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We investigate quasitopological black holes in (2þ 1) dimensions in the context of electromagnetic-
generalized-quasitopological gravities (EM-GQT). For three different families of geometries of quasito-
pological nature, we study the causal structure and their response to a probe scalar field. To linear order, we
verify that the scalar field evolves stably, decaying in different towers of quasinormal modes. The studied
black holes are either charged geometries (regular and singular) or a regular Bañados-Teitelboim-Zanelli
(BTZ)-like black hole, both coming from the EM-GQT theory characterized by nonminimal coupling
parameters between gravity and a background scalar field. We calculate the quasinormal modes applying
different numerical methods with convergent results between them. The oscillations demonstrate a very
peculiar structure for charged black holes: in the intermediate and near extremal cases, a particular scaling
arises, similar to that of the rotating BTZ geometry, with the modes being proportional to the distance
between horizons. For the single horizon black hole solution, we identify the presence of different
quasinormal families by analyzing the features of that spectrum. In all three considered geometries, no
instabilities were found.
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I. INTRODUCTION

Black hole solutions in lower dimensional gravity can be
a good testing ground for four-dimensional gravity ideas
since they are simpler and share various features with the
black hole solutions in higher dimensions. Aspects of
gravity solutions in two and three dimensions with flat
and anti–de Sitter/de Sitter (AdS/dS) asymptotic spatial
infinity were extensively studied in the seminal work of
Jackiw [1] (for a detailed review on black hole solutions in
lower dimensions, see also [2]). Another pioneer break-
through was the Banñdos-Teitelboim-Zanelli (BTZ) black
hole [3], a three-dimensional solution whose spatial infinity
is AdS-like having well-defined conserved charges as
mass, angular momentum, and electric charge. Hennigar
et al. [4] found a three-dimensional black hole solution

with Gauss-Bonnet term nonminimally coupled to a scalar
field, which recovers the BTZ black hole when the Gauss-
Bonnet coupling constant goes to zero. A family of black
hole solutions in three dimensions exhibiting Lifshitz scaling
in the new massive gravity was considered in [5]. For a
comprehensive analysis, identification, and algebraic catego-
rization of exact solutions in (2þ 1)-dimensional Einstein
gravity, refer to [6]. It provides valuable insights on low-
energy (2þ 1)-dimensional string gravity, black holes
coupled to nonlinear electrodynamics, and a general dis-
cussion on Einstein equations coupled to matter and fields.
More recently, Bueno et al. [7] found another family

of three-dimensional black hole solutions in the context of
the so-called electromagnetic-generalized-quasitopological
gravities (EM-GQT). Such gravity theory is shaped con-
sidering a specific Lagrangian density that encodes the
Einstein-Hilbert term plus a nonminimal coupling between
kinetic terms of the real scalar field ∂aϕ, the Ricci scalar R
and Ricci tensor Rab, respectively. The black hole solutions
are obtained through the imposition of what was called a
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“magnetic” ansatz to the scalar field i.e., ϕ proportional to
the compact angular coordinate φ, and the metric tensor
components obeying gttgrr ¼ −1. Depending on the choice
of the undetermined coupling constants of the Lagrangian
density, there are black hole solutions with one or multiple
horizons and with or without singularities, representing a
generalization of the BTZ black holes [3]. The class of
solutions describing regular EM-GQT black holes is
exquisite as long as the formation of singularities in
lower-dimensional gravity and general relativity (GR)
reveals the breakdown of such theories requiring the
inclusion of quantum corrections [8,9].
In (2þ 1) dimensions, the theory proposed by [7] is

based on their counterparts in higher dimensions [10,11].
Typically, theories with higher order curvature terms extend
the understanding of a zeroth order approach of curvature
such as GR in four dimensions or that considered by
Bañados et al. [3]. In [10,11], a general electromagnetic
term nonminimally coupled to curvature is schematically
described as yielding regular conditions for the gravita-
tional and electromagnetic fields, namely singularity-free
black holes. Beyond that benefit of presenting regular
spacetimes with horizons as black hole mimickers (also
known as regular black holes), the study of AdS geometries
in such comes with nontrivial properties of their conformal
field theory (CFT) counterparts where the spacetime
molded peculiar behavior as superconductivity is to be
unveiled.
The lower-dimensional theory of [7] represents an

extension of the traditional (2þ 1) gravity with a very
interesting specificity—not to be seen in the higher dimen-
sional counterpart: the duality of the electromagnetic
source to a coupled scalar field theory system. In particular,
whenever such a scalar field is given in terms of an
azimuthal one-form (magnetic gauge), the theory presents
a very elegant solution [see (4), below] with a multitude of
possible black holes.
Different models characterizing and building regular

black holes have been considered since the work of
Bardeen [12]. Exact regular solutions with the inclusion
of nonlinear electromagnetic fields were studied in [13].
Gravity nonminimally coupled to Maxwell electromagnetic
fields were considered in [14].
This work considers three significant cases of EM-GQT

black holes: a singular solution with Cauchy and event
horizons and two regular solutions with one and two
horizons. Our aim is twofold: the characterization of the
geometry of those EM-GQT three-dimensional black holes
to understand the physics in inner and outer regions; we
also address the question of spacetime stability doing the
computation of scalar field perturbations and quasinormal
modes (QNM) ignited by a probe scalar field. Since the
ringdown phase of perturbed black holes is characterized
by the quasinormal modes [15,16] and independent of
the initial perturbation, the QNM can bring important

information about the properties of black hole geometry.
The oscillations represent part of the observations in the
gravitational interferometers [17–19]. The QNM can also
shed light on the question of the linear stability of black
hole solution under small perturbationsmodeled by classical
probe fields [20–26]. Additionally, QNM plays an essential
role in the context of AdS=CFT conjecture [27], inwhich the
relaxation timescale for the dual field theory at finite
temperature is given by the inverse of the imaginary part
of the fundamental quasinormal mode [28–32].
In (2þ 1) dimensions, the quasinormalmodeswere richly

studied in the past. They were first calculated in [33,34]
providing a deep understanding of the AdS=CFT duals [35]
and scrutinized in several different works [36–50]. Here, we
will analyze the structure of the different quasinormal spectra
in light of the studies performed in the past and their
developments.
Our paper is organized as follows. In Sec. II, we review

the essential aspects of the EM-GQT black hole solutions
and explore the conformal structure. In Sec. III, we discuss
the methods for finding the QNM due to the propagation of
a massless probe scalar field. Finally, Sec. IV summarizes
the results and discusses possible open questions.

