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We study odd-parity perturbations about static and spherically symmetric black hole solutions with a
linearly time-dependent scalar field in higher-order scalar-tensor theories. In particular, we consider
stealth Schwarzschild and stealth Schwarzschild–de Sitter solutions, where the deviation from the
general relativity case is controlled by a single parameter. We find that complex frequencies of
quasinormal modes are given by a simple scaling of those in general relativity. We also show that there is
a degeneracy between the parameter characterizing the modification from general relativity and the black
hole mass. We then consider a physically sensible initial value problem by taking into account the fact
that the effective metric for the odd-parity perturbations is in general different from the background
metric. We confirm that damped oscillations appearing at late times are indeed dominated by the
quasinormal modes. Our analysis includes the case where the perturbations are superluminal, and we
demonstrate in this case that the perturbations can escape from the region inside the horizon for the
background metric.
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I. INTRODUCTION

Testing gravity has been a central issue in physics. Apart
from cosmological tests of gravity [1–3], there have been
an increasing number of gravitational-wave events from
binary black hole mergers, which offer a possibility to test
gravity at strong-field/dynamical regimes. In general rel-
ativity (GR), the late-time gravitational wave signal emitted
from binary black hole mergers, known as the ringdown
signal, can be well described by a superposition of
quasinormal modes (QNMs) [4]. Each QNM is charac-
terized by a specific complex frequency, whose real and
imaginary parts, respectively, correspond to the frequency
of temporal oscillation and the exponential damping rate.
The no-hair theorem of black holes in (vacuum) GR implies
that the QNM frequencies are determined solely by the
mass and angular momentum of the black hole. However,
in modified gravity, black holes can support some non-
trivial hair other than the mass and angular momentum,
which would affect the QNM spectrum. In other words, the
information about the underlying gravitational theory
would be encoded in the QNM spectrum.
In contrast to GR where gravity is described solely by the

spacetime metric, modified gravity theories in general
involve additional degrees of freedom. The simplest class

of modified gravity is the class of scalar-tensor theories,
where a single scalar field represents the modification of
gravity. Starting with the seminal theory of Brans-Dicke
[5], a number of scalar-tensor theories have been proposed
so far. Horndeski theories [6–8], which form the most
general class of scalar-tensor theories with second-order
Euler-Lagrange equations, provide a unified description of
such traditional theories. It should be noted that the second-
order nature of the Euler-Lagrange equations guarantees
the absence of the Ostrogradsky ghost [9–12].
Meanwhile, the Horndeski class is not the most general

class of ghost-free scalar-tensor theories. Indeed, even if the
Euler-Lagrange equations contain higher-order derivatives,
the problem of Ostrogradsky ghost can be circumvented by
imposing the degeneracy condition [10,13–17]. Extensions
of Horndeski theories in this direction are called degenerate
higher-order scalar-tensor (DHOST) theories [13,18,19].
Another systematic way to extend the Horndeski class is to
employ the disformal transformation [20–22] and its
generalization involving higher derivatives of the scalar
field [23,24]. In fact, the disformal transformation maps the
Horndeski class to (a particular subclass of) the DHOST
class, while the generalized disformal transformation yields
a larger class of ghost-free theories, which is called the
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generalized disformal Horndeski (GDH) class [25].1 A yet
further extension can be obtained by relaxing the degen-
eracy condition in such a way that it is satisfied only under
the unitary gauge. Away from the unitary gauge, apparently
there is an Ostrogradsky mode, but it actually satisfies an
elliptic differential equation on a spacelike hypersurface
and hence does not propagate. Such a mode is often called a
shadowy mode [29,30], which itself is harmless. By
allowing for the existence of the shadowy mode, one
obtains U-DHOST [29–31] and generalized disformal
unitary-degenerate theories [32].
An interesting class of solutions in scalar-tensor theories

is the so-called stealth solution, where the metric is the
same as in a GR solution but the scalar field has a nontrivial
profile. The stealth solutions have been found and studied
in the Brans-Dicke theory [33–40], more general scalar-
tensor theories [41–48], and Horndeski and DHOST
theories [49–62]. In particular, the general construction
of stealth solutions was developed in [55,60] in a covariant
manner. The perturbation theory about stealth black hole
solutions has been studied extensively [63–71]. It then
turned out that perturbations of stealth solutions are
strongly coupled in DHOST theories [63,65,66,69], and
this problem is expected to persist in GDH theories. A
possible way out of this problem is to consider a small
detuning (i.e., scordatura) of the degeneracy condition
[66].2 This would introduce an Ostrogradsky mode in
general, but its mass can be pushed above the cutoff of
the theory. Moreover, it is even possible to have the
scordatura term in U-DHOST theories that are intrinsically
free of Ostrogradsky ghost [31]. Therefore, DHOST (or
GDH) theories supplemented with the scordatura term
would provide a consistent description of stealth solutions.
In the present paper, we perform a time-domain analysis

of perturbations about stealth black hole solutions in
DHOST theories. In doing so, the main difficulty comes
from the fact that the effective metric (i.e., the one on which
the perturbations propagate) is in general different from the
background metric which determines the motion of (min-
imally coupled) matter fields. This implies that a portion of
a hypersurface which is spacelike with respect to the
effective metric can be timelike with respect to the back-
ground metric. Therefore, when matter fields are taken into
account, one has to carefully choose the initial hypersurface
so that it is spacelike with respect to both the effective
metric and the background metric. This issue has been
addressed in [73] for the case of monopole perturbations

about stealth black hole solutions in DHOST theories. The
aim of the present paper is to extend the analysis of [73] to
odd-parity perturbations.
The rest of this paper is organized as follows. In Sec. II,

we explain the DHOST theories and their stealth black hole
solutions. In addition, following [64], we analyze the odd-
parity perturbations about the stealth black hole solutions to
see that one has to introduce a new time coordinate (called t̃)
to recast the master equation for the odd-parity perturbations
in the form of a wave equation. In Sec. III, we discuss the
effective metric, the character of a constant-t̃ hypersurface,
and characteristic curves for the odd-parity perturbations
about the stealth Schwarzschild solutions. We also discuss
QNM frequencies in theDHOST theories and obtain the time
evolution of the perturbations employing the physically
sensible formulation of an initial value problem developed
in [73]. In particular, we confirm that the numerical waveform
exhibits damped oscillations at late times, which can be well
fitted by a superposition of the QNMs for the DHOST
theories. In Sec. IV, we perform a similar analysis for the
stealth Schwarzschild–de Sitter solutions. Finally, we draw
our conclusions in Sec. V. In what follows, we use the
geometric units in which c ¼ G ¼ 1.

II. GRAVITY THEORY, BACKGROUND, AND
ODD-PARITY PERTURBATIONS

A. Gravity theory

The action of the quadratic DHOST theories is given
by [13]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F0ðϕ; XÞ þ F1ðϕ; XÞ□ϕþ F2ðϕ; XÞR

þ
X5
I¼1

AIðϕ; XÞLð2Þ
I

�
; ð1Þ

where the coupling functions F0, F1, F2, and AI are
functions of the scalar field ϕ and its kinetic term X ¼
ϕμϕ

μ and

Lð2Þ
1 ¼ ϕμνϕ

μν; Lð2Þ
2 ¼ ð□ϕÞ2; Lð2Þ

3 ¼ ϕμϕμνϕ
ν□ϕ;

Lð2Þ
4 ¼ ϕμϕμνϕ

νλϕλ; Lð2Þ
5 ¼ ðϕμϕμνϕ

νÞ2; ð2Þ

with ϕμ ¼ ∇μϕ and ϕμν ¼ ∇μ∇νϕ. For a generic choice of
the coupling functions, the theory described by the action
(1) suffers from the problem of the Ostrogradsky ghost
associated with higher derivatives in the equations of
motion. The Ostrogradsky ghost can be removed by
imposing the following degeneracy conditions:

1Matter coupling could introduce an Ostrogradsky mode in
generalized disformal Horndeski theories in general, while there
exists a nontrivial subclass where this problem can be avoided
[25–28].

