, it will be necessary to write it as a sum of
subsources, each satisfying the prescription in Eq. (37) with
the correct identification of L and n. We will not examine
these contributions further and instead leave it for future
work, which includes an exhaustive set of solutions [60].

V. THE QUADRUPOLE FORMULA

In this paper, we are interested in the lowest-order
corrections to GR, which will appear as corrections to
the quadrupole formula (or at least at the quadrupole order),
a contribution at 1PN order. In GR, the quadrupole tensor
appears in the metric potentials as

h̄00 ⊇ ∂j∂k

�
I jk

r

�
; h̄0j ⊇ ∂k

�
İ jk

r

�
; h̄jk ⊇

Ï jk

r
ð38Þ

up to constant factors and with some corrections at higher
order in derivatives, where I jk is the mass quadrupole
moment. This can also be seen from the harmonic gauge
condition at the GR level,14 ∂μh̄ð0Þμν ¼ 0. In our case, we
will compute it from the spatial components h̄ð1Þjk. Looking
at the first-order source term needed, it is the μ ¼ j, ν ¼ k
component of Eq. (25) that reads (suppressing some
notation)

M̄jk00h̄ð0Þ00 þ 2M̄jkm0h̄ð0Þm0 þ M̄jkmnh̄ð0Þmn; ð39Þ

which can be partially simplified using the index sym-
metries of ŝμρνσ , q̂μρνσ, and k̂μρνσ.15 Armed with this
knowledge, we can now form the source for the modifica-
tions to the quadrupole formula, using Eq. (39), which
contains ≥ 2 derivatives of the GR solution. Note that we
still have only made some very general assumptions about
the properties of the source; indeed, beyond the existence of
a near zone, our results are valid for any source up to this
point (but we will have to limit the set of sources to those
that can be described by the linear potentials).
For a generic source with a wave-zone field point, we can

write the linear solution to the spatial metric potential as

h̄jk ¼ G
c4R

Ajk; ð40Þ

and in GR, we have that Ajk ¼ 2Ï jk, where an overdot
denotes a derivative with respect to retarded time τ, and the
physical piece of h̄jk is the transverse-traceless (TT) part
h̄jkTT. When spacetime symmetries are broken, we generally
expect additional polarization modes to appear, up to a total
of six, i.e., four extra modes may appear in the spectrum of
gravitational waves16; however, these extra modes will be
suppressed proportional to the coefficients for spacetime
symmetry breaking, which are very small.17 This can be
seen more easily in momentum space, where the dispersion
relation for the helicity components h̄�2 can be solved for in
an order-by-order fashion. This yields a result that is neither
transverse nor traceless, but the dominant effects can be
captured by the TT piece of the dispersion relations [52]. We
note, however, that using the gauge-invariant hatted oper-
ators ŝμνρσ, q̂μνρσ, and k̂μνρσ as we do in this paper, only two
polarization modes appear. Other choices of coefficients, for
example, the “barred” coefficients18 used in [59], allow for
five out of six polarization modes.
In order to obtain the corrections to the quadrupole

formula, we will use the spatial part of the solution h̄ð1Þjk,
and we will first need to evaluate some rather cumbersome
derivatives of the metric potentials (26). These can be made
more tractable by introducing some simplifications (for
example, point-particle approximations), but it should be
understood that these derivatives must be taken before the
GR solution h̄ð0Þjk is plugged in as a source on the right-
hand side of Eq. (24) (where it is evaluated at the retarded
time τ rather than t). We will see an exception to this rule
when introducing point particles in the next section.

14The authors of [17] find a gauge equivalent to the harmonic
gauge up to 1.5PN order for the PN metric gμν using gμν ¼
ημν þ hμν and a different representation of the SME coefficients.

15Note also that M̄μνρσ h̄ð0Þρσ ¼ Mμνρσhð0Þρσ .
16In [22] one of us found one extra dynamical degree of

freedom using the Hamiltonian formulation in a simple explicit-
breaking scenario, which indicates the presence of extra modes.

17We also expect the transverse-traceless part to receive
modifications.

