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We discuss spontaneous scalarization of the Reissner-Nordström black hole in the presence of higher
derivative gauge field corrections that arise in the context of string, as well as higher-dimensional more
fundamental gravity theories. Our theory admits the Reissner-Nordström solution at the scalar vacuum of
the theory (ϕ ¼ 0), and we find that the higher order derivative gauge field correction term results in the
tachyonic instability of our system once the coupling function satisfies the condition that its second
derivative is positive at the scalar vacuum in the appropriate parameter space. We find that the branches do
not end with an extremal black hole, rather with a singularity as indicated by the divergence of the
Kretschmann scalar. The black holes can be overcharged in the sense that they may carry larger electric
charge in comparison to their mass. Finally, these solutions possess larger entropy at the event horizon
radius when compared to the Reissner-Nordström black hole, as well as to scalarized black holes without
the higher order derivative gauge field terms, indicating in this way the thermodynamic stability and
preferability of our system, when compared to existing literature, while they respect the energy conditions.

DOI: 10.1103/PhysRevD.109.024033

I. INTRODUCTION

The process of spontaneous scalarization has been
proposed by Damour and Esposito-Farése in the context
of neutron stars [1]. Their investigation showed that a
particular coupling between gravity and a scalar field, leads
to physical phenomena that are indistinguishable from the
results of general relativity (GR) when gravity is weak,
but predicts strong deviations from the results predicted
by GR in the strong field regime of neutron stars. Their
analysis is consistent with the observations that one can
make in the weak field limit, where it seems that there is no
other fundamental field at play besides the metric tensor.
However, because of the technological advancement and
routine detection of gravitational waves by the LIGO-
Virgo-Karga Collaboration [2], one is now enabled to
study the existence of gravity-related fundamental fields
besides the metric tensor, that seem to be elusive in the
weak field limit. For such fundamental fields to have
remained undetected so far, there has to exist a mechanism
that suppresses them in the weak field regime. That
mechanism could be described by spontaneous scalariza-
tion, which is a mechanism that endows black holes or
neutron stars (in general strongly self-gravitating bodies,
however in this paper we are interested in the black hole

scalarization) with a nontrivial scalar field configuration
[one can also generalize the mechanism of scalarization to
include vector fields (vectorization) or tensor fields (tenso-
rization)], which only appears when a certain quantity that
characterizes the self-gravitating body, goes beyond a
particular threshold [3].
The prototype example of black hole scalarization might

be found in [4]. Omitting the fourth derivative terms for the
dilaton in the Lagrangian that arises in the effective field
theory that emanates from the bosonic string, as well as
antisymmetric tensor fields, the authors considered the
Lagrangian

L ¼ R
2
−
1

4
ð∂μϕÞ2 þ

α0

8g2
eϕ
�
RμνρσRμνρσ − 4RμνRμν þ R2

�
;

ð1:1Þ

where α0 is the string tension and g is the string coupling.
Here the combination RμνρσRμνρσ − 4RμνRmuν þ R2 ≡ R2

GB
is the Gauss-Bonnet topological invariant, which would not
affect the equations of motion in four dimensions, if not
coupled to the dilaton. In [4] the authors managed to find
hairy black hole solutions, in which the hair is of secondary
type, since, the dilaton field does not contribute to the
spacetime metric by an additional charge that is indepen-
dent of the black hole mass (for an example of a primary
hair, we refer the reader to [5]). It was then later found that
this model might lead to spontaneous scalarization of the
Schwarzchild black hole [6], if one considers coupling
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functions of the scalar field with the Gauss-Bonnet invari-
ant which are quadratic when linearized around the scalar
vacuum with respect to ϕ. The basic idea is that the
Schwarzchild black hole solution does solve the theory for
a vanishing scalar field ϕ ¼ 0. However, by examining the
scalar perturbations in the background of the Schwarzchild
black hole it is found that there exists a threshold value for
the mass of the black hole, below which the Schwarzchild
black hole is no longer stable against scalar perturbation
and the spacetime is getting spontaneously dressed by the
scalar field of the theory. The key difference between
spontaneously scalarized black hole solutions and hairy
black holes that can be sourced by a scalar potential,
for example [7], is that the dressing with the scalar field in
the spontaneous scalarization mechanism is a dynamical
procedure while in the hairy black holes generated by a
scalar potential [7], the potential is engineered in a way to
give the Schwarzchild black hole solution (when ϕ ¼ 0)
as well as a hairy black hole with a nontrivial scalar field,
in which the dressing is not dynamical, and it is not
necessary for the Schwarzchild black hole to be unstable
against the scalar perturbations in order for the dressing to
happen.
Since these first results, a massive number of articles has

been published investigating or generalizing the mecha-
nism of scalarization. While most of them could be found
in the review [3], we will devote this paragraph to some
important works. In [8] many different forms for the
coupling function of the scalar field with the Gauss-
Bonnet invariant were considered, and the results showed
that regular, asymptotically flat black hole solutions may be
obtained, that elude the no-scalar-hair theorems. It was also
pointed out that the scalarized black holes with an expo-
nential coupling function (the dilatonic coupling) will lead
to higher entropy when compared to the Schwarzchild
black hole. Furthermore, self-interactions have been con-
sidered for the scalar field in [9–11], with [9] providing
evidence that a quartic potential for the scalar field can
lead to stable scalarized black hole solutions. The pure
strong-field regime was considered in [12], and it was
found that the pure Gauss-Bonnet term cannot support
the existence of black hole solutions. Black holes with
a cosmological constant have been considered in [13].
The spontaneous scalarization of generalized scalar-tensor
theories has also been addressed in [14] as well as the
scalarization of a Ricci scalar coupling besides the Gauss
Bonnet term [15]. Spin-induced scalarization is considered
in [16,17], while the issue of stability of these types of
black holes was also investigated in [18]. Finally, the effects
of mass and self-interaction on nonlinear scalarization was
tackled in [19].
The spontaneous scalarization of the Reissner-