2The scordatura term affects the stealth black hole background,
leading to a time-dependent correction. However, the time
dependence is typically very weak and can be negligible at
astrophysical scales [43,72].
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A2 ¼ −A1 ≠ −
F2

X
;

A4 ¼
1

8ðF2 − XA1Þ2
f4F2½3ðA1 − 2F2XÞ2 − 2A3F2� − A3X2ð16A1F2X þ A3F2Þ

þ4Xð3A1A3F2 þ 16A2
1F2X − 16A1F2

2X − 4A3
1 þ 2A3F2F2XÞg;

A5 ¼
1

8ðF2 − XA1Þ2
ð2A1 − XA3 − 4F2XÞ½A1ð2A1 þ 3XA3 − 4F2XÞ − 4A3F2�; ð3Þ

where a subscript X denotes the derivative with respect to
X. The DHOST theories described by Eq. (1) with the
degeneracy conditions (3) is called class Ia [13,74], which
can be mapped to the Horndeski theory via disformal
transformation. It is known that all the other classes of
quadratic DHOST theories are phenomenologically disfa-
vored in the sense that either the cosmological perturba-
tions are unstable or the modes correspond to gravitational
waves are absent.
In the present paper, we consider a subclass of the class

Ia quadratic DHOST theories, which is described by the
following action:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F0ðXÞþF2ðXÞRþ

X5
I¼1

AIðXÞLð2Þ
I

�
; ð4Þ

where we have set F1 ¼ 0 and assumed that the coupling
functions are functions only of X. In other words, we focus
on the subclass of the quadratic DHOST theories whose
action is invariant under the shift (ϕ → ϕþ const) and the
reflection (ϕ → −ϕ) of the scalar field. As we will see in
the next subsection, these theories admit an interesting class
of solutions known as the stealth solutions, i.e., a GR
solution with a linearly time-dependent scalar field.

B. Background spacetime and scalar field

We consider a static and spherically symmetric back-
ground spacetime. The metric of the background spacetime
is given by

ḡμνdxμdxν ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2γabdxadxb; ð5Þ

where γab is the metric on a two-dimensional unit sphere,
γabdxadxb ¼ dθ2 þ sin2 θdφ2. As for the scalar field, we
impose the following ansatz:

ϕ̄ðt; rÞ ¼ qtþ ψðrÞ; ð6Þ

where q is a nonvanishing constant. We note that the linear
time dependence of the scalar field is compatible with the
static metric because the action (4) depends on the scalar
field only through its derivatives. Having said that, the

linear time dependence can be still allowed in theories
without shift symmetry [53,55,60].
In thepresent paper, in particular,we focus on stealth black

hole solutions. A stealth black hole solution is described by
themetricwhich is the sameas theone inGR,while the scalar
field has a nontrivial configuration. The general construction
of stealth solutions was developed in [55,60] in a covariant
manner. The idea is to substitute the metric and scalar field
ansatz into the equations of motion and derive the conditions
on the coupling functions of DHOST theories under which
the equations are trivially satisfied. Assuming thatX ¼ −q2,
the stealth Schwarzschild–de Sitter (dS) metric,

AðrÞ ¼ BðrÞ ¼ 1 −
rs
r
−
Λr2

3
; ð7Þ

with rs and Λ being constants, can be a solution if the
following conditions are satisfied [55,60]:

fF0 þ 2ΛðF2 − XA1ÞgjX¼−q2 ¼ 0;

f2F0X þ Λð8F2X − 2A1 þ 4XA1X þ 3XA3ÞgjX¼−q2 ¼ 0:

ð8Þ

Note that, among the three degeneracy conditions in (3), we
have used only A2 ¼ −A1 in deriving the above conditions.
Therefore, the stealth Schwarzschild-dS solution exists even
away from the DHOST theories so long as A2 ¼ −A1. Note
also that the stealthSchwarzschild solution can be realized by
putting Λ ¼ 0. In this case, the above condition reads

F0jX¼−q2 ¼ 0; F0XjX¼−q2 ¼ 0: ð9Þ

For the stealth black hole solutions, the scalar field
profile can be obtained from the condition X ¼ −q2 as
follows:

ϕ̄ ¼ q

�
t�

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞp
AðrÞ dr

�
: ð10Þ

Here, we choose the plus branch so that ϕ is regular at the
future event horizon. Indeed, for the plus branch, the
behavior of the scalar field near the future event horizon
where AðrÞ ≃ 0 can be approximated as
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ϕ̄ ≃ q

�
tþ

Z
dr
AðrÞ

�
¼ qv; ð11Þ

where v is the ingoing Eddington-Finkelstein coordinate
defined by v ≔ tþ R

AðrÞ−1dr.

C. Odd-parity perturbations: Quadratic Lagrangian
and equation of motion

We study linear odd-parity perturbations around a static
and spherically symmetric spacetime in DHOST theories.
Although we will focus on the stealth black hole solutions
in the subsequent sections, for the time being, we inves-
tigate the perturbations around a general static and spheri-
cally symmetric spacetime described by the metric (5),
following the discussion in [64,69]. To study the odd-
parity perturbations, we define the metric perturbation as
ϵhμν ≔ gμν − ḡμν, where ϵ is a small parameter. Due to the
spherical symmetry of the background spacetime, it is
useful to expand the odd-parity perturbations in terms of
the spherical harmonics Ylmðθ;φÞ as follows:

htt ¼ htr ¼ hrr ¼ 0;

hta ¼
X
l;m

h0;lmðt; rÞEa
b∇̄bYlmðθ;φÞ;

hra ¼
X
l;m

h1;lmðt; rÞEa
b∇̄bYlmðθ;φÞ;

hab ¼
X
l;m

h2;lmðt; rÞEðac∇̄bÞ∇̄cYlmðθ;φÞ; ð12Þ

where Eab is the completely antisymmetric tensor defined
on a two-dimensional unit sphere, and ∇a denotes the
covariant derivative with respect to γab. Due to the
symmetry of the background spacetime, it is sufficient to
consider only m ¼ 0. We note that the odd-parity pertur-
bations do not have l ¼ 0mode, and h2 vanishes for l ¼ 1.
In what follows, we focus on the modes with l ≥ 2 where
the odd-parity perturbations are dynamical. Also, we do not
consider the perturbation of the scalar field, because it
belongs to the even-parity perturbations.
In order to eliminate an unphysical degree of freedom,

we consider an infinitesimal coordinate transformation:
xa → xa þ ϵξa. A general infinitesimal transformation for
the odd-parity modes can be written as

ξa ¼
X
l;m

Ξlmðt; rÞEab∇bYlmðθ;φÞ: ð13Þ

Then, the gauge transformation law for the perturbation
variables is given by

h0 → h0 − Ξ̇; h1 → h1 − Ξ0 þ 2

r
Ξ; h2 → h2 − 2Ξ;

ð14Þ
where a dot and a prime denote the derivatives with respect
to t and r, respectively. For l ≥ 2, we set h2 ¼ 0 to fix the
gauge freedom, which is a complete gauge fixing and hence
we can legitimately impose it at the action level [75].
The quadratic Lagrangian can be written in terms of a

master variable χl as follows [64]:

2lþ 1

2π
Lð2Þ ¼ lðlþ 1Þ

2ðl − 1Þðlþ 2Þ

ffiffiffiffi
B
A

r
fb1χ̇2l − b2χ02l þ b3χ̇lχ0l − ½lðlþ 1Þb4 þ VeffðrÞ�χ2lg; ð15Þ

where

b1 ¼
r2FH2

AFGþ BJ 2
; b2 ¼

r2ABGH2

AFGþ BJ 2
;

b3 ¼
2r2BH2J

AFGþ BJ 2
; b4 ¼ H; ð16Þ

and VeffðrÞ is given by

VeffðrÞ ¼ r2H
�
b2

ffiffiffiffi
B
A

r �
1

r2H

ffiffiffiffi
A
B

r �0�0
− 2H; ð17Þ

with F , G, H, and J defined by

F ¼ 2

�
F2 þ

q2

A
A1

�
; G ¼ 2

�
F2 −

�
q2

A
þ X

�
A1

�
;

H ¼ 2ðF2 − XA1Þ; J ¼ −2qψ 0A1: ð18Þ

The relation between the master variable and the original
perturbation variables can be found in [64]. The existence
of the cross term b3χ̇lχ0l is the crucial difference from the
case with q ¼ 0, ψ 0 ¼ 0, and/or A1 ¼ 0. Indeed, we have
b3 ∝ J ∝ qψ 0A1, and hence the cross term vanishes if
qψ 0A1 ¼ 0. However, in the present paper, we do not
consider the case where qψ 0A1 ¼ 0 because in this case, the
equation of motion and consequently the evolution of the
odd-parity perturbations are completely the same as those
in GR.
Let us proceed with the quadratic Lagrangian (15). We

can eliminate the cross term b3χ̇lχ0l by introducing a new
coordinate t̃ as follows:

t̃ ¼ tþ
Z

b3
2b2

dr: ð19Þ

With this new coordinate, the quadratic Lagrangian
becomes
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Lð2Þ ∝ L̃ ¼ 1

2

ffiffiffiffi
B
A

r
fb̃1ð∂t̃χlÞ2 − b2χ02l − ½lðlþ 1Þb4

þ VeffðrÞ�χ2lg; ð20Þ

where

b̃1 ¼ b1 þ
b23
4b2

: ð21Þ

Next, we obtain the equation of motion for the odd-parity
perturbations. Varying the quadratic Lagrangian (20) with
respect to the master variable χl, we obtain the equation of
motion as

