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We study circular orbits that are tilted with respect to the equatorial plane around a Kerr black hole. We
write the equations for the parameters of a tilted circular orbit in terms of the orbit’s radius and the Carter
constant, or equivalently, the tilt angle. The tilted innermost stable circular orbits (TISCO)s are discussed as
well as the last circular orbits. The azimuthal precession of an orbit is then studied, and an approximate
expression for the precession speed is given. We finally try to link tilted circular orbits to quaiperiodic
oscillations in some astrophysical black hole systems.
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I. INTRODUCTION

Astrophysical black holes can have bright accretions
accretion disks and jets. The plane of an accretion disk is
usually considered to be perpendicular to the black hole’s
spin, although accretion disks are very likely to be tilted.
According to Ref. [1], it is likely that, if not most, many
x-ray binaries formwithmisaligned angularmomenta.More
importantly, there are abundant observational evidences for
the existence of tilted accretion disk black hole systems. For
example, the exotic system SS 433 contains a black hole
with a precessing accretion disk and jet [2]. The galaxyNGC
4258 (M106) has an AGN with a warped disk [3].
Tilted accretion disk models have been proposed to

explain the emission variability from some black hole
systems. In particular, they were used to explain the
quasiperiodic oscillations in x-ray binaries [4]. The effect
of the Lense-Thirring precession on a tilted accretion disk
around a Kerr black hole was studied in Ref. [5]. It was
concluded that the inner part of the disk will get aligned
with the black hole’s spin. This effect is known as the
Bardeen-Petterson effect. The derivation of the basic
equations of twisted accretion disks with applications to
x-ray binaries was given in Refs. [6,7]. The equations
governing the time-dependent structure of a twisted thin
accretion disk and their properties were later given in
Ref. [8]. The equations in Refs. [6–8] were revised and
corrected in Ref. [9]. Later on, it was demonstrated that the
twist evolution equations derived previously were incorrect
as the angular momentum was not conserved in them [10].
About a decade later, a simple set of equations that governs
the time evolution of a twisted accretion disk was given
in Ref. [11]. These equations were then modified by adding
an effective term corresponding to the Lense-Thirring

precession [12] and then solved analytically for a warped
accretion disk around a slowly spinning black hole [13].
The physics of tilted accretion disks is still not well

understood. Several simulations of tilted accretion disks
have been performed to demystify the physics behind them.
The first fully general relativistic three-dimensional hydro-
dynamic numerical studies of tilted thick-disk accretion
onto rapidly rotating black holes were performed in
Ref. [14]. It was found that the Lense-Thirring precession
caused the disk to warp but only within a specific radius in
the disk. A consecutive numerical simulation which fully
considers the effects of the black hole spacetime curvature
along with the magnetorotational turbulence was done in
Ref. [15]. It was found that accretion onto the black hole
occurs mainly through two opposing plunging streams that
start from high latitudes with respect to both the black hole
and disk midplanes. More importantly, it was found that the
main body of the disk remains tilted with respect to the
symmetry plane of the black hole, unlike what would be
expected from the Bardeen-Petterson effect. The spcetime
precession causes a global precession of the main disk body
that has a frequency of 3ðM⊙=MÞ Hz. In Ref. [16],
simulations showed that the disk spin and black hole spin
alignment can occur by the Blandford-Znajec jet torque
before the Lense-Thirring torque becomes important. This
is because disc material get aligned by the Blandford-
Znajec jet torque before the Lense-Thirring torque that falls
steeply with radius takes action. High resolution 3D general
relativistic magnetohydrodynamic simulations of tilted
thick accretion discs around rapidly spinning black holes
was performed [17]. It was concluded that these accretion
disks generate relativistic jets that propagate along the disk
axis, not the black hole spin axis. A similar numerical
simulation for thin tilted accretion disks was performed in
Ref. [18]. It showed that the inner part of the disk
undergoes Bardeen-Peterson alignment. Furthermore,
other simulations revealed that the disk lauches powerful*ama3@ualberta.ca, amz@kfupm.edu.sa
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relativistic jets along the angular momentum vector of the
outer tilted part of the accretion disk. The simulations in
Ref. [19] found that tilted disks quickly reach a warped and
twisted shape that rigidly precesses about the black hole
spin axis and magnetized polar outflows form along the
disk rotation axis.
In this paper, we try to enhance the understanding of the

physics of tilted accretion disks by studying their most
primitive building blocks: tilted circular orbits. We start by
reviewing the equations of motion of particles in Kerr
spacetime and then study tilted circular orbits in Sec. II. In
Sec. III, we solve the equations of motion for a tilted
circular orbit numerically and study the precession of tilted
circular orbits. We give an approximate expression for the
precession angular speed in Sec. IV. Finally, a summary of
the main findings is given in Sec. V.
We use the sign conventions adopted in Ref. [20] and

geometrical units where c ¼ G ¼ 1.

