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We present explicit black holes endowed with primary scalar hair within the shift-symmetric subclass of
beyond Horndeski theories. These solutions depend, in addition to the conventional mass parameter, on a
second free parameter encoding primary scalar hair. The properties and characteristics of the solutions at
hand are analyzed with a varying scalar charge. We observe that when the scalar hair parameter is close to
zero or relatively small in comparison to the black-hole mass, the solutions closely resemble the
Schwarzschild spacetime. As the scalar hair increases, the metric solutions gradually depart from general
relativity. Notably, for a particular relation between mass and scalar hair, the central singularity completely
disappears, resulting in the formation of regular black holes or solitons. The scalar field accompanying the
solutions is always found to be regular at future or past horizon(s), defining a distinct time direction for
each. As a final by-product of our analysis, we demonstrate the existence of a stealth Schwarschild black
hole in Horndeski theory with a nontrivial kinetic term.
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I. INTRODUCTION

In general relativity (GR) coupled to electrodynamics, a
stationary black hole is completely characterized by its
mass M, angular momentum J, and electric charge Q:
indeed, two such black holes with identicalM, J, andQ are
described by the exact same Kerr-Newman metric [1]. They
have no hair, i.e., no other independent, externally observ-
able physical quantity [2–5]. Accordingly, the expression
“hairy black hole” refers to a black hole possessing one of
the following two kinds of hair [6]: primary hair, which is a
global charge distinct from mass, angular momentum, or
electric charge; and secondary hair, where the black-hole
metric is dressed with nontrivial additional fields (i.e. other
than electromagnetic) but remains entirely determined by
M, J, and Q.
The quest for hairy black holes can be pursued either in

GR with matter fields other than Maxwell fields or in
modified gravity theories. In the former case, hairy black
holes are typically obtained by considering minimally
coupled non-Abelian gauge fields [7,8], skyrmions [9],
or a scalar field (complex [10] or real; see e.g. [11–13] and
references within). On the other hand, most modified
gravity theories can be cast, at least in certain limits, into
a scalar-tensor form, that is, a theory of gravity which
includes scalar field(s) nonminimally coupled to the
usual metric tensor field gμν. This class of theories
includes the superstring effective theories [14–16] and

compactifications of higher-dimensional gravitational the-
ories such as the Lovelock theory [17]. The most general
scalar-tensor theory of a single real scalar field ϕ leading to
second-order field equations is the Horndeski theory [18],
which admits recent generalizations allowing for higher-
order field equations but still propagating a no ghost degree
of freedom [17].
In the latter case and to the best of our knowledge, no

explicit black holes with primary hair have been found in
such scalar-tensor theories.1 However, numerous black
holes with secondary scalar hair have been constructed
quite easily evading the no-hair theorem [21] (see also
[22,23]). For explicit solutions they can be split into stealth
and nonstealth solutions: a stealth black hole has a Ricci
flat or Einstein metric, but is hairy since it is accompanied
by a nontrivial scalar field; while for a nonstealth black
hole, the metric is not Ricci flat or an Einstein metric. For
instance, the scalar-tensor theory with action

1There exist interesting examples of black holes with primary
hair for a minimally coupled (two-derivative) complex scalar field
[10,19]. There, the minimally coupled scalar is part of the energy-
momentum matter tensor rather than a modification of gravity.
Also, a primary hair black hole was constructed in a bi-scalar
extension of Horndeski theory [20], but, as stated earlier, the
framework of the current article is scalar-tensor theory with a
single scalar field.

PHYSICAL REVIEW D 109, 024032 (2024)

2470-0010=2024=109(2)=024032(11) 024032-1 © 2024 American Physical Society

https://orcid.org/0000-0002-5364-4753
https://orcid.org/0000-0002-3018-5558
https://orcid.org/0000-0001-8686-4093
https://orcid.org/0000-0002-3522-5803
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.024032&domain=pdf&date_stamp=2024-01-23
https://doi.org/10.1103/PhysRevD.109.024032
https://doi.org/10.1103/PhysRevD.109.024032
https://doi.org/10.1103/PhysRevD.109.024032
https://doi.org/10.1103/PhysRevD.109.024032


S½gμν;ϕ� ¼
1

2κc

Z
d4x

ffiffiffiffiffiffi
−g

p fRþ βGμν
∂μϕ∂νϕg; ð1Þ

where R is the Ricci scalar, Gμν the Einstein tensor, and β
and κ ¼ 8πG=c4 coupling constants (we work from now on
in units G ¼ c ¼ 1), admits a stealth Schwarzschild sol-
ution dressed with a scalar field of the form

ϕ ¼ qtþ ψðrÞ; ð2Þ
where the precise form of ψðrÞ can be found in [24]. The
linear-time dependence of the scalar field is compatible
with the staticity of the Schwarzschild metric, because
action (1) depends on the scalar field through its derivatives
only (it is said to be shift-symmetric, which means
symmetric under shifts ϕ → ϕþ const). Furthermore, lin-
ear-time dependence renders the scalar field regular at the
horizon and evades the no-hair theorem [21]. In (2), q is a
free integration constant; however, it is not referred to as a
primary hair since it does not appear in the metric and does
not give rise to any additional charge. As it turns out the
scalar field is associated with a regular congruence of
geodesics painting the GR spacetime in a stealth fashion.
This is understood by noting that the kinetic term on shell
is constant, X ¼ − 1

