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We investigate quantum cosmology in teleparallel fðTÞ gravity. We delve extensively into the
minisuperspace description within the context of teleparallelism. The fðTÞ theory constitutes a second-
order theory of gravity, whose cosmological counterpart is delineated by a degenerate pointlike
Lagrangian. To formulate the Hamiltonian function encompassing all constraints and degrees of freedom
inherent to fðTÞ cosmology, we employ the Dirac-Bergmann algorithm. Subsequently, we determine the
wave function of the universe and introduce a “probabilistic” interpretation. We perform comparisons to
some classical solutions to see to what extent the quantum approach can cure classical singularities.
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I. INTRODUCTION

Classic cosmology describes the large-scale structure
and the dynamics of the Universe. Yet, in order to
investigate the quantum phenomena that governed the
Universe’s nascent phases, the field of quantum cosmology
comes into play. The quantum cosmology we know is
based on the treatment of reduced versions of classical
gravitational systems, and the absence of a comprehensive
theory of quantum gravity leaves room for theoretical
discourse regarding its interpretation [1–5]. Nevertheless,
quantum cosmology is used in order to understand the
initial state of the Universe and the evolution of the
quantum fluctuations in the inflationary mechanism [6,7].
Novel attempts in the mathematical construction of a
probability density for the possible states of our cosmos,
based on the wave function of the Universe, have been
presented [8–12]. It has been claimed that the quantum
fluctuations can prevent the initial singularity at the very
early period of the Universe [13–17]. For more in-depth
exploration and examination of (the various realizations of)
quantum cosmology, we direct the reader to [18–28] and
references therein.
Meanwhile, at the classical level, and in order to explain

the acceleration phases of the Universe, cosmologists have
proposed various gravitational models that are classified in

two large families. The first family encompasses the
modified, or alternative, theories of gravity, wherein new
geometric invariants are introduced to alter the Einstein-
Hilbert Action of general relativity (GR), which drive the
dynamics and provide the necessary acceleration [29–33].
In contrast, the second family consists of models where the
gravitational theory remains that of GR, and the cosmic
acceleration is explained by introducing specific matter
components into Einstein’s field equations [34–40].
In this study, we investigate quantum cosmology in the

framework of teleparallel fðTÞ gravity. It is a special class
of a set of modified gravitational theories comprised by the
metric fðRÞ theory [41], teleparallel fðTÞ theory [42], and
symmetric teleparallel fðQÞ theory [43]. In these gravita-
tional frameworks, the gravitational Lagrangian assumes
a functional form denoted as f, utilizing one of the
fundamental geometric scalars: the Ricci scalar R for
the Levi-Civita connection, the torsion scalar T for the
Weitzenböck connection [44], and the nonmetricity scalar
Q for a symmetric and flat connection. When the function f
takes on a linear expression, these three gravitational
models seamlessly converge to general relativity (GR),
the teleparallel equivalent of GR (TEGR) [45], and sym-
metric teleparallel GR (STGR) [46], respectively [47].
Consequently, these three theories are equivalent in their
linear Lagrangian limit. This equivalence can be intuitively
understood noting the fact that the three scalars, namely R,
T, and Q, differ by a total derivative term, which can
be omitted, as far as the process of variation is con-
cerned [48,49].
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Despite some existing research on this particular
topic [50–52], here we follow a different and more
extensive procedure. We use the Dirac-Bergmann algo-
rithm [53,54] in order to reveal the constraints of the system
and formally obtain the Hamiltonian function to be used
in the quantization. In works like [51,52], the Dirac-
Bergmann algorithm is ignored altogether, and, as a result,
there is no distinction among first and second class
constraints, thus, leading to a compromised quantization
of a Hamiltonian which contains nonphysical degrees of
freedom. This particular issue has also been recently
encountered in the exploration of quantum cosmology
within fðQÞ gravity [55]. However, in [55], an additional
error arises due to an incorrect assumption of gravitational
field equations in the presence of nonzero spatial curvature
for the background space-time. In [50], on the other hand,
the Dirac-Bergmann algorithm is followed correctly for
fðTÞ cosmology and a spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) space-time in the presence of a
cosmological constant term. The authors derive the con-
straints of the theory and choose an approach of promoting,
with appropriate reductions, the second class relations to
first class, which they later use to quantize the relative
system. Here, we adopt a more traditional approach, and
for a FLRW space-time with a perfect fluid matter content,
we use the second class constraints to introduce Dirac
brackets [56] with respect to which we proceed to the
canonical quantization.
Quantum cosmology in symmetric teleparallel fðQÞ

gravity was the subject of our study in [57] where we
presented an approach for constructing a Hamiltonian
function in fðQÞ theory that encompasses all first and
second class constraints. In many aspects, the process in the
fðTÞ theory is similar, containing, however, some key
difference mostly when the spatial curvature is nonzero.
The study of quantum cosmology within fðRÞ gravity was
conducted in [58,59]. However, the dynamics in fðRÞ
theory differ from that of fðTÞ and fðQÞ theories due to the
association of the theory’s degrees of freedom with a scalar
field. The constraints in this theory align with those of
scalar-tensor theory [59]. The structure of the paper is
outlined below.
In Sec. II, we introduce the geometric trinity of gravity

and discuss the primary differences in the corresponding
gravitational theories. The minisuperspace description for
the cosmological field equations is discussed in Sec. III,
where we review previous studies on the subject and
examine their weaknesses. Section IV presents the key
findings of this work, where we introduce a complete
quantization for the minisuperspace process in teleparallel
fðTÞ gravity within a FLRW geometry with a matter
source. The presence of the matter source in fðTÞ cosmol-
ogy is crucial; otherwise, the unique classical solution of
the field equations is that of vacuum GR [60]. Finally, in
Sec. V, we provide a summary of our results.

II. THE GEOMETRICAL TRINITY AND ITS
MODIFICATIONS

In the attempt to use geometry to formulate a gravitation
theory, there can be employed one or more of three
fundamental geometric scalars. Let us start from the
definition of a general connection whose components
can be split into three parts

Γλ
μν ¼ Γ̃λ

μν þ Kλ
μν þ Lλ

μν: ð1Þ
The first

Γ̃λ
μν ¼

1

2
gκλ

�
∂gκν
∂xμ

þ ∂gμκ
∂xν

−
∂gμν
∂xκ

�
; ð2Þ

given a space-time metric gμν, is made up by the Christoffel
symbols. The second consists of the contorsion tensor,
which is defined as

Kλ
μν ¼

1

2

�
T λ
μ ν þ T λ

ν μ − Tλ
μν

�
; ð3Þ

where

Tλ
μν ¼ Γλ

νμ − Γλ
μν ð4Þ

is the torsion. Finally, the last part

Lλ
μν ¼

1

2
gλκðQμνκ þQνμκ þQκμνÞ ð5Þ

is the disformation tensor, which emerges due to the
presence of nonmetricity

Qλμν ¼ ∇λgμν; ð6Þ
where ∇λ is the covariant derivative with respect to the
connection (1).
In the case of the usual (pseudo-)Riemannian geometry,

one considers a torsionless, Tλ
μν ¼ 0, connection with

zero nonmetricity, Qλμν ¼ 0, which leads the connection
(1) to be given just in terms of the Christoffel symbols
Γλ

μν ¼ Γ̃λ
μν. Subsequently, gravitational effects are assigned

to the Riemannian curvature and its scalar R. The action of
general relativity is linear in the Ricci scalar R, and its most
famous generalizations are in terms offðRÞmodifications of
the Lagrangian density. Similarly, one may adopt a torsion-
less and flat geometry, thus attributing the gravitational
phenomena to the nonmetricity Qλμν and its corresponding
nonmetricity scalar Q. In the same manner, a flat geometry
(under the assumption of a Weitzenböck connection) can be
chosen together with Qλμν ¼ 0, leaving this time only the
torsion Tλ

μν ≠ 0 and its corresponding scalar to account for
gravity. In both of these two last cases, modifications in the
form of fðQÞ or fðTÞ theories can be taken, respectively.
These are the simplest geometrical configurations that can
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be considered,where in each case, only one of the three basic
geometric scalars is nonzero. The linearized version of this
set of theories has been deemed as the geometrical trinity of
gravity [61,62].
Here, we are going to consider the case of fðTÞ theories

constructed with the help of the torsion scalar

T ¼ S μν
ρ Tρ

μν; ð7Þ

where

Sρμν ¼ 1

2

�
Kμνρ − gρνTλμ

λ þ gρμTλν
λ

�
ð8Þ

is called the superpotential. As is well known, theories
whose Lagrangian density is linear to the scalar T defined
above, i.e., fðTÞ ∼ T, are dynamically equivalent to
Einstein’s general relativity. The linear in T theory is
referred to as the teleparallel equivalent of general rela-
tivity. Similarly, one can define a nonmetricity scalar Q, in
such a manner, so as by taking a theory linear to it the
symmetric teleparallel of general relativity is obtained [63].
Although fðRÞ, fðQÞ and fðTÞ have a lot in common in

the way the theories are constructed, their dynamical
behavior is quite different when we deviate from the linear
expressions with respect to the fundamental scalars of each
case. The fðRÞ gravity leads to higher order equations,
which effectively correspond to an inclusion of an extra
degree of freedom since the theory is dynamically

equivalent to GR with an appropriate addition of a scalar
field. In the cases of fðQÞ and fðTÞ gravity, we have
second order equations, and, when the connection does not
play a dynamical role, it leads to important implications for
the procedure, which we need to follow in order to perform
a minisuperspace quantization. We shall refer to this point
more extensively in the subsequent sections.

