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In this article, the possibility of generating nonclassical light due to Planck-scale effects is considered.
For this purpose, a widely studied model of deformation of the Heisenberg uncertainty relation is applied to
single-mode and multimode lights. The model leads to a deformed dispersion relation, which manifests
in an advancement in the time of arrival of photons. The key finding is that the model also leads to an
oscillatory pattern of squeezing of the state of light. Furthermore, while the amplitude of the oscillations is
constant for energy eigenstates, it exhibits linear growth over time for coherent states with the annihilation
operator eigenvalue α ≠ 0. This second case leads to the accumulation of squeezing and phase-space
displacement, which can be significant for astrophysical photons. In particular, for α ∼ 1, coherent light in
the optical spectrum emitted at megaparsec distances would acquire squeezing with the amplitude of the
order unity. This suggests that measurements of the nonclassical properties of light originating from distant
astrophysical sources may open a window to test these predictions.
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I. INTRODUCTION

The concept of a minimal length is one of the most
widely examined potential manifestations of quantum
characteristics of spacetime. The premise here is that there
exists a finite limit to the precision at which space can
be probed, anticipated to be in the vicinity of the Planck
length, lPl ≈ 1.62 × 10−35 m. This idea originates from
quantum gravity considerations, which suggest that at such
extreme scales, traditional concepts of spacetime break
down and give way to quantum effects.
The idea of a minimal length has been successfully

integrated into a self-consistent special-relativistic frame-
work, commonly known as doubly special relativity [1,2].
This paradigm introduces a new invariant scale in addition
to the speed of light, typically the Planck length, to
reconcile quantum mechanics with relativity. In the broader
landscape of quantum gravity theories, some approaches,
such as loop quantum gravity (LQG), propose a possible
generalization of this concept to a general-relativistic
context, thus extending its scope and potential implications.
Nevertheless, the actual behavior and impact of this
minimal length scale in the dynamical sector remains a
subject of ongoing study.

The concept of maximal spatial resolution is naturally
implementable in the realm of quantum mechanics, par-
ticularly in relation to the Heisenberg uncertainty principle.
This principle dictates inherent limits to the precision
with which pairs of canonical variables, such as generali-
zed position and momentum, can be simultaneously mea-
sured. By employing a generalized uncertainty principle
(GUP) [3,4], it is feasible to integrate a minimal length
scale into conventional quantum mechanics, thereby sug-
gesting a fundamental limit to our ability to precisely
measure position. Nonetheless, this adaptation inevitably
implies that the commutation relation between the canoni-
cal variables, such as the generalized position and momen-
tum, will undergo alterations.
Modifications to the commutation relation are under-

stood to correlate with the nonlinear geometry of the
corresponding phase space. Notably, the existence of a
minimum length, a potential hallmark of quantum gravity
theories, is intimately associated with a curvature in the
momentum component of the phase space. This relation-
ship provides a geometric interpretation for the minimal
quantum length [5].
This concept is not confined to the domain of point

particles—it extends into the broader field theoretical
context. An instance of this expansion can be found in
the LQG-inspired polymer quantization. In this scenario,
studies such as those presented in Refs. [6,7] analyzed
cylindrical (i.e., R × S) deformations of the scalar field
phase space. Other works in the context of string theory and

*danilo.artigas-guimarey@universite-paris-saclay.fr
†martineau@lpsc.in2p3.fr
‡jakub.mielczarek@uj.edu.pl

PHYSICAL REVIEW D 109, 024028 (2024)

2470-0010=2024=109(2)=024028(12) 024028-1 © 2024 American Physical Society

https://orcid.org/0000-0002-4904-7382
https://orcid.org/0000-0002-8765-5266
https://orcid.org/0000-0002-4533-6371
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.024028&domain=pdf&date_stamp=2024-01-22
https://doi.org/10.1103/PhysRevD.109.024028
https://doi.org/10.1103/PhysRevD.109.024028
https://doi.org/10.1103/PhysRevD.109.024028
https://doi.org/10.1103/PhysRevD.109.024028


quantum gravity also generalize the notion of phase space
to deformed (possibly curved) ones [8–14]. The nonlinear
field space theory (NFST) research program, as outlined
in Ref. [15], is committed to methodically explore the
implications of fields having a nontrivial phase space. In
the context of NFST, the case of S2 phase-space generali-
zation of the scalar field theory has been primarily
considered [16,17].
The effects of a GUP can lead to phenomenological

consequences, currently under intense investigation in the
context of multimessenger astronomy [18]. The physical
consequences that are primarily analyzed are deformed
dispersion relations and vacuum birefringence.
Here, we focus our attention on the properties of quan-

tum states of light. Specifically, we focus on single and
multimode light with GUP in a field theoretical context.
Potential manifestations of the GUP have been previously
explored in the particle context in Ref. [19]. Our aim is to
build upon these existing insights and delve deeper into the
understanding of light under the influence of GUP.
This article is structured as follows: In Sec. II, we

introduce the model of the GUP and the ensuing single-
mode Hamiltonian. Following this, we carry out a pertur-
bative analysis of the time evolution of a single-mode light
in Sec. III. Based on these findings, we then examine the
quantum squeezing of various states due to the GUP in
Sec. IV. As a supplement to the squeezing effect, Sec. V
delves into how the GUP modifies the dispersion relation
for a multimode light state. In Sec. VI, we consider the
potential experimental implications of our derived predic-
tions. Last, in Sec. VII, we summarize our findings and
discuss potential future directions.