2
∂μϕ∂

μϕ ¼ q2=2. This construction is
rather general and works out for generic parity and shift-
symmetric theories [25].
Although stealth solutions are generic, finding explicit

asymptotically flat nonstealth solutions turns out to be not
straightforward even with secondary hair. One considers a
very particular shift-symmetric Horndeski theory which is
linked to a higher-dimensional gravity theory [26] where
we have the following solution [27]:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2;

fðrÞ ¼ 1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

r3

r �
; ð3Þ

ϕ ¼ qtþ
Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2r2 þ fðrÞ

p
− fðrÞ

rfðrÞ dr; ð4Þ

with dΩ2 the metric of the unit two-sphere and α a coupling
of the theory. This time, the metric is clearly different from
Schwarzschild (although identical at leading order when
r → ∞), but the hair of the black hole is only secondary
since the metric is again fully characterized by a unique
integration constant, its massM. Again, the free integration
constant q appearing in the scalar field is not primary hair,
since it does not appear as an independent integration
constant for the metric. Notably, the scalar field remains
nontrivial for q ¼ 0, in which case the black hole is dressed
with a purely radial scalar field [28] completely determined
by fðrÞ. In the above nonstealth example, we no longer
have constant kinetic energy; however, the integration

constant q only affects the scalar field and not the metric.
The constant q renders the scalar field regular at the event
and inner future horizons,2 whereas the solution for q ¼ 0
is not even defined for r ≤ rh. We thus see that scalar-tensor
theories with a single scalar field with linear-time depend-
ence allow for a number of solutions with secondary scalar
hair, but crucially lack primary scalar hair. This is true
albeit the fact that no no-hair theorem seems to prevent this.
Lack of primary hair is also true for other numerical or

explicit solutions involving only a radially dependent scalar
and no linear-time dependence (see, for example, [29–39]).
A typical example involves a linear coupling of the scalar to
the Gauss-Bonnet curvature invariant where now the scalar
charge is found to be fixed with the mass of the black hole
so that the solution is regular at the event horizon [22]. We
can undertake a similar construction for static solutions in
Horndeski [40] and beyond Horndeski theories [41] but
again the black holes have secondary hair as the scalar
charge is always fixed with respect to the black-hole mass.
All black holes of Horndeski theories and beyond are with
secondary hair independently if they are stealth, nonstealth
with a time-dependent scalar or not.
In this article, we will present two examples of primary

hair black-hole solutions. They are constructed in the
framework of beyond Horndeski theories [42], with in
addition shift symmetry under ϕ → ϕþ const and parity
symmetry under ϕ → −ϕ. With these symmetries, the
theories are parametrized by three arbitrary functions of
the scalar-field kinetic term X ¼ − 1

2
∂μϕ∂

μϕ, calledG2,G4,
and F4, and the action reads

S½gμν;ϕ� ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p fG2ðXÞ þG4ðXÞR

þ G4X½ð□ϕÞ2 − ϕμνϕ
μν�

þ F4ðXÞϵμνρσϵαβγσϕμϕαϕνβϕργg: ð5Þ
The following notations are used for brevity: ϕμ ¼ ∂μϕ,
ϕμν ¼ ∇μ∂νϕ, and a subscript X means derivation with
respect to X. The solutions presented below describe a
static, spherically symmetric spacetime,

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð6Þ

while the scalar field is

ϕ ¼ qtþ ψðrÞ; ð7Þ

where the linear-time dependence is allowed by shift
symmetry. The scalar field is dimensionless, so the dimen-
sion of q is ðlengthÞ−1. Due to shift symmetry, the scalar

2More precisely, the scalar field is regular at the future
horizons if the þ sign is chosen in Eq. (3), while it is regular
at the past horizons if the − sign is chosen.
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field is determined up to an irrelevant additive constant.
The main difference with the previously presented solutions
(2) and (3) is that in our construction, q will be an
integration constant appearing in the metric and indepen-
dent of the massM of the black hole, thus ensuring the role
of primary scalar hair.
In order to focus on the solution and its properties, we

directly move on to the description of the two theories and
their respective black-hole solutions with primary hair:
Sec. II presents an asymptotically flat black hole, while
Sec. III shows a black hole in a theory with a canonical
kinetic term. Section IV is devoted to our conclusions. The
identification of these two theories among the generic
action (5) and the solutions are presented in detail in the
Appendix. Note that the two solutions we focus on are
homogeneous, i.e. hðrÞ ¼ fðrÞ. Note also that the follow-
ing solutions admit an obvious de Sitter generalization by
introducing a cosmological constant Λ in the action.