III. MINISUPERSPACE LAGRANGIANS

Let us begin by writing the FLRW line element:

ds2 ¼ −NðtÞdt2 þ aðtÞ2½dχ2 þ χ2sinc2ð
ffiffiffi
k

p
χÞ

× ðdθ2 þ sin2 θdϕ2Þ�; ð9Þ

where sinc2ð ffiffiffi
k

p
χÞ ¼ ½sinð

ffiffi
k

p
χÞffiffi

k
p

χ
�2 is the square of the sine

cardinal function. The above line element can describe
at the same time the spatially curved k ¼ �1 and the flat

k ¼ 0 cases, since limk→0

�
sinð ffiffi

k
p

χÞffiffi
k

p
χ

�
¼ 1 ¼ sincð0Þ. In these

coordinates, χ is considered as a radial angle, while the
scale factor aðtÞ has units of distance.
We can of course express the line element in the form

ds2 ¼ ηABeAμeBνdxμdxν; ð10Þ

where ηAB ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric,
and the dual vierbein is given by

eAμ ¼

0
BBBBBB@

N 0 0 0

0 −a cos θ affiffi
k

p ðsinð ffiffiffi
k

p
χÞ cosð ffiffiffi

k
p

χÞ sin θÞ − affiffi
k

p sin2ð ffiffiffi
k

p
χÞsin2θ

0 a sin θ cosϕ affiffi
k

p sinð ffiffiffi
k

p
χÞðcosð ffiffiffi

k
p

χÞ cos θ cosϕ − sinð ffiffiffi
k

p
χÞ sinϕÞ − affiffi

k
p sinð ffiffiffi

k
p

χÞðsinð ffiffiffi
k

p
χÞ cos θ cosϕþ cosð ffiffiffi

k
p

χÞ sinϕÞ sin θ
0 −a sin θ sinϕ − affiffi

k
p sinð ffiffiffi

k
p

χÞðcosð ffiffiffi
k

p
χÞ cos θ sinϕþ sinð ffiffiffi

k
p

χÞ cosϕÞ affiffi
k

p sinð ffiffiffi
k

p
χÞðsinð ffiffiffi

k
p

χÞ cos θ sinϕ − cosð ffiffiffi
k

p
χÞ cosϕÞ sin θ

1
CCCCCCA
:

ð11Þ

Note that the above choice is not unique; e.g., one may take
the obvious diagonal vierbein, which can be used in (10) to
reproduce (9). However, the utilization of (11) is crucial in
order to derive a valid minisuperspace Lagrangian. It can be
seen that the latter is a generalization of the diagonal
vierbein under the action of rotation matrices [42,64].
If we adopt the Weitzenböck connection, we get

Γλ
μν ¼ e λ

A ∂νe
A
μ; ð12Þ

which together with (11) leads to the usual expression for
the torsion scalar in FLRW geometry

T ¼ 6

�
ȧ
Na

�
2

−
6k
a2

: ð13Þ

The general action in the case of the fðTÞ theories of
gravity is

A ¼ Agrav þAm ¼ 1

2κ

Z
efðTÞd4xþAm; ð14Þ

where e ¼ detðeAμÞ, and Am is the part of the action that
refers to the matter content. The field equations that are
obtained by variation with respect to eAν are

2

e
∂μðeeρAS μν

ρ f0ðTÞÞ þ 2f0Sσμρe
ρ
AS

μν
σ

−
1

2
e ν
A fðTÞ þ κe ρ

A T
ν
ρ ¼ 0; ð15Þ
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with T μ
ν expressing the energy momentum tensor for the

matter. In our case, we are going to consider a perfect fluid
of energy density ρðtÞ and pressure pðtÞ with

T μ
ν ¼ ðρþ pÞvμvν þ pgμν; ð16Þ

where vμ is the comoving velocity satisfying vμvμ ¼ −1.
For the FLRW metric we consider here, we finally get the
well-known expression T μ

ν ¼ diagð−ρ; p; p; pÞ.
The object of writing a minisuperspace Lagrangian is to

start from (14), use the ansatz we made for the space-time at

hand, and then obtain a reduced Lagrangian of finite
degrees of freedom, which correctly reproduces the result
of (15) for the given space-time. For example, let us first
take the gravitational part of (14) and substitute in it

e ¼ detðeAμÞ ¼ Na3sinc2ð
ffiffiffi
k

p
χÞ sin θ; ð17Þ

which is obtained by the use of (11). The gravitational part
of the action then factorizes into two subparts

Agrav ¼
1

2κ

Z
efðTÞd4x ¼

�Z
ðχ2sinc2ð

ffiffiffi
k

p
χÞ sin θÞd3x

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{spatial part

1

2κ

Z
Na3fðTÞdt

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{t−dependent dynamical part

:

One part has a spatial dependence ðχ; θ;ϕÞ, while the other is
dynamical; i.e., it depends purely on the time variable t. For
the construction of the minisuperspace gravitational
Lagrangian Lgrav, we keep the dynamical t-dependent part
of the above relation. The spatial part can be discarded under
assumptions of performing an integration in a fixed volume
in space, which would turn it into a constant number.
In the dynamical part of the action, we also want to

introduce the information that the torsion scalar is related to
the scale factor through Eq. (13). We thus complete the
gravitation part of the reduced emanating Lagrangian by
adding the relation, which gives the torsion scalar together
with a Lagrange multiplier λðtÞ. In other words, we write

Lgrav ¼
1

2κ
Na3fðTÞ þ λ

�
T −

�
6

�
ȧ
Na

�
2

−
6k
a2

��
: ð18Þ

The variation of Lgrav with respect to T yields the value of
the multiplier

∂Lgrav

∂T
¼ 0 ⇒ λ ¼ −

1

2κ
Na3f0ðTÞ; ð19Þ

which we can replace back into (18) to finally obtain

Lgrav ¼
1

2κ

�
6aȧ2f0ðTÞ

N
þ Na3ðfðTÞ − Tf0ðTÞÞ

− 6kNaf0ðTÞ
�
: ð20Þ

Now, thematter part of the action (14) for a perfect fluid is

Am ¼
Z

eρd4x:

In order to variate it, we need to provide an equation of state
and take into account the continuity equation Tμ

ν;μ ¼ 0,

where the semicolon stands for the covariant derivative with
respect to the Levi-Civita connection for FLRW.
When p ¼ wρ, the Tμ

ν;μ ¼ 0 yields

T μ
ν;μ ¼ 0 ⇒ ρ̇þ ȧ

a
ðpþ ρÞ ⇒ ρ ¼ ρ0a−3ð1þwÞ; ð21Þ

where ρ0 is a constant of integration. By concentrating
again on the t-dependent part of Am, we can write the
minisuperspace contribution due to matter as

Lm ¼ Nρ0a−3w: ð22Þ

By adding the two contributions, we finally write the
total Lagrangian as L ¼ Lgrav þ Lm, which results in the
expression

L ¼ 1

2κ

�
6aȧ2f0ðTÞ

N
þ Nða3ðfðTÞ − Tf0ðTÞÞ − 6kaf0ðTÞÞ

�

þ Nρ0a−3w: ð23Þ

Variation of the above Lagrangian with respect to N and a
produces equations equivalent to those of (15) for the
assumed space-time. Variation with respect to T gives rise
to the result of definition (13). Thus, Lagrangian (23) is a
valid minisuperspace Lagrangian that generates correctly
the classical dynamics. The Euler-Lagrange equations can
be written equivalently as the set:

6ȧ2f0ðTÞ
a2N2

− κρ0a−3ðwþ1Þ −
1

2
fðTÞ ¼ 0 ð24aÞ

2
d
dt

�
ȧf0ðTÞ
aN2

�
þ 2ȧ Ṅ f0ðTÞ

aN3
þ 6ȧ2f0ðTÞ

a2N2
−
2kf0ðTÞ

a2

þ κρ0wa−3ðwþ1Þ −
1

2
fðTÞ ¼ 0 ð24bÞ
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T −
�
6

�
ȧ
Na

�
2

−
6k
a2

�
¼ 0: ð24cÞ

The latter gives of course the expression for the torsion
scalar which we see in Eq. (13).
Before proceeding, we need to mention that the use of

Lagrangian (23) is not the unique starting point from which
one can be led to the Hamiltonian description of this
minisuperspace system. An alternative process, which is
owed to Schutz [65], would be to consider the degree of
freedom of the perfect fluid by introducing variables related
to thermodynamic quantities. Later, the application of a
canonical transformation at the Hamiltonian level allows
for the contribution of the fluid to be written as being linear
in the momenta. This is an approach that has been widely
used in the canonical quantization of minisuperspace
systems [66–69], and it leads to a Schröndinger-like
quantum equation for the corresponding system, where
the fluid is used as an effective time parameter. This
approach is more formal in the sense that it takes into
account the perfect fluid degree of freedom, but the use of a
classical canonical transformation can raise ambiguities in
what regards the quantum equivalente between the two
systems, before and after the transformation. To avoid this,
we choose here to use Lagrangian (23); in any case, the
resulting methodology in what regards the use of fractional
derivatives, which we are going to see later, is not to be
affected by this choice.
However, prior to discussing the Hamiltonian formu-

lation of (23), it is useful to perform a comparison with the
minisuperspace Lagrangians of fðRÞ and fðQÞ cosmolo-
gies for a FLRW space-time.