II. TILTED CIRCULAR ORBITS

A. Equations of motion

We start by reviewing the dynamics of massive particles
in the Kerr spacetime. The spacetime geometry around a
rotating black hole is described by the Kerr metric. For a
black hole of mass M and spin angular momentum
J ¼ aM, the Kerr metric in Boyer-Linquist coordinates
reads [21]

ds2 ¼ −Σ
Δ
A
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ A
Σ

�
dϕ −

2aMr
A

dt

�
2

sin2 θ; ð1Þ

where

Σ ¼ r2 þ a2cos2 θ; Δ ¼ r2 þ a2 − 2Mr;

A ¼ ðr2 þ a2Þ2 − a2Δsin2 θ; ð2Þ
and a, with −M ≤ a ≤ M, is the rotation parameter.
The Kerr spacetime admits two commuting Killing

vectors,

ξμðtÞ ¼ δμt ; ξμðϕÞ ¼ δμϕ; ð3Þ

and a Killing tensor,

Kμν ¼ ΔkðμlνÞ þ r2gμν; ð4Þ

where

lμ ¼ 1

Δ
½ðr2 þ a2Þδμt þ Δδμr þ aδμϕ�; ð5Þ

kμ ¼ 1

Δ
½ðr2 þ a2Þδμt − Δδμr þ aδμϕ�; ð6Þ

as described in Ref. [22]. Consider a particle in the Kerr
spacetime moving with four-velocity uμ. The three Killing
symmetries are associated with three constants of the
particle’s motion,

−E ¼ pμξ
μ
ðtÞ=m; ð7Þ

L ¼ pμξ
μ
ðϕÞ=m; ð8Þ

K ¼ uμuνKμν; ð9Þ
where pμ ¼ muμ is the particle’s four-momentum. E and L
are the specific energy and azimuthal angular momentum,
respectively, and K is the Carter constant introduced in
Ref. [23]. Using these three constants of motion along with
the normalization uμuμ ¼ −1, we reduce the equations of
motion to quadratures,

ṫ ¼ E þ 2Mr½ðr2 þ a2ÞE − aL�
ΔΣ

; ð10Þ

ϕ̇ ¼ L
Σsin2 θ

þ að2MrE − aLÞ
ΔΣ

; ð11Þ

Σ2ṙ2 ¼ ½ðr2 þ a2ÞE − aL�2 − Δðr2 þKÞ; ð12Þ

Σ2θ̇2 ¼ K − a2cos2θ −
�
aE sin θ −

L
sin θ

�
2

; ð13Þ

where the overdot denotes the derivative with respect to the
proper time of the particle. The dynamics is invariant under
reflection with respect to the equatorial plane,

θ → π − θ; θ̇ → −θ̇: ð14Þ
It is also invariant under the transformations,

ϕ→−ϕ; ϕ̇→−ϕ̇; L→−L; a→−a: ð15Þ
There are two dynamically distinct modes of motion,
depending on whether the black hole’s spin and particle’s
azimuthal angular momentum are parallel (aL > 0) or
antiparallel (aL < 0). Without loss of generality, we will
keep L positive while a can take both signs.

B. Tilted circular orbits

According to Eq. (13), a tilted orbit will be oscillating
about the equatorial plane between θ− ¼ π=2 − ζ and
θþ ¼ π=2þ ζ, where ζ is the tilt angle with respect to
the equatorial plane, if

K ¼ a2sin2 ζ þ
�
aE cos ζ −

L
cos ζ

�
2

: ð16Þ

Let us define RðrÞ to be the right-hand side of Eq. (12),

RðrÞ ≔ ½ðr2 þ a2ÞE − aL�2 − Δðr2 þKÞ: ð17Þ
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RðrÞ is positive semidefinite; it vanishes at the radial
turning points only. Circular orbits exist where RðrÞ and
its first derivative R0ðrÞ vanish. These two conditions yield