II. BLACK HOLE SOLUTIONS

In this paper, we are going to consider black hole
solutions of the equations of motion coming from the
action [7]

S ¼ 1

16πG

Z ffiffiffiffiffiffi
−g

p
d3x

�
Rþ 2

L2
− Γ

�
; ð1Þ

whereG is the gravitational constant in (2þ 1) dimensions,
L is the AdS-like curvature radius, R is the Ricci scalar and
Γ contains terms concerning to the coupling between
curvature and the scalar field ϕ,

Γ ¼
X
n¼1

αnL2ðn−1Þð∂ϕÞ2n

−
X
m¼0

βmL2ðmþ1Þð∂ϕÞ2m½ð2mþ 3ÞRab − gabR�∂aϕ∂bϕ:

ð2Þ

The dimensionless constants αn and βn are entirely arbi-
trary, and their physics depend on the specific solution of
the theory (1).
The action expressed in (1) brings Γ as a quasitopological

(not invariant) term similar to that of other quasitopological
gravities (QTGs) studied along the past decades [51]. In such
theories, gravitation comes as a consequence of an action
with all possible independent cubic curvature contractions
of the Riemann tensor. The invariant brings interesting
metric solutions with AdS ansatz scrutinized in different
studies and contrarily to the similar topological theories as
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e.g. that of Lovelock gravities. In the QTGs, we do not have
S as an invariant of the spacetime and the border acts
nontrivially delimiting the geometry, depending on the
chosen topology for the spacetime [10,11,51].
We will consider the following ansatz for the line

element ds2 and the background scalar field ϕ,

ds2¼−fðrÞdt2þfðrÞ−1dr2þ r2dφ2; ϕ¼pφ; ð3Þ

with p standing for an arbitrary dimensionless constant
(that can be real or purely imaginary) and ðt; r;φÞ denoting
the coordinate system in which t∈ ½0;þ∞½, r∈ ½0;þ∞½
and φ∈ ½0; 2π�. In this case, setting α1 ¼ 0 the solution of
the motion equations is given by

fðrÞ ¼
�
r2

L2
− μþ

X
n¼2

An

r2ðn−1Þ

��
1þ

X
m¼0

Bm

r2ðmþ1Þ

�
−1
;

ð4Þ

where An ¼ αnp2nL2ðn−1Þ=2ðn − 1Þ and Bm ¼ ð2mþ
1ÞβmðLpÞ2ðmþ1Þ and μ is an integration constant which
is written in terms of the black hole mass M as

M ¼ μþ β0p2 þ α1p2 log

�
r0
L

�
; ð5Þ

where r0 is a cutoff radius. Such a mass M is divergent as
r0 → ∞ as in the charged BTZ solution [52]. For the black
hole solutions considered in the present work, we have set
α1 ¼ 0, so the cutoff is unnecessary. If all An and Bm

coefficients are zero, the spacetime corresponds to the
simplest BTZ black hole [3].
The lowest terms in (4), namely α1;2 and β1 provide us

regular (and singular) black holes solutions representing a
nice first order theory: e.g. the lapse function of (9) and (14)
resembles that of Reissner-Nordström solutions in GR and
in such (as we report in our results) possesses a family of
oscillations proportional to the distance between horizons.
However, unlike the four-dimensional black holes, where
such a family of oscillations is subdominant [53,54], in the
particular solutions we treat, they play the commanding
role in the quasinormal spectrum.
If we consider (2) in a context of small coupling factor

(lower alphas and betas) the charged nonrotating BTZ
black hole (α1 ≠ 0 and α≠1 ¼ βn ¼ 0) is a possible solution
of (4) studied in [55] as also the charged BTZ black
holes consequently from nonlinear electrodynamical terms
(see [56] and references therein). As expected, whenever
the extra constants are turned off, (4) recovers the Bañados-
Teitelbonn-Zanelli geometry and hence we can consider it
as a deformation of a zeroth order theory.
The line element (3) together with (4) describes a family

of static and circular symmetric black holes with or without

curvature singularity, depending on how many constants αn
and βm are turned on in the theory.
As mentioned, the magnetic ansatz for the scalar

field [7] corresponds to make it proportional to the form
φ. In the EM-GQT theory, the density Γ is dual to an
electromagnetic Lagrangian

Ldual ¼ Rþ 2

L2
− Γ − Fabε

abc
∂cϕ ð6Þ

in which the electromagnetic tensor F is written as

Fab ¼ −
1

2
εabc

∂L
∂∂cϕ

: ð7Þ

When solved perturbatively, such ansatz allows for a
relation between ϕ and F reducing the latter to its typical
form, of known usual charged black holes, that of an
electromagnetic tensor F produced solely by a source term
A of type A ¼ Aadxa ¼ AtðrÞdt. In that case, the solution
for the source A is of electric type (as usually in charged
black holes) written depending on the coefficients of the
theory as

AtðrÞ ¼ −α1p log ðr=LÞ þ
X
n¼2

nαnp
2ðn − 1Þ

�
Lp
r

�
2ðn−1Þ

þ f0ðrÞL
X
m¼0

βmðmþ 1Þ
�
Lp
r

�
2mþ1

: ð8Þ

We will analyze three different cases in what follows,
considering the presence of only one extra (geometric)
parameter besides those of a BTZ black hole with mass and
negative cosmological constant.
The first family of black holes considered is singular,

featuring event and Cauchy horizons, with a function fðrÞ
identical to the four-dimensional Reissner-Nordström-AdS
black hole, a very interesting peculiarity of the solution.
The other two families of black holes are regular; each

represents a different type of regular solution with an event
horizon in EM-GQT. The first type corresponds to regular
solutions in which fðr ¼ 0Þ ¼ 1 and a constrained param-
eter p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2β0=α2
p

[see Eq. (14)]. For the second type,
fðr → 0Þ → Oðr2sÞ, with s ≥ 1 [see Eq. (19)]. In both
regular cases, the curvature invariants are finite everywhere.