A. Minisuperspace Lagrangians in the rest of the trinity

A similar procedure can be followed in the case of fðRÞ
gravity with

Agrav ¼ −
1

2κ

Z ffiffiffiffiffiffi
−g

p
fðRÞd4x; ð25Þ

and g ¼ det gμν. Here, in order to reproduce the relevant
minisuperspace Lagrangian, we have to also introduce,
with a Lagrange multiplier, the relation for the Ricci scalar
as obtained by the—now nonzero—Riemann curvature

R ¼ 6

�
ä

aN2
−

ȧ Ṅ
aN3

þ ȧ2

a2N2
þ k
a2

�
: ð26Þ

We avoid the cumbersome details since the procedure can
be found easily in the literature [58,59,70–72], and we just
present the end result for the minisuperspace Lagrangian,
again in the case of a perfect fluid matter source, with a
linear barotropic equation of state, p ¼ wρ,

LfðRÞ ¼
1

2κ

�
6aȧ2f0ðRÞ

N
þ 6a2ȧ Ṙ f00ðRÞ

N

− Nða3ðfðRÞ − Rf0ðRÞÞ þ 6kaf0ðRÞÞ
�

þ Nρ0a−3w: ð27Þ

This Lagrangian is also valid in its context; it reproduces
correctly the result of the fðRÞ gravity equations for a
FLRW space-time. Notice the important difference in
comparison to the Lagrangian (23). The latter has no
velocity for the degree of freedom T in contrast to (27),
which possesses a velocity with respect to R. This sub-
stantial difference leads to (23) requiring a modified
treatment in the construction of its Hamiltonian formulation
than the usual treatment applied to Lagrangian (27) and to
other minisuperspace Lagrangians.
In the case of fðQÞ gravity, we start from

Agrav ¼
1

2κ

Z ffiffiffiffiffiffi
−g

p
fðQÞd4x: ð28Þ

Let us require here, for reasons that we will explain shortly,
that we treat only the spatially flat case k ¼ 0. Then, if—
among the three different options for a connection—we
choose the one that is not dynamical, then the nonmetricity
scalar can be written as

Q ¼ 6

�
ȧ
Na

�
2

: ð29Þ

For fðQÞ cosmology, there is usually a variety of distinct
connections that are compatible with the equations of
motion [73–80]. In the spatially flat case, k ¼ 0, there
exist three. However, only one of them is nondynamical;
i.e., in the coordinate system where the line element
is being given by (9), the equation of motion for the
connection is identically satisfied. This is the connection
whose components vanish (coincident gauge) in Cartesian
coordinates, and it is only for this connection that you
get relation (29). For the other two connections, in the
coordinate system where the metric is diagonal, the
dynamical function related to the connection will also
appear in the expression for Q [74,76], meaning that you
need to write a Lagrangian that also produces Euler-
Lagrange equations for the connection. Anyway, let us
consider the simplest case of the nondynamical connection.
The resulting minisuperspace Lagrangian is [57]

LfðQÞ ¼
1

2κ

�
6aȧ2f0ðQÞ

N
þ Na3ðfðQÞ −Qf0ðQÞÞ

�

þ Nρ0a−3w: ð30Þ

Here, there is also no velocity for the additional degree
of freedom Q. This Lagrangian is also successful in
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reproducing the result of the field equations under the
assumptions we have set k ¼ 0 and considering the non-
dynamical connection. The Hamiltonian analysis and an
attempt in the canonical quantization of this Lagrangian, for
various scenarios of matter content, have been performed
in [57].
The similarity of Lagrangian (30) to that of the fðTÞ

theory, Eq. (23), for k ¼ 0 is obvious. The one becomes the
other by interchanging T with Q. The same is true for the
expressions of the basic scalars (13) and (29). At this point,
one may be naively tempted to consider that, in the k ≠ 0
case, the nonmetricity scalar is equal to the right-hand side
of (13) and write the minisuperspace Lagrangian of fðQÞ
cosmology as (23) with T → Q; this is, for example, what
has been done in [55]. However, this is incorrect since

Q ≠ 6

�
ȧ
Na

�
2

−
6k
a2

; when k ≠ 0: ð31Þ

Unlike the k ¼ 0 case, in the coordinate systems where the
FLRW metric is diagonal having an obvious homogeneous
and isotropic form, there is no nondynamical connection
when k ≠ 0. There exists one connection compatible with
the symmetries of the space-time; it is a nonzero, dynamical
connection, whose time dependence affects the expression
of the nonmetricity scalar Q.
It is a common problem in fðQÞ cosmology that one may

be led to the error of thinking that the connection is irrelevant
because its flatness implies the existence of a coordinate
system where it becomes zero. However, as it has been also
stressed in [81], the adoption of a specific type of space-time
metric, like the one in Eq. (9), already constitutes a partial
gauge fixing. As a result, the coordinate system in which we
write the metric may not be compatible with having a zero
connection. This is what happens in the k ≠ 0 case.
So, we see that, unlike the fðTÞ case, in fðQÞ FLRW

cosmology, the relevant minisuperspace Lagrangian is not
given by (23), with a simple change T → Q, when k ≠ 0. It
is only for k ¼ 0 where we can make this identification.
It can also be checked that, if one erroneously sets T → Q
in (23), with k ≠ 0, and takes the relevant Euler-Lagrange
equations, then the latter are not even equivalent to the field
equations for fðQÞ theory reduced by the assumption of the
case of a spatially nonflat FLRW metric.

IV. HAMILTONIAN FORMALISM
FOR THE f ðTÞ MINISUPERSPACE

We start by giving a brief description of the usual
Hamiltonian formalism for minisuperspace Lagrangians
in order to later see in what important way the
Lagrangian (23) differentiates from the usual prescription.
Minisuperspace Lagrangians are usually of the form

L ¼ 1

2N
GijðqÞq̇iq̇j − NVðqÞ; ð32Þ

whereGij is the so-called minisuperspace metric, and qi are
the rest of the degrees of freedom, beside the lapseN, which
we distinguish. In the case of fðRÞ gravity and Lagrangian
(27), we have qi ¼ ða; RÞ, in fðQÞ gravity and (30), there is
qi ¼ ða;QÞ, and finally, in the case that we want to treat in
this work, and Lagrangian (23), we have qi ¼ ða; TÞ.
The fact that all Lagrangians have in common is that

there is no velocity for N. This already signifies that the
Legendre transform is not invertible, and thus, we need to
invoke the Dirac-Bergmann algorithm in order to write the
Hamiltonian of the system, which ends up to be (given an
invertible Gij)

HT ¼ NHþ uNpN ¼ N

�
1

2
GijðqÞpipj þ VðqÞ

�
þ uNpN:

ð33Þ

The momentum with respect to N, pN ¼ ∂L
∂Ṅ ≈ 0, is the

primary constraint of the theory. We use the curly equal “≈”
in the case of constraints to signify what Dirac mentioned
as a weak equality. It basically means that we are allowed to
set the constraint equal to zero only when it appears outside
of Poisson brackets; i.e., fN; p2