II. GENERALIZED UNCERTAINTY PRINCIPLE

The most widely studied generalized uncertainty prin-
ciple leading to a minimal length is of the form [20]

ΔQΔP ≥
ℏ
2
ð1þ βΔP2Þ; ð1Þ

where ΔQ and ΔP are uncertainties on the generalized
position and momenta, respectively. Here, β is a small
dimensional parameter, serving as a measure of the strength
of quantum gravity effects. This parameter is assumed to be
positive definite here. However, negative values of β have
also been studied in the literature [3,21].
Importantly, in this article, the framework of field theory

is considered, for which ½Q� ¼ E−1=2, ½P� ¼ E1=2, and as a
consequence ½β� ¼ E−1. Since the modification is consid-
ered to be due to Planck-scale physics, it is therefore
expected that β ∼ 1=EPl, where the Planck energy EPl ≈
1.22 × 1019 GeV. Notably, this field theory scenario differs
substantially from the usual case of a point particle, for
which ½Q� ¼ E−1, ½P� ¼ E, and consequently ½β� ¼ E−2,
leading to the β parameter being β ∼ 1=E2

Pl. The differing

dimensions of the canonical variables between both
scenarios, therefore, suggest that the effects of new physics
at the Planck scale transcribed by the GUP could have a
more pronounced impact in the field theory context (where
they are expected to be suppressed by E=EPl to some
power) compared to the point particle scenario (where they
are expected to be suppressed by E2=E2

Pl to some power).
Additionally, while the GUP in the context of a point

particle implies the existence of a minimal physical length,
the situation differs in the field theoretical framework
considered here. In this setting, the GUP does not give
rise to a minimal length, but rather suggests a minimal
field value.
The GUP given by Eq. (1) can be derived from the

deformed commutation relation

½Q̂; P̂� ¼ iℏðÎ þ βP̂2Þ: ð2Þ

This commutation relation is predicted by different Planck-
scale physics models, such as relative locality [22] or loop
quantum gravity [3,23].
An observation made in [24] is that this commutation

relation (2) transforms into the standard one ½q̂; p̂� ¼ iℏ1
under the following change of variables:

Q̂ ¼ q̂; ð3Þ

P̂ ¼ tanð ffiffiffi
β

p
p̂Þffiffiffi

β
p : ð4Þ

This can be proven using the fact that for any function

fðp̂Þ, ½q̂; fðp̂Þ� ¼ iℏ dfðp̂Þ
dp̂ if ½q̂; p̂� ¼ iℏÎ. Since the com-

mutation relation changes, the above change of variables is
not a canonical transformation.
This article aims to consider the quantum properties of

light, taking into account the deformed commutation
relation (2). Some studies in this direction have already
been made in Refs. [25,26].
The simplest case we are going to begin with is a

single-mode light for which the standard Hamiltonian takes
the form

Ĥ ¼ 1

2

�
P̂2 þ ω2Q̂2

�
; ð5Þ

where ω denotes the frequency of the mode, so that
½ω� ¼ E. Consequently, ½βωℏ� ¼ 1. Importantly, the polari-
zation states of light are not considered here but the
amplitude of the field solely.
Employing the change of variables (3) and (4) and

expanding the obtained expression up to the linear order
in β leads to

Ĥ ¼ 1

2
ðp̂2 þ ω2q̂2Þ þ β

3
p̂4 þOðβ2Þ: ð6Þ

ARTIGAS, MARTINEAU, and MIELCZAREK PHYS. REV. D 109, 024028 (2024)

024028-2



Worth mentioning is that only even powers of p̂ are
contributing to the series. From now on all Oðβ2Þ con-
tributions will be neglected, and we will focus only on the
leading effect.
For further convenience, the full Hamiltonian (6) is

decomposed into a free Ĥ0 ¼ 1
2
ðp̂2 þ ω2q̂2Þ, and an

interaction Ĥ1 ¼ β
3
p̂4 parts, such that

Ĥ ¼ Ĥ0 þ Ĥ1: ð7Þ

At this point, it is useful to introduce the standard
creation and annihilation operators â† and â defined in
the usual way:

q̂ ≔
ffiffiffiffiffiffi
ℏ
2ω

r
ðâ† þ âÞ; ð8Þ

p̂ ≔ i

ffiffiffiffiffiffiffi
ℏω
2

r
ðâ† − âÞ; ð9Þ

so that ½â; â†� ¼ Î. The free Hamiltonian then reads
Ĥ0 ¼ ℏω

2
ðâ†âþ ââ†Þ and verifies ½Ĥ0; â†� ¼ ℏωâ† and

½Ĥ0; â� ¼ −ℏωâ. Furthermore, the interaction Hamiltonian
reads

Ĥ1 ¼
β

3

�
ℏω
2

�
2

ðâ† − âÞ4: ð10Þ

By applying the standard perturbation theory, one can
find that at the first order of the perturbative expansion, the
Hamiltonian (7) eigenvalues are

Eð1Þ
n ¼ hnð0ÞjĤ0 þ Ĥ1jnð0Þi

¼ hnjℏω
�
N̂ þ 1

2
Î

�
jni þ hnj β

3
p̂4jni

¼ ℏω

�
nþ 1

2

�
þ β

ℏ2ω2

4
ð2n2 þ 2nþ 1Þ; ð11Þ

in which N̂ ≔ â†â. One easily recovers from this expres-
sion that the difference of energy levels at zeroth order in β

is Eð0Þ
n − Eð0Þ

m ¼ ℏωðn −mÞ.

The associated eigenstates are, at first order in β,

jnð1Þi ≔ jni þ
X
m≠n

hmjĤ1jni
Eð0Þ
n − Eð0Þ

m

jmi

¼ jni þ βℏω
12

�
−
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 4Þ!

n!

r
jnþ 4i

þ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p ð2nþ 3Þjnþ 2i
−

ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
ð2n − 1Þjn − 2i

þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðn − 4Þ!

s
jn − 4i

�
: ð12Þ

In particular, the first-order vacuum energy is

Eð1Þ
0 ¼ ℏω

2

�
1þ β

ℏω
2

�
; ð13Þ

and the first-order vacuum state

j0ð1Þi ¼ j0i þ βℏω
12

�
3

ffiffiffi
2

p
j2i −

ffiffiffi
3

2

r
j4i

�
: ð14Þ

Therefore, the GUP correction slightly leverages the
ground state energy.