A. Singular black hole with two horizons: SBH

Let us consider the solution with one constant α2 and set
α1;n≥3 ¼ βm ¼ 0. Then the line-element results in a sin-
gular black hole,

ds2 ¼ −
r2

L2

�
1 −

ðr2þ þ r2−Þ
r2

þ ðrþr−Þ2
r4

�
dt2

þ L2dr2

r2
�
1 − ðr2þþr2−Þ

r2 þ ðrþr−Þ2
r4

�þ r2dφ2; ð9Þ
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featuring two solutions fðrÞ ¼ 0, the event and Cauchy
horizons, respectively, at r ¼ rþ and r ¼ r−, or

r� ¼ L

ffiffiffi
μ

2

r �
1�

�
1 −

2α2p4

μ2

�
1=2

�
1=2

; ð10Þ

with surface gravity at the horizons k� ¼ jr2þ − r2−j=L2r�.
Notice that in the extremal case inwhich rþ ¼ r− the surface
gravity goes to zero similarly to the four-dimensional
extremal Reissner-Nordström black hole. Apart from such
occasion, the black hole given by (9) has a timelike
singularity at the origin covered by the event and Cauchy
horizons. The spatial infinity is conformally AdS-like as in
other BTZ-like geometries.
The curvature scalar K ¼ RabcdRabcd [57] reads

K ¼ 12

L4
þ 8

�
r−rþ
L2

�
2 1

r4
þ 44

�
r−rþ
L

�
4 1

r8
; ð11Þ

bringing a curvature singularity at r ¼ 0 and positive
constant value K ∼ 12

L4 at r → ∞. For a more detailed
description of the nature of the singularity we proceed to
the Penrose-Carter diagram.
The Kruskal-Szekers-like coordinates ðU;VÞ adapted to

the event horizon rþ are

UþVþ ¼ ∓
				 r − rþ
rþ rþ

				
				 rþ rþ
r − r−

				kþ=k− ; ð12Þ

where the upper sign refers to r > rþ and the lower sign
refers to r < r−. For the Cauchy horizon r−, they have a
new set of coordinates ðU;VÞ

U−V− ¼ �
				 r − r−
rþ r−

				
				 rþ rþ
r − rþ

				k−=kþ ; ð13Þ

in which the upper sign refers to the region r− ≤ r ≤ rþ and
the lower sign refers to 0 ≤ r ≤ rþ. These relations allow
us to perform a compactification of the spacetime regions
and then combine the overlapping coordinates patches
ðUþ; VþÞ and ðU−; V−Þ to obtain the conformal diagram
of (9). That is shown in Fig. 1 (left panel).
The diagram structure is identical to the four-dimensional

Reissner-Nördstrom-AdS black hole [58]. Notice that the
whole spacetime consists of an infinite lattice of identical
blocks, each containing an event and Cauchy horizon and a
timelike singularity at r ¼ 0. Due to the repulsive character
of the timelike singularity, a real particle in region III will
cross r ¼ r− and emerge in a white hole horizon with
asymptotically AdS-like outer region I.
As explored in [7] the dual frame description of the

theory (1) [59] allows us to consider the constant qe ¼
α2p3L2 as an “electric charge” with the electrostatic poten-
tial At ¼ qer−2. The particular shape of the source A in this
case is the same as that of the nonlinear electrodynamics
theory (Einstein-Power-Maxwell) [60,61] if we consider a

density of type L ¼ ðFμνFμνÞ2=3. In such theory, qe can be
interpreted as the electrical charge of the nonlinear densityL
and the source term corresponds exactly to that of our gravity
with only α2 ≠ 0 thus justifying the interpretation of that
quantity as electric charge.
Such a result agrees with the conclusion that the effective

potential of an uncharged real particle in region III near the
timelike singularity is repulsive, preventing the particle’s
motion from terminating at r ¼ 0.

B. Regular black hole with two horizons: RBH

Considering fðrÞ in (4) with α2 ≠ 0 and β0 ¼ α2p2

2
, we

have the solution describing a regular black hole solution
endowed with event and Cauchy horizons rþ and r−,
respectively,

fðrÞ ¼ r2

L2

�
1 −

ðr2þ þ r2−Þ
r2

þ ðrþr−Þ2
r4

��
1þ ðrþr−Þ2

L2r2

�−1
;

ð14Þ

with

r� ¼ L

ffiffiffi
μ

2

r "
1�

�
1 −

2α2p4

μ2

�
1=2

#
1=2

: ð15Þ

FIG. 1. Left: conformal diagram for maximal extended singular
black hole solution with two horizons α2 ≠ 0. Right: conformal
diagram for regular black hole with one event horizon. The blue
lines represent the surfaces in which the radial coordinate is
constant.
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Notice that the event and Cauchy horizons locations are the
same as in the case of the singular black hole. It is
convenient to define the parameter Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r−rþ=L
p

, asso-
ciated to the presence of the background scalar field that we
will use as a parameter of the black hole extremality
(Qext ¼ rþ) in the numerical calculations presented in next
section. We emphasize that such parameter is not associated
with a charge defined via source term A, differently from
the previous case.
The manifest difference with the first spacetime is the

absence of a curvature singularity at r ¼ 0 in the context of
solution (14). In such a case, r ¼ 0 is a well-behaved
surface that is confirmed by the curvature scalar K when
r → 0 and written as

K ≈
12ðL2 þ r2þ þ r2−Þ2

ðrþr−Þ4
þOðr2Þ: ð16Þ

Near to the spatial infinity ðr → ∞Þ the curvature scalar
has the approximate value of BTZ black hole curva-
ture K ∼ KBTZ ¼ 12