Ng ¼ 2fN; pNgpN ¼ 0, but
fN; pNg ¼ 1 even though pN ¼ 0. The first expression is
zero because there appears an overall pN outside of a
Poisson bracket. In the second example, it would be an
error to take fN; pNg ¼ fN; 0g ¼ 0, i.e., set pN equal to
zero inside a Poisson bracket. This is the meaning of
denoting pN ≈ 0. Finally, an important remark is that, if a
phase space quantity is weakly equal to zero, then it is
(strongly) equal to a linear combination of the constraints
of the system (at least in the case of systems with finite
degrees of freedom like the ones we deal here).
Consistency requires that the constraints are to be

preserved in time, at least weakly; this means that we
need to take

ṗN ≈ 0 ⇒ fpN;HTg ≈ 0 ⇒ H ≈ 0: ð34Þ

The

H ¼ 1

2
GijðqÞpipj þ VðqÞ ≈ 0 ð35Þ

is the secondary constraint of the theory, and its own
conservation in time is identically satisfied. So, no addi-
tional constraints emerge. These two constraints commute
with each other, fpN;Hg ¼ 0, and this classifies them as
being first class constraints. This is an important distinc-
tion: First class constraints commute, at least weakly, with
all of the constraints, and their existence is associated with
some gauge freedom in the system. In cosmology, the
existing manifest freedom is that of performing arbitrary
diffeomorphisms in time, which is what evidently remains
at the minisuperspace level from the full four-dimensional
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diffeomorphism invariance.1 After having obtained the
Hamiltonian, the canonical quantization procedure by
following Dirac’s idea of enforcing the constraints on
the wave function leads to the equations

p̂Nψ ¼ 0; Ĥψ ¼ 0: ð36Þ
The first equation is usually forgotten most of the time,
together withN all together in (32) andpN in (33). However,
it is the existence of thepN ≈ 0, which leads us toH ≈ 0 and
later to Ĥψ ¼ 0, that is the Wheeler-DeWitt equation. The
first of (36), p̂Nψ ¼ 0 ⇒ −iℏ ∂ψ

∂N ¼ 0, just tells us that the
wave function ψ does not depend on the lapse N.
The above procedure is perfectly fine for Lagrangians like

(27). However, it is not sufficient for the cases of fðQÞ and of
fðTÞ cosmologies. The reason lies in the fact that for (30)
and (23), the corresponding GijðqÞ matrix is not invertible.
We already noticed the reason for this; it is the lack of
velocity terms in the Lagrangian for Q and T, respectively.
Let us concentrate in Lagrangian (23), whose quantiza-

tion we want to study. As we mentioned, in (23), we are not
only missing a velocity for N, but we are also missing a
velocity for T; i.e., there is no Ṫ term. So, according to the
Dirac-Bergmann algorithm, instead of one, we start off with
two primary constraints

pN ¼ ∂L
∂Ṅ

≈ 0; pT ¼ ∂L
∂Ṫ

≈ 0: ð37Þ

We may write the canonical part NH of the Hamiltonian
with what remains of the degrees of freedom; so, we have

ȧpa − L ¼ NH ¼ N

�
κp2

a

12af0ðTÞ −
a3

2κ
ðfðTÞ − Tf0ðTÞÞ

þ 3k
κ
af0ðTÞ − ρ0a−3w

�
: ð38Þ

The total Hamiltonian is obtained by adding to it the
primary constraints with multipliers

HT ¼ NHþ uNpN þ uTpT: ð39Þ

As explained before, consistency requires now that both pN
and pT are preserved in time; thus, we need to require

fpN;HTg ≈ 0 and fpT;HTg ≈ 0: ð40Þ

The first relation leads to the expected Hamiltonian con-
straint because again fpN;HTg ¼ −H, so we need to
impose

H¼ κp2
a

12af0ðTÞ−
a3

2κ
ðfðTÞ− Tf0ðTÞÞ þ 3k

κ
af0ðTÞ− ρ0a−3w

≈ 0: ð41Þ

The second consistency condition is

fpT;HTg ¼ p2
a −

6

κ2
a2f0ðTÞ2ða2T þ 6kÞ ≈ 0: ð42Þ

This is nothing more than relation (13) expressed in the
phase space formalism and it forms an additional secondary
constraint together with the H ≈ 0 of (41). We symbolize
this new constraint with φ,

φ ¼ p2
a −

6

κ2
a2f0ðTÞ2ða2T þ 6kÞ ≈ 0: ð43Þ

The further checking of the consistency conditions
fH; HTg ≈ 0 and fφ; HTg ≈ 0 leads to no additional
constraints. The first is proportional to φ ≈ 0, so it is
weakly zero

fH; HTg ¼ κNf00ðTÞ
12af0ðTÞ2 φ ≈ 0; ð44Þ

while fφ; HTg ≈ 0 leads to the derivation of the
multiplier uT

fφ; HTg ≈ 0 ⇒ uT ≈
κNpaðfðTÞ − 2Tf0ðTÞ − 4kf0ðTÞa−2 − 2κρ0wa−3ðwþ1ÞÞ

2f0ðTÞða2ð2Tf00ðTÞ þ f0ðTÞÞ þ 12kf00ðTÞÞ ; ð45Þ

if we assume of course that the denominator is different from zero; i.e.

a2ð2Tf00ðTÞ þ f0ðTÞÞ þ 12kf00ðTÞ ≠ 0: ð46Þ

In the expression for uT, we have also used relation (43) to eliminate p2
a and simplify the end result.

The branch that opens when the expression of the left-hand side of (46) is zero is quite interesting and significantly
differentiates the procedure to be followed. For this reason, we will study separately this particular case, where uT is not
fixed, but first, let us treat the generic case.

1The automorphisms of the structure constants of the spatial symmetries account for the freedom particular of mixed spatial-time
coordinate transformations [82].
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A. Generic case

If we assume that (46) holds, we have a four-dimensional
set of constraints, spanned by

fpN; pT;H;φg:

The fact that one of the multipliers appearing in (39) is
fixed signifies the existence of second class constraints, that
is, constraints whose Poisson brackets are not zero even in
the weak sense. This implies the existence of “fake” or
nonphysical degrees of freedom in the system. The second
class constraints in the above set are the pT and φ, whose
Poisson bracket yields

fpT;φg ¼ 6a2

κ2
f0ðTÞ
a2ð2Tf00ðTÞ þ f0ðTÞÞ þ 12kf00ðTÞ�

≠ 0: ð47Þ

The above expression is nonzero due to (46), which we
assume that holds in the generic case. Exactly because pT
and φ are second class, we cannot proceed with the
quantization in the same manner we do for first class
constraints, for example, the fact that pT ≈ 0 cannot imply
now at the quantum level p̂Tϕ ¼ 0, as it happens for the
pN ≈ 0 case. The reason is that this would lead to an
inconsistency due to (47) being nonzero. We would have at
the quantum level p̂Tψ ¼ 0 and φ̂ψ ¼ 0 with ½p̂T; φ̂�ψ
being nonzero by construction, which is impossible.
There are two main strategies regarding this predicament.
The one requires the enhancement of the phase space with
the addition of extra degrees of freedom in such a way
so that the second class constraints become first class. In
this bigger phase space, one can proceed with the usual
quantization of first class constraints. The construction,
however, of the necessary Hamiltonian, with the extra
degrees of freedom, that will reproduce the same dynamics,
is far from trivial.
The second approach, which was what was initially

proposed by Dirac, is the elimination of the fake degrees of
freedom represented by the second class constraints. This is
done with the introduction of the Dirac bracket in place of
the Poisson. For two phase space functions A, B, the former
is defined as

fA;BgD ¼ fA; Bg − fA; XigΔ−1
ij fXj; Bg; ð48Þ

where Xs are the elements of the set of second class
constraints, and Δ−1 is the inverse matrix of the one
constructed by the Poisson brackets of the second class
constraints. In our case, the set of second class constraints is
two dimensional (so i, j ¼ 1, 2) and made up by X1 ¼ pT,
X2 ¼ φ. The antisymmetric 2 × 2 matrix Δ, whose inverse
appears in (48), has componentsΔij ¼ fXi; Xjg. The initial
idea behind the introduction of Dirac brackets was to

impose all second class constraints strongly equal to zero
by making them commute with any phase space function.
As a trivial byproduct of this, all constraints, irrespectively
of being first or second class, commute with each other
through the use of Dirac bracket.
At this point, we can enforce pT ¼ 0 and φ ¼ 0, as

strong equations. That is, we substitute inside the
Hamiltonian pT ¼ 0 and pa from (43), thus arriving at
the reduced Hamiltonian

Hred
T ¼ NHred þ uNpN; ð49Þ

where the reduced, stripped from fake degrees of freedom,
Hamiltonian constraint is

Hred¼
1

2κ

�
a3ð2Tf0ðTÞ−fðTÞÞþ12kaf0ðTÞ
−ρ0a−3w≈0:

ð50Þ

The reduced system has only the two remaining first class
constraints pN ≈ 0 andHred ≈ 0 and can be quantized in the
usual manner, with the exception now that the canonical
quantization scheme is to be constructed based on the Dirac
brackets and not the Poisson. That is, we need to find
functions on the reduced phase space qða; TÞ and pða; TÞ
with the property

fqða; TÞ; pða; TÞgD ¼ 1: ð51Þ

These are going to be our canonical variables to which we
will need to assign the basic quantum operators of position
q̂ψ ¼ qψ and momentum p̂ψ ¼ −i d

dqψ (from now on we
assume units ℏ ¼ 1).
For k ¼ 0, a very convenient choice of functions satisfy-

ing (51) is

qða; TÞ ¼ �ð2Tf0ðTÞ − fðTÞÞ and pða; TÞ ¼ a3

κ
ffiffiffiffiffiffi
6T

p :