18Which are related to the hatted operators through Eq. (4).
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We now turn back to Eq. (24) and spend some time
preparing to solve it in NW , i.e., in the near zone with a
wave-zone field point. For a generic wave equation
□ψμν ¼ −4πξμν, the solution takes the form of a multipole
expansion and reads (see Chap. 6 of [51])

ψμνðxÞ ¼
X∞
l¼0

ð−1Þl
l!

∂L

�
1

r

Z
M

d3x0ξμνðτ;x0Þx0L
�
; ð41Þ

where L is a multi-index defined such that xL ¼
xj1xj2 � � � xjl (j1, j2, etc. are spatial indices), with contrac-
tions of L following standard Einstein summation. In
Eq. (41), the integration region M is a surface of constant
time bounded externally by a sphere r0 ¼ R, which is
defined as the edge of the near zone.19 A depiction of the
relevant integration region is shown in Fig. 2.
In order to obtain the quadrupole-order expression, we

truncate the series in Eq. (41) at l ¼ 2, after which the
l ¼ 2GR solution of the spatial components can be written
as

ψ jk ¼ 2G
c4

Ï jk

r
; I jkðτÞ ¼

Z
d3xρ�xjxk ð42Þ

to 1PN order. As a consequence of this, our final solution
will naturally contain derivatives of the GR quadrupole
expression, but since we now have a nonstandard source,
the monopole (l ¼ 0) and dipole (l ¼ 1) may no longer
vanish as they do in GR.

VI. TOY SOLUTION

Here, we show some typical computations involved in
finding the explicit solutions. To make this example more
tractable, we introduce the following simplifications:
(1) consider only mass dimension d ¼ 4 SME coeffi-

cients;
(2) keep only certain components of the SME coeffi-

cients in order to keep only terms linear in the
potentials;

(3) discard contributions from theNW integration of the
GR solution (23).

We note here that the d ¼ 4 truncation in the first
simplification is known as the minimal SME and is a
common choice in the literature, whereas simplifications 2
and 3 are introduced purely to produce tractable expres-
sions in the toy solution; these may not be admissible for
real phenomenological studies.
We can now carry out the below computations by hand

and write down a small number of terms as the final
solution; the complete solution will be significantly more

complicated, but will be constructed of the same types
of terms.
We consider the simple case of a system of point

particles and mass dimension d ¼ 4 in SME coefficients,
so that only ŝμρσν contributes in the first-order solution (24).
In this case, we will have

Mμνρσ ¼ −
1

4
½ŝμρνσ þ ŝμσνρ�; ð43Þ

and the spatial part of the source term reads

M̄jk00h̄ð0Þ00 þ 2M̄jkm0h̄ð0Þm0 þ M̄jkmnh̄ð0Þmn: ð44Þ

Looking at ŝμρνσ ¼ sð4Þμρανσβ∂α∂β, we simplify further by
demanding that only the middle term of the source in
Eq. (44) contributes, which can be achieved by only letting
a certain subset of coefficient component be nonzero. We

call that subset of terms ˆ̄̃sjkαβ, after which we can write the
middle term as

2M̄jkm0h̄ð0Þm0 ¼ −
1

2
˜̄sjkαβ∂α∂βh̄

ð0Þ
m0: ð45Þ

Counting now the PN orders of this term, we see from the
0j component of Eq. (26) that we are allowed exactly one
time derivative in order for the resulting expression to be a
1PN contribution to the solutions, so we set α ¼ 0, β ¼ i,
and find that the final source term reads

2M̄jkm0h̄ð0Þm0 ¼ −
1

2
˜̄sjkmi 1

c
∂t∂ih̄

ð0Þ
m0: ð46Þ

We now turn to the GR solution h̄ð0Þm0 in Eq. (26), which
consists of the potential UjðxÞ. For a system of isolated
bodies, we can write the potential for body A as

UjðxÞ ¼ UA
j ðxÞ þU¬A

j ðxÞ; ð47Þ

where

UA
j ðxÞ¼

X
A

GmAvAj
jx− rAðtÞj

; U¬A
j ðxÞ¼

X
B≠A

GmBvBj
jx− rBðtÞj

ð48Þ

and because of the wide separation between the bodies,20

we can write the external potential as a Taylor expansion

U¬A
j ðt;xÞ ¼U¬A

j ðt;rAÞþjx− rAjkð∂kU¬A
j ðt;xÞÞjx→rA þ � � � ;

ð49Þ
19The expression (41) is valid for any field point x in the wave

zone, but can be further simplified for r → ∞, a simplification
that we adopt in Sec. VI.