− ∂
2
t̃ χl þ

b2
b̃1

χ00l þ
Ab2B0 þ Bð2Ab02 − b2A0Þ

2ABb̃1
χ0l

−
lðlþ 1Þb4 þ Veff

b̃1
χl ¼ 0: ð22Þ

We introduce a new coordinate x̃ and a new variable Ψ to
transform the above equation into the form of a two-
dimensional wave equation:

x̃ ¼
Z ffiffiffiffiffi

b̃1
b2

s
dr; ð23Þ

Ψl ¼ χl
Fðx̃Þ ; ð24Þ

where Fðx̃Þ is given by

Fðx̃Þ ¼
�

A

Bb̃1b2

�
1=4

: ð25Þ

Note that x̃ is a generalization of the tortoise coordinate.
Consequently, the equation of motion becomes

�
∂
2

∂x̃2
−

∂
2

∂t̃2
− Vlðx̃Þ

�
Ψl ¼ 0; ð26Þ

where Vlðx̃Þ is the effective potential defined by

Vlðx̃Þ ¼
lðlþ 1Þb4 þ Veff

b̃1
þ F

d2

dx̃2

�
1

F

�
: ð27Þ

When we fix the background solution, we can compute the
effective potential Vlðx̃Þ from the above formula, and
hence we can investigate the time evolution of the odd-
parity perturbations based on the master equation (26).
It should be noted that one can derive a master equation

of the same form even if we do not impose the degeneracy
conditions (3), as clarified in [68]. This is as expected
because an extra scalar degree of freedom belongs to the
even-parity perturbations and hence does not affect the odd-

parity sector. As mentioned earlier in Sec. II B, so long as
A2 ¼ −A1 is satisfied, the class of higher-order scalar-
tensor theories described by the action (4) allows for the
stealth Schwarzschild-dS solution under the condition (8).
Moreover, even when A2 ≠ −A1 (which happens if we take
into account the scordatura term [66]), the deviation of the
background solution from the stealth Schwarzschild-dS
profile is typically very weak and can be negligible at
astrophysical scales [43,72]. Therefore, it is not necessary
to impose the degeneracy conditions (3) for the study of
perturbations about the stealth Schwarzschild-dS profile.
Having said that, for concreteness, we focus on the stealth
Schwarzschild(-dS) solution in the DHOST theories in the
subsequent analyses.

III. STEALTH SCHWARZSCHILD SOLUTIONS

A. Effective metric

In this section, we consider the stealth Schwarzschild
profile as the background solution. From the diagonalized
quadratic Lagrangian (20), we can find the effective metric
on which the odd-parity perturbations propagate. In what
follows, we are interested in the propagation of odd-parity
perturbations in the radial direction, and hence we focus on
the first two terms in (20) and define a two-dimensional
effective metric ZIJ (I; J ¼ ft̃; rg) as

L̃kin ¼
ffiffiffiffi
B
A

r �
b̃1
2
ð∂t̃χlÞ2 −

b2
2
χ02l

�
≕ −

1

2
ZIJ

∂Iχl∂Jχl; ð28Þ

where ZIJ is the inverse of ZIJ. The component of the
effective metric is given by

ZIJdxIdxJ ¼
ffiffiffiffi
A
B

r �
−

1

b̃1
dt̃2 þ 1

b2
dr2

�
: ð29Þ

Note that the effective metric is in general different from the
background metric, i.e., ZIJdxIdxJ ≠ ḡIJdxIdxJ. For the
stealth Schwarzschild solutions, Zt̃ t̃ becomes

Zt̃ t̃ ¼ −
F2ðr − rsÞ − q2A1rs
2r3ðF2 þ q2A1Þ2

: ð30Þ

For the spacetime described by the effective metric ZIJ, the
vector field ∂t̃ is a Killing vector field. The Killing horizon
is located at the radius where Zt̃ t̃ changes its sign. From
Eq. (30), the radius of the Killing horizon, denoted by rg,
can be read off as

rg ¼
�
1þ q2A1

F2

�
rs ≕ ð1þ ζÞrs: ð31Þ

Since the conditions for no ghost/gradient instabilities are
given by [69]
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F2 > 0; F2 þ q2A1 > 0; ð32Þ

the Killing horizon rg is positive. Note that these conditions
imply ζ > −1. Note also that rg > rs for ζ > 0, while rg <
rs for ζ < 0. The two radii coincide with each other for
q2A1 ¼ 0, or equivalently ζ ¼ 0.

B. Characters of a constant-t̃ surface

Next, we discuss characters of the new time coordinate t̃.
For the stealth Schwarzschild solutions, t̃ can be analyti-
cally obtained from Eq. (19) as follows:

t̃ ¼ tþ 2

ffiffiffiffi
r
rs

r
ðrs − rgÞ −

1ffiffiffiffi
rs

p
�
r3=2g log

����
ffiffiffi
r

p
− ffiffiffiffiffirgpffiffiffi

r
p þ ffiffiffiffiffirgp

����
− r3=2s log

����
ffiffiffi
r

p
− ffiffiffiffi

rs
pffiffiffi

r
p þ ffiffiffiffi

rs
p

����
�
þ t̃c; ð33Þ

where t̃c is an integration constant. Let us investigatewhether
a constant-t̃ surface is spacelike with respect to the back-
ground metric or not. To this end, we consider a vector field
∂μ t̃ that is normal to a constant-t̃ surface. The norm of ∂μ t̃
associated with the background metric is given by

ḡμν∂μt̃∂ν t̃ ¼
rðr2g − rrsÞ
rsðr − rgÞ2

: ð34Þ

Therefore, the constant-t̃ surface is spacelike for r > r2g=rs,
while it is timelike for r < r2g=rs. Now, we discuss the
relation between the location of the Killing horizon for the
odd-parity perturbations rg and the characteristic radius
r2g=rs. TheKilling horizon rg is greater than the characteristic
radius r2g=rs if rs > rg, or equivalently ζ < 0. Consequently,
ifwe focus on the spacetime in the range r > rg, the constant-
t̃ surface is always spacelike. On the other hand, the Killing
horizon rg is smaller than the characteristic radius r2g=rs if
rs < rg, or equivalently ζ > 0. Therefore, the constant-t̃

surface becomes spacelike in the range r > r2g=rs, while it
becomes timelike in the range rg < r < r2g=rs. Figure 1
shows the typical behavior of the constant-t̃ surface
embedded in the Penrose diagram of the Schwarzschild
spacetime. The black solid curves are the constant-t̃ surfaces.
In the yellow shaded region, the constant-t̃ surfaces are
spacelike.

C. Characteristic curves

In the high-frequency regime, the odd-parity perturba-
tions propagate along the characteristic curves on which
either ṽ ¼ t̃þ x̃ ¼ const or ũ ¼ t̃ − x̃ ¼ const is satisfied.
To understand properties of the characteristic curves, we
perform a similar analysis as the one in the previous
subsection. That is, we study the vector fields ∂μũ and
∂μṽ, which are normal to the characteristic curves. The
norms of these vector fields with respect to the background
metric are given by

ḡμν∂μũ∂νũ ¼ rðrg − rsÞ
rsð

ffiffiffi
r

p
− ffiffiffiffiffirgp Þ2 ;

ḡμν∂μṽ∂νṽ ¼ rðrg − rsÞ
rsð

ffiffiffi
r

p þ ffiffiffiffiffirgp Þ2 ; ð35Þ

respectively. Therefore, for rg > rs or equivalently ζ > 0,
the characteristic curves are timelike, while for rg < rs or
equivalently ζ < 0, the characteristic curves are spacelike,
i.e., the odd-parity perturbations become superluminal. For
ζ < 0 case, due to the superluminal propagation, perturba-
tions can propagate from the region in rg < r < rs to that in
r > rs (see Appendix A). Figure 2 shows the characteristic
curves embedded in the Penrose diagram of the
Schwarzschild spacetime.