II. ASYMPTOTICALLY FLAT BLACK HOLE

The first theory under consideration is parametrized by
two coupling constants: λ, with dimension ðlengthÞ, and η,
with dimension ðlengthÞ4, while the Horndeski functionals
are given by

G2 ¼ −
8η

3λ2
X2; G4 ¼ 1 −

4η

3
X2; F4 ¼ η: ð8Þ

Notice that the theory is invariant under λ → −λ; thus, and
for simplicity of notation, the sign of λ will be fixed to be
positive. Conversely, η can take either sign. It is straight-
forward3 to check that this theory admits a homogeneous
solution [i.e. with h ¼ f in (6)], with two integration
constants, M and q. The metric function fðrÞ reads

fðrÞ ¼ 1 −
2M
r

þ ηq4
�
π=2 − arctan ðr=λÞ

r=λ
þ 1

1þ ðr=λÞ2
�
;

ð9Þ

while the scalar field is given by

ϕðt; rÞ ¼ qtþ ψðrÞ; ½ψ 0ðrÞ�2 ¼ q2

f2ðrÞ
�
1 −

fðrÞ
1þ ðr=λÞ2

�
:

ð10Þ
In the above, the prime stands for derivation with respect to
r, and the kinetic term corresponding to the scalar field is of
the form

X ¼ q2=2
1þ ðr=λÞ2 : ð11Þ

The solution has two independent integration constants:
M, representing the Arnowitt-Deser-Misner (ADM) mass
[43], and the primary scalar hair, q, which unlike stealth
solutions plays an all too important role in the metric,
modifying it from its GR form. When q ¼ 0, the scalar hair
disappears and we get back a GR solution (Schwarzschild)
with a trivial scalar. When both q and M vanish, the
solution reduces to flat spacetime. The behavior of the
metric (9) as r → ∞ is

fðrÞ ¼ 1 −
2M
r

þ 2λ2
ηq4

r2
þO

�
1

r4

�
; ð12Þ

while the scalar asymptotes infinity at null time, ϕ ¼ qv, if
one chooses theþ sign in ψ 0ðrÞ, and ϕ ¼ qu if one chooses
the − sign, where v and u are advanced and retarded null
times, respectively. The solution is asymptotically flat with
ADM mass M (assumed positive from now on), and
primary scalar hair q which scales like electromagnetic
charge in the Reissner-Nordström solution of GR.
Unlike the integration constants q and M, the coupling

constants λ and η fix our theory. The metric function (9)
shows that the independent values of η and q are not
important: only the value of the product ηq4 matters. For
this reason, the main characteristic of the coupling η is its
sign, since a change in its magnitude can always be
accounted for by a change in the primary hair q.
Concretely, it is possible to absorb η in the scalar field
and to end up with two distinct theories, namely, Eq. (8)
replacing η with 1 or −1, respectively. However, we choose
not to do it here in order to maintain a dimensionless
scalar field.
In fact, the sign of η plays an important role in the small-

r structure of spacetime. To see this, we first observe that,
as r → 0, we obtain

fðrÞ ¼ 1 −
2M − πηq4λ=2

r
−
2ηq4r2

3λ2
þOðr4Þ: ð13Þ

Then, when η < 0, we clearly have fðrÞ → −∞, as r → 0.
Therefore, we always have an event horizon, with a
size greater than the Schwarzschild radius rS ¼ 2M; see
Fig. 1(a). As the scalar charge q increases, the event
horizon increases accordingly away from its GR size.
The black hole is therefore increasingly more sparse in
q than its GR counterpart with q ¼ 0. For η > 0 theories, a
number of distinct geometries arise depending on the value
of the massM as compared to the primary hair q. For small
scalar hair, i.e. for M=λ > πηq4=4, we have as before that
fðrÞ → −∞ as r → 0, so there is again at least one horizon.
However, in this case, the event horizon size is always
smaller than the Schwarzschild radius r ¼ rS, and thus the
black hole is more compact compared to its GR analog;
see Fig. 1(b). As we increase the charge q, the event
horizon shrinks in size, and three horizons emerge when
M=λ > ð4þ πÞ=4. As the ratio M=λ exceeds more and

3For more information about the derivation of the solutions see
the Appendix.
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more this threshold,4 the range of values of ηq4 allowing for
three horizons increases. For a large scalar charge, on the
other hand, i.e. for M=λ < πηq4=4, we have that f → þ∞
as r → 0. As the scalar charge gradually increases, we first
obtain a black hole with two horizons, then an extremal
solution with a double horizon, and for very large values of
q, a naked singularity [see again Fig. 1(b)]. We would also
like to note here that the solution (9) reduces to flat
spacetime only when both M and q vanish. If M ¼ 0
but q ≠ 0, the spacetime has zero mass but is nontrivial: it is
a black hole if η < 0, and a naked singularity if η > 0.
In the limiting case, when M=λ ¼ πηq4=4, we obtain

classes of solutions which are completely regular. The
singular term in (13) near r ¼ 0 in this case disappears, and
the expansion of fðrÞ is of the form fðrÞ ¼ 1þ α2r2 þ
α4r4 þ α6r6 þ…, containing only even powers of r. This
is known [44] to imply regularity of all curvature invariants
and of their derivatives; that is, in addition to the regularity
of the Ricci scalar R or the Kretschmann scalar K, one has,
for example, regularity of□pR or□pK for arbitrary p. The
spacetime is parametrized by a unique integration constant,
its mass M, which can take any positive value, and reads

fðrÞ ¼ 1 −
4M
πλ

�
arctan ðr=λÞ

r=λ
−

1

1þ ðr=λÞ2
�
; ð14Þ

ϕ ¼
�
4M
πηλ

�
1=4

tþ ψðrÞ;