ð52Þ

In particular, we have

fqða; TÞ; pða; TÞgD ¼ ∓ κpaffiffiffiffiffiffi
6T

p
a2f0ðTÞ ¼ 1; ð53Þ

with the last equation being true by virtue of the constraint
(43), which we substitute as pa ¼ ∓ ffiffiffiffiffiffi

6T
p

a2f0ðTÞ=κ.
Note that the arbitrariness in the sign of pa ¼ ∂L

∂ȧ ¼
6af0ðTÞȧ=ðκNÞ is related with the arbitrariness in the sign
of N (only N2 appears in the metric). This carries over an
arbitrariness in the sign that we may use to define q in (52).
As we are going to see, this does not really affect the end
result, but it may be useful in allowing us to expand the
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domain of definition of the q variable depending on the
fðTÞ theory that we adopt.
In the new variables, the reduced Hamiltonian constraint

reads

Hred ¼ �
ffiffiffi
3

2

r
q

ffiffiffiffiffiffiffiffiffiffi
TðqÞ

p
p − 6−

w
2ρ0κ

−wTðqÞ−w
2p−w ≈ 0; ð54Þ

where TðqÞ is the inverse of the first of (52), which is to be
found for some given fðTÞ theory. We can exploit the time-
reparmetrization invariance of the system in order to scale
the lapse function as

N ↦ N̄ ¼
ffiffiffi
3

2

r
T−w

2p−wN; ð55Þ

which allows us to write the reduced Hamiltonian (49) as

Hred
T ¼ N̄H̄red þ uN̄pN̄; ð56Þ

where we introduced the rescaled Hamiltonian constraint

H̄red ¼ �qTðqÞwþ1
2 p1þw −

2
1−w
2 ρ0

3
1þw
2 κw

≈ 0: ð57Þ

Having all the dynamical dependence incorporated in one
term helps significantly in the construction of an appro-
priate quantum operator for the H̄red and allows us to
interpret the quantum version of (57) as an eigen-
value equation. Note that the scaling we did in (55) is
equivalent to a change in the lapse in the metric of the form
N ¼ N̄ a3w

6w=2κw
due to p being given by (52).

From what we observe in (57), the momentum is raised
in a power, which is not necessarily a natural number. Such
Hamiltonians are the object of study in the theory of
fractional quantum mechanics [83–85]. Several different
implementations of fractional derivatives exist in the
literature [86,87]. In [57], we made use of the Katugampola
fractional derivative, which has been introduced in [88].
This derivative has the advantage of producing a
differential equation for the quantum version of (57),
instead of an integro-differential equation as happens in
the case of other fractional derivatives. This significantly
simplifies the derivation of the relative quantum solutions.
The Katugampola fractional derivative with index α is
defined as

DαðΨðqÞÞ ¼ lim
ϵ→0

Ψðqeϵq−αÞ −ΨðqÞ
ϵ

; ð58Þ

when 0 < α ≤ 1 and q > 0. Here, the arbitrariness of the
sign in the definition of q in (52) can come into play since
for different regions in the domain of T, we may choose
that definition of q so that the latter remains positive
(q > 0) in the relative domain. Remember that we have the

ability to define q from (52) with different overall signs
with respect to the expression 2Tf0ðTÞ − fðTÞ, depending
on whether the latter is positive or negative.
The action of (58) upon a given function gives

DαðΨðqÞÞ ¼ q1−α
dΨ
dq

: ð59Þ

Although, initially the derivative is introduced for
0 < α ≤ 1, the definition can be modified to be extended
for other values of α. For example, for 1 < α ≤ 2, one
obtains the action

DαðΨðqÞÞ ¼ q2−α
d2Ψ
dq2

: ð60Þ

These are the two operators that are of interest to us.
We have a Hamiltonian constraint given by Eq. (57),

which is of the general form

H̄red ¼ �AðqÞpα − Σ2 ≈ 0; ð61Þ

where

AðqÞ¼qTðqÞwþ1
2 ; α¼1þw and Σ2¼ 2

1−w
2 ρ0

3
1þw
2 κw

: ð62Þ

When the power of the momentum α ¼ 1þ w is in the
region 0 < α ≤ 1, i.e. −1 < w ≤ 0, we assign to H̄red the
operator

Ĥ ¼ ∓ i
2μðqÞ

�
μðqÞAðqÞq1−α d

dq
þ d
dq

ðμðqÞAðqÞq1−αÞ
�

− Σ2: ð63Þ

The Ĥ of (63) has been constructed so that at the limit
α ¼ 1, it gives the most general, linear, first order differ-
ential operator, which is Hermitian under a measure μðqÞ.
The equivalent of the Wheeler-DeWitt equation in this case
is given by taking ĤΨ ¼ 0, which results to the eigenvalue
equation

∓ i
2μðqÞ

�
μðqÞAðqÞq1−αdΨ

dq
þ d
dq

ðμðqÞAðqÞq1−αΨÞ
�
¼Σ2Ψ:

ð64Þ

The latter has the general solution

Ψ ¼ C
q

α−1
2

μðqÞ12AðqÞ12 exp
�
�iΣ2

Z
qα−1

AðqÞ dq
�
; ð65Þ

whereC denotes the constant of integration, and the AðqÞ, α
and Σ are given by (62). We can write the corresponding
probability amplitude to be
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P ¼ μðqÞΨ�Ψ ¼ CC� q
α−1
2

AðqÞ12
�

q
α−1
2

AðqÞ12
��

¼ jCj2
T

1þw
2 j2Tf0ðTÞ − fðTÞj1−w ; ð66Þ

where in the last equality, we used the definition of q, as a
function of T, from (52). Note that choosing a particular
expression for themeasure function in (65) is irrelevant since
it is eliminated from the final expression of the probability
amplitude. Of course, for a well-defined probabilistic
interpretation, the integral of P, for all q (or similarly T),
should be finite. However, as usually happens in cosmology,
this is not in general the case. Nevertheless, we are able to
provide a normalization up to a delta function if wewrite, for
two different values Σ and Σ0, the inner product

Z
μðqÞΨΣðqÞΨ�

Σ0 ðqÞdq ¼ jCj2
Z

qα−1

AðqÞ e
½i
R

qα−1
AðqÞdqðΣ2−Σ02Þ�dq

¼ jCj2
Z

eiðΣ2−Σ02Þudu;

where we performed the change of variable u ¼ R qα−1

AðqÞ dq. If
the variable u in the last integral runs in the whole real line,
then the above expression becomes equal to 2πjCj2δðΣ2 −
Σ02Þ providing a normalization value for the C constant,
C ¼ 1ffiffiffiffi

2π
p . Of course, the domain of definition of q and

consequently of u depends on the assumed fðTÞ theory that
we consider.
From what we observe in Eq. (66), we expect the

probability amplitude to favor values of T that lie on the
roots of T

1þw
2 ð2Tf0ðTÞ − fðTÞÞ1−w ¼ 0. Take, for example,

theories that imply a power-law modification added to the
original GR dynamics; that is fðTÞ ¼ T þ βTμ. Then, we
see that the probability amplitude goes to infinity if

T
1þw
2 ð2Tf0ðTÞ − fðTÞÞ1−w ¼ T

3−w
2 ðβð2μ − 1ÞTμ−1 þ 1Þ1−w

¼ 0: ð67Þ

Assuming that T ≥ 0 and given that the amplitude corre-
sponds to the case −1 < w ≤ 0, the above equation is
satisfied at T ¼ 0, and if β < 0 and μ > 0, also at

T ¼ ½βð1 − 2μÞ� 1
1−μ. We are going to see some examples

of this in the subsequent analysis.
Now, if the power of the momentum is 1 < α ≤ 2 in (61),

that is 0 < w ≤ 1 for (57), we use as the Hamiltonian
constraint operator

Ĥ ¼ ∓ 1

μðqÞ
d
dq

�
μðqÞAðqÞq2−α d

dq

�
− Σ2; ð68Þ

in which the measure function is μ ¼ jqα
2
−1AðqÞ−1

2j. The
differential part of the above expression, for α ¼ 2,

becomes the one-dimensional Laplacian, which we would
normally use in the case of a quadratic Hamiltonian. The
general solution to the eigenvalue equation

∓ 1

μðqÞ
d
dq

�
μðqÞAðqÞq2−α d

dq
Ψ
�
¼ Σ2Ψ ð69Þ

is

Ψ ¼ C1 exp

�
ð∓1Þ12Σ

Z
q

α
2
−1

AðqÞ12 dq
�

þ C2 exp

�
−ð∓1Þ12Σ

Z
q

α
2
−1

AðqÞ12 dq
�
; ð70Þ

which, in the case of the upper sign ð−1Þ12 ¼ i, can be seen
as a linear combination of “ingoing” and “outgoing”waves.
If we choose either one of the two waves, we can impose a
normalizability up to a delta function. For example, take for
two different values Σ and Σ0 the integral