Nordström (RN) black hole was explored in detail in [20]
for different coupling functions between the Gauss-Bonnet
invariant and the scalar field, and it has been found that the

solutions do not reach an extremal limit. The scalarization
of the RN black hole with the help of a coupling between
the scalar field and the electromagnetic invariant was
scrutinized in [21] in the Einstein-Maxwell-Scalar (EMS)
model. The results indicated that the RN black hole is less
thermodynamically favored compared to the scalarized
version. It should be noted that, as in the case of the
Gauss-Bonnet coupling, the EMS models arise naturally in
the low energy limit of string theory, while several black
hole solutions have been found in this scenario [22],
the most notable one being the Garfinkle, Horowitz,
Strominger (GHS) black hole. In general the EMS models
are governed by the following Lagrangian:

L ¼ R
2
−
1

2
ð∂μϕÞ2 − fðϕÞFμνFμν − VðϕÞ; ð1:2Þ

where fðϕÞ is the coupling function (in string theory setups
this is given by an exponential function for the dilaton)
and VðϕÞ is a scalar potential for the dilaton field. The
dependence of the results on the form of the coupling
functions has been addressed in [23]. The stability of such
black holes was assessed in [24,25]. Both electric and
magnetic charges have been taken into account in [26], and
scalarized black holes were obtained. The shadow casted
by such black holes was analyzed in [27], and the results
unveiled that the scalarization always increases the radius
of the shadow, regardless of the form of the coupling
function. Axionic type couplings were considered in [28],
while self-interactions for the scalar field were introduced
in [29,30], and the scalarization of charged black holes
in the anti–de Sitter case was discussed in [31]. Possible
dynamical scalarization in the RN-Melvin spacetime, which
describes a charged black hole permeated by a uniform
magnetic field, was studied in [32], and a holographic
scalarization of black holes with charged scalar fields was
investigated in [33]. Very recently, mixed spontaneous
scalarization of EMS has also been explored in [34].
As we have already discussed, the Gauss-Bonnet invari-

ant arises from Oðα0Þ corrections to the bosonic sector of
N ¼ 2 supergravity, and the Gauss-Bonnet invariant is the
Oðα0ÞR2 correction to the Einstein action in the ten-
dimensional heterotic string theory [35]. However, if one
does not set the gauge field of the Uð1Þ, that arises as a
subgroup in the low energy effective theory of the heterotic
string to zero, then higher order derivative gauge field terms
coupled to the dilaton will arise [35,36], such as

∼hðFμνFμνÞ2; ∼ hFσ
αFα

βF
β
γF

γ
σ; ð1:3Þ

where h denotes the dilaton field. Such terms will arise
as Oðα0Þ order corrections, just like the Gauss-Bonnet
invariant. Moreover, by performing a nondiagonal reduc-
tion of the Gauss-Bonnet action, generating a gauge field
in the lower-dimensional action one will also find terms
like (1.3) coupled to the dilaton field [37]. With the term
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“nondiagonal reduction” we refer to scenarios where the
extra dimensions are not compactified, and therefore the
resulting metric cannot be brought to a block-diagonal
form, where one block corresponds to the four-dimensional
spacetime and another block that accounts for the extra
dimensions. Consequently, these types of terms are well
motivated from more fundamental string, as well as higher-
dimensional gravity theories.
In this work we will consider the higher order derivative

gauge field corrections that arise in the fundamental
contexts we discussed previously. We will ignore higher
order derivative terms for the scalar field, the Gauss-Bonnet
invariant, as well as couplings of the derivatives of the
scalar field with the Maxwell invariant and consider the
Lagrangian

L ¼ R
2
−
1

2
ð∂μϕÞ2 −

1

2
FμνFμν − fðϕÞFμνFμν

þ αfðϕÞðFμνFμνÞ2: ð1:4Þ

The first terms (for α ¼ 0) have already been considered
in the literature [23], and we will compare our findings with
the existing results. One may arrive at such an action by
field redefinitions as higher order derivative corrections to
the GHS black hole. We did not include the scalar
Fα

σFβ
αFγ

βFσ
γ since, as it is already pointed out in [36,38]

this scalar provides a contribution similar to the ðFμνFμνÞ2
scalar because of the fact that we will consider pure electric
fields and hence we will not consider it here. We will then
proceed in order to find the conditions under which the RN
solution, which solves the theory for ϕ ¼ 0 ¼ fð0Þ is
tachyonically unstable. We will see that for α > 0 the
RN solution is unstable above a threshold of the parameter
space and will admit a growing mode, once fðϕÞ > 0 and
f̈ðϕÞ > 0. We will use a quadratic coupling function to
model our system, and it is expected that more complicated
functions that admit such expansion in the weak field limit
will not affect (at least the onset of) the scalarization. Our
results indicate that these black holes are thermodynami-
cally preferred over the RN black hole and the branches do
not end with an extremal black hole, but rather with a
singularity as is evident from the behavior of the
Kretschmann scalar. Moreover the energy conditions are
respected for our spacetime.
This work is organized as follows: In Sec. II we provide

a brief overview of the particular EMS model, and we
study the linear stability against scalar perturbations of the
Reissner-Nordström black hole solution. In Sec. III we
derive the nontrivial scalarized black hole (BH) solutions,
and we examine their characteristics. In Sec. IV we discuss
the thermodynamic properties of the scalarized BHs,
and in Sec. V we discuss their energy conditions. We
summarize our findings and highlight potential future
research attempts in Sec. VI.