L4.
The regular black hole with two horizons has the same

Kruskal-Szekes extension as the singular black hole (12)
and (13). But now, being r ¼ 0 a regular surface, the
manifold extends beyond it. The surface gravity at event
and Cauchy horizons are, respectively

kþ ¼ jr2þ − r2−j
rþðr2− þ L2Þ ; ð17Þ

k− ¼ jr2þ − r2−j
r−ðr2þ þ L2Þ : ð18Þ

The Penrose-Carter diagram for the regular black hole with
two horizons has the same structure as in the previous case
for the singular solution (left diagram in Fig. 1) except for
the timelike singularity which is absent in the regular
solution.
On a timelike trajectory, a particle with zero angular

momentum can go through the regular surface r ¼ 0, since
the effective potential is finite in this region, otherwise the
potential is infinitely repulsive preventing the particle to
cross r ¼ 0, similarly to the singular black hole solution (9)
and the four-dimensional Reissner-Nordström AdS black
hole [58].

C. Regular black hole with
one horizon and without charge

Another representative regular black hole solution is
obtained by considering αn ¼ 0, βm>0 ¼ 0 and only β0 ≠ 0.
In this case (4) reduces to

fðrÞ ¼ r2

L2

�
1 −

r2þ
r2

��
1þ β0p2L2

r2

�−1
; ð19Þ

in which we choose p to be real and β0 > 0 [62]. The
spacetime is asymptotically AdS-like and has an event
horizon at r ¼ rþ with a regular origin at r ¼ 0. In Fig. 1
(right panel), we performed a change in the radial coor-
dinate r ¼ r0 þ y, where r0 is a positive constant giving
the size of the throat of the black hole and y∈ � −∞;þ∞½.
For a timelike geodesic entering region II of the right
diagram, the effective potential in the vicinity of r ¼ 0 is
finite allowing massive particles to cross the region y ¼ r0
reaching region III.
The curvature scalar K when r → 0 is given by

K ≈
12r4þ
β20p

4L8
−
80ðβ0L2p2r2þ þ r4þÞ

β30p
6L10

r2 þOðr3Þ; ð20Þ

being regular at the origin as aforementioned. In this case,
near to the spatial infinity ðr → ∞Þ the curvature scalar
has the approximate value of BTZ black hole curvature,
K ∼ KBTZ ¼ 12

L4, too.
In the previous analysis, from the three representative

black hole solutions studied, two of them are regular (14)
and (19) and another has a timelike singularity at the
origin (9). The regular solution without charge is the most
simple and the first (to the best of our known) regular black
hole in (2þ 1) dimensions similar to that of the BTZ
geometry endowed with an extra scalar hair λ

λ ¼
ffiffiffiffiffi
β0

p
pL ð21Þ

such that the lapse function is defined in terms of three
parameters L, rþ and λ. By inspection we may verify that
such parameter is directly defined by the coupling constant
of the theory and the other two spacetime properties, rþ and
L as long as in this case,

Γ ¼ −8λ4
ðr2þ þ L2Þ

L2ðr2 þ λ2Þ2 : ð22Þ

When λ is turned off, we recover the pure BTZ spacetime.
We recall that in the asymptotic spatial infinity region,

the curvature of all three spacetimes is constant and same as
that of the BTZ spacetime curvature.
In the lapse function (19) the redefinition λ ¼ β1=20 pL

allows us the reabsorption of the coupling constant p of the
electric ansatz (or the scalar one in the dual scheme) in
terms of the coupling constants α’s and β’s of the theory or
vice-versa.
That is also the case for the other two black holes

considered above as it can be seen trough the potential
AðrÞ. In this work we consider solutions of such theory
with only one extra geometric parameter, λ or r− that
generate the above black holes regular and singular with
multiple or single horizons. In this fashion, we studied the
influence that this extra property can produce in the
quasinormal spectrum and stability of the spacetime.
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We will perform a perturbative analysis of those space-
times by computing the quasinormal frequencies due to a
probe massless scalar field and in such, study the linear
stability of the geometries.

III. PERTURBATIVE ANALYSIS:
PROBE SCALAR FIELD AND

QUASINORMAL FREQUENCIES

Let us consider the propagation of a probe massless
scalar field in the geometry whose dynamical behavior is
dictated by the Klein-Gordon equation,

□ψ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νψÞ ¼ 0: ð23Þ

In (2þ 1)-dimensional spherically symmetric spacetimes
as that of (3), the above equation can be written in the form

4
∂
2Ψ

∂u∂v
þ VðrÞΨ ¼ 0: ð24Þ

Here u and v are the usual double-null coordinates defined
as du ¼ dt − dr� and dv ¼ dtþ dr� with dr� ¼ f−1dr

representing the tortoise coordinate. The scalar field is
decomposed as ψðt; r;φÞ ¼ r−1=2e−iκφΨðu; vÞ and the
effective potential VðrÞ is written as

VðrÞ ¼ f

�
κ2

r2
þ f0

2r
−

f
4r2

�
; ð25Þ

with κ being the angular momentum of the field and 0
denoting a derivative with relation to r.
The shape of VðrÞ dictates the analysis of the dynamical

stability of the geometry. Whenever VðrÞ > 0 (in the region
r > rþ) the geometry is proved to be stable to linear
perturbations [21,28,63]. On the other hand if VðrÞ < 0 at
last in some part of r > rþ, the geometry can destabilize,
depending on “how negative” VðrÞ is. We studied widely
the effective potential of all three geometries and obtained
VðrÞ > 0 whenever r > rþ, such that no instabilities are
expected in the field evolution, what we confirm with
numerical computations. They are given explicitly in the
expressions below,

VSBH ¼ ðr2 − r2þÞðr2r2þ − L2Q4Þ½L2ðQ4ðr2 − 5r2þÞ þ 4κ2r2r2þÞ þ r2r2þð3r2 þ r2þÞ�
4L4r6r4þ