Z
μðqÞΨΣðqÞΨ�

Σ0 ðqÞdq ¼ jC1j2
Z

eiðΣ−Σ0Þxdx; ð71Þ

where we have set x ¼ R q
α
2
−1

AðqÞ12
dq. The above integral results

in 2πjC1j2δðΣ − Σ0Þ if we consider now the x to run in the
whole set of the real numbers.
Similarly to (66), the probability amplitude, for a single

state given by the first branch of (70), becomes

P ¼ μðqÞΨ�Ψ ¼ C1C�
1

q
α
2
−1

AðqÞ12 ¼
jC1j2

T
1þw
2 ð2Tf0ðTÞ − fðTÞÞ2−w2 ;

ð72Þ

which again, we may claim that it can assume its maximum
(diverging) values at the points where the denominator
goes to zero. This holds for the upper sign of (69) and (70),
which corresponds to having q ¼ 2Tf0ðTÞ − fðTÞ > 0.
When 2Tf0ðTÞ − fðTÞ < 0, however, we use the opposite
definition for q from (52) with q¼−ð2Tf0ðTÞ−fðTÞÞ>0,
which leads to real exponents in (70). The probability
amplitude in this case can be taken to be

P¼ μðqÞΨ�Ψ¼ jC2j2
q

α
2
−1

AðqÞ12 exp
�
−2Σ

Z
q

α
2
−1

AðqÞ12 dq
�
; ð73Þ

where we have chosen the branch that (in the following
examples) decays as T → ∞.
In Fig. 1, we present the graphs of the probability

amplitudes, in various cases, for theories of the form
fðTÞ ¼ T þ βT2. In the first part of Fig. 1, the fact that
we take β < 0 leads the common denominator in (66), (72),
and (73) to become zero at two points: T ¼ 0 and T ¼ − 1

3β;
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we see the probability amplitude diverging at the respective
points. Notice that for the cases w ¼ −1=3, (66) has been
used since it belongs to the case 0 < α ≤ 1, while for w ¼
1=3 (1 < α ≤ 2), we used (72) when 2Tf0ðTÞ − fðTÞ > 0

(that is 0 < T < − 1
3β) and (73) when 2Tf0ðTÞ − fðTÞ < 0,

i.e., T > − 1
3β. From the definition of the fractional deriva-

tive we use, we need to have q > 0. One needs to be careful
in the calculation of the various probability amplitudes
regarding this point. The q introduced in Eq. (52) has in its
definition an arbitrariness in the sign that does not affect the
functional form of the wave function. We make use of this
to split regions of T, where we assign the appropriate
expression for q, from (52), which remains positive in that
region.
In the second set of graphs appearing in Fig. 1, we depict

cases with positive β; here, the highest probability ampli-
tude is encountered in the region T → 0. Unlike the β < 0
case of the first part, here, there is only one dominating
value, implying that the torsion scalar is expected to be
almost zero.
It is interesting to note that the classical equations (24),

for k ¼ 0 and for fðTÞ ¼ T þ βT2, are solved by the
combination

N2 ¼ 6ȧ2

a2T
; T ¼ −1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24βκρ0a−3ð1þwÞp

6β
: ð74Þ

The latter implies that, for β < 0, and as long as w > −1,
the torsion scalar T is bounded by 0 ≤ T ≤ − 1

3β. Both
values are reached asymptotically as a → þ∞, the first for
the upper sign appearing in the expression for T in (74) and
the other for the lower. Thus, from what we may observe in
Fig. 1, there is a quantum region assigning nonzero
amplitudes at classically restricted values of T: the region
T > − 1

3β in the first set of plots.

In Fig. 2, we generalize the previous analysis in the case
of fðTÞ ¼ T þ βTμ theories. Here, we see how the different
values of μ affect the probability amplitude. The first set of
graphs is similar to what we have seen before in Fig. 1:
theories that lead to two distinct most probable values for
the torsion scalar T. In the second plot, we see theories with
negative μ in which T ¼ 0 no longer maximizes the
probability amplitude. There is a finite nonzero value of
T with that property. Similarly to Fig. 1, we have used (66),
(72), or (73) for the relevant regions of T and the values of
the parameters.
In both Figs. 1 and 2, we recognize as a relative good

sign the fact that in all cases, PðTÞ → 0 as T → þ∞ (of
course, in the 0 < w ≤ 1 case, we chose the branch of the
wave function that would guarantee this property). This in a
sense assigns a zero probability amplitude to values that
would correspond to a divergence of the geometric scalar of
the theory, the torsion scalar T. Avoiding thus, the “equiv-
alent” of a classical curvature singularity, which is encoun-
tered in metric theories of gravity.
The analysis we performed up to now was dedicated to

the generic case, where (46) holds, but strictly for k ¼ 0.
The generic case of k ≠ 0 is plagued by an important
difficulty. Although it is quite easy to find a pair of
canonical variables with respect to Dirac brackets satisfying
Eq. (51), it is highly nontrivial to produce a Hamiltonian
that can be straightforwardly assigned to a quantum
operator. One usually obtains complicate functionsHðq; pÞ
for which we do not currently have a clear prescription to
propose on how to proceed.
In the next section, we treat the particular case, where

(46) does not hold and the relevant expression is zero. As
we are going to see, this case makes sense (for modified
dynamics from GR) only if k ≠ 0. In order to avoid the
general complication of the k ≠ 0 case, we shall follow a
different procedure, exploiting the fact that classically you
can easily obtain a relation between T and a.

FIG. 1. The probability amplitude P for different values of β and w in the fðTÞ ¼ T þ βT2 theory. One can distinguish between two
(T ¼ 0, T ¼ T0 ≠ 0) and a single (T ¼ 0) most probable values for the torsion scalar T. Expressions (66), (72), and (73) have been used
for P, withC ¼ C1 ¼ C2 ¼ 1ffiffiffiffi

2π
p , respectively, and, in the case of (73), we have additionally set, for reasons of facilitating the depiction of

the graphs, Σ ¼ 1=6.
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B. The particular case

In this section, we study what happens when

a2ð2Tf00ðTÞ þ f0ðTÞÞ þ 12kf00ðTÞ ¼ 0: ð75Þ

First, let us notice that this case is of interest only when
k ≠ 0. If k ¼ 0, the reduced expression

ð2Tf00ðTÞ þ f0ðTÞÞ ¼ 0 ð76Þ

can be satisfied either if fðTÞ ∼ ffiffiffiffi
T

p
, which leads to a

Lagrangian that is a total derivative, or if T is a constant,
whose value is such that satisfies algebraically equa-
tion (76). In this latter case, the resulting space-time is
the well-known de Sitter solution of general relativity,
where now the cosmological constant is given in terms of
T. As a result, we see that interesting novel solutions may
emerge only in the context of k ≠ 0, and this is what wewill
study here.
The treatment that we will apply is different than before.

This has to do with the enhanced complication that the
factor k ≠ 0 brings into play. Even though we can find
some canonical conjugate variables with respect to Dirac
brackets, the Hamiltonian becomes so involved in these
variables that we do not have a clear recipe on how to map
them to quantum operators. We shall thus exploit here the
fact that we can relate easily a to T at the classical level.
If we use (75), together with the known expression for

the torsion scalar (13), we can derive from the former an
expression for the lapse

N2 ¼ −
12ȧ2f00ðTÞ
a2f0ðTÞ : ð77Þ

By utilizing (75), its time derivative, and the lapse given
by (77), in the Euler-Lagrange equations (24), we arrive at
the supplementary conditions

f0ðTÞ ¼ a2fðTÞ þ 2κρ0a−3w−1

2a2T þ 12k
ð78aÞ

fðTÞ ¼ κρ0a−3ðwþ1Þ

2k
½ðwþ 1Þa2T þ 2kð3wþ 1Þ�: ð78bÞ

We now take the time derivative of the last relation, divide
with Ṫ, and set it equal to the first relation. Thus, we obtain
a differential equation connecting T with a

2ð3wþ 1Þȧða2T þ 6kÞ − a3Ṫ ¼ 0: ð79Þ

Its solution is

TðaÞ ¼
8<
:

− 6ð3kwþkÞ
ð3wþ2Þa2 þ T0a2ð3wþ1Þ; when w ≠ − 2

3

T0

a2 − 12k lna
a2 ; when w¼ − 2

3

; ð80Þ

where T0 is a constant of integration. Up to now, we have
guaranteed the consistency of (78), and we need also to
check the consistency with (75) and, of course, with the
Euler-Lagrange equations. This can be done easily if we
use (80) to write the fðTÞ as a function of the scale factor
fðaÞ. From (78a), we obtain

fðaÞ¼
8<
:

T0κρ0ðwþ1Þa3wþ1

2k − κρ0ð3wþ1Þa−3ðwþ1Þ
3wþ2

; whenw≠−2
3

κρ0
a

�
T0

6k−1−2 lna
�
; whenw¼−2

3
:
:

ð81Þ

By making the change fðTÞ → fðaÞ in the Euler-Lagrange
equations, we can easily see that the latter are satisfied with
the substitution of (77), (80), and (81). From the first, we
obtain the expression for the lapse function