20Which is certainly true for the case of point particles during
the inspiral phase.
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where we neglect terms beyond linear order and take the
derivative before setting x → rA. After taking the derivative
and simplifying terms, the external potential reads

U¬A
j ðt;xÞ ¼ G

X
B≠A

mBvBj
rAB

�
1 − ðx − rAÞk

nABk
rAB

þ � � �
�
; ð50Þ

where we have introduced the notation nAB ¼ rAB=rAB

and rAB ¼ rA − rB.
Looking now at the first-order source term, which

appears in our correction to the first-order potentials asR
M d3x0M̄μνρσh̄ð0Þρσ =jðx0 − rðtÞÞj, we note that, since the
derivatives in M̄μνρσ appear under an integral sign, we must
treat them as distributional derivatives rather than simple
partials, precisely because there are singularities present.
The need to treat derivatives in this way normally appears at
the 2PN order, but since our case involves a type of
bootstrapping of the GR solution, we can expect that such
complications will appear at lower order. When taking
derivatives of noncompact potentials in D dimensions,
noncompact products of Dirac distributions appear, which
can be counteracted by considering the Schwarz distribu-
tional derivative [61–63], which we denote Di½·� and can be
obtained from the generalized Gel’fand-Shilov formula [64]

Di½F� ¼
X
l≥0

ð−1Þl
l!

∂Lδ
ð3Þðx− r1ðtÞÞ

Z
dΩ1ðniÞ1nL1 ðf−2−lÞ1

þ 1↔ 2¼−Di
1

½F�−Di
2

½F�; ð51Þ

where the minus signs appear due to the potential F only
depending on the velocities through the distance to the
field point,21 Di½F� þDi

1

½F� þDi
2

½F� ¼ 0. A spatial partial

derivative of a singular potential F under an integral is
therefore generalized to read ∂iF ↦ ð∂iFÞcan þDi½F�,
where ð∂iÞcan is the canonical basis of the tangent space
and Di½F� is the distributional correction. This definition
can be generalized to arbitrary derivative order; see, for
example, [64]. Time derivatives are similarly defined as
∂tF ↦ ð∂tFÞcan þDt½F�, where the distributional correc-
tion is proportional to the velocity of the source contracted
with Di½F�. We will also need to generalize the case where
spatial and temporal partial derivatives are mixed, in
which case we have ∂t∂iF¼ð∂t∂iÞcanþDt½∂iF�þ∂tDi½F�,
which can also be generalized as necessary. We note here
that distributional derivatives do not a priori commute, but
it can be shown that this ambiguity only becomes impor-
tant at 4PN order [63].
We note here that the derivative in the Taylor expansion

does not need to be considered as distributional, since it is

an internal pure derivative and not part of the physical
solution. When we compute the two partial derivatives
contained in the source Mh, the distributional parts will be
important. Nevertheless, we will also need the canonical
partial derivatives of the above potentials, but we note that
U¬A

j ðt;xÞ lacks singularities and we therefore do not need
to introduce the distributional derivative correction or the
Hadamard regularization for this term. The two (canonical)
partial derivatives of U¬A

j ðt;xÞ can be trivially computed.
The situation is more involved for UA

j ðt;xÞ due to the
singularities present when x → rA; here, we compute the
mixed distributional derivative and find

∂t∂iUA
j ðt;xÞ ¼ ð∂t∂iUA

j ðt;xÞÞcan þDt½∂iUA
j ðt;xÞ�

þ ∂tDi½UA
j ðt;xÞ�: ð52Þ

From Eq. (51) we see that Di½UA
j ðt;xÞ� does not generate a

distributional part and thus vanishes, but because of the
spatial derivative, Dt½∂iUA

j ðt;xÞ� remains; after some com-
putation, we see that it equates to

Dt½∂iUA
j ðt;xÞ� ¼ −

2G
3

X
A

mAvAi ðtÞvAj ðtÞδð3Þðx − rAðtÞÞ:

ð53Þ

Now that we have gathered all the results we need for the
source term ∂t∂iUjðxÞ, we are left with the task of carrying
out the integration in Eq. (24). As we are integrating in the
near zone with a wave-zone field point [NWðxÞ], the
problem reduces to evaluating Eq. (41) over the constant-
time hypersurface MðxÞ as depicted in Fig. 2, when the

source term is evaluated at the retarded time, ð∂t∂ih̄ð0Þm0Þjt→τ.
First, we evaluate Eq. (41) in the far-away wave zone, i.e.,
for the limit r → ∞, and we retain only the term linear in
1=r. We also note that, since the only dependence on the
unprimed coordinates x in τμν is through the retarded time,
we can write ∂Lτ

μν ¼ ð−1Þlc−l∂lτ τμνnL þ � � � [51], after
which Eq. (41) becomes

h̄ð1ÞμνðxÞ ¼ −
1

2πr

X∞
l¼0

nL
l!cl

�
d
dτ

�
l
Z
M

d3x0τð0Þμνðτ;x0Þx0L

ð54Þ

to first order in 1=r, where we have added the superscript (0)
on the source function τð0Þμν to make it clear that it consists
of the GR-level solution h̄ð0Þμν and derivatives of the same.
From this formula, we can read off that the expected
quadrupolar expression corresponds to l ¼ 2, and for a
simple mass distribution in GR, both the monopolar and
dipolar contributions vanish, which may no longer be true in
our case. We also notice the following: the quadrupolar term
l ¼ 2 appears with an accompanying factor c−2, which

21See Theorem 4 and Sec. IX in [62]. The numbers under the
terms refers to the different particles in the two-body problem.
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together with the c−4 already present within our source, we
have in essence a 2PN contribution from the “quadrupole”
term. If we had chosen two spatial derivatives in this
example, the same term would contribute at 1.5PN. We
now look at the monopole (l ¼ 0) and dipole (l ¼ 1),
which should appear as 1 and 1.5PN contributions, respec-
tively. The spatial part of the source term in (54) reads
explicitly

τð0Þjkðτ;x0Þ ¼ 2

c4
˜̄sjkmið∂t∂iUmðt;xÞÞj t→τ

x→x0
; ð55Þ

and where the derivatives include distributional pieces
(∂f ≡ ð∂fÞcan þD½f�), since τð0Þjk appears under an inte-
gral. In principle, more terms contribute at the same PN
order in the above equation, but due to our very specific
choice of the nonzero SME coefficients, only one term
survives.

A. Monopole term

Looking again at the spatial components, the l ¼ 0 term
reads

h̄ð1ÞjkðxÞ ⊇ h̄ð1Þjkl¼0 ðxÞ ¼ −
1

2πr

Z
M

d3x0τð0Þjkðτ;x0Þ; ð56Þ

which does not come with extra factors of c−1 except for
those which may or may not be present in τð0Þjk. It is now
important to count the post-Newtonian orders: for the
purposes of this example, we chose a source containing
∂0∂i, which contributes c−1 to the c−3 already present in the
(0j) component of the GR solution. Therefore, since we
wish to stay at 1PN order, we must truncate the sum over l
in Eq. (54) to l ¼ 0, i.e., the symmetry-breaking contri-
bution will be a monopole term.22 If we had chosen the
source such that only spatial derivatives appeared, we
would have also retained the dipole term at 1PN order.
Now, using the results obtained from Eqs. (52) and (53) we
see that only three of the terms are divergent in the near
zone. We have ∂t∂iðUA

j ðxÞ þU¬A
j ðxÞÞ, the pieces of which

are all presented in the previous subsection, with the
divergent piece being ð∂t∂iUA

j ðt;xÞÞcan, which will con-
tribute to the solution as

ðh̄ð1ÞjkÞdiv ¼ −
G

πc4r
s̃jkmi

X
A

Z
M

d3x0
mAaAmn0A;i

jx0 − rAðτÞj2

−
vAi v

A
m

jx0 − rAðτÞj3
þ 3

n0A;iv
A
mðn0

A · vAÞ
jx0 − rAðτÞj3

; ð57Þ

where aAm is the Newtonian acceleration and where the
source is now evaluated at the retarded time, so under the
integral τjk ¼ τjkðτ;x0Þ. First, we notice that the last two
terms can be written as a spherical average of an STF
tensor [51], which integrates to zero under Gauss’s
theorem; therefore, only the first term contributes.
To compute the integrals in this section, we make use of

the Hadamard finite part regularization procedure, which
has been widely used in the literature up to 3PN; for details,
see, for example, [62,65]. At higher PN orders, true
ambiguities arise,23 and one is forced to resort to dimen-
sional regularization [66,67]. After some algebra and
plugging in the expression for the Newtonian equation of
motion, we obtain