II. THE EMS MODEL WITH HIGHER
DERIVATIVE GAUGE CORRECTIONS

In this section we will introduce our model, derive the
field equations, and perform an instability analysis in order
to determine the conditions under which our theory devel-
ops a tachyonic instability.

A. The setup of the theory

We consider the action of general relativity, a scalar field
with its kinetic term, which is nonminimally coupled to
higher order derivative gauge field corrections, namely

S ¼ 1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
∇μϕ∇μϕ −

1

2
P

− fðϕÞðP − αP2Þ
�
; ð2:1Þ

where

P ¼ FμνFμν ¼ −2ðE2 − B2Þ; ð2:2Þ

and Fμν ¼ ∂μAν − ∂νAμ is the Faraday tensor, and Aμ is the
gauge potential. We will not consider dyons in this paper,
and as a result, the scalar Fα

σFβ
αFγ

βFσ
γ will have similar

contribution with the P2 scalar, and its absence will not
affect our results qualitatively. Consequently, the only
quantity responsible for the nonlinear electrodynamics
modifications will be sourced by the scalar P2. We will
use units in whose Newton’s constant G as well as the
permeability of vacuum are normalized to unity.
By varying with respect to the dynamical fields ϕ; Aμ,

and gμν respectively we can obtain the following equations
of motion:

∇μ∇μϕ − ḟðϕÞðP − αP2Þ ¼ 0; ð2:3Þ

∇μ

�
2Fμν þ fðϕÞFμν − 2αfðϕÞPFμν

� ¼ 0; ð2:4Þ

Gμν ¼ T SC
μν þ T EM

μν þ T INT
μν ; ð2:5Þ

where T SC
μν ; T EM

μν ;T INT
μν are the energy-momentum tensors

of the scalar field, the Maxwell invariant, and the inter-
action term, and are given by

T SC
μν ¼ ∇μϕ∇νϕ −

1

2
gμν∇κϕ∇κϕ;

T EM
μν ¼ 2Fμ

κFνκ −
1

2
gμνP;

T INT
μν ¼ fðϕÞ�4Fμ

κFνκ − gμνP − 8αFμ
κFνκP þ αgμνP2

�
:

The vacuum of our theory ϕ ¼ 0 corresponds to the RN
black hole upon considering fð0Þ ¼ ḟð0Þ ¼ 0. We wish to
seek black hole solutions in the aforementioned theory,
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since it has been found that the much simpler scenario
(when compared to a direct coupling of the scalar field to
the Gauss-Bonnet invariant) of coupling a scalar field to
electromagnetism might lead to scalarization of charged
black holes [21]. We study the spontaneous scalarization
process, and we present the new scalarized black hole
solutions and their properties. To do so we will numerically
integrate the system of field equations with the appropriate
boundary conditions.

B. Spontaneous scalarization of RN black holes

In order to scalarize the Reissner-Nordstrom black hole,
we will first look at the behavior of a small perturbation
around the vacuum of the scalar field theory

ds2 ¼ −NðrÞdt2 þ 1

NðrÞ dr
2 þ r2dθ2 þ r2sin2θdφ2;

NðrÞ≡ 1 −
2M
r

þQ2

r2
: ð2:6Þ

Hence we perform the perturbation ϕ → 0þ δϕ, and now
the scalar equation of motion (2.3) becomes

�
□ − μ2eff

�		
ϕ¼0

δϕ ¼ 0; ð2:7Þ

where a term resembling an effective mass squared μ2eff for
the perturbation reads as

μ2eff ¼ f̈ðϕÞðP − αP2Þ		ϕ¼0
: ð2:8Þ

If this effective mass squared is negative, the mass term
becomes imaginary when squared. This implies that the
perturbation oscillates with an exponentially growing or
decaying amplitude. Of course, the perturbation which
grows over time, indicates instability which is referred to
as tachyonic instability. So the requirement of the effec-
tive mass squared to be negative is a necessary condition
for spontaneous scalarization, but not sufficient, as in
Minkowski spacetime, [3]. We observe that P is always
negative for pure electric fields (and therefore P2 > 0), and

α is related to the fine structure constant and is positive.
As a result, to trigger a tachyonic instability, f̈ðϕÞjϕ¼0 > 0

is required in order to scalarize the RN solution. Also
according to the previous requirement that fð0Þ ¼
ḟð0Þ ¼ 0, we will consider the coupling function which
is given by

fðϕÞ ¼ β2ϕ2; ð2:9Þ

where β is a dimensionless constant which shows the
strength of the interaction. Note that to obtain a tachyonic
instability it is necessary for the coupling function to be
quadratic when linearized around the scalar vacuum. In
order to determine the threshold of instability there are two
possible ways; one is a dynamical (time-dependent) spheri-
cally symmetric perturbation, and the other is a static (local)
spherically symmetric perturbation, as in [39]. Because
of the level of complexity we choose the second one.
Performing a static (real) decomposition of the scalar field
with the same symmetries of the RN background, namely
δϕðr; θ;φÞ ¼ uðrÞYlmðθ;φÞ, where Ylmðθ;φÞ are the
spherical harmonic functions of degree l and order m,
Eq. (2.7) is reduced to the equation