D. Equation of motion and QNM frequencies

Let us study the master equation (26) for the case of
stealth Schwarzschild solutions. The generalized tortoise

(a) (b)

FIG. 1. Typical behavior of constant-t̃ surface for (a) ζ > 0 and (b) ζ < 0 embedded in the Penrose diagram of the Schwarzschild
spacetime. The black curves represent constant-t̃ surfaces. The constant-t̃ surface is spacelike in the yellow shaded region.
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coordinate x̃ and the new master variable Ψl defined in
Eqs. (23) and (24) take the form of

x̃ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p �
rþ rg log

���� rrg − 1

����
�
; ð36Þ

Ψl ¼ r
ffiffiffiffiffiffiffiffi
2F2

p �
rg
rs

�
3=4

χl: ð37Þ

We note that x̃ → −∞ as r → rg and x̃ → ∞ as r → ∞.
Here, we have chosen the integration constant for x̃ so that
x̃ ¼ 0 at r ¼ 0. The master equation (26) is now written as

�
∂
2

∂x̃2
−

∂
2

∂t̃2
− Vlðx̃Þ

�
Ψl ¼ 0; ð38Þ

where

Vlðx̃Þ ¼
1

1þ ζ

�
1 −

rg
r

��
lðlþ 1Þ

r2
−
3rg
r3

�
: ð39Þ

Note that if ζ ¼ 0, the above equation reduces to the
standard Regge-Wheeler equation in GR.
It shouldbenoted that themaster equation (38) for theodd-

parity perturbations about stealth solutions in the DHOST
theory is the same as the one in GR except that the effective
potential is multiplied by the factor of ð1þ ζÞ−1 [see
Eq. (39)]. Indeed, if we introduce rescaled coordinates T̃
and X̃ as

T̃ ¼ t̃ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p ; ð40Þ

X̃ ¼ x̃ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p ¼ rþ rg log

���� rrg − 1

����; ð41Þ

then the master equation (38) can be rewritten as

�
∂
2

∂X̃2
−

∂
2

∂T̃2
− ṼlðX̃Þ

�
Ψl ¼ 0; ð42Þ

with

ṼlðX̃Þ ¼
�
1 −

rg
r

��
lðlþ 1Þ

r2
−
3rg
r3

�
: ð43Þ

Equation (42) is nothing but the standard Regge-Wheeler
equation in GR if we identify rg as the Schwarzschild radius.
This implies thatwe canmap a solution for thewave equation
in GR to a solution in the DHOST theory: The latter is
obtained by just rescaling the coordinates in the former. This
fact can be used to discuss the QNM frequencies and the
power-law tail in the DHOST theory.
Let us first discuss the QNM frequencies. Substituting

the ansatz Ψl ¼ ψlðX̃Þe−iW̃ T̃ into Eq. (42), we have

�
−

d2

dX̃2
þ ṼlðX̃Þ

�
ψlðX̃Þ ¼ W̃2ψlðX̃Þ: ð44Þ

The QNMs are defined as the modes that are purely ingoing
(ψl ∼ e−iW̃ X̃) as r → rg, and purely outgoing (ψl ∼ eiW̃ X̃) as
r → ∞. Let ωSch

l;nðrsÞ be the QNM frequencies for the
Schwarzschild spacetime in GR obtained by solving the
standard Regge-Wheeler equation, where n is the overtone
number. For instance, ωSch

2;0 ¼ ð0.74734 − 0.17792iÞ=rs for
thel ¼ 2 fundamentalmode.Also, let W̃l;nðrgÞ be theQNM
frequencies obtained by solving Eq. (44). The relation
between ωSch

l;n and W̃l;n is given by rgW̃l;n ¼ rsωSch
l;n.

From Eq. (40), we can rewrite the ansatz for Ψl as
Ψl ¼ ψlðx̃Þe−W̃ t̃ =

ffiffiffiffiffiffi
1þζ

p
≕ψlðx̃Þe−iωDHOST t̃. Then, the QNM

frequencies ωDHOST
l;n can be expressed in terms of ωSch

l;n as

(a) (b)

FIG. 2. The characteristic curves for (a) ζ > 0 and (b) ζ < 0 embedded in the Penrose diagram of the Schwarzschild spacetime. The
red curves and the blues curves represent constant-ṽ curves and constant-ũ curves, respectively. For (a) ζ > 0, the characteristic curves
are always timelike, while for (b) ζ < 0, the characteristic curves are spacelike, i.e., the odd-parity perturbations are superluminal.
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ωDHOST
l;n ¼ rsωSch

l;n

rsð1þ ζÞ3=2 ; ð45Þ

wherewe have used rg ¼ ð1þ ζÞrs. Note that the numerator
is the QNM frequencies of the Schwarzschild spacetime in
GR in unit of r−1s , which we already know. For instance,
for the l ¼ 2 fundamental mode, we have rsωSch

2;0 ¼
0.74734 − 0.17792i, and hence

ωDHOST
2;0 ¼ 0.74734 − 0.17792i

rsð1þ ζÞ3=2 : ð46Þ

Equation (45) shows that, even if we knowQNMfrequencies
for multiple pairs of ðl; nÞ from observations, we can
determine only the combination rsð1þ ζÞ3=2. In this sense,
we conclude that there is a degeneracy between rs and ζ.
Another important consequence is that we can find theQNM
frequencies of the stealth Schwarzschild solutions in the
DHOST theory from those in GR by applying the for-
mula (45). This is consistent with the result of [76] where the
QNM frequencies have been studied based on the effective
field theory with a timelike scalar profile [70,77] applied to a
static and spherically symmetric black hole background.
Let us now briefly discuss the behavior of the power-law

tail in the DHOST theory, assuming that it exists. It is well
known that the power-law tail dominates the waveform of
the black hole perturbations after the damped oscillation
phase in GR [78]. Now, suppose that the solution to the
wave equation (42) (i.e., the one rewritten in the form of
the standard Regge-Wheeler equation in GR) asymptoti-
cally behaves as Ψl ∼ T̃k at late time, where k is a
negative constant. Then, by use of Eq. (40), we find that
Ψl ∼ ð1þ ζÞ−k=2 t̃k ∝ t̃k. Therefore, if the power-law tail
exists in the DHOST theory, we expect that its power
would be the same as the one in GR.
Before concluding this subsection, we mention the need

for a time-domain analysis. In GR, when we obtain the time
evolution of the black hole perturbations as a solution of
Cauchy problem, the late-time behavior of the black hole
perturbations is dominated by a superposition of the QNMs
(and the power-law tail). On the other hand, in the DHOST
(or any other modified gravity) theories, it is nontrivial
whether or not the same thing happens because the effective
metric for perturbations does not coincide with the back-
ground metric in general. Although we neglect matter fields
in the present paper, they exist in reality and their dynamics
is determined by the background metric, provided that they
are minimally coupled to gravity. Therefore, in order to
obtain the time evolution of the perturbations, we should
impose initial conditions on a hypersurface which is
spacelike with respect to both the background metric
and the effective metric. In GR, for example, the initial
surface is often chosen to be a hypersurface with constant
Killing time. In the present case of DHOST theories, a
portion of a constant-t̃ hypersurface can be timelike with

respect to the background metric for ζ > 0. When we
impose the initial conditions in the region where the
constant-t̃ hypersurface is spacelike, the late-time behavior
of the perturbations would be dominated by the QMNs with
frequencies ωDHOST

l;n . However, when we impose the initial
conditions in the region where the constant-t̃ hypersurface
is timelike, it is not obvious whether the QNMs dominate
the late-time behavior of the perturbations because t̃ cannot
be regarded as a physical time coordinate in this case. In the
next subsection, we show that we can prepare a hypersur-
face that is spacelike with respect to both the background
metric and the effective metric in the region where the
constant-t̃ hypersurface is timelike by tilting the constant-t̃
hypersurface in an appropriate manner.

E. Initial value problem and excitations of QNMs

As we mentioned in Sec. III B, for ζ > 0, a constant-t̃
surface is timelike with respect to the background metric in
the region rg < r < r2g=rs. Therefore, in order to discuss
the time evolution of the perturbations based on the mater
equation (38) in a physically sensible manner, we need to
choose another initial hypersurface that is spacelike with
respect to both the background metric and the effective
metric. Such a formulation of initial value problem has
been proposed in [73], which we adopt in the following. In
what follows, we focus on the case with ζ > 0 and study the
l ¼ 2 mode for concreteness (and hence the subscript l
will be omitted). We analyze the initial value problem for
ζ < 0 in Appendix A.
Let us briefly review how we construct an initial surface

in the physically sensible formulation proposed in [73]. We
introduce new coordinates so that Ũ ¼ aũ and Ṽ ¼ bṽ,
where a and b are positive constants. Figure 3 shows a
schematic picture of the initial surface and the numerical
domain. The left panel shows our numerical setup in the
Penrose diagram of the Schwarzschild spacetime, while the
right panel shows it in a diagram in which the characteristic
curves of the odd-parity perturbations are depicted by 45-
and 135-degree straight lines. By adjusting the constants a
and b, we can make a hypersurface of constant Ũ þ Ṽ be
spacelike in the region r > rB for some rB < r2g=rs. We call
the constant-ðŨ þ ṼÞ surface Σ̃. Let S be the region where
the hypersurface Σ̃ is spacelike and let Σ denote a spacelike
hypersurface on which we impose initial conditions and the
numerical domain D. We impose the following require-
ments on the hypersurface Σ and the initial conditions:

(i) The initial surface Σ coincides with Σ̃ in the
region S ∩ D.

(ii) The initial conditions have a compact support in the
region S ∩ D.