½ψ 0ðrÞ�2 ¼
�
4M
πηλ

�
1=2 1

f2ðrÞ
�
1 −

fðrÞ
1þ ðr=λÞ2

�
: ð15Þ

We observe that the function fðrÞ becomes in this case an
even function of r, thus justifying the presence of only even
powers of r in its expansion near r ¼ 0. In this case, we find
that there exists a threshold value a ≈ 2.2116 of the ratio
M=λ that discriminates between different types of regular
solutions. Thus, the spacetime (14) describes a regular
black hole with two horizons if M=λ > a, a regular
extremal black hole with a double horizon if M=λ ¼ a
[see Fig. 2(a)], and a regular soliton with no horizon if
M=λ < a [see Fig. 2(b)].
Our solutions are characterized by a nontrivial scalar

field described by (10). Its radial part is determined through
the form of ½ψ 0ðrÞ�2. Therefore, for a real-valued scalar
field, we need the latter quantity to be positive. A sufficient
condition for this is fðrÞ ≤ 1, for all r. It is not difficult to
show that this is always true for M=λ > πηq4=4 or in the
case of the regular solutions. In Fig. 3(a), we depict the
metric function fðrÞ for a three-horizon black-hole solution
arising in the case when η > 0 andM=λ > πηq4=4 together
with the form of 1=½ψ 0ðrÞ�2. We observe that ½ψ 0ðrÞ�2
always remains always positive, thus ensuring a real-valued
scalar field over the entire spacetime. The only case in
which the scalar field becomes imaginary is when η > 0

and M=λ < πηq4=4, since in this case fðrÞ → þ∞ as
r → 0. However, when this spacetime has a horizon rh,
it suffices to ensure that the scalar field remains real for
r > rh, and this turns out to be the case. As an illustration,
in Fig. 3(b), we display a double-horizon black-hole
solution where fðrÞ diverges to infinity as r → 0.
Although ½ψ 0ðrÞ�2 does become negative in the same
regime, the scalar field remains real-valued in the entire
causal region r > rh.
Let us also briefly comment on the regularity of the

scalar field. When the spacetime is a black hole, regularity
of ϕ at (any) horizon rh is identified by going to future

(b)(a)

FIG. 1. (a) η < 0: single-horizon black hole (BH) solutions more sparse than the Schwarzschild solution. (b) η > 0: multiple-horizon
BH solutions more compact than the Schwarzschild solution and a solution describing a naked singularity. The horizontal axis is
logarithmic in both figures.

4The threshold valueM=λ ¼ ð4þ πÞ=4 is found by solving the
system of equations for a triple horizon, which is then found to be
located at r ¼ λ for the unique value ηq4 ¼ 2.
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horizon-crossing coordinates ðv; r; θ;φÞ or past horizon-
crossing coordinates ðu; r; θ;φÞ, where v ¼ tþ r⋆,
u ¼ t − r⋆, and r⋆ ¼ R

dr=fðrÞ are, respectively, the
advanced time, retarded time, and tortoise coordinate.
Solving (10) for ψ 0ðrÞ, one can choose either sign, ψ 0ðrÞ ¼
þq=fðrÞ… or ψ 0ðrÞ ¼ −q=fðrÞ…. With the þ sign, the
whole scalar field ϕ is regular at any future horizon, since
ϕðv; r ¼ rhÞ ¼ qvþ const, and for the − sign, it is regular
at any past horizon, ϕðu; r ¼ rhÞ ¼ quþ const. For in-
stance, for the þ sign, the scalar field can cross a future
event and future inner horizon, but it cannot cross a past
inner horizon. One then would have to change coordinates
from v to u upon which ϕ loses regularity. In other words,
the scalar field defines a future pointing direction for the

observer, who can hover up to r ¼ 0 for the regular solution
(15) and even go beyond.
In addition, for theories enjoying shift symmetry, it is a

common requirement, for example in no-hair theorems
[21], that the associated Noether current Jμ defined in the
Appendix [see (A1)] have a finite norm in the entire
spacetime. As explained in the Appendix, the field equa-
tions impose Jr ¼ 0 [45], so the only nonvanishing
component of the current is Jt; its magnitude remains
finite everywhere apart from the singularity since

JμJμ ¼ −fðrÞðJtÞ2 ¼ −
4η2q6λ4ð11r2 − λ2Þ2fðrÞ

9ðr2 þ λ2Þ6 : ð16Þ

(b)(a)

FIG. 2. (a) Regular BH solutions, and (b) solitonic solutions arising for η > 0. The horizontal axis is logarithmic in both figures.