�
r2NðrÞu0ðrÞ�0
−


lðlþ 1Þ− 2Q2ð2αQ2 þ r4Þf00ð0Þ

r6

�
uðrÞ ¼ 0: ð2:10Þ

We are interested in the spherically symmetric l ¼ 0
solutions, which are regular on and outside the horizon
rH and vanish at infinity. When these unstable modes
appear, the RN solution becomes unstable and new
scalarized solutions with nontrivial scalar field bifurcate
from it. So in order to determine the regions of the para-
meter space where the RN solution is unstable, we solve
numerically Eq. (2.10) and we study the value of the
perturbation at infinity u∞, as in [26]. In the left panel of
Fig. 1 we plot the u∞ as a function of the charge to mass
ratio q ¼ Q

M of the RN black hole for different values of the

FIG. 1. Left: the value u∞ as a function of the charge to mass ratio q of RN black hole. Right: the radial profiles of perturbation uðrÞ
with a different number of nodes.

STELLA KIORPELIDI et al. PHYS. REV. D 109, 024033 (2024)

024033-4



coupling constants α, β. The zeros of this function give us
the unstable modes which are characterized by a parameter
n ¼ 0; 1; 2; 3;…, which is associated with the number of
nodes of uðrÞ, Fig. 1 (right). We explore the fundamental
mode (zero mode, n ¼ 0), and the first and second mode
(n ¼ 1, n ¼ 2 respectively) of the perturabations, [39,40].
We call the existence value q, qexist the smallest value of q
that onsets the instability of the RN solution. In Fig. 2 we
demonstrate scalarized black hole branches of solutions,
and we can see the lower threshold value qexist of the
domain of existence of scalarized black hole solutions for
different values of the constant α. So the dotted lines
separate the region where the RN black hole is stable (under
dotted line) and the RN is unstable and scalarized solutions
appear and bifurcate from the RN (above dotted line). As
we can notice from Fig. 2 (left) sufficiently large values
of constant α can increase the domain of existence of
scalarized solutions. As it was expected from Fig. 2, [40],
the fundamental mode (n ¼ 0) is described by smaller
values of qexist and therefore the rest of the modes are less
interesting.

III. SPHERICALLY SYMMETRIC SCALARIZED
BLACK HOLE SOLUTIONS

In this section we numerically solve the system of field
equations. We highlight the primary findings, specifically
focusing on the impact of the coupling of the scalar field
to higher order derivative gauge field corrections on the

domains of existence and the profiles of radial functions of
scalarized black hole solutions.

A. Asymptotic forms of the solutions at the horizon
and at infinity

In order to investigate scalarized charged black hole
solutions we consider the following static and spherically
symmetric ansatz for the metric

ds2 ¼ −e−2δðrÞNðrÞdt2 þ dr2

NðrÞ þ r2dθ2 þ r2sin2θdφ2;

NðrÞ≡ 1 −
2mðrÞ

r
; ð3:1Þ

where mðrÞ is the Misner-Sharp mass function and the
gauge potential Aμ,

Aμ ¼ ðAðrÞ; 0; 0; 0Þ; ð3:2Þ

while the scalar field only depends on the radial coordinate,
ϕ ¼ ϕðrÞ. A linear combination of Eqs. (2.3) and (2.5),
using the integral of Eq. (2.4) reads as

A0 ¼ −
eδr2ð1þ 2fðϕÞÞ

2 · 61=3C
þ e−3δC
2 · 62=3αr2fðϕÞ ; ð3:3Þ

2δ0 þ rϕ02 ¼ 0; ð3:4Þ

4rA02e2δfðϕÞð2αA02e2δ þ 1Þ − r
�
N00 þ Nð−2δ00 þ 2δ02 þ ϕ02Þ�þ N0ðrÞð3rδ0 − 2Þ þ 2ðNδ0 þ rA02e2δÞ ¼ 0; ð3:5Þ

Nϕ00 þ


N0 þ Nð2 − rδ0Þ

r

�
ϕ0 þ 2e2δḟðϕÞA02ð1þ 2αe2δA02Þ ¼ 0; ð3:6Þ

where C ¼ CðrÞ reads as

C ¼
� ffiffiffi

6
p

α3=2r4e6δfðϕÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð9αQ2 þ r4ÞfðϕÞ þ 4r4fðϕÞ2ð2fðϕÞ þ 3Þ þ r4

q
þ 18α2Qr4e6δfðϕÞ2

�1=3
; ð3:7Þ

FIG. 2. Lower threshold of domain of existence of scalarized BHs, (left) for different values of the parameter α of the fundamental
modes and (right) for three different modes with the same parameter α ¼ 20.
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where Q is the integration constant which is interpreted as
the electric charge. Note that the primes denote derivatives
with respect to the radial coordinate. To evaluate possible
singular behaviors, it is noteworthy that the expressions for
the Ricci and Kretschmann scalars, considering the line-
element (3.1), are as follows:

R ¼ N0

r
ð3rδ0 − 4Þ þ 2

r2
�
1þ N

�
r2δ00 − ð1 − rδ0Þ2�� − N00;