III. TIME EVOLUTION

The time evolution of a single-mode light can be studied
by introducing the following operator:

F̂ðtÞ ≔ Û−1
0 ðtÞÛðtÞ; ð15Þ

where the unitary operator Û0ðtÞ ≔ exp ð− i
ℏ Ĥ0tÞ utilizes

the free part of the Hamiltonian (7), whereas ÛðtÞ ¼
exp ð− i

ℏ ĤtÞ. The operator F̂ satisfies the equation

dF̂ðtÞ
dt

¼ −
i
ℏ
ĤI

1ðtÞF̂ðtÞ; ð16Þ

which has a solution in the form of a Dyson series:

F̂ðtÞ ¼ T̂ exp

�
−
i
ℏ

Z
t

0

ĤI
1ðt0Þdt0

�

¼ Î −
i
ℏ

Z
t

0

ĤI
1ðt0Þdt0 þOð1=ℏ2Þ; ð17Þ

where

ĤI
1ðtÞ ≔ Û−1

0 ðtÞĤ1Û0ðtÞ ð18Þ
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is the interaction Hamiltonian in the interaction picture.
Furthermore, T̂ is the time ordering operator, and the
operator F̂ðtÞ satisfies the initial condition F̂ð0Þ ¼ Î.
The time evolution of an initial state jΨð0Þi is given by

jΨð0Þi ¼ ÛðtÞjΨð0Þi
¼ Û0ðtÞF̂ðtÞjΨð0Þi
¼ Û0ðtÞjΨð0Þi

−
i
ℏ
Û0ðtÞ

Z
t

0

ĤI
1ðt0Þdt0jΨð0Þi þOð1=ℏ2Þ: ð19Þ

From now on, all Oð1=ℏ2Þ contributions will be
neglected, and we will focus on the leading effect only.
Employing the Baker-Campbell-Hausdorff formula, one

can find that

Û−1
0 ðtÞâ†Û0ðtÞ ¼ â†eiωt; ð20Þ

Û−1
0 ðtÞâÛ0ðtÞ ¼ âe−iωt: ð21Þ

The use of the above leads to

ĤI
1ðtÞ ¼

β

3

�
ℏω
2

�
2�
â†eiωt − âe−iωt

�
4; ð22Þ

for Ĥ1 given by the interaction term in Eq. (6).
When developing this expression and using the commu-

tation relation between the creation and annihilation
operators, one gets the following form of the interaction
Hamiltonian in the interaction picture1:

ĤI
1ðtÞ ¼

βℏ2ω2

12

	ðâ†Þ4e4iωt − �
4ðâ†Þ3âþ 6ðâ†Þ2�e2iωt

þ �
6ðâ†Þ2ðâÞ2 þ 12â†âþ 3Î

�
−
�
4â†ðâÞ3 þ 6ðâÞ2�e−2iωt þ ðâÞ4e−4iωt
: ð25Þ

The time integral contributing to the series formula (19)
can be analytically evaluated and decomposed into real and
imaginary parts:

Z
t

0

Ĥ1ðt0Þdt0 ¼ β
ℏ2ω

24

�
R̂ðtÞ þ iÎðtÞ�; ð26Þ

with

R̂ðtÞ ¼ 2ωt
	
6ðâ†Þ2ðâÞ2 þ 12â†âþ 3Î



þ 1

2
sinð4ωtÞ	ðâ†Þ4 þ ðâ4Þ


− sinð2ωtÞ	4ðâ†Þ3âþ 6ðâ†Þ2
þ 4â†ðâÞ3 þ 6ðâÞ2
 ð27Þ

and

ÎðtÞ ¼ 1

2

�
1 − cosð4ωtÞ�	ðâ†Þ4 − ðâ4Þ
þ �

1 − cosð2ωtÞ�
×
	
−4ðâ†Þ3â − 6ðâ†Þ2 þ 4â†ðâÞ3 þ 6ðâÞ2
: ð28Þ

IV. SQUEEZING

In the phase-space formulation of quantum mechanics
the system is described by a quantum state in a space
defined by generalized position and momentum coordi-
nates, known as phase space. Quantum squeezing corre-
sponds in this context to the distortion of the quantum state,
represented, e.g., by its Wigner quasiprobability function
Wðq; pÞ, in this phase space. More specifically, it refers
to the reduction/spread of the uncertainty in one direction
(say, position) at the expense of increasing/decreasing it in
the conjugate dimension (momentum), ensuring compli-
ance with the Heisenberg or more generally the Robertson-
Schrödinger uncertainty relation. The squeezed state is
represented as an ellipse rather than a circle (the latter
corresponding to equal uncertainty in both dimensions)
in the phase space. Worth emphasizing is that quantum
squeezing is of particular interest in quantum optics and
quantum information science, where it can improve meas-
urement precisions and information processing capabilities
by reducing quantum noise and enhancing signal strength
in a specific direction (see, e.g., Refs. [27,28]).
The squeezing prompted by the GUP given by Eq. (1) is

examined in the next section, focusing on two classes of
states: quantum harmonic oscillator energy eigenstates jni
and Glauber’s coherent states jαi, which play key roles in
quantum optics and quantum information sciences.
Squeezing properties are quantified by the first and

second moments of the q̂ and p̂ operators. We introduce

hq̂i ≔ hΨðtÞjq̂jΨðtÞi; ð29Þ

hp̂i ≔ hΨðtÞjp̂jΨðtÞi; ð30Þ

Δq̂ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨðtÞjq̂2jΨðtÞi − ðhΨðtÞjq̂jΨðtÞiÞ2

q
; ð31Þ

Δp̂ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨðtÞjp̂2jΨðtÞi − ðhΨðtÞjp̂jΨðtÞiÞ2

q
; ð32Þ

1It may be useful to observe that

âðâ†Þn ¼ jðâ†Þn−1 þ ðâ†Þjâðâ†Þn−j; ð23Þ

ðâÞnâ† ¼ jðâÞn−1 þ ðâÞn−jâ†ðâÞj; ð24Þ

for all integers j∈ ½0; n�.
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Cqp ≔ hΨðtÞjðq̂ − hq̂iÞðp̂ − hp̂iÞjΨðtÞiWeyl

¼ 1

2
hΨðtÞjðq̂ p̂þp̂ q̂ÞjΨðtÞi − hq̂ihp̂i; ð33Þ

so that the Robertson-Schrödinger uncertainty principle
holds:

ðΔq̂Þ2ðΔp̂Þ2 − C2
qp ≥ ℏ2=4: ð34Þ

In the definition of the covariance Cqp the Weyl symmet-
rization is applied. Furthermore, we will add superscript ð0Þ
in case of the zeroth-order formulas (β → 0).
Alternatively, the Robertson-Schrödinger uncertainty

can be written as

ðΔq̂Þ2ðΔp̂Þ2ð1 − ρ2Þ ≥ ℏ2=4; ð35Þ

where ρ is the dimensionless correlation coefficient

ρ ≔
Cqp

Δq̂Δp̂
: ð36Þ

When ρ is different from zero, the semiaxes of the ellipsoid
of covariance do not overlap with the directions q and p.
To quantify this effect, it is convenient to introduce the

covariance matrix

Σ ≔
�
ωðΔq̂Þ2 Cqp

Cqp ðΔp̂Þ2=ω

�
; ð37Þ

where the ω factor has been introduced for dimensional
reasons. The eigenvalues of the previous matrix are

λ� ¼ 1

2

h
trΣ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrΣÞ2 − 4 detΣ

q i
; ð38Þ

where trΣ ¼ ωðΔq̂Þ2 þ ðΔp̂Þ2=ω and detΣ ¼ ðΔq̂Þ2 ×
ðΔp̂Þ2ð1 − ρ2Þ. Because of the square root in Eq. (38),
the Oðβ2Þ factors could in principle bring a contribution of
the β order in the squeezing amplitude. However, the terms
of the order β2 in ðΔq̂Þ2, in ðΔp̂Þ2, and in Cqp bring no
contribution of the order β2 in ½ðtrΣÞ2 − 4 detΣ� whatever

the state considered (see Appendix). In consequence, the
unknown factors do not contribute to the linear in β
expressions for the eigenvalues λ�.
Importantly, the square roots of the eigenvalues have

interpretations of major and minor diameters of the
ellipsoid of covariance, respectively, so that the uncertainty
relation (34) takes the form

ffiffiffiffiffi
λþ

p ffiffiffiffiffi
λ−

p
≥ ℏ=2: ð39Þ

In the eigenframe the correlation vanishes, and the
relative values of

ffiffiffiffiffi
λþ

p
and

ffiffiffiffiffi
λ−

p
can be used to quantify

the squeezing of the state. Specifically, after suitable
normalization of the variables, we can write

ffiffiffiffiffi
λþ

p ¼
ffiffiffi
ℏ
2

r
er; ð40Þ

ffiffiffiffiffi
λ−

p
¼

ffiffiffi
ℏ
2

r
e−r; ð41Þ

where r is the squeezing amplitude related to the complex
squeezing parameter ξ ¼ jrjeiγ. Geometrically, γ=2 is the
angle between the minor axes of the ellipsoid and the q
axis. The ξ parameter enters the squeezing operator ŜðξÞ as
follows:

ŜðξÞ ≔ exp

�
1

2

�
ξ�â2 − ξâ†2

��
: ð42Þ

A. Squeezing of quantum harmonic oscillator
eigenstates: jΨð0Þi= jni

The free evolution of a jni state under the harmonic
oscillator Hamiltonian is given by

Û0jni ¼ e−iωtðnþ1
2
Þjni: ð43Þ

To compute the evolution under the full Hamiltonian at
first order in β, one needs to use

ĤI
1jni ¼

βℏ2ω2

12

	
e4iωt

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p ffiffiffiffiffiffiffiffiffiffiffi
nþ 3

p ffiffiffiffiffiffiffiffiffiffiffi
nþ 4

p jnþ 4i − e2iωt
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p ð4nþ 6Þjnþ 2i
þ ð6n2 þ 6nþ 3Þjni − e−2iωt

ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
ð4n − 2Þjn − 2i þ e−4iωt

ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p ffiffiffiffiffiffiffiffiffiffiffi
n − 2

p ffiffiffiffiffiffiffiffiffiffiffi
n − 3

p
jn − 4i
; ð44Þ

obtained from Eq. (25). Recall that n ≥ 0 for the initial state to be well defined. Similarly, any state jn −mi is well defined if
and only if ðn −mÞ ≥ 0.
Under the evolution given Eq. (19) the state jni at any time boils down to
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jΨðtÞi ¼ e−iωtðnþ1
2
Þjni − βℏω

24

�
1

2

�
e−iωtðnþ1

2
Þ − e−

iωt
2
ð2nþ9Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 4Þ!p

ffiffiffiffiffi
n!

p jnþ 4i

−
�
e−iωtðnþ1

2
Þ − e−

iωt
2
ð2nþ5Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 2Þ!p

ffiffiffiffiffi
n!

p ð4nþ 6Þjnþ 2i þ 2iωte−iωtðnþ1
2
Þð6n2 þ 6nþ 3Þjni

þ �
e−iωtðnþ1

2
Þ − e−

iωt
2
ð2n−3Þ� ffiffiffiffiffi

n!
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 2Þ!p ð4n − 2Þjn − 2i− 1

2

�
e−iωtðnþ1

2
Þ − e−

iωt
2
ð2n−7Þ� ffiffiffiffiffi

n!
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 4Þ!p jn − 4i

�
: ð45Þ

It should be emphasized here that the normalization
hΨjΨi ¼ 1þOðβ2Þ differs from unity at second order in β
only, not at the OðβÞ order.
For an evolution governed by the corrected Hamiltonian

Ĥ, the q and p first moments, computed using the
state (45), vanish at any time:

hq̂i ¼ 0 ¼ hp̂i: ð46Þ

Because of the p̂4-type of the interaction term, this is
satisfied at any order in β. For the same reason, any odd
power of q̂ and p̂, including the mixed terms, will also
vanish.
The mean value of the jni state in the phase space is

therefore not modified by the new dynamics. Its dispersions
in q and p, however, vary as