Since the numerical domain is a part of the causal future of
the region S determined by the characteristic curves of the
odd-parity perturbations, in the numerical domain, impos-
ing initial conditions on Σ corresponds to imposing initial
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conditions on Σ̃ under the requirement (i). Also, under
requirement (i), we can regard Ũ þ Ṽ as a physical time in
the numerical domain. Requirement (ii) allows us to obtain
the time evolution as follows. First, we can obtain the time
evolution in the region I in the right panel of Fig. 3 from the
initial data given in the region S ∩ D. Then, when we study
the time evolution in the regions II and III, we can use
requirement (ii) to set Ψ ¼ 0 on both the right boundary of
region II and the left boundary of region III. Once we obtain
the solution in the regions II and III, it is straightforward to
compute the time evolution in the region IV. Thus, we can
obtain the time evolution of the field in the whole numerical
domain.
We consider a Gaussian wave packet as the initial field

profile:

ΨjΣ ¼ ΨðC0 − Ṽ; ṼÞjΣ̃ ¼ e−
1
2
ðṼ−Ṽ0σ Þ2 ; ð47Þ

where σ and Ṽ0 are the width of the Gaussian wave packet
and its peak position, respectively. It should be noted that we
truncate the Gaussian profile in a finite region in our actual
computations so that the initial data have a compact support
within the region S ∩ D. We recall that Ũ þ Ṽ takes a
constant value (which we denote byC0) on the initial surface
within the numerical domain thanks to the requirement (i),
and hence it makes sense to define the initial data as in
Eq. (47).We choose σ and Ṽ0 so that the support of the initial
field profile overlaps with the region rB < r < r2g=rs, where
the surface of constant Ũ þ Ṽ is spacelike and the constant-t̃
surface is timelike (see Fig. 4). Also, regarding the initial
condition for the derivative, we impose ð∂Ũ þ ∂ṼÞΨjΣ ¼ 0.
Let us now explain how we solve the master equa-

tion (38) under the initial conditions mentioned above.

Expressing the master equation (38) in terms of Ũ and Ṽ,
we have

−4
∂
2Ψ

∂Ũ∂Ṽ
¼ VðŨ; ṼÞ

ab
Ψ: ð48Þ

We discretize the coordinates Ũ and Ṽ as fŨ i; Ṽjg
where i; j ¼ 0; 1; 2;…. Note that the grid width h is
assumed to be uniform: h¼ Ũ iþ1− Ũ i¼ Ṽjþ1− Ṽj. Also,
we introduce shorthand notations Ψi;j ¼ ΨðŨ i; ṼjÞ and

FIG. 3. Schematic picture of the initial surface Σ (black dashed curve) and the surface Σ̃ (orange dashed curve) which is constructed by
tilting the constant-t̃ surface. We put an initial Gaussian wave packet (blue solid curve) on the initial surface Σ. We require that (i) the
initial surface Σ coincides with the surface Σ̃ in the region S (red solid curve) within the numerical domain D (green shaded region). We
also require that (ii) the initial conditions have a compact support in the region S ∩ D, and hence the field vanishes outside the numerical
domain (gray shaded region). We further assume that the derivative of the field in the direction perpendicular to Σ is zero on the initial
surface.

FIG. 4. Schematic picture of the initial field profiles. The cyan
and the orange curves are the Gaussian wave packets with σ ¼ rs
and σ ¼ 0.1rs, respectively. The horizontal axis is the value of
ðŨ − ṼÞ=rs on the initial surface Σ. In practice, we truncate the
Gaussian function to have a compact support within the region
S ∩ D and choose the center of the wave packet so that its support
overlaps with the region rB < r < r2g=rs. The black curve is the
schematic plot of the effective potential VðŨ; ṼÞ on the initial
surface, which is meant to show the position of the potential peak
(and hence its height does not have any particular meaning).
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Vi;j ¼ VðŨ i; ṼjÞ. Then, we apply the discretization scheme
introduced by [79] (see also [80] for a detailed description
of the scheme), and the master equation (48) is simply
discretized as

Ψiþ1;jþ1 ¼ Ψiþ1;j þΨi;jþ1 −Ψi;j

−
h2

8

Vi;j

ab
½Ψiþ1;j þΨi;jþ1� þOðh4Þ: ð49Þ

The initial field profile (47) can be implemented as

Ψi;j¼e−
1
2
ðṼj−Ṽ0σ Þ2ΘðṼ− Ṽj1ÞΘðṼj2 − ṼÞ; ðŨ i;ṼjÞ∈ S∩D:

ð50Þ

Here, to make the truncation explicit, we have inserted the
step functions (denoted by Θ) so that Ψ is nonvanishing
only for Ṽj1 ≤ Ṽ ≤ Ṽj2 on the initial surface. Also, the
condition ð∂Ũ þ ∂ṼÞΨjΣ ¼ 0 yields

Ψi;j ¼ Ψiþ1;jþ1 þOðh4Þ; ðŨ i; ṼjÞ∈ S ∩ D; ð51Þ

and hence we have

Ψiþ1;jþ1 ¼
1

2
½Ψiþ1;jþΨi;jþ1�−

h2

16

Vi;j

ab
× ½Ψiþ1;jþΨi;jþ1�þOðh4Þ; ðŨ i; ṼjÞ∈ S∩D:

ð52Þ

Combining the discretized equation (49) as well as the
initial conditions (50) and (52), we can obtain the solution
for Ψ in the whole numerical domain.
A caveat should be added here. One may think that a

constant-ϕ surface would be a good candidate for the initial
surface as it is spacelike with respect to both the back-
ground metric and the effective metric. However, if we
choose a constant-ϕ surface as the initial surface, it is
nontrivial how to implement initial conditions in our
numerical scheme which is based on a double-null grid,
since a constant-ϕ surface cannot be described by a linear
function of the null coordinates. This is the reason why we
have chosen the initial surface Σ as above.3

Figure 5 shows the time evolution of the odd-parity
perturbations for ζ ¼ 0.6 (green curve, top), ζ ¼ 0.05 (red
curve, middle), and ζ ¼ 0, i.e., GR (blue curve, bottom) for
the initial Gaussian wave packet with σ ¼ 0.1rs. The
observer is located at x̃ ¼ 40rs. The initial Gaussian wave
packet first reaches the observer almost unscattered, and
then the ringdown phase follows, as can be seen in Fig. 5.

In order to confirm that the frequencies in the ringdown
phase are QNM frequencies, we fit the numerical waveform
with a superposition of the QNMs. We introduce the
following fitting model ψNðt̃Þ:

ψNðt̃Þ ¼
XN
n¼0

αne−i½μω
Sch
n ðt̃−t̃peakÞ=rsþβn� þ c:c:; t̃∈ ½t̃0; t̃end�;

ð53Þ

where n labels the overtones and N is the maximum
overtone number used in the fitting. Here, αn and βn are
real parameters corresponding to the amplitude and the
phase, respectively, and μ is a real parameter characterizing
the deviation from the QNM frequencies in GR. Also, tpeak
denotes the time at which the numerical waveform Ψðt̃Þ
takes the maximum value after the initial Gaussian wave
packet passes through the observer. For the fitting analysis,
we use the numerical waveform in the interval ½t̃0; t̃end�,
where t̃0 and t̃end are free parameters satisfying
t̃peak ≤ t̃0 < t̃end. In our fits, we use the Mathematica
function NonlinearModelFit. The amplitude αn and the phase
βn are fitting parameters, and we find best-fit values of
these parameters. Note that the parameter μ is fixed in the
fitting analysis for this section. Once we obtain a best-fit
function ψNðt̃Þ, we evaluate the goodness of the fit by
calculating the mismatch M defined by

M ¼ 1 −
hΨjψNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΨjΨihψN jψNi

p ; ð54Þ

where the scalar product is defined as

hfjgi ¼
Z

t̃end

t̃0

fðt̃Þg�ðt̃Þdt̃; ð55Þ

FIG. 5. The time evolution of the odd-parity perturbations for
ζ ¼ 0.6 (green curve, top), ζ ¼ 0.05 (red curve, middle), and
ζ ¼ 0 (blue curve, bottom). The width of the initial Gaussian
wave packet is σ ¼ 0.1rs.

3If one would like to choose a constant-ϕ surface as the initial
surface, then one needs a numerical scheme that is more suitable
for solving the differential equation based on the constant-ϕ
foliation.
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for arbitrary two complex functions f and g, with an
asterisk denoting the complex conjugation. Note that the
fitting model ψNðt̃Þ and the numerical waveform Ψðt̃Þ are
real because we impose real initial conditions, and hence
the complex conjugate in Eq. (55) is of no particular
significance. We have kept the complex conjugate just to
follow the convention in the literature. For the value of μ
which is fixed, we consider the following two cases:

(i) μ ¼ rsð1þ ζÞ−3=2: We assume the value of μ as μ ¼
rsð1þ ζÞ−3=2 with fixed ζ, and find the best-fit
parameters αn and βn. This case corresponds to
the situation where we fit the numerical waveform
with a superposition of QNMs with the frequencies
ωDHOST
n in the DHOST theory.