FIG. 2. Probability amplitude P in theories fðTÞ ¼ T þ βTμ for different values of μ. The first set of plots corresponds to μ > 0,
leading to two most probable values, while in the second case, we can see theories with μ < 0 leading to a single dominant non-zero
value for T. Once more, expressions (66), (72), and (73) have been used appropriately, with C ¼ C1 ¼ C2 ¼ 1ffiffiffiffi

2π
p and Σ ¼ 1=6.
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NðtÞ ¼

8>><
>>:

h
6ð3wþ2Þ

T0ð3wþ2Þa2ð3wþ2Þþ6k

i1
2ȧ; when w ≠ − 2

3�
6

T0þ6k−12k ln a

�1
2ȧ; when w ¼ − 2

3
:

ð82Þ

Finally, the resulting space-time has the line element

ds2
w≠−2

3

¼ −
6

T0a2ð3wþ2Þ þ 6k
3wþ2

da2

þ a2
h
dχ2 þ χ2sinc2ð

ffiffiffi
k

p
χÞðdθ2 þ sin2 θdϕ2Þ

i
;

ð83Þ

or

ds2
w¼−2

3

¼ −
6

T0 þ 6k − 12k ln a
da2

þ a2
h
dχ2 þ χ2sinc2ð

ffiffiffi
k

p
χÞðdθ2 þ sin2θdϕ2Þ

i
;

ð84Þ

respectively. In this form, where the solution has been
obtained in terms of the lapse, the scale factor a becomes
effectively the “time” variable of the system.
Unfortunately, the generic expression (80) giving TðaÞ

for w ≠ −2=3 cannot be easily inverted for all values of the
parameters. Thus, it is not trivial to obtain the explicit form
of the relative fðTÞ function for which the line element (83)
is the solution. A case for which this is easily possible is
when T0 ¼ 0. Then, the first of (80) is easily invertible, and
we obtain from (81)

fðTÞ ¼ κρ0

6
3ðwþ1Þ

2 k

�
−

3wþ 2

kð3wþ 1Þ
�3wþ1

2

T
3ðwþ1Þ

2
; ð85Þ

which corresponds to a power-law theory, with the power
depending on the equation of state parameter. Thus, we can
infer that the nonzero T0 signifies in this case deviations
from this particular class of power-law theories.
The situation is easier in the w ¼ −2=3 case, where the

relative expression in (80) can be inverted to give

a ¼
�
6k
T
W

�
e
T0
6k

6k
T

��1
2

; ð86Þ

whereWðzÞ is the LambertW function, which is defined as
the solution to the equation WeW ¼ z. The corresponding
fðTÞ theory can simply be given by substituting the above
expression in the second branch of (81). Let us now
proceed to see how to quantize this reduced system in
each of the two cases.

1. The w ≠ − 2=3 case

In the attempt to construct a quantization scheme
for these particular classes of fðTÞ theories, we will
consider as a given the relations T ¼ TðaÞ obtained
in (80) and try to write a Lagrangian for the remaining
degrees of freedom. We start by considering the generic
case w ≠ −2=3. We notice that by crudely substituting
the corresponding relations from (80) and (81) into the
Lagrangian (23), we are led to a new, reduced Lagrangian,
which reads

Lw≠−2
3
¼ ð3ρ0ðwþ 1Þa−3wÞ

4kN
ȧ2

− N
ρ0ðwþ 1Þa−3wðT0ð3wþ 2Þa2ð3wþ2Þ þ 6kÞ

8kð3wþ 2Þ :

ð87Þ

Interestingly enough, the Euler-Lagrange equations of
Lw≠−2

3
,

N2ðT0ð3wþ 2Þa2ð3wþ2Þ þ 6kÞ − 6ð3wþ 2Þȧ2 ¼ 0 ð88Þ

2ä−3w
ȧ2

a
−2ȧ

Ṅ
N
þN2

a

�
3kw
3wþ2

−
T0

6
ð3wþ4Þa6wþ4

�
¼0

ð89Þ

give rise to the correct lapse function NðtÞ, as seen in the
first of (82). The latter satisfies both of the above
equations. Hence, we have a Lagrangian giving rise to
a dynamically equivalent solution to that of the gravita-
tional system for the class of theories characterized by the
principal branch of (81).
Lagrangian (87) describes a constrained system,

whose Hamiltonian is (we avoid repeating in detail the
formal Dirac procedure since in this case the treatment
is the typical one encountered in most minisuperspace
systems)

Hw≠−2
3
¼ NHw≠−2

3
þ uNpN; ð90Þ

where pN ≈ 0 is the primary constraint, and

Hw≠−2
3
¼ ka3w

3ρ0ð1þwÞp
2
a

−
ρ0ðwþ 1Þ

4

�
3

ð3wþ 2Þa3w þ
T0

2k
a3wþ4

�
≈ 0 ð91Þ

is the secondary.
Both of them are first class, so in this case, we may

proceed in the usual manner and try to construct a quantum
operator for Hw≠−2

3
. It is quite convenient in these cases to

exploit the inherent parametrization invariance in these
systems to give to the Hamiltonian constraint a form that
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will be easier to lead to a quantum solution. For example, if
we adopt the lapse reparametrization

N ↦ Ñ ¼ ρ0
1
8
ðwþ 1Þa−3w

�
T0a6wþ4

k þ 6
3wþ2

�N; ð92Þ

then we may write the same Hamiltonian as

Hw≠−2
3
¼ ÑH̃w≠−2

3
þ uÑpÑ; ð93Þ

where now

H̃w≠−2
3
¼ 1

hðaÞp
2
a − ρ20 ≈ 0; ð94Þ

in which we have

hðaÞ ¼ 3T0ðwþ 1Þ2
8k2

a4 þ 9ðwþ 1Þ2
4kð3wþ 2Þa6w : ð95Þ

The Hamiltonian constraint (94) can be easily assigned to a
Hermitian operator whose action on the wave function will
result in a typical eigenequation. Such an operator is the
following:

ˆ̃Hw≠−2
3
¼ 1

μðaÞ
∂

∂a

�
μðaÞ 1

hðaÞ
∂

∂a

�
− ρ20; ð96Þ

which is Hermitian under the measure μðaÞ. For the natural
measure μðaÞ ¼ ffiffiffiffiffiffiffiffiffi

hðaÞp
, the differential part of the above

operator becomes a one-dimensional Laplacian [89]. In this

case, the solution to ˆ̃Hw≠−2
3
Ψ ¼ 0, yields the wave function

ΨðaÞ ¼ C1 exp

�
iρ0

Z ffiffiffiffiffiffiffiffiffi
hðaÞ

p
da

�

þ C2 exp

�
−iρ0

Z ffiffiffiffiffiffiffiffiffi
hðaÞ

p
da

�
: ð97Þ

Assuming that we choose either an outgoing or an ingoing
wave, i.e., have either one of the Ci’s zero, then the
probability amplitude, P, ends up to be proportional to

PðaÞ ∝ μðaÞΨ�Ψ ¼
ffiffiffiffiffiffiffiffiffi
hðaÞ

p
: ð98Þ

In Fig. 3, we present the graphs of the probability
amplitude (98) and of the torsion scalar [first of Eq. (80)]
with respect to the scale factor a. The latter is the classical
relation that we enforced in order to construct the reduced
minisuperspace Lagrangian. The values of the parameters
have been chosen so that the solution (83) represents a
Lorentzian line element for all values of a. In general, by
inspecting (83), we have the following possibilities for a
Lorentzian metric: (i) T0 > 0, k > 0 and w > −2=3,
(ii) T0 > 0, k < 0 and w < −2=3, (iii) T0 > 0, k > 0,
w < −2=3, with an upper bound on aðtÞ, (iv) T0 > 0,
k < 0, w > −2=3, with a nonzero lower bound on aðtÞ,
(v) T0 < 0, k > 0,w > −2=3with a fully bounded aðtÞ, and
(vi) T0 < 0, k < 0, w < −2=3, again with a totally bounded
scale factor. In Fig. 3,we present graphs belonging to cases i)
and ii), where the scale factor can take values in the whole
real line. The plots of the (classical) TðaÞ shows us the
possibly problematic points, where the geometric scalar
goes to infinity. In the first couple of graphs, we see a TðaÞ
plot where the torsion scalar diverges both at a → 0 and at
a → þ∞. At the same point, the probability amplitude seem
to also diverge. In the second pair, there are also two points
of divergence—with an exception of the T0 ¼ 0 case—for
the TðaÞ. The problematic points are again, a → 0 and
a → þ∞; the first divergence seems to be “cured” in the
quantum description in the sense that the probability
amplitude goes to zero at a ¼ 0. However, for a → þ∞,
we also see a divergence at PðaÞ. Only the T0 ¼ 0 case is
free of this latter singularity. Finally, the last couple of graphs
show that in the hyperbolic case of k ¼ −1, the quantum
probability amplitude becomes zero at the point of the
classical singularity, which is nowonly at a → 0.We need to
mention, however, that the fact that we partly imposed the
classical solution (80), in order to arrive at a quantum
minisuperspace description, can possibly undermine the
effort of lifting the classical singularity at the quantum level.
As in the previous cases, we can also enforce a crude