(a) (b)

FIG. 3. (a) A three-horizon BH solution with a real-valued scalar field over the entire spacetime. (b) A two-horizon BH solution with a
real-valued scalar field in the causal regime r > rh. The horizontal axis is logarithmic in both figures.
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Concerning the theory functionals (8), they are all
well-defined in the whole spacetime being analytic func-
tions of the kinetic term X, which is also everywhere finite
according to (11). For the stability of the solution [46], we
can require in addition that G4 remains positive, meaning
that the effective Newton constant is positive, too. This is
the case if ηq4 < 3. If, on the contrary, ηq4 > 3, then G4 is
negative below r ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3η

p
q2 − 3

p
=

ffiffiffi
3

p
. Fortunately, the

interesting solutions presented above, such as the three-
horizon black-hole solutions or the regular black-hole/
soliton solutions, emerge also for ηq4 < 3. In the case of
regular black holes with very large masses, we are forced to
have ηq4 > 3, but the radius where G4 becomes negative is
always hidden behind the horizon.

III. BLACK HOLE IN A THEORY
WITH CANONICAL KINETIC TERM

A second homogeneous solution with primary hair can
be obtained also in a theory that includes a canonical
kinetic term, namely

G2 ¼
2η

λ2
X; G4 ¼ 1þ ηX; F4 ¼ −

η

4X
: ð17Þ

As in the previous case, the coupling λ has dimension of
(length) and for simplicity will be assumed positive, while
the coupling η can take either sign; however, the latter now
has dimension ðlengthÞ2. Solving the field equations, we
obtain a solution that again admits two integration con-
stants M and q (the primary hair), with the metric function
given by the expression

fðrÞ ¼ 1þ ηq2 −
2M
r

þ ηq2
π=2 − arctan ðr=λÞ

r=λ
: ð18Þ

As regards the scalar field, we obtain

ϕ¼ qtþψðrÞ; ½ψ 0ðrÞ�2 ¼ q2

f2ðrÞ
�
1−

fðrÞ
1þ ðr=λÞ2

�
: ð19Þ

Note that ψðrÞ assumes the same expression in terms of
fðrÞ as before [see Eq. (10)]; however, its explicit depend-
ence on r is now different since fðrÞ has changed. One may
easily check that the kinetic term X has the exact same
expression as in (11).
The form of the solution seen by an asymptotic observer

at infinity follows by taking again the limit r → ∞. This is
found to have the form

fðrÞ ¼ 1þ ηq2 −
2M
r

þ ηq2
λ2

r2
þO

�
1

r4

�
: ð20Þ

As in the previous case, the integration constant M can be
interpreted as the ADM mass of the solution while q

appears again in the coefficient of the Reissner-Nordström-
type term. The striking feature in this solution, however, is
that the primary hair q introduces also a solid angle excess/
deficit—depending on the sign of η—similar to that of a
gravitational monopole [47,48]. Indeed, rescaling r, as
r → ∞, we obtain

ds2 ¼ −dt2 þ dr2 þ r2ð1þ ηq2ÞdΩ2;

with the sphere of radius r now having an area equal to
4πr2ð1þ ηq2Þ. Therefore, the solution is locally asymp-
totically flat. If we consider the equator plane at θ ¼ π

2
, the

effect is the same as that of a cosmic string with a conical
excess/deficit −πηq2. The gravitational lensing caused by
such defects is well known [47]. If the source S, black hole
B, and observer O are perfectly aligned, then the source
observed will have the form of a ring, whereas a slight
misalignment gives a double image [47]. Consequently, we
expect jηq2j ≪ 1.
We then turn to the radial regime close to the origin. By

expanding the solution (18) around r ¼ 0, we obtain

fðrÞ ¼ 1 −
2M − πηq2λ=2

r
þ ηq2r2

3λ2
þOðr4Þ: ð21Þ

As in the previous case, for η < 0, fðrÞ → −∞ when
r → 0, therefore the solution describes a black hole with a
unique event horizon. Notably, its size is always greater
than the Schwarzschild radius, rh ≥ 2M, and an increasing
function with respect to the scalar charge q. The same
behavior was also observed for η < 0 in the case of the
asymptotically flat black hole presented in the previous
section. Following [27], it is in fact possible to constrain
the scalar hair given that we can probe atomic nuclei of
extremely small mass5 and radius R ∼ 10−15 m which are
horizonless, i.e. rh < R. An estimation for r ¼ rh then
gives ð−ηÞq2 < 2

πλ × ð10−15 mÞ which constrains the scalar
charge for a given coupling constant λ. On the other hand,
for η > 0, there are again three distinct cases depending on
the relative strength of the scalar hair against the mass M
of the compact object: for M=λ > πηq2=4, we obtain a
black hole with a single event horizon; for M < πηq2λ=4,
the spacetime is a naked singularity; whereas for
M=λ ¼ πηq2=4, we find a solution with infinitely regular
curvature invariants. In the latter case, the solution reads

fðrÞ ¼ 1þ 4M
πλ

�
1 −

arctan ðr=λÞ
r=λ

�
; ð22Þ

5Strictly speaking, this argument assumes that any static and
spherically symmetric object of the theory (17) is described by
the metric (18).
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ϕ ¼
�
4M
πηλ