ðh̄ð1ÞjkÞdiv ¼
4G2

3c4r
˜̄sjkmi m1m2n12i n12m

r12
; ð58Þ

which is a 1PN term. Here, we note that the Newtonian
equation of motion, in principle, also acquires symmetry-
breaking corrections of the form AijnjGM=r2 þ � � �, where
Aij represents the SME coefficients; this will add extra
symmetry-breaking terms in the final solution. The terms
left to integrate are now those without singular denomi-
nators, i.e., Eqs. (50) and (53). First, we note that, thanks to
the appearance of the delta function from the distributional
time derivative, Eq. (53) can be rewritten as

ðh̄ð1ÞjkÞdistr ¼ −
4G
3c4r

˜̄sjkmi
X
A

mAvAi v
A
m: ð59Þ

We can rewrite the parts of the solution arising from the
distributional time derivative and the divergent integral as

ðh̄ð1ÞjkÞdistr þ ðh̄ð1ÞjkÞdiv ¼ −
4G
3c4r

˜̄sjkmi ̈IGRim ; ð60Þ

where IGRim is the GR quadrupole-moment tensor and dots
indicate derivatives with respect to the retarded time, since
this arises from the retarded source under the integral.
Finally, we note that the term containing Eq. (50) will not

have distributional contributions, since it is finite every-
where in the near zone. We also note that, since it was
constructed by means of a Taylor expansion, the expression
only holds when x − rA is small, i.e., close to particle A,
and that it contains a growing piece outside of the near
zone, which is not physical; therefore, we assume, for the
purposes of this toy solution, that Eq. (50) has compact
support inside the near zone. It is also possible to write it as
an integral of a gradient, since in the monopole term U¬A

m is
acted on by 1

c
˜̄sjkmi

∂i∂t; we let the time derivative act and
then write the integral as

22Although with two free indices since we are focusing on the
spatial components of h̄ð1Þμν, so it is only a monopole term in the
sense that L ¼ 0 in Eq. (54).

23Interestingly, these ambiguities include the possible loss of
Lorentz and diffeomorphism invariance [66].
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Z
M

d3x0∂iFijkðτ;x0Þ; ð61Þ

where Fijk ≡ ˜̄sjkmiU¬A
m . Now, thanks to the compact-sup-

port assumption, this integral vanishes. This leads us to the
conclusion that in the point-particle case, the only con-
tribution comes from the singularities themselves.24 The
final result at the SME level is therefore the right-hand side
of Eq. (60), which is rather elegant from the point of view
of observation, since the correction is proportional to the
GR quadrupole tensor. To this we should of course add the
well-known GR solution for a field point in the wave zone,
i.e., not the expression presented in Eq. (26), which was
used to construct the first-order source term τð0Þμν and is
only valid when both the field point and source point are in
the near zone. Finally, the solution reads

h̄ð1Þjk ⊇ h̄GRjkNW
−

4G
3c4r

˜̄sjkmi ̈IGRim þOðc−5Þ; ð62Þ

which is a remarkably simple expression. Here h̄GRjkNW
is the

GR solution in the near zone with a wave-zone field point
expressed at 1PN order (which is the quadrupole). We note
that this is highly simplified due to the simplifications
introduced in the beginning of this section; in the complete

solution, terms of the form M̄jk00h̄ð0Þ00 þ M̄jkmnh̄ð0Þmn will

appear, where h̄ð0Þμν are those in Eq. (26), which will be
significantly more complicated given the complete set of
terms and the contribution from the WW integration. It
should also be pointed out that the GR quadrupole tensor
will also contain corrections coming from the SME terms:
when deriving the expression (62), we substituted in the
Newtonian equation of motion and the virial theorem, both
of which contain modifications proportional to ˜̄sjkmi, which
we do not write out explicitly here. Such corrections show
up naturally when spacetime symmetries are broken and
were, for example, found in the modified precession
equations derived in [68].