ð3:8Þ

K ¼ 4

r4
ð1 − NÞ2 þ 2

r2
�
N02 þ ðN0 − 2Nδ0Þ2�

þ �
N00 − 3δ0N0 þ 2Nðδ02 − δ00Þ�2: ð3:9Þ

We construct scalarized charged black hole solutions by
integrating numerically the ordinary differential equa-
tions (3.3)–(3.6) using a shooting method. At the black
hole horizon r ¼ rH the solutions are asymptotically flat
and regular:

mðrÞ ¼ rH
2
þm0ðrHÞðr − rHÞ þ…

δðrÞ ¼ δðrHÞ þ δ0ðrHÞðr − rHÞ þ…

ϕðrÞ ¼ ϕðrHÞ þ ϕ0ðrHÞðr − rHÞ þ…

AðrÞ ¼ AðrHÞ þ A0ðrHÞðr − rHÞ þ…; ð3:10Þ

where

m0ðrHÞ ¼
1

2
e2δðrHÞr2HA

0ðrHÞ2
�
1þ 2fðϕðrHÞ

��
1þ 6αe2δðrHÞA0ðrHÞ2Þ

�
; ð3:11Þ

δ0ðrHÞ ¼ −
2e2δðrHÞr3HA

0ðrHÞ4ḟðϕðrHÞÞð1þ 2αe2δðrHÞA0ðrHÞ2Þ
ð−1þ e2δðrHÞr2HA

0ðrHÞ2ð1þ 2fðϕðrHÞÞð1þ 6αe2δðrHÞA0ðrHÞ2ÞÞÞ2
; ð3:12Þ

ϕ0ðrHÞ ¼
2e2δðrHÞrHḟðϕðrHÞÞA0ðrHÞ2ð1þ 2αe2δðrHÞA0ðrHÞ2Þ

−1þ 2e2δðrHÞr2HA
0ðrHÞ2ð1þ fðϕðrHÞÞð1þ 6αe2δðrHÞA0ðrHÞ2ÞÞ

; ð3:13Þ

A0ðrHÞ ¼ −
eδðrHÞr2Hð1þ 2fðϕðrHÞÞÞ

2 · 61=3CðrHÞ

þ e−3δðrHÞCðrHÞ
2 · 62=3αr2HfðϕðrHÞÞ

: ð3:14Þ

The undetermined parameters δðrHÞ, ϕðrHÞ, and AðrHÞ are
determined from the approximate behavior of the solutions
at large distances via the shooting method. At spatial
infinity, the asymptotic solutions are

mðrÞ ¼ M −
2Q2 þD2

4r
−
MD2

4r2
þ… ð3:15Þ

δðrÞ ¼ D2

4r2
þ 2MD2

3r3
þ… ð3:16Þ

ϕðrÞ ¼ D
r
þMD

r2
þ… ð3:17Þ

AðrÞ ¼ −
Q
r
þ…; ð3:18Þ

where the parameters M, Q, D denote, respectively, the
Arnowitt-Deser-Misner (ADM) mass, the BH electric
charge, and the scalar charge at infinity. The Ricci scalar
R (3.8) approaches zero as r approaches rH, whereas the
Kretschmann scalar K (3.9) is expressed as follows:

K ¼ 12

r4H
−
24eδðrHÞð1þ 2fðϕðrHÞÞÞA0ðrHÞ2

r4H
þ 4e4δðrHÞð5r2H þ 4fðϕðrHÞÞð−14αþ 5r2H þ 5r2HfðϕðrHÞÞÞÞA0ðrHÞ4

r2H
þ 352αe6δðrHÞfðϕðrHÞÞð1þ 2fðϕðrHÞÞÞA0ðrHÞ6 þ 1600α2e8δðrHÞfðϕðrHÞÞ2A0ðrHÞ8 þOðr − rHÞ; ð3:19Þ

where the A0ðrHÞ is given by Eq. (3.14).

B. Numerical results

The analysis of the linear stability has shown that the RN
black hole has a tachyonic instability in a certain region
of the parameter space, where we obtain numerically

scalarized solutions bifurcating from it, as we can see in
Fig. 3. Notice that each dot in the plot denotes a black hole
solution. Each solution is found numerically, by solving the
system of equations (3.3)–(3.6) with a shooting procedure
in the Wolfram Mathematica software. The parameter that
determines each solution is rH ¼ 1, and there are three
shooting parameters, namely, the value of the scalar field
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ϕðrHÞ, the metric function δðrHÞ, and the electric potential
AðrHÞ at the horizon. The shooting method determines the
aforementioned horizon quantities by the asymptotic sol-
utions of ϕ; δ; A at infinity, (3.16)–(3.18). In Fig. 3 the thick
black line denotes the trivial branch of the Reissner-
Nordström solution. Specifically, in Fig. 3 (left) the blue
and gray dotted lines denote the nontrivial branches of
scalarized black hole solutions for fundamental modes, and
in Fig. 3 (right) we demonstrate the first three nontrivial
branches of the fundamental, the first and the second mode,
respectively. As we can notice from the domain of existence
of scalarized black holes (Fig. 2), the nontrivial branches
bifurcate from the trivial branch, and they can reach a
charge to mass ratio q greater than the unity. So scalarized
black hole solutions can be overcharged, as they may have
more electric charge than mass, while the black hole scalar
charge increases to a critical value when the branch ends.
The same happens for all of the first three branches of
nontrivial scalarized black hole solutions. Note also that the
branch of the fundamental mode is bigger and tends with a
greater charge to mass ratio than the other branches of the
first and second modes. The scalar charge D is, obviously,
not independent from the black hole mass M, as the black