; ð26Þ

VRBH ¼
ðr2 − r2þÞðr2r2þ − L2Q4Þ

h
L2

�
4κ2r2þðQ4 þ r2Þ2 −Q4ðQ4ð3r2 þ r2þÞ þ 5r2r2þ − r4Þ

�
4L4r2r4þðQ4 þ r2Þ3

þ
r4r2þð7Q4 þ 3r2Þ þ r2r4þðr2 − 3Q4Þ

i
4L4r2r4þðQ4 þ r2Þ3 ; ð27Þ

Vλ ¼
ðr2 − r2þÞ½4κ2λ4L2 þ r4ð7λ2 þ 4κ2L2 þ r2þÞ þ λ2r2ð8κ2L2 − 3r2þÞ þ 3r6�

4L4ðλ2 þ r2Þ3 : ð28Þ

Some plots exemplifying the behavior of potentials are
given in Figs. 2–4.
From the above expressionswe can recognize all effective

potentials as similar in the region r ≥ rþ presenting sig-
nificant differences only inside the event horizon rþ. We
still see, as expected, that the qualitative differences are
enhanced by increase in the value of rþ. The asymptotic
behavior of such effective potentials when r → 0 is given by

VSBH ∼ −
5Q8

4r6
þOðr−3Þ; ð29Þ

VRBH ∼
4κ2 − 1

4r2
þOðr0Þ; ð30Þ

Vλ ∼ −
κ2r2p
λ2L2

þOðr2Þ: ð31Þ

It is worth to mention that both VSBH and VRBH are singular
at the origin, contrary to the one horizon black hole. This fact
is particularly important in the regular black hole case,
because despite the fact that the hypersurface is regular, the
effective potential becomes singular at r ¼ 0. It can possibly
drive a Cauchy horizon instability. When r → ∞ all three
potentials go as V ∼ 3r2

4L4, a characteristic behavior of asymp-
totically AdS spacetimes.
The fact that V > 0 in the region r ≥ rþ makes possible

the investigation of the quasinormal spectra of the black
holes taking plane waves as boundary condition (near
horizon) with the double null integration technique [64].
Together with the Prony method [65], both numerical
calculations provide the quasinormal frequencies with good
accuracy. As a cross-check method we use the Frobenius
expansion similar to that developed in [28]. In such
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expansion, we consider the wave equation with the new
radial coordinate z ¼ 1=r, developing that to

z4F
∂
2Ψ
∂z2

þ ð2z3F − z2f0 þ 2iωz2Þ ∂Ψ
∂z

þ
�
z2F − 2zf0 − 4κ2z2

4

�
Ψ ¼ 0 ð32Þ

in which F ¼ gttjr¼1=z and f0 ¼ ð∂rgttÞjr¼1=z. The Klein-
Gordon field is now adjusted to the ansatz ψ ¼
e−iωtþiκφΨðzÞ. The solution of the equation considers a
series expansion around the event horizon zþ ¼ r−1þ and the
first boundary condition for quasinormal modes—ingoing
plane waves at zþ—implicitly implemented in the series
expansion, Ψ→

P
nðz− zþÞnþα. That corresponds to the
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FIG. 3. Effective potential for singular (left) and regular (right) charged black holes with L ¼ rþ ¼ 1 and different values of angular
momentum κ. The vertical solid black line represents the event horizon.
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The solid black lines represent the event horizons.
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FIG. 2. Effective potential with two values of charge for singular (dashed) and regular (solid) charged black holes. The parameters
used are L ¼ 1, κ ¼ 0 (left) rp ¼ 1, (right) rp ¼ 5. The vertical solid black line represents the event horizon.
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choice α ¼ 0, in accordance with (32). Finally the method
consists in truncating the series in a certain number of terms
with the quasinormal equation Ψð0Þ ¼ 0 numerical imple-
mented, which represents the second boundary condition,
typical of AdS spacetimes.

A. Singular and regular black holes with charge

The singular black hole with charge represented by
the line element (9) possesses two regular horizons. The
most external of those, the event horizon characterizes
the boundary of the scattering problem and in that region,
the plane wave condition reads

Ψjr�→−∞ → e−iωr� : ð33Þ

Since the scalar potential diverges in the AdS infinity
(r� ¼ 0 or r ¼ ∞), besides the usual plane wave condition
at the horizon, we require that

Ψjr�¼0 → 0 ð34Þ

which settles the scattering question down.
The fundamental quasinormal modes obtained for the

singular and regular charged black holes are displayed
in Table I.
As expected, these modes are purely imaginary and

under specific condition have a worth scaling with the black
hole parameters written as

ωsing ¼ −2irþð1 −R2Þ ¼ −2iðrþ − r−Þ; ð35Þ

ωreg ¼ −irþð1 −R2Þ ¼ −iðrþ − r−Þ; ð36Þ

for singular and regular charged black holes respectively.
The fundamental modes (singular geometry) expressed by
(35) follow very strictly the same scaling calculated in [34]
(left branch) which is strictly related to the critical pheno-
mena of the black hole formation.
In the singular spacetime the variance of (35) to the data

of Table I for larger black holes is smaller than the usual
deviation using different methods to quasinormal modes
(in some cases to the 6th figure). In the pure BTZ limit
(r− ¼ 0), our results with double-null integration presented
here are about 0.2% to 0.3% deviant from the analytical
frequencies [33]. Relation (35) couples the results of
Table I almost perfectly (rþ > 1) and recovers the pure
BTZ case whenever r− ¼ 0 [33,66].
In the charged regular geometry, contrarily to what is

found in typical BTZ-like black holes with spherical
symmetry the frequencies are not a linear function of size
of the hole when rþ is small. In regimes of intermediate to
high spacetime charge and hole size (rþ) such scale is
recovered and the expression (36) arises representing half
the value of the scaling of the singular case. We show the
typical scalar field evolution in Fig. 5. The attenuation of ω

with increasing black hole charge is typical for charged
BTZ-like black holes [55,67]. In fact, in the purely charged
BTZ geometries, such weakening is even more pro-
nounced: for small black hole charges, the damping of
the fundamental mode lowers ca. 30% when the black hole
charge diminishes 10%. In our case, a smaller depletion is
observed as a result of the electromagnetic potential shape
which is similar to the (3þ 1) geometries (and very
different from the charged BTZ). In this case, the con-
ditions for superradiance and unstable mode evolutions for
a charged scalar field will be affected, generating a specific
spectrum very different from the pure BTZ geometry [68]
to be addressed in separate lines of investigation for
another works.