½ðr2 þ a2ÞE − aL�2 − Δðr2 þKÞ ¼ 0; ð18Þ

2rE½ðr2þa2ÞE−aL�− rΔ− ðr−MÞðr2þKÞ¼ 0: ð19Þ

Solving these equations for E and L, one can obtain
explicit expression of the form,

E ¼ Eðr; a; ζÞ; ð20Þ

L ¼ Lðr; a; ζÞ: ð21Þ

The functions Eðr; a; ζÞ and Lðr; a; ζÞ are too complicated
to be written explicitly. They reduce to the known expres-
sions for equatorial orbits when ζ ¼ 0. E is positive for all
circular orbits of any tilt angle.

C. The tilted innermost stable circular orbits

A tilted circular orbit is a TISCOwhenR00ðrÞ vanishes, or

aðaþ 2EL − 2aE2Þ þK − 6r½ðE2 − 1ÞrþM� ¼ 0: ð22Þ

Figure 1 shows how the radius of the TISCO rTISCO
changes with a for different values of ζ. The TISCOs radii
lie in the interval ½M; 9M�. In general, as the orbit gets more
tilted, rTISCO gets farther (closer) for positive (negative) a.
The curves become more symmetric with respect to a as an
orbit gets more tilted. When ζ ¼ π=2, the curve becomes
completely symmetric as it should be. As expected, all
curves meet at rTISCO ¼ 6M when a ¼ 0. There is a critical
value of the tilt angle ζc ≈ 71° after which the relation
between a and r is not one-to-one. A specific value of
rTISCO can correspond to two different values of a.

The radius of the last circular orbit rlc, is obtained by
setting E−1 ¼ 0. Figure 2 shows how rlc changes with a for
the same three values of ζ as in Fig. 1. The effect of
changing ζ is similar in both figures. Again, all curves meet
at rlc ¼ 3M when a ¼ 0.

III. THE THREE-DIMENSIONAL MOTION OF
A PARTICLE IN A TILTED CIRCULAR ORBIT

The dynamics of a particle in curved spacetime is
governed by the geodesic equation,

muν∇νuμ ¼ 0; ð23Þ

where ∇μ is the covariant derivative. We can obtain the
trajectory of a particle by numerically integrating the r and
θ components of Eq. (23) and then integrating Eq. (11). An
example is shown in Fig. 3 for a circular orbit with r ¼ 7M
and tilt angle ζ ¼ π=4 with the black hole’s spin a ¼ M=2

FIG. 1. The dependence of the radius of the tilted innermost
stable circular orbit rTISCO on the black hole’s rotation parameter
a for three different tilt angles. ζ ¼ 0 (blue), ζ ¼ π=3 (green),
ζ ¼ π=2 (red).

FIG. 2. The dependence of the radius of the last circular orbit rlc
on the black hole’s rotation parameter a for three different tilt
angles. ζ ¼ 0 (blue), ζ ¼ π=3 (green), ζ ¼ π=2 (red).

FIG. 3. The trajectory of a particle in a circular orbit of radius
r ¼ 7with a tilt angle of ζ ¼ π=4 and black hole’s spin a ¼ M=2.
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for a few periods. The trajectory looks complicated at first
glance. However, a transformation of the form,

ϕðτÞ → ϕðτÞ − ωpτ; ð24Þ

makes the orbit still and perfectly circular, as shown in
Fig. 4. Here, ωp ¼ ωpðr; ζ; aÞ is the precession angular
speed of the circular orbit. Surprisingly, ωp is constant over
the particle’s orbit.
It is astrophysically interesting to see how ωp varies as r,

ζ, and a change. Numerical analyses revealed that the effect
of changing ζ on ωp is marginal. Wewill therefore fix ζ and
study the effects of a and r only. Figure 5 shows how ωp

changes with r for different positive values of a. Figure 6
shows how ωp changes with r for different negative
values of a. In both figures, ζ ¼ π=4. We can see that
ωp is directly proportional to a. It is positive (negative)

when a is positive (negative). Moreover, ωp falls quickly as
r increases.