hole charge Q, even if an explicit function that relates these
quantities cannot be found analytically, so the hair is of
secondary kind. The endpoint of each branch exhibits a
singularity, and numerical calculations indicate a diver-
gence of the Kretschmann scalar at the horizon as we can
notice in Fig. 4 (left). So we call the critical value of charge
to mass ratio q, qcrit as the value which the Kretschmann
scalar diverges. In Fig. 4 (right) we show the critical lines
which serve as upper bounds for the domain of existence of
scalarized BHs. The last one together with Fig. 2 confirm
that as the parameters α, β are increasing the domain of
existence of scalarized black holes also is increasing. In
Table I we show the existence and critical values of charge
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FIG. 3. The scalar charge D as a function of the charge to mass ratio q, (left) for different values of the parameters α, β of the
fundamental modes and (right) for three different modes for the same parameters α, β.
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FIG. 4. Left: the Kretschmann scalar at the horizon KrH . The dotted lines describe solutions for α ¼ 0.3, and the thin lines describe
solutions for α ¼ 20. As we move closer to the critical point, KrH , diverges. Right: upper threshold of domain of existence of
scalarized BHs.

TABLE I. Threshold values of charge to mass ratio, qexist; qcrit,
for different branches.

α β qexist qcrit

0.3 2 0.54079 1.68719
20 2 0.47737 1.70369
0.3 4 0.29235 2.58449
20 4 0.27943 2.58737

SCALARIZATION OF THE REISSNER-NORDSTRÖM BLACK … PHYS. REV. D 109, 024033 (2024)

024033-7



to mass ratio, qexist; qcrit respectively, for some branches of
scalarized solutions. We can notice from the threshold
values, qexist; qcrit, that the effect of the coupling constant β
is more significant than the effect of the constant α, in the
sense that small value changes of β will result in configu-
rations with bigger deviations when compared to RN. In
Fig. 5 we show such configurations for α ¼ 0.3, q ¼ 0.99,
and β ¼ 1, 2, 4. As we can notice the scalar field
configurations are characterized by no appearance of zeros.
All the configurations deviate from each one as the
coupling constant β is increasing not only qualitatively
but also quantitatively. The value of the scalar field at the
horizon is decreasing while the value at infinity approaches
its asymptotic value with a slower rate, as β is increasing.
The components of the metric gtt; grr of scalarized sol-
utions, as well as the electric potential AðrÞ, demonstrate
significant deviation from the Reissner-Nordström one
[Figs. 5 (right) and Fig. 5 (bottom)]. In Fig. 6 we depict

three scalar field configurations ϕðrÞ for the first three
modes, where we can notice the zeros of each mode. The
fundamental mode does not develop any root, while the
first and the second modes do develop one and two roots
respectively.

IV. THERMODYNAMICS AND SMARR RELATION

Let us now discuss the thermodynamics of the solution
obtained. We are dealing with a stationary, asymptotically
flat spacetime, which therefore admits an asymptotically
timelike vector field Kμ ¼ ð1; 0; 0; 0Þ, which satisfies the
Killing equation ∇μKν þ∇νKμ ¼ 0. As a result we can
define the conserved mass of the black hole as [41]

M ¼ −
1

8π
lim
r→∞

Z
∞
dSαβ∇αKβ; ð4:1Þ

where dSαβ ¼ −2t½αrβ�
ffiffiffi
σ

p
dθdφ is the surface element withffiffiffi

σ
p

being the induced metric on the t ¼ r ¼ const surface:ffiffiffi
σ

p ¼ r2 sin θ. Here tμ is a timelike covariant vector field,

normalized to unity tμ ¼ ð−
ffiffiffiffiffiffiffiffiffiffiffiffi
e−2δN

p
; 0; 0; 0Þ, and rμ is a

spacelike covariant vector field normalized to satisfy
rμ ¼ ð0; NðrÞ−1=2; 0; 0Þ. Expanding the term dSαβ∇αKβ

we have

dSαβ∇αKβ ¼ −2t½αrβ�∇αKβ
ffiffiffi
σ

p
dθdφ

¼ �
−tαrβ∇αKβ þ tβrα∇αKβ

� ffiffiffi
σ

p
dθdφ

¼ −2tαrβ∇αKβ
ffiffiffi
σ

p
dθdφ: ð4:2Þ

FIG. 5. The scalar field ϕðrÞ, the metric gtt; grr, and the electric potential AðrÞ as a function of the radial coordinate r. We set α ¼ 0.3,
q ¼ 0.99.