ðΔq̂Þ2 ¼ ℏ
2ω

ð1þ 2nÞ þ βℏ2 sin2 ðωtÞð2n2 þ 2nþ 1Þ
þOðβ2Þ; ð47Þ

ðΔp̂Þ2 ¼ ℏω
2

ð1þ 2nÞ − βℏ2ω2 sin2 ðωtÞð2n2 þ 2nþ 1Þ
þOðβ2Þ: ð48Þ

The covariance evaluated at any time writes

Cqp ¼ βℏ2ω

2
sin ð2ωtÞð2n2 þ 2nþ 1Þ þOðβ2Þ: ð49Þ

One can easily verify that the leading order in the β
contribution to the Robertson-Schrödinger relation cancels
out so that

ℏ2

4
ð1þ 2nÞ2 þOðβ2Þ ≥ ℏ2

4
: ð50Þ

Importantly, the first order in β corrections to the
quadratic moments of q̂ and p̂ oscillate in time at the
frequency ω. There is, therefore, no accumulative contri-
bution to the dispersions of the state at this order.
For the case under consideration, the square roots of the

eigenvalues of the covariance matrix (37) can be expressed
as follows:

ffiffiffiffiffi
λþ

p ¼
ffiffiffi
ℏ
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n

p
er; ð51Þ

ffiffiffiffiffi
λ−

p
¼

ffiffiffi
ℏ
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n

p
e−r; ð52Þ

where the squeezing amplitude r for an arbitrary state jni is
given by

r ¼ 1þ 2nþ 2n2

1þ 2n
βℏωj sin ðωtÞj þOðβ2Þ: ð53Þ

Consequently, for large n, the squeezing amplitude
grows as OðnÞ.
For the vacuum state jΨð0Þi ¼ j0i the dispersions in q

and p and the covariance reduce to

ðΔq̂Þ2 ¼ ℏ
2ω

	
1þ 2βℏω sin2 ðωtÞ þOðβ2Þ
; ð54Þ

ðΔp̂Þ2 ¼ ℏω
2

	
1 − 2βℏω sin2 ðωtÞ þOðβ2Þ
; ð55Þ

Cqp ¼ β
ℏ2ω

2
sin ð2ωtÞ þOðβ2Þ; ð56Þ

and the squeezing amplitude Eq. (53) boils down to

r ¼ βℏωj sin ðωtÞj þOðβ2Þ: ð57Þ

The maximal squeezing magnitude expected for the
corrected vacuum state at first order in β expansion is
therefore

rmax;j0i ≈ βℏω: ð58Þ

B. Squeezing of Glauber’s coherent
states: jΨð0Þi= jαi

The second example we are going to consider is a state
that is initially Glauber’s coherent state of a harmonic
oscillator:

jΨð0Þi ¼ jαi ≔ e−
1
2
jαj2 X∞

n¼0

αnffiffiffiffiffi
n!

p jni; ð59Þ
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introduced such that âjαi ¼ αjαi, where α ¼ jαjeiθ ∈C.
Let us remind the reader that the free evolution of such a
state is given by

jΨð0ÞðtÞi ≔ Û0ðtÞjαi ¼ e−i
ωt
2 jαe−iωti: ð60Þ

In this state, the q̂ and p̂ mean values are

hq̂ið0Þ ¼ jαj
ffiffiffiffiffiffi
2ℏ
ω

r
cosðθ − ωtÞ; ð61Þ

hp̂ið0Þ ¼ −jαj
ffiffiffiffiffiffiffiffiffi
2ωℏ

p
sinðθ − ωtÞ; ð62Þ

and the standard deviations and the covariance write

Δq̂ð0Þ ¼
ffiffiffiffiffiffi
ℏ
2ω

r
; ð63Þ

Δp̂ð0Þ ¼
ffiffiffiffiffiffiffi
ℏω
2

r
; ð64Þ

Cð0Þ
qp ¼ 0; ð65Þ

which are constant in time.
The right-hand action of the interaction Hamiltonian on

the coherent state jαi is given by

ĤI
1ðtÞjαi ¼

βℏ2ω2

12

	ðâ†Þ4e4iωt − �
4αðâ†Þ3 þ 6ðâ†Þ2�e2iωt

þ �
6α2ðâ†Þ2 þ 12αâ† þ 31

�
−
�
4α3â† þ 6α2

�
e−2iωt þ ðαÞ4e−4iωt
jαi; ð66Þ

which allows one to evaluate the mean values of q̂ and p̂
operators:

hq̂i ¼ jαj
ffiffiffiffiffiffi
2ℏ
ω

r
cosðθ − ωtÞ þ 1

6
ffiffiffi
2

p jαjβωℏ
ffiffiffiffi
ℏ
ω

r �
12ðjαj2 þ 1Þωt sinðθÞ cosðωtÞ − 2 sinðωtÞ	−6 sinðθÞ

þ jαj2�−6 sinðθÞ þ sinð3θÞ þ 3 sinð3θ − 2ωtÞ�þ 6ðjαj2 þ 1Þωt cosðθÞ
�þOðβ2Þ; ð67Þ

hp̂i ¼ −jαj
ffiffiffiffiffiffiffiffiffi
2ωℏ

p
sinðθ − ωtÞ þ 1

3

ffiffiffi
2

p
jαjβðωℏÞ3=2	jαj2 sin2ðωtÞ sinð3θ − ωtÞ

− 3ðjαj2 þ 1Þðωt cosðθ − ωtÞ − cosðθÞ sinðωtÞÞ
þOðβ2Þ: ð68Þ

A displacement of the mean values of q̂ and p̂ due to the
GUP correction is exhibited. Importantly, the correction is
not only oscillatory in time but, due to the multiplicative ωt
factor, a time-cumulative effect appears.
The phase factor θ plays no important role in our

discussion and thus can be fixed at θ ¼ 0 for the simplicity
of the further analysis. Then, at late times the formulas (67)
and (68) are well approximated by

hq̂i≈ jαj
ffiffiffiffiffiffi
2ℏ
ω

r 	
cosðωtÞ−βωℏðωtÞðjαj2þ1ÞsinðωtÞ
; ð69Þ

hp̂i ≈ jαj
ffiffiffiffiffiffiffiffiffi
2ωℏ

p 	
sinðωtÞ − βωℏðωtÞðjαj2 þ 1Þ cosðωtÞ
:

ð70Þ

The expectation value of the annihilation operator â
(which gives the mean location of the state on the complex

plane representation of the phase space) becomes

hâi ¼
ffiffiffiffiffiffi
2ω

ℏ

r
hq̂i þ i

ffiffiffiffiffiffiffiffiffi
1

2ℏω

r
hp̂i

≈ jαj�1 − βωℏðωtÞðjαj2 þ 1Þ sinð2ωtÞ�eiφ; ð71Þ

where

φ ≈ ωt
	
1 − 2βωℏðωtÞðjαj2 þ 1Þ
: ð72Þ

At leading order in β, the displacement of the state from
the origin of the phase space follows oscillations whose
amplitude grows linearly in time.
The variances and the covariance of the canonically

conjugated variables q and p can be evaluated with the use
of Eq. (66), leading to

ðΔq̂Þ2 ¼ ℏ
2ω

−
1

6
βðℏ2ðjαj2ðjαjð−9 cosðθÞ − 4jαj sinðωtÞðsinð4θ − 3ωtÞ − jαj sinð5θ − 3ωtÞÞ þ 6jαjωt sinð2θ − 2ωtÞ

þ 9 cosðθ − 2ωtÞÞ − 3 cosð2ωtÞð2ωt sinð2θÞ þ 1Þ þ 3 sinð2ωtÞðsinð2θÞ þ 2ωt cosð2θÞ þ ωtÞÞ
þ 3ðjαj2 þ cosð2ωtÞ − 1ÞÞÞ þOðβ2Þ; ð73Þ
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ðΔp̂Þ2 ¼ ℏω
2

þ 1

6
βω2ðℏ2ðjαj2ðjαjð−9 cosðθÞ − 4α sinðωtÞðsinð4θ − 3ωtÞ − jαj sinð5θ − 3ωtÞÞ þ 6jαjωt sinð2θ − 2ωtÞ

þ 9 cosðθ − 2ωtÞÞ − 3 cosð2ωtÞð2ωt sinð2θÞ þ 1Þ þ 3 sinð2ωtÞðsinð2θÞ þ 2ωt cosð2θÞ þ ωtÞÞ
þ 3ðjαj2 þ cosð2ωtÞ − 1ÞÞÞ þOðβ2Þ; ð74Þ

Cqp ¼ −
1

6
βωℏ2ð−4jαj4 sinðωtÞ cosð4θ − 3ωtÞ þ 6ð2jαj2 þ 3Þjαj2ωt cosð2θ − 2ωtÞ

þ ðjαj2ðjαj2 þ 4Þ cosð2θÞ − 3ð2jαj4 þ 4jαj2 þ 1ÞÞ sinð2ωtÞÞ þOðβ2Þ: ð75Þ

In the jαj → 0 limit the case of the vacuum state j0i,
for which Eqs. (54)–(56) hold, is correctly recovered.
Furthermore, the Robertson-Schrödinger relation gains
no correction in the order linear in β, i.e.,

ℏ2

4
þOðβ2Þ ≥ ℏ2

4
: ð76Þ

By applying the formula (41) and the results of
Appendix, the squeezing amplitude r for the coherent state
with the β correction can be found. Following Appendix the

formula can be written as

r ¼ β

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
þOðβ2Þ; ð77Þ

where the X and Y functions can be read out from the
expressions (73)–(75).
Similar to the study of the first-order moments, the phase

θ is of no importance for our discussion and is therefore
fixed at θ ¼ 0 for the simplicity of the analysis. Introducing
ϕ ≔ ωt, it follows:

r
βωℏ

¼ 1

6

h
4 sin2ðϕÞ	jαj2ð2ðjαj − 1Þjαj2 sinð3ϕÞ þ 3ð2jαj2 − 3Þϕ cosðϕÞ þ ð9jαj − 3Þ sinðϕÞÞ þ 3 sinðϕÞ
2

þ 	
sinð2ϕÞð3jαj4 þ 8jαj2 þ 4jαj4 cosð2ϕÞ þ 3Þ − 6jαj2ð2jαj2 þ 3Þϕ cosð2ϕÞ
2i1=2 þOðβÞ: ð78Þ

Importantly, this expression exhibits a factor linear in ϕ, resulting in the accumulation of squeezing over time. This is in
contrast to the case of energy eigenstates jni discussed before. At late times, i.e., ϕ ≫ 1, the term with the contribution
linear in ϕ dominates over the accompanying oscillatory ones, and the formula (78) is well approximated by

r
βωℏ

≈
ϕjαj2
2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45þ 36jαj2 þ 20jαj4 þ 3ð4jαj4 þ 20jαj2 þ 9Þ cosð4ϕÞ

q
: ð79Þ

In consequence, at late times, the squeezing exhibits
oscillatory behavior with frequency 4ω, and the amplitude
of the oscillations belonging to the range ½rmin; rmax�, where

rmin;jαi ≈ βωℏ
1

2
jð2jαj2 − 3Þjjαj2ωt ð80Þ

and

rmax;jαi ≈ βωℏjð2jαj2 þ 3Þjjαj2ωt: ð81Þ

This formula suggests that the squeezing can grow to a
relevant magnitude after a sufficiently long time. The
possible associated empirical consequences will be exam-
ined in Sec. VI. Care should, however, be taken here as this
cumulative effect, when integrated over long times, leads
to a breakdown of the perturbative approach used in this
study. This happens for times typically greater than

ðβω2ℏÞ−1. Naturally, the lower the photon energy is
compared to the energy scale of new physics β−1, the
longer the perturbative approach remains valid. The exten-
sion of this work to the nonperturbative regime is beyond
the scope of this paper and left for future work.
In Fig. 1, we demonstrate the time dependence given

by the formula (78) alongside its approximation (79). The
approximation proves to be highly effective, exhibiting only
minor deviations from the original formula at short time-
scales. Additionally, Fig. 1 includes the approximations for
rmin;jαi and rmax;jαi, as described by Eqs. (80) and (81),
respectively. These approximations also maintain a high
degree of accuracy, closely fulfilling their intended roles.