A. Precession period

As mentioned in the Introduction, it was proposed that
the variability of black hole systems is due to the precession
of their tilted accretion disks. Let us now calculate the
precession period of a tilted circular orbit. In conventional
units, the precession period (in ms) relative to the orbiting
particle T 0 is given by

T 0 ¼ 2πM
cωp

¼ 62.8
ωp

M
M⊙

: ð25Þ

One can easy calculate the precession period measured by a
far away observer at rest T using Eq. (10). Figures 7 and 8
show T corresponding to ωp values in Figs. 5 and 6,
respectively.
The precession period for stellar mass black holes is

typically few seconds. For supermassive black holes, the
precession period is typically few days to few years.
Therefore, both fast and slow variabilities in black hole
systems can be attributed to tilted accretion disks.

FIG. 4. The orbit in Fig. 3 becomes perfectly circular after
applying the transformation of Eq. (24) with the right value of ωp.

FIG. 5. ωp vs r for a ¼ M (blue), a ¼ M=2 (red), and a ¼ M=4
(green). The blue curve approaches 0.298 when r ¼ rTISCO.
ζ ¼ π=4. The dashed curves correspond to the approximate
formula (see below).

FIG. 6. ωp vs r for a ¼ −M (blue), a ¼ −M=2 (red), and a ¼
−M=4 (green). ζ ¼ π=4. The dashed curves correspond to the
approximate formula (see below).

FIG. 7. The precession periods as measured by a distant sta-
tionary observer corresponding to the values ofωp values in Fig. 5.
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IV. AN APPROXIMATE FORMULA FOR THE
PRECESSION ANGULAR SPEED

It is not hard to solve the equations of motion and findωp
numerically. However, it is more intuitive to derive an
analytical expression for it. We know that the function θðτÞ
in our case has the form,

θðτÞ ¼ π=2 − ζPðτÞ; ð26Þ

where PðτÞ is a periodic function that has a range of ½−1; 1�
and satisfies the initial condition Pð0Þ ¼ 0. If we plug this
solution in Eq. (11), expand the resulting expression in
powers of τ and use the initial condition of PðτÞ, we get

ϕ̇ðτÞ ¼ Lðr − 2MÞ þ 2aEM
rΔ

þOðτ2Þ: ð27Þ

Integrating and using ϕð0Þ ¼ 0 give

ϕðτÞ ¼ Lðr − 2MÞ þ 2aEM
rΔ

τ þOðτ3Þ: ð28Þ

Comparing with Eq. (24), we conclude that ωp is
contained in the coefficient of the term linear in τ in
Eq. (28) along with a contribution due to orbiting. This
contribution, to a very good approximation, is given by the
coefficient of the linear term with a ¼ 0. Because

Lðr − 2MÞ þ 2aEM
rΔ

����
a¼0

¼ L
r2
; ð29Þ

we can write an approximate expression for ωp as

ωp ≈
Lðr − 2MÞ þ 2aEM

rΔ
−
L
r2
: ð30Þ

To see how good this formula is, we used it to reproduce
the curves in Figs. 5 and 6. The results are represented by
the dashed curves in the two figures. We can see that the
dashed curves match the solid curves very well and the
error in the formula for ωp is not tangible in almost all
cases. The error is noticeable, albeit still small, only when
a ≈M and r is near rTISCO.

V. SUMMARY

Circular orbits are the building blocks of accretion disks.
We have shown that stable tilted circular orbits can exist
around Kerr black hole. We studied the TISCOs and found
that the tilt angle of the orbit increases the radius of the
TISCO for prograde orbits and decreases it for retrograde
orbits. When the tilt angle exceeds about 71°, the TISCO
radius may correspond to two different values of the black
hole’s spin. The dependence of the last circular orbit on the
tilt angle is qualitatively similar.
We studied the precession of stable circular orbits and

found that they precess at a constant rate over the whole
orbit in the direction of the black hole’s spin. The
precession rate was calculated numerically for a few
representative cases. It was found to be almost independent
of the tilt angle. The precession period was then discussed
and calculated for these cases. We then derived a precise,
approximate expression for the precession rate.
The precession period for stellar mass black holes is

typically few seconds. For supermassive black holes, the
precession period is typically few days to few years. These
findings show that tilted accretion disk models are viable
for explaining quasiperiod oscillations in astrophysical
black hole systems.
It would be interesting to study tilted circular orbits

stability and precession around Kerr black holes in the
presence of accretion disk electromagnetic fields.
Such studied can lead to more astrophysically interesting
findings.
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