VII. DISCUSSION AND FUTURE WORK

In this paper, we introduced the tools and methodology
necessary for studying the effects of spontaneous spacetime
symmetry breaking in the generation stage of gravitational
waves. Working with the Landau-Lifshitz formulation of
GR (to first order in the metric potential h) and the operator
formulation of the Standard-Model Extension gravitational
sector, we wrote down the modified relaxed Einstein
equations to arbitrary order in operator mass dimension
d, which contains d − 2 derivatives of the GR potentials
h̄ð0Þμν (in natural units). By employing an order-by-order
solution strategy where the GR solution acts as the source,

we wrote down the formal solution, which consists of
nested Green’s functions, since we are solving an inverse
d’Alembertian problem. We also solved a simplified toy
example: by using the post-Newtonian expansion in the
near zone of the source for the case of point particles, we
were able to regularize the divergent pieces of the integrals
using Hadamard regularization, and in a simple sample
solution, we see that the monopolar and dipolar contri-
butions do not, in general, vanish, which is in contrast to
the case of general relativity. Throughout the paper, we
carefully discussed the PN order of the various terms,
keeping in mind that we are ultimately interested in the
1PN corrections to GR. In future work, we will consider
higher-order PN corrections and tail effects, as well all
subtleties discussed in this paper.
Future space-based gravitational-wave observatories such

as LISA can potentially detect signals of the type derived
here; indeed, considering the long integration times avail-
able for Galactic binaries (a minimum of four years, the
nominal LISA mission lifetime), the amount of statistics
available is going to be considerable. In Eq. (62), the
symmetry-breaking contribution is suppressed by ˜̄sjkmi, a
linear combination of SME coefficients; these are the
coefficients we are interested in constraining and, compar-
ing to other bounds from gravitational waves, we see that
SME coefficients are typically constrained at the level of
10−14 − 10−16 [37]. Therefore, it will likely be necessary to
combine observations from several Galactic binaries and to
use long integration times. Also, we expect that a more
complete solution will contain more exotic polarization
modes and other standard terms, which can be given tight
constraints.
The methods we have outlined in this paper can be

applied to any source where the post-Newtonian expansion
is valid, for example, slowly coalescing Galactic binaries or
the inspiral phase of binary black hole binaries or neutron
stars, and is not restricted to the simple case we present in
Sec. VI. For point particles and more general sources,
computing the full solutions to higher accuracy than 1PN is
a work in progress [60], where the solutions will neces-
sarily depend on the location of the source.
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APPENDIX: POST-NEWTONIAN POTENTIALS

The Poisson-like equations (27) have the following
general solutions:

24To some reasonable approximation, a statement which will
be refined in [60].

NILSSON and LE PONCIN-LAFITTE PHYS. REV. D 109, 024035 (2024)

024035-12



U ¼ G
Z

d3x0
ρ�0

jx − x0j ;

ψ ¼ G
Z

d3x0
ρ�0ð3

2
v02 −U0 þ Π0Þ þ 3p0

jx − x0j ;

V ¼ G
Z

d3x0
ρ�0ðv02 − 1

2
U0Þ þ 3p0

jx − x0j ;

X ¼ G
Z

d3x0ρ�0jx − x0j;

Uj ¼ G
Z

d3x0
ρ�0v0j

jx − x0j ;

Wjk ¼ G
Z

d3x0
ρ�0ðv0jÞv0k − 1

2
U0δjk þ p0δjk

jx − x0j ;

χjk ¼ G2

Z
d3y1d3y2

ρ�1ρ
�
2ðnj1 − nj12Þðnk2 þ nk12Þ

S2
;

−G2

Z
d3y1d3y2

ρ�1ρ
�
2ðnj12nk12 − δjkÞ

Sr12
: ðA1Þ

Here, the notation reads r1 ¼ jx − y1j, n1 ¼ r1=r1, r12 ¼ y1 − y2, S ¼ r1 þ r2 þ r12.
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