(ii) μ ¼ rs: We assume the value of μ as μ ¼ rs, and find
the best-fit parameters αn and βn. This case corre-
sponds to the situation where we fit the numerical
waveform with a superposition of QNMs with
frequencies ωSch

n in GR.
Figure 6 shows the mismatch for ζ ¼ 0.6. The left panels

are the mismatch calculated with (i) μ ¼ rsð1þ ζÞ−3=2 for
σ ¼ rs (upper panel) and σ ¼ 0.1rs (lower panel), respec-
tively. As the number of N increases, the minimum of
mismatch decreases. When we fit the numerical waveform
with only the fundamental mode, i.e., N ¼ 0 (blue curve),
the mismatch gets smaller as t̃0 increases. This implies that
the waveform near the peak time t̃peak is dominated by the

overtones. Indeed, when we take into account the higher
overtones, the value of t̃0 that minimizes the mismatch gets
closer to t̃peak. The right panels in Fig. 6 show the mismatch
calculated with (ii) μ ¼ rs. Unlike the DHOST fitting (i),
for all N, the mismatch takes almost constant values. In
particular, we see that the mismatch for N ¼ 0 does not
decrease at late time in the GR fitting (ii). This reflects
the inconsistency between the numerical waveform and the
fitting model: We are now fitting the waveform for the
DHOST theory by a superposition of the QNMs in GR.
Thus, the right panels in Fig. 6 explicitly show that the
QNMs with the frequencies in GR do not well describe the
numerical waveform for the DHOST theory.
Figure 7 shows the mismatch for ζ ¼ 0.05. As in the case

of ζ ¼ 0.6, when we calculate the mismatch with (i)
μ ¼ rsð1þ ζÞ−3=2, as N increases, the minimum of mis-
match decreases and the value of t̃0 at the minimum gets
closer to t̃peak. On the other hand, when we calculate the
mismatch with (ii) r ¼ rs, it can be seen that the numerical
waveform is not well described with the QNMs in GR.
From these results, we conclude that the superposition of

the QNMs in the DHOST theory (45) is consistent with the
numerical waveform and the QNMs are excited in the
physically sensible initial value problem. We have also
performed the fitting analysis keeping μ unfixed and found
that the best-fit value of μ is consistent with that of the
DHOST theory, i.e., μ ¼ rsð1þ ζÞ−3=2.

FIG. 6. The mismatch for ζ ¼ 0.6 between the numerical waveform Ψðt̃Þ and the fitting model ψNðt̃Þ defined by Eq. (53). The left
panels are calculated with (i) μ ¼ rsð1þ ζÞ−3=2, while the right panels are calculated with (ii) μ ¼ rs. In addition, the upper panels are
the mismatch for σ ¼ rs, i.e., the wider initial Gaussian wave packet, while the lower panels are the mismatch for σ ¼ 0.1rs, i.e., the
narrower initial Gaussian wave packet.
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IV. STEALTH SCHWARZSCHILD–DE SITTER
SOLUTIONS

In this section, we consider the stealth Schwarzschild-dS
profile as the background solution. The background metric
is given by the Schwarzschild-dS metric:

AðrÞ ¼ BðrÞ ¼ −
Λ
3r

�
r3 −

3

Λ
rþ 3rs

Λ

�
≕ −

Λ
3r

ΔðrÞ; ð56Þ

with rs and Λ being positive constants. Since ΔðrÞ is a
cubic polynomial in r, it can be factorized as ΔðrÞ ¼
ðr − r−Þðr − reÞðr − rcÞ. Here, the three roots are given by

r− ¼ 2ffiffiffiffi
Λ

p cos
�
1

3
cos−1

�
−
3rs

ffiffiffiffi
Λ

p

2

�
þ 2π

3

�
; ð57Þ

re ¼
2ffiffiffiffi
Λ

p cos

�
1

3
cos−1

�
−
3rs

ffiffiffiffi
Λ

p

2

�
þ 4π

3

�
; ð58Þ

rc ¼
2ffiffiffiffi
Λ

p cos

�
1

3
cos−1

�
−
3rs

ffiffiffiffi
Λ

p

2

��
; ð59Þ

respectively. We note that the three roots are real if

rs
ffiffiffiffi
Λ

p
<

2

3
; ð60Þ

is satisfied, and we have labeled these roots so that
r− < 0 < re < rc. Therefore, the event horizon is located
at r ¼ re and the cosmological horizon is located at rc. For
small rs

ffiffiffiffi
Λ

p
, the three roots above are expanded as

r− ¼ −
ffiffiffiffi
3

Λ

r �
1þ rs

2

ffiffiffiffi
Λ
3

r
−
r2sΛ
8

þ r3s
6

ffiffiffiffiffiffi
Λ3

3

r
þOðr4sΛ2Þ

�
;

ð61Þ

re ¼ rs

�
1þ 1

3
r2sΛþOðr4sΛ2Þ

�
; ð62Þ

rc ¼
ffiffiffiffi
3

Λ

r �
1−

rs
2

ffiffiffiffi
Λ
3

r
−
r2sΛ
8

−
r3s
6

ffiffiffiffiffiffi
Λ3

3

r
þOðr4sΛ2Þ

�
: ð63Þ

A. Effective metric

For the stealth Schwarzschild-dS solutions, we can
define the effective metric in the same manner as in the
case of stealth Schwarzschild solutions. From the general
expression (29) for the effective metric ZIJ, the t̃ t̃ compo-
nent can be read off as

Zt̃ t̃ ¼
1

2F2ð1þ ζÞ2r2
�
1 −

ð1þ ζÞrs
r

−
ð1þ ζÞΛ

3
r2
�
: ð64Þ

Introducing a parameter Λg ¼ ð1þ ζÞΛ, we have

FIG. 7. The mismatch for ζ ¼ 0.05 between the numerical waveform Ψðt̃Þ and the fitting model ψNðt̃Þ defined by Eq. (53). The values
of the parameters in each panel are the same as those in Fig. 6.
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Zt̃ t̃ ¼ −
Λg

6F2ð1þ ζÞ2r3
�
r3 −

3

Λg
rþ 3rg

Λg

�

≕ −
Λg

6F2ð1þ ζÞ2r3 ΔgðrÞ: ð65Þ

Therefore, for the odd-parity perturbations, the locations of
the Killing horizons are determined by the roots for
ΔgðrÞ ¼ 0. The roots are given by

r̃− ¼ 2ffiffiffiffiffiffi
Λg

p cos

�
1

3
cos−1

�
−
3rg

ffiffiffiffiffiffi
Λg

p
2

�
þ 2π

3

�
; ð66Þ

r̃e ¼
2ffiffiffiffiffiffi
Λg

p cos

�
1

3
cos−1

�
−
3rg

ffiffiffiffiffiffi
Λg

p
2

�
þ 4π

3

�
; ð67Þ

r̃c ¼
2ffiffiffiffiffiffi
Λg

p cos

�
1

3
cos−1

�
−
3rg

ffiffiffiffiffiffi
Λg

p
2

��
: ð68Þ

We note that these three roots are real if rg
ffiffiffiffiffiffi
Λg

p
< 2=3, i.e.,

rs
ffiffiffiffi
Λ

p
<

2

3ð1þ ζÞ3=2 ; ð69Þ

is satisfied, and we have labeled these roots so that
r̃− < 0 < r̃e < r̃c.
In the present paper, we consider the spacetime region

satisfyingΔgðrÞ > 0, i.e., the static region for the odd-parity
perturbations. The static region associated with the back-
ground metric is defined byΔðrÞ > 0, and the relation to the
static region for the effectivemetric depends on the value of ζ
and Λ. For ζ > 0 and rs

ffiffiffiffi
Λ

p
< 2ð1þ ζÞ−3=2=3, both the

effective metric and the background metric have the static
region. However, for 2ð1þ ζÞ−3=2=3 < rs

ffiffiffiffi
Λ

p
< 2=3, only

the background metric has the static region. Figure 8 shows

the schematic picture of the relation between the static
regions for the effective metric and the background metric
in the ζ > 0 case. The solid blue and orange curves,
respectively, correspond to the event horizon and the cos-
mological horizon of the background spacetime, while the
dashed blue and orange curves correspond to the Killing
horizons for the odd-parity perturbations. The green shaded
region is the static region for both the effective and back-
ground metrics, while the yellow shaded region is the static
region for the background metric only.