�
1=2

tþ ψðrÞ;

½ψ 0ðrÞ�2 ¼ 4M
πηλ

1

f2ðrÞ
�
1 −

fðrÞ
1þ ðr=λÞ2

�
: ð23Þ

The term between parentheses in (22) is always positive,
and therefore fðrÞ ≥ 1: this time, there is no horizon and
the regular spacetime always describes a regular soliton.
We note once again that the spacetime (18) reduces to
Schwarzschild for q ¼ 0 and to flat spacetime for q ¼ 0
andM ¼ 0. IfM ¼ 0 but q ≠ 0, the spacetime is nontrivial
despite having no mass: it is a black hole if η < 0 and a
naked singularity if η > 0.
In Fig. 4(a), we display an indicative set of black-hole

solutions arising in the case when M=λ > πηq2=4 and for
positive or negative η; the two solutions possess a single
event horizon with a radius smaller or larger than the
Schwarzschild radius, respectively. The Schwarzschild
solution with q ¼ 0 is also shown for the sake of com-
parison. In Fig. 4(b), we depict a black-hole solution arising
for η < 0 together with the quantity 1=½ψ 0ðrÞ�2. The latter
remains everywhere positive, thus ensuring the reality of
the scalar field.
The regularity of the scalar field follows from the same

reasoning as before, by going to horizon-crossing coor-
dinates. The norm of the Noether current is also well-
defined everywhere apart from the singularity, with

JμJμ ¼ −
η2q2ð3r2 þ λ2Þ2fðrÞ

ðr2 þ λ2Þ4 : ð24Þ

Regarding finally G4, and thus the effective gravitational
constant, we readily see that it can become negative only
for negative values of the coupling η, namely for ηq2 < −2.

In this case, G4 is negative below r ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − ηq2=2

p
.

However, it turns out that this radius is again always hidden
behind the horizon.

IV. CONCLUSIONS AND DISCUSSION

In this work, we have found for the first time in the
literature explicit, simple examples of asymptotically flat
black holes with primary scalar hair described by the
metrics (9) and (18). The theories where these solutions
emerge are (single) scalar-tensor theories, and more par-
ticularly, simple beyond Horndeski theories given, respec-
tively, by (8) and (17). When the scalar charge is set to zero,
we recover the Schwarzschild solution but, unlike other
numerous numerical or explicit solutions, the scalar hair is
a free integration constant. This is in contrast to theories
which exhibit scalarization where the scalar hair is fixed
with respect to the mass in order to have a regular solution
at the horizon. Here, the scalar hair q of the solutions is
associated with the linear-time dependence in the scalar
field, and hence to the shift symmetry in the action. These
types of solutions are known to be regular at the horizon
precisely as a result of the linear-time dependence, and
therefore no constraint of regularity is necessary on the
horizon. Quite contrary to previous solutions with a
time-dependent scalar field, the kinetic term here is not
constant, and the primary hair appears in the spacetime
metric. Hence, our solutions cannot be classified as stealth
solutions.
The black-hole solutions we have determined include

geometries with one, two, or three horizons depending on
the values of the parameters M, q, and the coupling
constants of the theory. The solutions emerging can have
an event horizon radius either larger or smaller than the
Schwarzschild radius, and thus they can be more sparse or

(a) (b)

FIG. 4. (a) From bottom to top: a BH solution with angle deficit, the Schwarzschild solution, and a BH solution with angle excess.
(b) An indicative BH solution with a real-valued scalar field. The horizontal axis is logarithmic in both figures.
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more compact compared to the GR solution. In all
cases, the kinetic term of the scalar field is everywhere
well-defined.
A remarkable feature of our solutions is that, for a

particular relation between the mass and the scalar hair,
they become regular spacetimes (solitons or black holes);
i.e. their curvature invariants are infinitely regular for
all values of the coordinates. These regular metrics are
given by Eqs. (14) and (22) while the scalar is regular
throughout spacetime. Regular black holes have already
been found to exist in DHOST theories [49,50]. Here,
however, it is the first time that the solutions are not catered
to a specific theory, they are obtained for a particular
relation in-between the black-hole parameters within a
generic black-hole solution.
It would be very important to study perturbations of the

solutions at hand—there, one may expect that excessive
scalar hair renders these solutions unstable so as to evade
naked singularities, which emerge for large values of q.
Also, one would like to examine if there are precise
examples of spontaneous scalarization, in the sense that
solutions with q ≠ 0 are preferred compared to q ¼ 0
solutions. Unlike spontaneous scalarization where one
has two (at least) branches of solutions, here we have a
single solution with two free parameters. As such, one can
continuously go from the solution with q ≠ 0 to the
solution with no hair.
How generic are the solutions that we have found? First,