FIG. 6. The scalar field ϕðrÞ as a function of the radial
coordinate r for the first three modes. We set α ¼ 20, q ¼ 1.1.
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Evaluating the above relation for our line element we
have that

2tαrβ∇αKβ ¼ −2ttrrΓr
ttKt ∼ −2Mr2; ð4:3Þ

where we have used the asymptotic form of the solution
given in Eqs. (3.16)–(3.18) and kept only the highest order
term, since the integral is evaluated at a two-sphere at
infinity. Finally evaluating the integral (4.1) we obtain

M ¼ −
1

8π
ð−8πMÞ ¼ M; ð4:4Þ

which ensures that indeedM is the ADMmass as measured
by a far-away observer.
Now, since the Killing equation is antisymmetric, it

satisfies the following identity:

I
∂Σ
∇αKβdSαβ ¼ 2

Z
Σ
∇β∇αKβdΣα; ð4:5Þ

which might be rewritten as

I
∂Σ
∇αKβdSαβ ¼ 2

Z
Σ
Rα

βKβdΣα; ð4:6Þ

if one uses the antisymmetric nature of the Killing equation,
as well as, the equation □Ka ¼ −Ra

bKb. The left-hand
side of (4.5) contains two contributions from the cross
section defined by t ¼ r ¼ const, one at the event horizon
of the black hole and another one at infinity. As a result we
can break this term into two pieces:

I
∂Σ
∇αKβdSαβ ¼

I
H
∇αKβdSαβ þ

I
∞
∇αKβdSαβ; ð4:7Þ

and we have already calculated the term at infinity, which
will give −8πM. Evaluating the integral at the horizon
we have

I
H
∇αKβdSαβ ¼ 4πr2e−δN0

			
rH
: ð4:8Þ

As a result one may now write

−8πM þ 4πr2e−δN0
			
rH

¼ 2

Z
Σ
Rα

βKβdΣα → M

¼ 1

2
r2e−δN0

			
rH

−
1

4π

Z
Σ
Rα

βKβdΣα:

ð4:9Þ

The area of the event horizon of the black hole is
given by [41]

AðrHÞ ¼
Z

2π

0

dφ
Z

π

0

r2H sin θ ¼ 4πr2H: ð4:10Þ

The temperature of the black hole at the event horizon is
TH ¼ N0e−δ=4πjrH [41]. Now we can rewrite (4.9) as

M ¼ 1

2
AT −

1

4π

Z
Σ
Rα

βKβdΣα: ð4:11Þ

Moreover, the t ¼ const hypersurface element reads as

dΣα ¼ −tα
ffiffiffi
h

p
; ð4:12Þ

where h ¼ r2 sin θ
ffiffiffiffiffiffiffiffiffi
1=N

p
is the induced metric on the

spacelike hypersurface. Now, by using Einstein’s equation
we may rewrite the above equation as

M ¼ 1

2
AT þ 1

4π

Z
∞

rH

dr
Z

π

0

sin θdθ
Z

2π

0

dφ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
e−2δN

p
r2

×

ffiffiffiffi
1

N

r �
−e2δðA0Þ2�fðϕÞ�4αe2δðA0Þ2 þ 2

�þ 1
��


;

ð4:13Þ

where we have used the trace of the energy-momentum
tensor

T ¼ −16αe4δðA0Þ4fðϕÞ − rðϕ0Þ2: ð4:14Þ

Notice here the absence of any A0ðrÞ2 term because of the
fact that Maxwell’s theory is traceless in four dimensions.
Now (4.13) reads as

M ¼ 1

2
AT þ

Z
∞

rH

dr
�
eδr2ðA0Þ2�2fðϕÞ þ 1

�

þ 4αe3δr2ðA0Þ4fðϕÞ�; ð4:15Þ

and this is the Smarr relation that our solution satisfies.
For the free scalar field theory where ϕ ¼ fðϕÞ ¼ δ ¼ 0
one can see that

M ¼ 1

2
AT þΦRNQ; ð4:16Þ

where ΦRN ¼ Q=rH is the electrostatic potential of the
RN black hole, and hence one obtains the usual Smarr
formula.
The charge of the scalar field might also be computed by

using the relation of the dilaton charge, mostly used in
string theory [4,22]:

D ¼ −
1

4π

Z
d2Σμ∇μϕ; ð4:17Þ

where the integral is evaluated over a two-sphere with
infinite radius and −1=4π is a normalization constant. It
might not be clear from this expression, however, that the
scalar field dresses the black hole with a secondary scalar
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hair, since the scalar charge is not independent from the
mass of the black hole, or the electric charge, as we
mentioned above and as can be clearly seen in Fig. 3.
Moreover, as is well known, the entropy will be related

to the area of the black hole solution [42]. It has also
been proven that, the entropy will be associated to the
gravitational theory under consideration through Wald’s
formula [43]. In this work we considered the framework of
general relativity to describe gravitation, and consequently
the entropy will be given by

S ¼ AðrHÞ
4

; ð4:18Þ

since we have set Newton’s constant to unity. As a result,
examining the area of the black hole is the same as
examining the entropy.

A. The thermodynamic quantities

We introduce the dimensionless standard reduced
quantities,

aH ≡ AH

16πM2
; tH ≡ 8πTHM: ð4:19Þ

In Fig. 7 we plot the reduced temperature and the area
of RN black hole solution as well as some scalarized
branches of solutions. As we discussed above, we can
notice in Fig. 7 that for a given set of constants α and β,
nontrivial scalarized black holes emerge through bifurca-
tion from the corresponding Reissner-Nordström black
hole with a specific charge to mass ratio qexist. The branches
of solutions have a finite range and end up at a critical
configuration with a different ratio qcrit. The resulting
solution features a singular horizon, evidenced by the
evaluation of the Kretschmann scalar [Fig. 4 (left)]. As
the critical solution is approached, the horizon area tends
to zero and the temperature remains finite and is decreasing
as long as the coupling is getting stronger as well. It is
essential to mention that there are BHs which are hot as
indicated by the peaks in the reduced temperature plot. In
the parameter space region where both scalarized and RN
black holes coexist for the same charge q, it is consistently
observed that scalarized solutions are entropically favored
over RN black holes, as is evident in Fig. 7 (right). In Fig. 8
we can notice the same behavior of the reduced temperature
and area of all of the first three nontrivial branches. The
fundamental mode exhibits higher entropy in comparison
to the rest of the modes, so the nonfundamental modes are
not thermodynamically preferred.