B. Regular black hole with one horizon

The last black hole we analyze is the regular BTZ
solution with a three parameter lapse function as that of (4).
In such case the extra parameter, λ, acts similarly to an AdS
cosmological term, attenuating the value of IðωÞ as it
increases. A table with quasinormal spectra and different λ
is presented in Table II.

TABLE I. Quasinormal modes of the massless scalar field
with κ ¼ 0. For simplicity we use a fraction of the charge,
Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rþr−=L
p

relative to its maximum value, Qmax ¼ rþ
defined as R ¼ Q=Qmax. All frequencies are purely imaginary
and stable, IðωÞ < 0.

Singular rþ ¼ 1 rþ ¼ 10 rþ ¼ 100

R IðωÞ
0 −1.9996 −19.931 −199.306
0.1 −1.9928 −19.835 −198.075
0.2 −1.9320 −19.200 −192.001
0.3 −1.8292 −18.200 −182.001
0.4 −1.6907 −16.800 −168.001
0.5 −1.5136 −15.000 −150.002
0.6 −1.2814 −12.800 −128.000
0.7 −1.0208 −10.201 −102.000
0.8 −0.7203 −7.2002 −72.000
0.9 −0.3804 −3.8000 −38.000

Regular rþ ¼ 1 rþ ¼ 10 rþ ¼ 100

R IðωÞ
0 −1.9996 −19.927 −199.182
0.1 −1.9244 −18.007 −112.998
0.2 −1.7885 −13.999 −96.272
0.3 −1.6132 −10.677 −91.012
0.4 −1.3866 −8.8256 −84.001
0.5 −1.1509 −7.6029 −75.000
0.6 −0.9061 −6.4244 −64.000
0.7 −0.6625 −5.1057 −51.000
0.8 −0.4283 −3.6012 −36.000
0.9 −0.2772 −1.9001 −19.000
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The values of Table II were obtained with the Frobenius
method and confirmed with good accuracy with the
characteristic integration scheme. Their deviation is no
higher than 0.1% (except for the highest λ case with a
difference of about 1%).
In the Tables III and IV we list the calculated frequencies

with angular momentum obtaining an interesting feature in
that spectra: the quasinormal modes change from an
oscillatory pattern to a purely imaginary character as we
increase λ. Such change may be related to the presence
of a secondary family of modes taking control of the field
evolution. Interestingly we can see that IðωÞ goes in

different directions with increasing λ. In the primary family,
the increase in λ rises the damping of the oscillation and
in the purely imaginary scenario, the opposite happens.
The existence of multiple families of oscillations were des-
cribed in many references along the last years [25,53,69]
though its presence has to be verified with analytical
methods identifying overtone numbers for each family.

IV. FINAL REMARKS

Black hole solutions in lower dimensions are a fruitful
scenario to test ideas and proprieties of general relativity

TABLE II. Quasinormal modes of the massless scalar field with L ¼ 1 and κ ¼ 0. All frequencies are purely
imaginary and stable, IðωÞ < 0.

λ 10−2 10−1 0.5 1 5 10

IðωÞ
rþ ¼ 1 −1.98019 −1.8019 −1.1259 −0.6171 −0.04319 −0.01107
rþ ¼ 10 −19.9820 −19.8019 −19.0036 −18.0178 −11.2586 −6.17090

TABLE III. Quasinormalmodes of themassless scalar fieldwith rþ ¼ L ¼ 1. All frequencies are stable,IðωÞ < 0.

(κ ¼ 1), λ 0 0.1 0.2 0.3 0.4 0.5 1 2

IðωÞ −2.0001 −2.0051 −2.0188 −2.0377 −2.0507 −1.9891 −0.8774 −0.4011
RðωÞ 1.0002 0.9750 0.8971 0.7578 0.5309 0 0 0

(κ ¼ 2), λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8

IðωÞ −2.00028 −2.00810 −2.03158 −2.06926 −2.11890 −2.17735 −2.24025 −2.24499
RðωÞ 2.00077 1.98632 1.94430 1.87412 1.77521 1.64605 1.48336 0

(κ ¼ 3), λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.9

IðωÞ −2.00013 −2.00949 −2.03557 −2.07833 −2.13548 −2.20480 −2.28320 −2.55336
RðωÞ 3.00070 2.99032 2.96226 2.91406 2.84737 2.76218 2.65747 −2.21252

FIG. 5. Scalar field profiles of charged black holes in (2þ 1) dimensions. In the left panels purely imaginary evolutions are shown for
singular/regular black holes with κ ¼ 0. In the right panels we can see field evolutions with different angular momentum in a regular
black hole with R ¼ 0.4 and rþ ¼ 1.
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solutions in (3þ 1) dimensions. This paper analyzed three
representative families of (2þ 1)-black hole solutions
in the EM-GQT theories, with two of them featuring
Cauchy and event horizons with and without curvature
singularity at the origin. Those black holes share almost the
same causal proprieties as in the Reissner-Nordström-AdS
black hole in (3þ 1) dimensions. In the case of the singular
solution, the maximal extension is the same, and for
the regular solution, the timelike singularity at r ¼ 0 is
absent, as expected. After crossing the Cauchy horizon, an
uncharged massive particle can avoid the timelike singu-
larity due to a repulsive gravitational force near r ¼ 0, as in
the Reissner-Nordstöm solution. The same occurs in the
case of the regular solution, but only for particles with
angular momentum k ≠ 0.
The third black hole family is regular with one horizon

and recovering the BTZ solution when the parameter λ ¼
β0L2p2 goes to zero. The causal structure shows that a
timelike particle will cross the well-behaved surface r ¼ 0
and emerge asymptotically with an AdS white hole as in the
diagram on the right side of Fig. 1.
We tested all three families of black holes against a scalar