B. Characters of a constant-t̃ surface

We examine the characters of a constant-t̃ surface. For
the stealth Schwarzschild-dS solutions, the coordinate t̃
defined by (19) reads

t̃ ¼ t −
Z

ζð3rÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rs þ Λr3

p
ð1þ ζÞΛ2ΔðrÞΔgðrÞ

dr; ð70Þ

though we cannot express it in a simple analytic form
unlike the case of the stealth Schwarzschild solutions. We
investigate the global structure of a constant-t̃ surface in the
background spacetime. To this end, we consider a vector
field ∂μt̃ which is normal to the constant-t̃ surface. For the
background Schwarzschild-dS metric, the norm of ∂μt̃ is
given by

ḡμν∂μt̃∂νt̃ ¼
3r

ΛΔgðrÞ
�
r3 −

3

ð1þ ζÞ2Λ rþ 3rs
Λ

�
: ð71Þ

Since we focus only on the region in which ΔgðrÞ > 0,
the sign of ḡμν∂μ t̃∂νt̃ is determined by the sign of the
function in the parentheses in Eq. (71). In Fig. 9, we show
typical plots of constant-t̃ surfaces in the Penrose diagram
of the Schwarzschild-dS spacetime.4 The constant-t̃ sur-
faces are spacelike in the yellow shaded region. For
ζ > 0, the constant-t̃ surface has a spacelike region within
r̃e < r < r̃c if

rs
ffiffiffiffi
Λ

p
<

2

3ð1þ ζÞ3 ; ð72Þ

FIG. 8. Relation between the static region associated with the
effective metric and the one associated with the background
metric for ζ > 0. The former (green shaded region) exists for
rs

ffiffiffiffi
Λ

p
< 2ð1þ ζÞ−3=2=3, while the latter (yellow shaded region)

exists for rs
ffiffiffiffi
Λ

p
< 2=3.

4In Figs. 9 and 10, in the ζ < 0 case, a constant-t̃ surface and a
characteristic curves apparently become null near both the event
horizon and the cosmological horizon, but in fact these are
spacelike everywhere. This behavior is an artifact caused by the
coordinate system we have used. For the stealth Schwarzschild-
dS solutions, we have defined different double null coordinates in
each block of the Penrose diagram and drawn the curves for each
block. Then, we have glued the diagrams of each block using the
method proposed in [81]. On the other hand, for the stealth
Schwarzschild solutions, we can define a single coordinate
system which covers the whole spacetime in a simple analytic
form, and hence the coordinate t̃ and the characteristic curves are
written in an analytic form, which has led to the smooth curves in
Figs. 1 and 2.
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is satisfied [see Fig. 9(a-1)]. If the condition (72) is
violated for ζ > 0, the constant-t̃ surface is always time-
like [see Fig. 9(a-2)]. On the other hand, for ζ < 0, the
constant-t̃ surface is always spacelike [see Fig. 9(b)].

C. Characteristic curves

As in the case of the stealth Schwarzschild solutions, the
odd-parity perturbations propagate along a constant-ũ
curve or a constant-ṽ curve. Here, we investigate the vector
fields which are normal to the constant-ũ curve and the
constant-ṽ curve: ∂μũ and ∂μṽ. For the background
Schwarzschild-dS metric, the norm of these vector fields
are given by

ḡμν∂μũ∂νũ ¼ 3ζr
Λ2
gΔgðrÞ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rg þ Λgr3

q
þ

ffiffiffiffiffi
3r

p 	
2
; ð73Þ

ḡμν∂μṽ∂νṽ ¼ 3ζr
Λ2
gΔgðrÞ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rg þ Λgr3

q
−

ffiffiffiffiffi
3r

p 	
2
: ð74Þ

The sign of each norm is determined by the sign of the
parameter ζ. The characteristic curves are timelike for
ζ > 0, while they are spacelike for ζ < 0. That is, for ζ < 0,
the odd-parity perturbations become superluminal.
Figure 10 shows the characteristic curves of the odd-parity

perturbations in the Penrose diagram of the Schwarzschild-
dS spacetime.

D. Equation of motion and QNM frequencies

In order to express the equation of motion in the form of
a two-dimensional wave equation, we introduce the gen-
eralized tortoise coordinate:

x̃ ¼ −3
Λ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p
�

r̃− ln jr − r̃−j
ðr̃c − r̃−Þðr̃e − r̃−Þ

þ r̃e ln jr − r̃ej
ðr̃e − r̃cÞðr̃e − r̃−Þ

þ r̃c ln jr − r̃cj
ðr̃c − r̃eÞðr̃c − r̃−Þ

�
; ð75Þ

up to an integration constant. We note that x̃ → −∞ as
r → r̃e and x̃ → ∞ as r → r̃c. In terms of t̃ and x̃, the
equation of motion is written as follows:

�
∂
2

∂x̃2
−

∂
2

∂t̃2
− Vlðx̃Þ

�
Ψl ¼ 0; ð76Þ

with

Vlðx̃Þ ¼
1

1þ ζ

�
1 −

rg
r
−
Λg

3
r2
��

lðlþ 1Þ
r2

−
3rg
r3

�
: ð77Þ

a

(b)

a

FIG. 9. Typical plots of constant-t̃ surfaces in the Penrose diagram of the Schwarzschild-dS spacetime. The black curves represent the
constant-t̃ surfaces. The constant-t̃ surfaces are spacelike in the yellow shaded region. For (a-1) ζ > 0, when the parameter ζ satisfies
Eq. (72), the constant-t̃ surface can be spacelike in a finite region. For (a-2) ζ > 0 when the parameter ζ violates Eq. (72), the constant-t̃
surface is always timelike. For (b) ζ < 0, the constant-t̃ surface is always spacelike.
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As in the case of the stealth Schwarzschild solutions, we
introduce the rescaled coordinates as follows:

T̃ ¼ t̃ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p ; ð78Þ

X̃ ¼ x̃ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p : ð79Þ

With these coordinates, the equation of motion can be
rewritten as

�
∂
2

∂X̃2
−

∂
2

∂T̃2
− ṼlðX̃Þ

�
Ψl ¼ 0; ð80Þ

with

ṼlðX̃Þ ¼
�
1 −

rg
r
−
Λg

3
r2
��

lðlþ 1Þ
r2

−
3rg
r3

�
: ð81Þ

Therefore, even in the case of stealth Schwarzschild-dS
solutions, we can recast the equation of motion into the
standard Regge-Wheeler equation parametrized by rg and
Λg. For the stealth Schwarzschild-dS solutions, the QNMs
correspond to the modes that are purely ingoing at r ¼ r̃e
and purely outgoing at r ¼ r̃c. To determine the QNM
frequencies, we consider the ansatzΨl ¼ ψlðX̃Þe−iW̃ T̃ . Let
W̃l;nðrg;ΛgÞ be the QNM frequencies obtained by solving
Eq. (80) with the ansatz forΨl and let ωSch−dS

l;n ðrs;ΛÞ be the
QNM frequencies calculated from the standard Regge-
Wheeler equation parametrized by rs and Λ. Then, the
QNM frequencies W̃l;nðrg;ΛgÞ can be expressed as

W̃l;nðrg;ΛgÞ ¼ ωSch−dS
l;n ðrg;ΛgÞ; ð82Þ

where ωSch−dS
l;n ðrg;ΛgÞ≔ωSch−dS

l;n ðrs → rg;Λ→ΛgÞ. Finally,
from the relation between T̃ and t̃, the QNM frequencies of

the odd-parity perturbations about the stealth Schwarzschild-
dS solutions in the DHOST theory are given by

ωDHOST
l;n ¼ ωSch−dS

l;n ðrg;ΛgÞffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p : ð83Þ

That is, once we know the QNM frequencies in the
Schwarzschild-dS spacetime parametrized by rg and Λg in
GR, we can find the QNM frequencies in the DHOST theory
by applying the scaling law Eq. (83).
It is worth mentioning that there is a degeneracy between

rs and ζ as in the case of the stealth Schwarzschild solutions.
As we discuss in Appendix B, the dimensionless QNM
frequencies of the Schwarzschild-dS spacetime in GR,
ΩSch−dS

l;n ≔ rsωSch−dS
l;n ðrs;ΛÞ, depends only on the combina-

tion r2sΛ, and hence we can write ΩSch−dS
l;n ¼ ΩSch−dS

l;n ðr2sΛÞ.
Thus, the QNM frequencies of the Schwarzschild-dS space-
time can be written as

ωSch−dS
l;n ðrs;ΛÞ ¼

ΩSch−dS
l;n ðr2sΛÞ

rs
: ð84Þ

As a result, Eq. (83) can be rewritten in terms of ΩSch−dS
l;n as

follows:

ωDHOST
l;n ¼ ΩSch−dS

l;n ðr2gΛgÞ
rg

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p ¼ ΩSch−dS
l;n ð½rsð1þ ζÞ3=2�2ΛÞ

rsð1þ ζÞ3=2 ;

ð85Þ

where we have used rg ¼ ð1þ ζÞrs and Λg ¼ ð1þ ζÞΛ.
This means that, if we fix the value of Λ, ωDHOST

l;n depends
only on the combination rsð1þ ζÞ3=2. This shows that there
is a degeneracy between rs and ζ in theQNM frequencies for
the stealth Schwarzschild-dS solutions as in the case of the
stealth Schwarzschild solutions.