one can check that if we impose a canonical kinetic term
G2 ∝ X and a homogeneous solution, f ¼ h, the formalism
developed in the Appendix unambiguously leads to the
primary hair solution discussed in Sec. III. Second, one can
question the necessity of going beyond Horndeski to get
such primary hair solutions. By setting F4 ¼ 0 and f ¼ h
in the field equations presented in the Appendix, one is led
to solutions with unsatisfying features, typically, a solid
angle deficit which depends on the coupling constants
[and not only on the hair q as in the solution (18)], or
nonphysical asymptotic terms similar to those described in
[40]. We can, however, identify one interesting case in this
pure Horndeski framework, which, however, has little to do
with a primary hair black hole, and rather appears as a by-
product of the formalism developed in the Appendix. The
theory is

G2 ¼ −2Λþ 2η
ffiffiffiffi
X

p
; G4 ¼ 1þ λ

ffiffiffiffi
X

p
; F4 ¼ 0; ð25Þ

with two coupling constants η and λ, and a cosmological
constant Λ. The metric is nothing but Schwarzschild–de
Sitter (or Schwarzschild if Λ ¼ 0),

fðrÞ ¼ 1 −
2M
r

−
Λr2

3
; ð26Þ

while the kinetic term and scalar field are

X ¼ λq2=2
λþ ηr2

; ϕðt; rÞ ¼ qtþ ψðrÞ;

½ψ 0ðrÞ�2 ¼ q2

f2ðrÞ
�
1 −

λfðrÞ
λþ ηr2

�
: ð27Þ

This is therefore a stealth solution, but, as opposed to all
previously described stealth solutions [24,25], the scalar
field has a nonconstant kinetic term. q is an arbitrary
integration constant of the solution, but should not be
thought of as primary hair, since it does not appear in the
metric. While usual stealth solutions, with constant X, are
prone to strong coupling issues according to [51,52], it is
surely worth investigating if this new stealth solution
enjoys a healthier behavior. It would also be interesting
to investigate the existence of de Sitter solutions with
primary hair and see how these are related (or not) to the
self-tuning de Sitter stealth solutions with a constant kinetic
term [24,53].
As another interesting perspective, one may wonder if

one could construct in a similar way inhomogeneous
solutions that allow for black holes and wormhole metrics
at the same time. Is it possible that the scalar charge in this
case allows for the appearance of a wormhole throat instead
of a black-hole horizon? We know that beyond Horndeski
theories allow for such geometries [37,54,55], so a similar
construction may be possible here. One can also try to
extend this construction to theories without parity or shift
symmetry, and figure out if these theories originate from a
higher-dimensional metric theory such as the Lovelock
theory where no apparent symmetries are present [24,56].
These are some of the exciting questions one could try to
answer in the near future.
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APPENDIX: FIELD EQUATIONS

This appendix explains how, among the general shift and
parity-symmetric beyond Horndeski theories [see Eq. (5)],
we identified the two theories presented above, Eqs. (8)
and (17), as admitting black-hole solutions. The setup is
therefore the action S of Eq. (5), with static, spherically
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symmetric ansatz (6) for the metric, and ansatz (7) for the
scalar field, with a linear-time dependence. The kinetic
term is X ¼ − 1

2
∂
μϕ∂μϕ, and thus 2X ¼ q2=h − fψ 02.

Because of shift -symmetry, there exists a Noether current,

Jμ ¼ 1ffiffiffiffiffiffi−gp δS
δð∂μϕÞ

: ðA1Þ

In general, the scalar field equation then reads ∇μJμ ¼ 0,
but it was shown in [45] that, with the considered ansatz
(6) for the metric and (7) for the scalar field, the
independent field equations are the Noether current
component Jr ¼ 0, and the metric field equations tt
and rr, which result in three equations for three
unknowns hðrÞ, fðrÞ, and ψðrÞ. We denote these three
independent equations as EJ, Et, and Er. Following [41],
we introduce the useful quantity

ZðXÞ ¼ 2XG4X −G4 þ 4X2F4; ðA2Þ

which essentially replaces F4 and enables us to write the
field equations as

EJ ¼ −
2fh0

h
rZX þ r2G2X þ 2G4X − 2fZX

þ q2f
Xh

ðZX − G4XÞ þ
2q2f
h

rF4

�
f0

f
−
h0

h

�
; ðA3Þ

Er ¼ −
2fh0

h
rZ − r2G2 − 2G4 − 2fZ þ q2f

Xh
ðZ þ G4Þ

−
4q2f
h

rF4X0 − fðψ 0Þ2EJ; ðA4Þ

Et ¼ 4rX0ZX þ 2

�
f0

f
−
h0

h

�
rZ −

Er

f
−
�
ðψ 0Þ2 þ q2

fh

�
EJ:

ðA5Þ

The complete system of field equations, EJ ¼ 0, Er ¼ 0,
and Et ¼ 0, thus gives the following system:

2X0ZX ¼
�
h0

h
−
f0

f

�
Z; ðA6Þ

2fh0

h
rZX ¼ r2G2X þ 2G4X − 2fZX þ q2f

Xh
ðZX −G4XÞ

þ 2q2f
h

rF4

�
f0

f
−
h0

h

�
; ðA7Þ

2fh0

h
rZ ¼ −r2G2 − 2G4 − 2fZ þ q2f

Xh
ðZ þG4Þ

−
4q2f
h

rF4X0: ðA8Þ

This system can be simplified further. First of all,
Eq. (A6) integrates to

f
h
¼ γ2

Z2
; ðA9Þ

with γ a constant. Also, Eqs. (A7) and (A8) combine to
give

r2ðG2ZÞX þ 2ðG4ZÞX
�
1 −

q2γ2

2Z2X

�
¼ 0; ðA10Þ

while (A8) combined with (A9) yields

2γ2
�
hr −

q2r
2X

�0
¼ −r2G2Z − 2G4Z

�
1 −

q2γ2

2Z2X

�

þ q2γ2X0r
ZX2

ð2XG4X −G4Þ: ðA11Þ

We now briefly review the method described in [41], with
the use of the auxiliary function G. Indeed, consider some
function G such that

GX ¼ αr2 þ β̃ðXÞ
ϵr2 þ δ̃ðXÞ ; ðA12Þ

where α and ϵ are constants while β̃ðXÞ and δ̃ðXÞ are
functions which will be fixed shortly. Indeed, to ensure
compatibility of G and (A10) we need to have

G2Z ¼ ϵG − αX þ C; ðA13Þ

2G4Z ¼ δG − βX þD; ðA14Þ

while β̃ðXÞ ¼ βð1 − q2γ2

2Z2XÞ, δ̃ðXÞ ¼ δð1 − q2γ2

2Z2XÞ, and β, δ,
C, and D are constants. As a consequence, once G is
given explicitly as a function of X and Z is fixed, one
knows immediately the theory functionals G2 and G4. We
note that choosing Z amounts to fixing the relation
between f and h [see (A9)], as well as F4 [see (A2)].
Then, by using (A10), X is found algebraically as a
function of r. Finally, finding h (and thus f) is a matter
of direct integration of (A11).
Let us consider the case studied for q ¼ 0 in [41],

namely Z ¼ γ (i.e. h ¼ f) and GX ¼ 2μX þ ζ with μ and ζ
constants. Then,

G2 ¼
ϵμ

γ
X2 þ ϵζ − α

γ
X − 2Λ; ðA15Þ

G4 ¼
δμ

2γ
X2 þ δζ − β

2γ
X þ 1; ðA16Þ

where we have fixed the constants C in G2 to give the
usual bare cosmological constant Λ and D in G4 to give a
usual Einstein-Hilbert term. The definition of Z leads to
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the following expression for the beyond Horndeski poten-
tial F4:

F4 ¼
γ þ 1

4X2
þ β − δζ

8γX
−
3δμ

8γ
: ðA17Þ

This directly translates (A10) to an algebraic equation
for X,

2μðϵr2 þ δÞX2 þ ½ðζϵ − αÞr2 þ δζ − β − q2μδ�X

− ðδζ − βÞ q
2

2
¼ 0: ðA18Þ

In general, the solution for X displays square roots, and
Eq. (A11) for h can be integrated only formally, giving an
expression for h depending on a complicated integral.
However, when the equation reduces to a linear equation
for X, then (A11) is integrated explicitly. This corresponds
to the two cases studied in the article: by removing the X0

term, i.e. δζ − β ¼ 0,6 one gets the case studied in Sec. II,
while by removing the X2 term, i.e. μ ¼ 0, one gets the case
studied in Sec. III. In particular, we focused on the case

Λ ¼ 0 but the presented solutions have an immediate de
Sitter generalization for nonzero Λ. In addition, we
appropriately chose the values of some of the coupling
constants to get relevant asymptotics (for example, it turns
out that one must end setting γ ¼ −1). Finally, we have
renamed all coupling constants in order to obtain the simple
expressions (8) and (17) for the theories and for their
corresponding solutions.
Additionally, although h has no closed form expres-

sion when (A18) is a true quadratic equation for X, it
remains possible to study explicitly the asymptotics of
the metric, which in every case displays a primary hair q.
Interestingly, the only case which leads to a pure
asymptotically flat black hole for Λ ¼ 0 as in Sec. II,
that is, fðrÞ ¼ 1 – 2M=rþOð1=rÞ at infinity, is precisely
the case of Sec. II. It remains possible to get fðrÞ ¼
1 – 2M=rþOð1=rÞ for other theories, but at the price of
introducing a nonvanishing bare cosmological constant Λ
whose value must be adjusted with respect to the other
coupling constants. On the other hand, several other
theories lead to a black hole with similar asymptotics as
in Sec. III, that is, with a solid angle deficit triggered by
the primary hair q. Among those, we chose to focus on
the theory of Sec. III, because it offers a closed form
expression and is the only one where G2 ∝ X is a
canonical kinetic term.
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