field introduced in the geometry as a probe to the back-
ground geometry. To linear order, we can see the scalar
field decay in time in sets of quasinormal modes with a very
peculiar structure. In the singular charged black hole, we
observe the fundamental mode to scale the distance
between horizons just as proposed in the rotating case
[34], which is an astonishing novelty since the geometry,

contrary to that of [34] is static. Another interesting scaling
arrives in the regular black hole for intermediate and near
extremal charges, proportional to the same distance but
with an attenuation of 1=2.
The regular black hole with only one horizon possesses

another interesting quasinormal mode spectral structure
denoting the presence of oscillatory families competing
with purely imaginary frequencies to dominate the field
profile. Depending on the black hole parameters, one or
another is cast as the most resilient profile.
Further lines of investigation in view of quasitopological

black holes we study here are the test of different probe
fields in such geometries and instabilities delivered by a
charged scalar perturbation as usual of charged geometry,
which can be seen in the simplest charged BTZ black
hole [68].
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Hořava AdS black hole and the approach to thermal
equilibrium, Eur. Phys. J. C 80, 600 (2020).

[37] P. Cañate, N. Breton, and L. Ortiz, (2þ 1)-dimensional
static cyclic symmetric traversable wormhole: Quasinormal
modes and causality, Classical Quantum Gravity 37, 055007
(2020).

[38] G. Panotopoulos and Ángel Rincón, Quasinormal modes of
regular black holes with non linear-electrodynamical
sources, Eur. Phys. J. Plus 134, 300 (2019).

[39] A. Anabalón, O. Fierro, J. Figueroa, and J. Oliva, Scalar
field quasinormal modes on asymptotically locally flat
rotating black holes in three dimensions, Eur. Phys. J. C
79, 281 (2019).

[40] A. Övgün and K. Jusufi, Quasinormal modes and greybody
factors of fðrÞ gravity minimally coupled to a cloud of
strings in 2þ 1 dimensions, Ann. Phys. (Amsterdam) 395,
138 (2018).

ASPECTS OF REGULAR AND SINGULAR ELECTROMAGNETIC- … PHYS. REV. D 109, 024027 (2024)

024027-11

https://doi.org/10.1103/PhysRevD.104.L021501
https://doi.org/10.1103/PhysRevD.104.L021501
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1967.0164
https://doi.org/10.1098/rspa.1967.0164
https://doi.org/10.1088/1361-6382/abd923
https://doi.org/10.1007/JHEP10(2020)125
https://doi.org/10.1103/PhysRevLett.80.5056
https://doi.org/10.1103/PhysRevLett.80.5056
https://doi.org/10.1103/PhysRevD.77.084013
https://doi.org/10.1103/PhysRevD.77.084013
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/PhysRevD.75.124017
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevD.99.104065
https://doi.org/10.1103/PhysRevD.99.104065
https://doi.org/10.1140/epjc/s10052-019-6831-3
https://doi.org/10.1140/epjc/s10052-019-6831-3
https://doi.org/10.1103/PhysRevD.99.044023
https://doi.org/10.1088/0264-9381/28/8/085023
https://doi.org/10.1088/0264-9381/28/8/085023
https://doi.org/10.1103/PhysRevD.88.064035
https://doi.org/10.1007/JHEP10(2022)047
https://doi.org/10.1103/PhysRevD.102.104037
https://doi.org/10.1103/PhysRevLett.88.151301
https://doi.org/10.1103/PhysRevD.62.024027
https://doi.org/10.1016/j.physletb.2012.02.026
https://doi.org/10.1103/PhysRevD.81.106007
https://doi.org/10.1103/PhysRevD.81.106007
https://doi.org/10.1103/PhysRevD.90.124071
https://doi.org/10.1103/PhysRevD.98.044005
https://doi.org/10.1103/PhysRevD.98.044005
https://doi.org/10.1103/PhysRevD.63.124015
https://doi.org/10.1103/PhysRevD.64.064024
https://doi.org/10.1088/0264-9381/20/20/101
https://doi.org/10.1140/epjc/s10052-020-8169-2
https://doi.org/10.1088/1361-6382/ab6859
https://doi.org/10.1088/1361-6382/ab6859
https://doi.org/10.1140/epjp/i2019-12686-x
https://doi.org/10.1140/epjc/s10052-019-6748-x
https://doi.org/10.1140/epjc/s10052-019-6748-x
https://doi.org/10.1016/j.aop.2018.05.013
https://doi.org/10.1016/j.aop.2018.05.013


[41] Á. Rincón and G. Panotopoulos, Quasinormal modes
of scale dependent black holes in (2þ 1)-dimensional
Einstein-Power-Maxwell theory, Phys. Rev. D 97, 024027
(2018).

[42] G. Panotopoulos and Á. Rincón, Quasinormal modes of
black holes in Einstein-Power-Maxwell theory, Int. J. Mod.
Phys. D 27, 1850034 (2018).

[43] P. A. González and Y. Vásquez, Dirac quasinormal modes of
new type black holes in new massive gravity, Eur. Phys. J. C
74, 2969 (2014).

[44] M. Catalán and Y. Vásquez, Scalar field perturbations of a
Lifshitz black hole in conformal gravity in three dimensions,
Phys. Rev. D 90, 104002 (2014).

[45] P. González, E. Papantonopoulos, and J. Saavedra, Chern-
simons black holes: Scalar perturbations, mass and area
spectrum and greybody factors, J. High Energy Phys. 08
(2010) 050.

[46] B. Chen and Z. Bo Xu, Quasi-normal modes of warped
black holes and warped AdS=CFT correspondence, J. High
Energy Phys. 11 (2009) 091.

[47] S. K. Chakrabarti, P. R. Giri, and K. S. Gupta, Scalar
field dynamics in warped AdS3 black hole background,
Phys. Lett. B 680, 500 (2009).