normalization in terms of a delta function by extending the
domain of the scale factor aðtÞ to negative values as
well and thus consider a∈R. The classical solution is in
any case insensitive to the sign of aðtÞ since only aðtÞ2
appears inside the metric. With this consideration for the
probability integral, we would have, for two states of matter
ρ0 and ρ̃0,

jC1j2
Z þ∞

−∞

ffiffiffiffiffiffiffiffiffi
hðaÞ

p
Ψ�̃

ρ0
Ψρ0 ¼ jC1j2

Z þ∞

−∞

ffiffiffiffiffiffiffiffiffi
hðaÞ

p
e−iρ̃0

R
hðaÞ1=2daeiρ0

R
hðaÞ1=2dada

¼ jC1j2
Z þ∞

−∞
e−iðρ̃0−ρ0Þsds ¼ 2πjC1j2δðρ0 − ρ̃0Þ; ð99Þ
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where we made use of the change of variables a → s ¼R
hðaÞ1=2da; it can be seen for the various values of

the parameters that when a∈ ð−∞;þ∞Þ, then also
s∈ ð−∞;þ∞Þ.
For completeness, we include the graphs of the Hubble

function

HðaÞ ¼ 1

N
ȧ
a
¼

�
1

6
T0a6wþ2 þ k

a2ð3wþ 2Þ
�1

2

; ð100Þ

with respect to the scale factor a, which can be seen in
Fig. 4. We can thus have a sense of the expansion rates that

each classical solution implies for different fðTÞ theories,
characterized by T0, in conjunction to the spatial curvature
and the matter content. We observe that the closed
universes, for T0 ≠ 0, give rise to ever faster late time
acceleration rates, while in the k ¼ −1 configuration, we
get aHðaÞ function, which tends to zero as a → þ∞. It is a
matter of which term dominates in Eq. (100).

2. The w= − 2=3 case

We follow a similar procedure for the w ¼ −2=3 case.
This time, the reduced minisuperspace Lagrangian that we
construct as a function of NðtÞ, aðtÞ and its derivative is

FIG. 3. A comparison of the probability amplitude P and the torsion scalar T, as functions of the scale factor a, for different fðTÞ
theories characterized by different values of T0.
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Lw¼−2
3
¼ ρ0a2

4kN
ȧ2 − Nρ0a2

�
12k ln aþ 18k − T0

24k
− 1

�
:

ð101Þ

Once more, the Euler-Lagrange equations, which are
equivalent to

N2 −
6ȧ2

−12k ln aþ 6kþ T0

¼ 0 ð102Þ

ä −
ȧ Ṅ
N

þ ȧ2

a
þ N2

a

�
2k ln a −

T0

6

�
¼ 0; ð103Þ

are satisfied by the gravitational result, i.e., the second of
(82). Thus, we have written a Lagrangian generating the
expected dynamics.
In the exact same manner as before, we write the

Hamiltonian and perform a reparametrization of the lapse
function as

N ↦ Ñ ¼ 24kρ0
a2ð6kþ T0 − 12k ln aÞN ð104Þ

to obtain

Hw¼−2
3
¼ ÑH̃w¼−2

3
þ uÑpÑ; ð105Þ

where the Hamiltonian constraint assumes the same form as
in (94)

H̃w≠−2
3
¼ 1

hðaÞp
2
a − ρ20 ≈ 0; ð106Þ

where this time, the hðaÞ function is

hðaÞ ¼ a4ð6kþ T0 − 12k ln aÞ
24k2

: ð107Þ

The same analysis as before leads to an operator of the form
(96) leading to a wave function given by (97), where, of
course, this time, the hðaÞ function is the one we see
in Eq. (107).
In Fig. 5, we give once more the probability amplitudes,

the torsion scalar and the Hubble function with relation to
the scale factor a. We have chosen to depict the k ¼ −1
case, which leads to the scale factor being bound
from below to a nonzero value. The geometric singularity
of T → −∞ for this value seems to be resolved since it
corresponds to zero probability amplitudes.
The procedure we followed in these last sections is

strikingly different from the one which led as to the
introduction of fractional operators in Sec. IVA. This is
owed to the fact that, in the k ≠ 0 case, we were not able to
assign a quantum operator to the obtained Hamiltonian

FIG. 4. The Hubble function HðaÞ, for different fðTÞ theories, k and w.
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after a pair of canonical variables with respect to Dirac
brackets had been introduced. What we did instead here is
exploit the fact that we deal with a particular subcase of the
k ≠ 0 case, which leads to a specific relation between the
scale factor and the torsion scalar. To unveil this specific
relation, we partially integrated the classical system, and
we afterward quantized the remaining, reduced system. We
would intuitively expect that this second approach we
follow, for the particular k ≠ 0 case, is an even cruder
approximation of the quantum gravitational system (com-
paring with the usual quantum cosmology). This is due to
the aforementioned successive enforcement of classical
relations before quantization. Such an approximation could
be possibly applied also to the case of Sec. IVA but not for
a generic fðTÞ function since some information should be
needed to obtain a specific TðaÞ relation. Unfortunately, the
result of this section is not directly comparable with that of
the generic k ¼ 0 case either. This is because, when setting
k ¼ 0 to the staring relation (75), we obtain the case a
trivial theory fðTÞ ∼ ffiffiffiffi

T
p

in k ¼ 0, whose Lagrangian is a
total derivative.

V. CONCLUSIONS

We performed a detailed analysis of canonical quantum
cosmology in fðTÞ–gravity. With the help of the

Dirac-Bergmann algorithm, the constraints of the theory
are revealed and classified into first and second class. We
use the Dirac brackets as the basic relations with respect to
which we proceed to the canonical quantization of the
system.
Similarly to what happens in the fðQÞ-theory [57], in the

case of a perfect fluid and for a spatially flat FLRW metric,
we arrive in a Hamiltonian where the momentum is raised
in a power that is not necessarily an integer number, thus
implying the necessity of putting in use the theory of
fractional quantum mechanics. We use some examples in
our attempt to interpret the square of the modulus of the
wave function in a probabilistic manner, which gets
maximized in certain values of the torsion scalar T,
depending on the theory and its parameters. It is quite
positive in the examples that we examined that probability
amplitudes can be constructed that tend to zero as the scalar
T diverges. In comparison with classical dynamics, we also
revealed that the quantum description may even allow for
values of T that are classically forbidden.
For the k ≠ 0 case, we were not able to treat the generic

theory at the quantum level due to not being able to produce
an appropriate mapping from the reduced Hamiltonian to a
quantum operator. In the presence of spatial curvature, we
restricted our study in the specific case, where Eq. (75)
holds, leading to a specific relation TðaÞ. We exploited this

FIG. 5. The probability amplitude P, the torsion scalar T and Hubble function H, as functions of the scale factor a, for k ¼ −1,
w ¼ −2=3 and for different T0 values.
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relation to reduce even further the classical system and
perform a canonical quantization on what remains of it.
Here, a typical quantization based purely on first class
constraints can be applied. The singularity avoidance, in the
sense of P → 0 as T → ∞, was not as consistent as in the
previous case. We cannot infer if this is an effect of
reducing further the system by the application of the
classical TðaÞ relation.
Apart from presenting our findings, we meant this work to

also have a pedagogical approach. For this reason, we also
made a comparison among the minisuperspace Lagrangians
emerging in the modifications of the gravitational trinity. We
stressed the idiosyncrasy of theHamiltonian formulation in the
case of teleparallel cosmology. The application of the Dirac-
Bergmann algorithm requires a more careful treatment for
systems with second class constraints; one cannot just blindly
put in use the exact same process reserved for systems with
purely first class constraints. The algorithm is a very important
tool not only because it offers a way to proceed in a rigorous
manner to the Hamiltonian formulation and subsequently to
the canonical quantization, but also because it allows us to
distinguish the physical degrees of freedom in agivenproblem.
In the case of field theories, the realization of the Dirac-

Bergmann algorithm often requires the circumvention of
certain difficulties of technical nature [90], and this is

something that has recently been underlined for the case of
teleparallel theories of gravity [91] (see more recently [92]
for an account of how surpassing the inherent difficulties in
the case of fðQÞ theory to offer a formal count of the
physical degrees of freedom). In cosmology, however, we
only have to deal with systems of finite degrees of freedom,
where the application of the algorithm is straightforward.
The main difficulty here lies in the quantization method and
finding an appropriate mapping yielding the corresponding
quantum operators.
This work completes a series of studies on quantum

cosmology for the modified theories of gravity described
by the scalar fields which form the trinity of general
relativity. In the future, we plan to extend our analysis
in the case of astrophysical objects.
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