V. DEFORMED DISPERSION RELATION

Most of the relevant properties of light (except for
the polarization states) can be captured by considering a
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massless scalar field model. This allows one to consider
the multimode light state and derive the associated dis-
persion relation.
The multimode light Hamiltonian generalizes Eq. (5) to

Ĥ ¼
X
k

Ĥk ¼ 1

2

X
k

�
P̂2
k þ ω2Q̂2

k

�

¼ 1

2

X
k

�
p̂2
k þ ω2q̂2k

�þ β

3

X
k

p̂4
k þOðβ2Þ; ð82Þ

where ω2 ¼ c2k · k, which is just a sum of single-mode
Hamiltonians for different values of ω. As a consequence,
previous results, and in particular the energy levels and
perturbed eigenstates, can be adopted here.
The q̂k and p̂k0 satisfy the canonical commutation

relation ½q̂k; p̂k� ¼ iℏÎδk;k.
Employing the expression for the first-order vacuum

state j0ð1Þi given by Eq. (14), one can evaluate the action of
the field operator on that state:

q̂kð0Þj0ð1Þi ¼
X
n

cnjnð1Þi: ð83Þ

At first order in β,

c1 ¼
ffiffiffiffiffiffi
ℏ
2ω

r �
1þ βℏω

2

�
; ð84Þ

c3 ¼ −
ffiffiffi
3

p

4
βℏ3=2ω1=2; ð85Þ

and the remaining coefficients cn are equal to zero. Single-
particle states are therefore not the only states created by an

elementary excitation of the vacuum: three-particle states
are also expected. While Eq. (14) may suggest that also
five-particle states are created, this contribution cancels out
at first order in β. This property has further consequences
on the propagation of the quanta.
To quantify this effect, the two-point correlation function

of q̂ðx⃗; tÞ on the first-order vacuum state j0i ≔⊗k

j0ð1Þk i∈H is considered:

h0jq̂ðx;tÞq̂ðy;t0Þj0i¼ 1

V

X
k;n

jcnj2eik·ðx−yÞ−i
ΔEð1Þn

ℏ ðt−t0Þ

¼ 1

V

X
k

Z
dω
2π

Gpeik·ðx−yÞ−iωðt−t
0Þ; ð86Þ

where

ΔEð1Þ
n ¼ Eð1Þ

n − Eð1Þ
0 ¼ ℏωn

�
1þ βℏω

2
ðnþ 1Þ

�
: ð87Þ

The Gp entering Eq. (86) is a propagator. Introducing
the four-momentum p ¼ ðℏωc ;ℏkÞ, of pseudonorm p2 ¼
− ℏ2ω2

c2 þ ℏ2k · k, it writes

Gp ≔
X
n

2iΔEð1Þ
n jcnj2

p2 þ
�
ΔEð1Þ

n
c

�
2
− k · k − iϵ

¼ i
�
ℏ2 þ 2βℏ3ω

�
p2 þ 2βℏ3ω3

c2 − iϵ
þOðβ2Þ: ð88Þ

Because of the cn coefficients appearing with a modulus
squared, only n ¼ 1 contributes to the previous expression
at first order in β, the n ¼ 3 term being of the order β2.
In the β → 0 limit the standard Feynman propagator of a
scalar field is recovered: Gp ¼ i

p2−iϵ.

As we see, the propagator (88) exhibits a pole at

p2c2 þ 2βℏ3ω3 ¼ 0; ð89Þ

which corresponds to the dispersion relation

ω ¼ ckþ βℏc2k2 þOðβ2Þ; ð90Þ

where k denotes the norm of the wave vector k. This
expression exhibits an additional term ∝ k2. As expected,
the usual linear form is recovered in the β → 0 limit.
This quantum correction to the dispersion relation leads

to an energy dependence of the photon group velocity:

vgr ≔
∂ω

∂k
¼ cþ 2βℏc2k: ð91Þ

FIG. 1. Time evolution of the squeezing amplitude r for
jαj ¼ 1. Here, the solid (black) line corresponds to the formula
given by Eq. (78). The approximation provided in Eq. (79) is
depicted as a dotted (black) line. The upper dashed (blue) line
corresponds to Eq. (81), and the bottom dashed (red) line
corresponds to Eq. (80).
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For positive values of β, the higher the photon energy,
the faster it moves. This cumulative effect leads to a time
advancement as the photon energy increases. For two
photons 1 and 2 of energies E1 and E2 the difference in
time arrival Δt ≔ t2 − t1 writes

cΔt ≈ −2βΔEL; ð92Þ

L being the traveled distance and ΔE ≔ E2 − E1. The
correct limit Δt → 0 when βΔE → 0 is recovered. Please
note that the formula (92) does not take into account any
effect of cosmological expansion.

VI. OBSERVABILITY

Testing quantum gravity effects using astrophysical
photons is an intensively explored avenue in quantum
gravity phenomenology [18,29–34]. By studying the
behavior of photons, particularly those originating from
distant astrophysical sources such as gamma ray bursts
(GRBs), one can attempt to probe the fundamental nature
of gravity at the quantum level [35–39]. These experiments
involve examining subtle deviations from classical predic-
tions, such as the energy-dependent speed of photons and
the resulting time lags or advancement accumulated over
long distances. An example of such an accumulative effect
has been provided in the previous section for the GUP-type
effects.
To estimate the magnitudes of both the squeezing and

time advancement of photons, it has to be remembered
that the parameter β has the dimension ½β� ¼ ½E−1�. Since
the considered modification to the usual uncertainty
principle is expected to be a manifestation of Planck-
scale physics, β−1 is expected to be around the Planck
scale:

β ∼
1

EPl
; ð93Þ

where EPl ≈ 1.22 × 1019 GeV.
The time-advancement established equation (92) can be

written as

Δt ∼ −
�
ΔE
EPl

�
L
c
: ð94Þ

Two high-energy photons in the energy range of the
Cherenkov Telescope Array (CTA) [40], typically of 1 and
10 TeV, respectively,2 would undergo a time advancement
of jΔtj ∼ 7 s after a traveled distance of 100 Mpc.