FIG. 7. Left: reduced temperature tH as a function of the charge to mass ratio q. Right: reduced area aH as a function of the charge to
mass ratio q.

FIG. 8. Left: reduced temperature tH as a function of the charge to mass ratio q for the first three nontrivial branches. Right: reduced
area aH as a function of the charge to mass ratio q for the first three nontrivial branches.
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V. ENERGY CONDITIONS

In this section we will discuss the nature of the energy-
momentum tensor threading the black hole spacetime, by
analyzing the energy conditions [44]. By considering the
proper reference frame where an observer will remain at
rest for constant r; θ;φ [45], we may identify the energy
density and the principal pressures are follows:

ρ≡ −T t
t ¼ e2δðA0Þ2�2fðϕÞ�6αe2δðA0Þ2 þ 1

�þ 1
�

þ 1

2
Nðϕ0Þ2; ð5:1Þ

pr ≡ T r
r ¼

1

2
Nðϕ0Þ2 − e2δðA0Þ2

×
�
2fðϕÞ�6αe2δðA0Þ2 þ 1

�þ 1
�
; ð5:2Þ

pθ ¼ pφ ≡ T θ
θ ¼ e2δðA0Þ2�fðϕÞ�4αe2δðA0Þ2 þ 2

�þ 1
�

−
1

2
Nðϕ0Þ2: ð5:3Þ

Without referring to the exact form of the solutions, the
energy density of the black hole spacetime is always
positive by construction in the exterior region of the black
hole r > rH where N > 0, since in order to have scalarized
solutions we assumed that fðϕÞ > 0 for a positive α. As a
result, the weak energy condition (WEC) which implies the
non-negativity of the energy density, is respected. More-
over, the null energy condition (NEC) states that the sum of
the energy density with the radial pressure is non-negative.
For our scenario we have

ρþ pr ¼ Nϕ02; ð5:4Þ

FIG. 9. The components of the energy-momentum tensor for scalarized BHs for different scenarios. Left: we set α ¼ 0.3, β ¼ 2.
Right: we set q ¼ 0.99.
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which is clearly positive in the causal region of spacetime,
and the NEC again holds by construction since we used a
regular scalar field in order to construct hairy black hole
solutions and not a phantom one (with a negative kinetic
energy term in the Lagrangian). The strong energy con-
dition (SEC) states that the sum of the energy density and
the principal pressures is non-negative which for our case
reads as

ρþprþpθ þpφ ¼ 2e2δðA0Þ2�fðϕÞ�4αe2δðA0Þ2þ 2
�þ 1

�
;

ð5:5Þ

which is also non-negative for our system. Hence the WEC,
NEC, and SEC are all satisfied in the causal region
of spacetime for our solution, since the pressure of the
matter threading the black hole spacetime is tangential
dominated [46]. In Fig. 9 we plot the components of the
energy-momentum tensor of our theory. It is clear that all
components are finite at the event horizon of the black hole
while at infinity tend to zero, in accordance with asymptotic
flatness. In Fig. 9 (left) we set α ¼ 0.3 and β ¼ 2 so we plot
the components T μ

μ for some scalarized BH solutions with
different charge to mass ratio q. We can notice that as the
BHs are getting overcharged, the magnitude of all compo-
nents is increasing at the horizon, while it reaches its
asymptotic value at a slower rate. In the right column we set
α ¼ 0.3, q ¼ 0.99 while we increase the strength of the
interaction of the scalar field with the electromagnetism. As
the coupling constant β is increasing the magnitude of all
the components is decreasing.

VI. CONCLUSIONS

In this work we considered the EMS model with higher
derivative gauge field corrections, a scenario that arises in
string theory setups, as well as dimensionally reduced
Lovelock theories. We investigated the conditions under
which the background solution of our theory (the RN black
hole) develops a tachyonic instability, indicating in this way
the spontaneous dressing of the RN black hole with the

scalar field of the theory. Then we solved numerically the
full field equations and found that we have scalarized black
hole solutions that carry a nontrivial scalar field. The
branches of our black hole solutions end with a curvature
singularity and not with an extremal black hole, which is in
agreement with [20]. We investigated the thermodynamics
of our system, derived the Smarr relation of our black hole
spacetime, and defined the mass and the scalar charge of
our solution through hypersurface integrals. By examining
the temperature of the black hole, we found that there
exists a critical value of the electric charge to mass ratio for
which the black holes are hot. The area of the scalarized
black hole solutions is bigger when compared to the area of
the RN black hole, as well as to the area of the EMS
scalarized black holes without the higher derivative gauge
field corrections. This result indicates that our solutions
are thermodynamically preferred when compared to the
existing literature.
One can now build upon our results by introducing the

terms that we omitted, such as the Gauss-Bonnet term, the
coupling of derivatives of the scalar field with the Maxwell
invariant, etc. It would be of interest to consider dyons.
In this case, the addition of the scalar Fα

σFβ
αFγ

βFσ
γ will

not lead to the same contributions as the ðFμνFμνÞ2 term we
considered here, so one could compare our findings with
the dyonic case. Following [25], the stability of the
scalarized black hole solutions may be of interest to be
addressed.
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