[48] S. Fernando, Spinning dilaton black holes in 2þ 1 dimen-
sions: Quasinormal modes and the area spectrum, Phys.
Rev. D 79, 124026 (2009).

[49] S. Fernando, Quasinormal modes of charged scalars around
dilaton black holes in 2þ 1 dimensions: Exact frequencies,
Phys. Rev. D 77, 124005 (2008).

[50] S. Fernando, Quasinormal modes of charged dilaton black
holes in 2þ 1 dimensions, Gen. Relativ. Gravit. 36, 71
(2004).

[51] R. C. Myers and B. Robinson, Black holes in quasi-
topological gravity, J. High Energy Phys. 08 (2010) 067.

[52] C. Martinez, C. Teitelboim, and J. Zanelli, Charged rotating
black hole in three space-time dimensions, Phys. Rev. D 61,
104013 (2000).

[53] V. Cardoso, J. L. Costa, K. Destounis, P. Hintz, and A.
Jansen, Quasinormal modes and strong cosmic censorship,
Phys. Rev. Lett. 120, 031103 (2018).

[54] R. Fontana, P. González, E. Papantonopoulos, and Y.
Vásquez, Anomalous decay rate of quasinormal modes in
Reissner-Nordström black holes, Phys. Rev. D 103, 064005
(2021).

[55] R. D. B. Fontana, Quasinormal modes of charged BTZ
black holes, arXiv:2305.05068.

[56] A. Aragón, P. A. González, J. Saavedra, and Y. Vásquez,
Scalar quasinormal modes for 2þ 1-dimensional Coulomb-
like AdS black holes from nonlinear electrodynamics,
Gen. Relativ. Gravit. 53, 91 (2021).

[57] Rabcd are the components of Riemann tensor.
[58] J. B. Griffiths and J. Podolsky, Exact Space-Times in

Einstein’s General Relativity, Cambridge Monographs
on Mathematical Physics (Cambridge University Press,
Cambridge, England, 2009).

[59] The action in dual description can only be obtained
perturbatively.

[60] O. Gurtug, S. H. Mazharimousavi, and M. Halilsoy, 2þ 1-
dimensional electrically charged black holes in Einstein-
Power-Maxwell theory, Phys. Rev. D 85, 104004 (2012).

[61] G. Panotopoulos, Charged scalar fields around Einstein-
Power-Maxwell black holes, Gen. Relativ. Gravit. 51, 76
(2019).

[62] The choice of p purely imaginary or equivalently β0 < 0
would bring a singular spacetime with a singularity at r ¼ λ
that we will not study here.

[63] P. González, Á. Rincón, J. Saavedra, and Y. Vásquez,
Superradiant instability and charged scalar quasinormal
modes for (2þ 1)-dimensional Coulomb-like AdS black
holes from nonlinear electrodynamics, Phys. Rev. D 104,
084047 (2021).

[64] C. Gundlach, R. H. Price, and J. Pullin, Late-time behavior
of stellar collapse and explosions. I. Linearized perturba-
tions, Phys. Rev. D 49, 883 (1994).

[65] R. Konoplya and A. Zhidenko, Quasinormal modes of black
holes: From astrophysics to string theory, Rev. Mod. Phys.
83, 793 (2011).

[66] J. de Oliveira and R. Fontana, Three-dimensional black
holes with quintessence, Phys. Rev. D 98, 044005 (2018).

[67] B. Cuadros-Melgar, R. Fontana, and J. de Oliveira, Gauss-
Bonnet black holes in (2þ 1) dimensions: Perturbative
aspects and entropy features, Phys. Rev. D 106, 124007
(2022).

[68] R. D. B. Fontana, Scalar field instabilities in charged BTZ
black holes, arXiv:2306.02504.

[69] K. Destounis, Superradiant instability of charged scalar
fields in higher-dimensional Reissner-Nordström-de Sitter
black holes, Phys. Rev. D 100, 044054 (2019).

DE OLIVEIRA, FONTANA, and PAVAN PHYS. REV. D 109, 024027 (2024)

024027-12

https://doi.org/10.1103/PhysRevD.97.024027
https://doi.org/10.1103/PhysRevD.97.024027
https://doi.org/10.1142/s0218271818500347
https://doi.org/10.1142/s0218271818500347
https://doi.org/10.1140/epjc/s10052-014-2969-1
https://doi.org/10.1140/epjc/s10052-014-2969-1
https://doi.org/10.1103/PhysRevD.90.104002
https://doi.org/10.1007/JHEP08(2010)050
https://doi.org/10.1007/JHEP08(2010)050
https://doi.org/10.1088/1126-6708/2009/11/091
https://doi.org/10.1088/1126-6708/2009/11/091
https://doi.org/10.1016/j.physletb.2009.09.031
https://doi.org/10.1103/PhysRevD.79.124026
https://doi.org/10.1103/PhysRevD.79.124026
https://doi.org/10.1103/PhysRevD.77.124005
https://doi.org/10.1023/B:GERG.0000006694.68399.c9
https://doi.org/10.1023/B:GERG.0000006694.68399.c9
https://doi.org/10.1007/JHEP08(2010)067
https://doi.org/10.1103/PhysRevD.61.104013
https://doi.org/10.1103/PhysRevD.61.104013
https://doi.org/10.1103/PhysRevLett.120.031103
https://doi.org/10.1103/PhysRevD.103.064005
https://doi.org/10.1103/PhysRevD.103.064005
https://arXiv.org/abs/2305.05068
https://doi.org/10.1007/s10714-021-02864-6
https://doi.org/10.1103/PhysRevD.85.104004
https://doi.org/10.1007/s10714-019-2560-z
https://doi.org/10.1007/s10714-019-2560-z
https://doi.org/10.1103/PhysRevD.104.084047
https://doi.org/10.1103/PhysRevD.104.084047
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/PhysRevD.98.044005
https://doi.org/10.1103/PhysRevD.106.124007
https://doi.org/10.1103/PhysRevD.106.124007
https://arXiv.org/abs/2306.02504
https://doi.org/10.1103/PhysRevD.100.044054