This article aimed to explore the potential cumulative
effects on phase-space properties of quantum states, spe-
cifically squeezing. As shown in Sec. IV, cumulative effects
are not expected for energy eigenstates at linear order in the
β parameter. They are, however, predicted for coherent
states with α ≠ 0.
Indeed, the expected maximal squeezing of the vacuum

state j0i is, according to Eq. (58),

rmax;j0i ∼
E
EPl

; ð95Þ

which, for E ∼ 1 TeV photons, gives a very small
value rj0i ∼ 10−16.
On the other hand, for coherent states, the formula (81)

can be recast into

rmax;jαi ∼ jð2jαj2 þ 3Þjjαj2
�

E
EPl

�
2 L
lPl

; ð96Þ

which for jαj ∼ 1 reduces to the following estimate:

rmax;jαi ∼
�

E
EPl

�
2 L
lPl

: ð97Þ

The validity of the perturbative approach used in this
work requires the previous estimation of rmax to be smaller
than unity. For photons of fixed energy, this imposes
a maximum distance of lPlðEPl=EÞ2. For 1 eV photons,
this distance is around 105 parsecs, and its value quickly
decreases as the photon energy goes up. For higher-energy
photons at this distance, although the perturbative expan-
sion cannot be used anymore, important squeezing effects
are still to be expected.
The important takeaway message is, therefore, that

photons of astrophysical origin emitted in a coherent state
should undergo important squeezing due to the GUP,
although the precise computation of the value of the effect
for high-energy photons requires one to go beyond the
perturbative approach.
Homodyne detectors (see, e.g., [41]) offer a promising

means to measure squeezing in quantum systems. These
detectors are capable of detecting both the amplitude and
the phase information of a quantum state, making them
well-suited for investigating the squeezing phenomenon.
By employing homodyne detection techniques, one can
measure the variances of both quadrature components of
the quantum state, which directly relates to the degree of
squeezing present. Employing this technique in analyzing
photons of astrophysical origin could serve as a new
window of constraining quantum gravity effects.
Furthermore, analysis of the statistics of light may

also provide an opportunity to constrain quantum gravita-
tional effects. In particular, the projection in the interacting
theory of the coherent states onto the occupation number

2The full energy range covered by CTA being comprised
between 20 GeV and 300 TeV.
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ones [in the leading order—OðβÞ] leads to the following
probabilities:

Pn ≔ jhnð1ÞjαðtÞij2

¼ jαj2n
n!

e−jαj2 þ βℏω
12

e−jαj2

×
�
−
1

2

jαj2nþ4

n!
cos ð4θÞ þ 4nþ 6

n!
jαj2nþ2 cos ð2θÞ

−
4n − 2

ðn − 2Þ! jαj
2n−2 cos ð2θÞ þ 1

2

jαj2n−4
ðn − 4Þ! cos ð4θÞ

�
;

ð98Þ

exhibiting a correction that is linear in β. No accumulation
of the correction is, however, expected at this order.

VII. SUMMARY

This article explored potential effects of Planck-scale
physics on the Heisenberg uncertainty principle. The focus
has been put on the time evolution of quantum states of
single-mode light under the influence of quantum gravita-
tional corrections.
Findings show that for both energy eigenstates and

coherent states of light, the leading order quantum gravity
corrections result in squeezing following an oscillatory
pattern. There is, however, a significant difference between
the two cases.
For the energy eigenstates, there is no net cumulative

effect at first order in the parameter β governing the
strength of Planck-scale effects. Those states remain stable
under the influence of the proposed quantum gravity
effects, and no significant contribution from the Planck
scale is expected in this case.
For the coherent states such that α ≠ 0, there is, however,

a net accumulation of the amplitude of squeezing (and
displacement) over time. The effect is predicted to be strong
in the case of photons traveling on astrophysical or cosmo-
logical distances and may have potential empirical con-
straints. For high-energy photons, the predictions require
going beyond the linear-perturbation approach used here,
which will be the object of a future paper. Measurements of
nonclassical properties of light originating from distant
astrophysical sources may, therefore, open a window to test
Planck-scale physics through such predictions.
A corrected form of the dispersion relation of light has

also been derived that provides additional insights, including
the analysis of corresponding advancements of photons.
Interestingly, both the constraints on the time of arrival and
the squeezing can be used simultaneously, hopefully leading
to tighter bounds on the effects. This possibility opens
another interesting path for further studies.
Future research in this direction may also expand the

investigation upon considering the generalized extended
uncertainty principle [42]:

ΔQΔP ≥
ℏ
2
ð1þ βΔP2 þ αΔQ2Þ: ð99Þ

This generalized form of the uncertainty principle intro-
duces additional terms β and α, which modify the trade-off
between the uncertainties in position (ΔQ) and momentum
(ΔP). To go even beyond, one could also include linear
terms in (ΔP) and/or in (ΔQ), in the spirit of [43,44]. An
interesting objective is also to investigate the fate of the
thermal states, not considered here, and the effect on the
polarization degrees of freedom of light.
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APPENDIX

Let us consider the following form of the variances and
of the covariance of the operators q̂ and p̂:

ωðΔq̂Þ2 ¼ ℏ
2
þ Xβ þ Aβ2 þOðβ3Þ; ðA1Þ

ðΔp̂Þ2=ω ¼ ℏ
2
− Xβ þ Bβ2 þOðβ3Þ; ðA2Þ

Cqp ¼ Yβ þ Cβ2 þOðβ3Þ; ðA3Þ

whereX, Y, A, B,C are some functions, not being dependent
on β. In this article, the forms of X and Y are derived, while
the form of the A, B, C functions is not known.
By applying the above expressions to Eq. (38) one finds

that

λ� ¼ ℏ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
β þOðβ2Þ: ðA4Þ

Therefore, the Oðβ2Þ terms, related to the unknown func-
tions A, B, and C, entering the square root in Eq. (38),
cancel out and do not contribute in the linear order in β to
the eigenvalues λ�.
Consequently, by expressing the square roots of the

eigenvalues as follows:

ffiffiffiffiffi
λ�

p
¼

ffiffiffi
ℏ
2

r
e�r; ðA5Þ

we find that the amplitude of squeezing can be written as

r ¼ β

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
þOðβ2Þ: ðA6Þ

This formula is used to derive the expressions for the
amplitude of squeezing in Sec. IV.
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