(a) (b)

FIG. 10. The characteristic curves for (a) ζ > 0 and (b) ζ < 0 in the Penrose diagram of the Schwarzschild-dS spacetime. The red
curves and the blues curves represent the constant-ṽ curves and the constant-ũ curves, respectively.
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For r2gΛg ≪ 1, there is a perturbative formula for the
QNM frequencies [82]. For l ¼ 2 fundamental mode, the
formula is given by

ΩSch−dS
2;0 ðr2gΛgÞ ¼ 0.74734 − 0.17792iþ 9w1

2
r2gΛg

þ 81w2

8
r4gΛ2

g þOðr6gΛ3
gÞ; ð86Þ

where w1 ¼ −0.18649þ 0.03720i, w2 ¼ −0.04819þ
0.01428i. Note that this formula implicitly assumes rs ≠ 0
since otherwise the left-hand side cannot be defined.
Therefore, the QNM frequency ωDHOST

2;0 becomes

ωDHOST
2;0 ¼ 1

rsð1þ ζÞ3=2
�
0.74734 − 0.17792i

þ 9w1

2
½rsð1þ ζÞ3=2�2Λ

þ 81w2

8
½rsð1þ ζÞ3=2�4Λ2 þOðr6sΛ3Þ

�
: ð87Þ

This explicitly shows that there is the degeneracy between
rs and ζ when we fix the value of Λ.

V. SUMMARY AND DISCUSSIONS

We have investigated the odd-parity perturbations about
stealth Schwarzschild solutions and stealth Schwarzschild–
de Sitter solutions with a linearly time-dependent scalar
field in a subclass of DHOST theories, for which the
deviation from general relativity is controlled by a single
parameter ζ. We have derived the effective metric for the
odd-parity perturbations and analyzed the characteristic
curves. We have also shown that the Killing horizon(s) of
the effective metric differs from that of the background
metric. For ζ < 0 case, the odd-parity perturbations can be
superluminal and hence can escape from the region inside the
Schwarzschild radius of the background metric, as demon-
strated in Appendix A. We have derived the master equation
for the odd-parity perturbations in the form of a two-
dimensional wave equation, which can be expressed in the
form of the standard Regge-Wheeler equation inGRwith the
rescaled black hole mass rg (and the rescaled cosmological
constantΛg in the case of the stealth Schwarzschild–de Sitter
solutions). We have computed the QNM frequencies for
both the stealth Schwarzschild solutions and the stealth
Schwarzschild-dS solutions. In both cases, we have found
that theQNM frequencies can be given by a simple scaling of
those in GR. In particular, we have shown that there is a
degeneracy between the black holemass rs and ζ in theQNM
frequencies.
We have also solved an initial value problem for the odd-

parity perturbations about the stealth Schwarzschild sol-
utions employing the physically sensible formulation of the
initial value problem proposed in [73]. We have defined a

spacelike hypersurface Σ in the following manner: We
have constructed a hypersurface Σ̃ by slightly tilting the
constant-t̃ surface. We have defined the region Swhere the
surface Σ̃ is spacelike. Furthermore, we have required that
(i) the initial surface Σ coincides with Σ̃ in the region S
within the numerical domain, and that (ii) the initial
conditions have a compact support in the region S within
the numerical domain. We have analyzed the time evo-
lution of a initial Gaussian wave packet. We have con-
firmed that the damped oscillation phase (ringdown
phase) appears. We have found that a superposition of
the QNMs in the DHOST theory is consistent with the
numerical waveform through the fitting analysis. In
particular, we have calculated the mismatch between
the numerical waveform and the superposition of the
QNMs in the DHOST theory and found that the minimum
of the mismatch decreases and gets closer to the waveform
peak when the overtones are taken into account. On the
other hand, we have also confirmed that a superposition of
the QNMs in GR does not well describe the numerical
waveform. From these results, we conclude that the
QNMs in the DHOST theory are excited in the physically
sensible initial value problem.
We note that the perturbations about the stealth solution in

DHOST theories would be strongly coupled [63,65,66,69].
A possible way out of this problem is to incorporate the
scordatura term [66]. However, as discussed in Sec. II C, we
expect that the scordatura termwould not lead to a qualitative
change in our results on the odd-parity perturbations. This is
essentially because the strong coupling problem comes from
the vanishing sound speed of the mode corresponding to the
scalar degree of freedom, which belongs to the even-parity
sector. Along this line of thought, it would be intriguing to
study the even-parity sector to see how the effect of the
scordatura term shows up. It should also be noted that the
effect of modified gravity completely disappears in the odd-
parity sector when ζ ¼ 0, and hence the study of odd-parity
perturbations alone cannot tell the difference from general
relativity. This is another motivation to study the even-parity
sector. We hope to come back to this issue in a future
publication.
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APPENDIX A: INITIAL VALUE PROBLEM
FOR NEGATIVE ζ

In Sec. III E, we have analyzed the initial value problem
for the odd-parity perturbations about the stealth
Schwarzschild solutions in ζ > 0 case and shown that the
waveform of the odd-parity perturbations is well described
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by a superposition of theQNMs in theDHOST theory. In this
appendix, we analyze the case of ζ < 0. A remarkable
property of the odd-parity perturbation for ζ < 0 is that
the perturbation is superluminal in thewhole spacetime. This
implies that the odd-parity perturbations can escape from
inside the Schwarzschild radius rs. As we mentioned in
Sec. III B, a constant-t̃ surface is always spacelike, and hence
we choose it as the initial surface; i.e., we set a ¼ b ¼ 1.
Furthermore, we choose σ and Ṽ0 so that the initial field
profile has its support inside rs.
Figure 11 shows the evolution of the odd-parity pertur-

bation for ζ ¼ −0.5 in the ðŨ; ṼÞ space (left panel) and the
waveform observed by an observer at x̃ ¼ 40rs (right
panel). In the left panel, the cyan solid curve is the initial
field profile, which has the compact support inside rs
depicted by the black solid line. The left panel explicitly
shows that the odd-parity perturbation escapes from inside
the Schwarzschild radius rs. The right panel shows that the
damped oscillation phase also shows up in the ζ < 0 case.
We note that the damped oscillation phase can be well fitted
by Eq. (53) with μ ¼ rsð1þ ζÞ−3=2.

APPENDIX B: QNM FREQUENCIES OF THE
SCHWARZSCHILD-DS SPACETIME IN GR

Here, we briefly mention a property of the QNMs of the
Schwarzschild-dS spacetime in GR. The Regge-Wheeler
equation for the Schwarzschild-dS solution in GR can be
written as

�
∂
2

∂x2
−

∂
2

∂t2
− VlðxÞ

�
Ψl ¼ 0; ðB1Þ

with the effective potential given by

VlðxÞ ¼
�
1 −

rs
r
−
Λ
3
r2
��

lðlþ 1Þ
r2

−
3rs
r3

�
: ðB2Þ

Substituting the ansatz Ψl ¼ ψlðxÞe−iωt, we have

�
∂
2

∂x2
þ ω2 − VlðxÞ

�
ψlðxÞ ¼ 0: ðB3Þ

In terms of the dimensionless coordinates r̂ ≔ r=rs and
x̂ ≔ x=rs, the above equation takes the form

�
∂
2

∂x̂2
þ ðrsωÞ2 − r2sVlðxÞ

�
ψlðxÞ ¼ 0: ðB4Þ

Note that the effective potential written in terms of the
dimensionless coordinates reads

r2sVlðxÞ ¼
�
1 −

1

r̂
−
r2sΛ
3

r̂2
��

lðlþ 1Þ
r̂2

−
3

r̂3

�
; ðB5Þ

where rs and Λ show up only in the combination r2sΛ. As a
result, theQNMfrequencies normalized by rs should depend
only on r2sΛ, which we write ΩSch−dS

l;n ðr2sΛÞ. Therefore, the
(dimensionful) QNM frequencies ωSch−dS

l;n ðrs;ΛÞ can be
expressed as

ωSch−dS
l;n ðrs;ΛÞ ¼

ΩSch−dS
l;n ðr2sΛÞ

rs
: ðB6Þ

For r2sΛ ≪ 1, there is a perturbative formula for the
QNM frequencies [82]. According to the formula, for
l ¼ 2 fundamental mode, the dimensionless QNM fre-
quency ΩSch−dS

2;0 ðr2sΛÞ is given by

FIG. 11. The evolution of the odd-parity perturbation in the ðŨ; ṼÞ space (left panel) and the waveform of the perturbation observed by
an observer at x̃ ¼ 40rs (right panel) for ζ < 0. In the left panel, the cyan solid curve is the initial field profile and the black solid line is
the location of the Schwarzschild radius rs. The left panel shows that the odd-parity perturbations can escape from inside the
Schwarzschild radius. The right panel shows that the damped oscillation phase also shows up for ζ < 0.
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ΩSch−dS
2;0 ðr2sΛÞ ¼ 0.74734 − 0.17792iþ 9w1

2
r2sΛ

þ 81w2

8
r4sΛ2 þOðr6sΛ3Þ; ðB7Þ

where w1 ¼ −0.18649þ 0.03720i, w2 ¼ −0.04819þ
0.01428i. This is consistent with the fact that the dimen-
sionless QNM frequencies ΩSch−dS

l;n depend only on r2sΛ.
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