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The Hellings-Downs (HD) curve plays a crucial role in search for nano-hertz gravitational waves (GWs)
with pulsar timing arrays. We discuss the angular pattern of correlations for pulsar pairs within a celestial
hemisphere. The hemisphere-averaged correlation curve depends upon the sky location of a GW compact
source like a binary of supermassive black holes. If a single source is dominant, the variation in the
hemisphere-averaged angular correlation is greatest when the hemisphere has its North Pole at the sky
location of the GW source. Possible GWamplitude and source distance relevant to the current pulsar timing
arrays by using the hemisphere-averaged correlation are also studied.

DOI: 10.1103/PhysRevD.109.024023

I. INTRODUCTION

Decades ago, the idea of using radio pulse timing to
search for gravitational waves (GWs) was proposed [1–3].
Notably, Hellings and Downs (HD) pointed out that the
angular correlation pattern for pulsar pairs averaged over
the sky can provide an evidence of GWs [4], since the
correlation curve is a consequence of the quadrupole nature
of GWs [5–8]. Along this direction, several teams of pulsar
timing arrays (PTAs) have recently reported an evidence of
nano-hertz GWs [9–12]. According to their results, super-
positions of supermassive black hole binaries (SMBHBs)
are among possible GW sources, though the origin of the
significant correlation has not been identified yet. See, e.g.,
Ref. [13] for a review on detection methods of stochastic
GW backgrounds.
For an isotropic stochastic background of GWs com-

posed of the plus and cross polarization modes in general
relativity, the expected correlated response of pulsar pairs
follows the HD curve, where the averaging over the whole
sky (4π) is taken. The whole-sky average makes the HD
curve insensitive to any particular direction of the sky. This
is the price of extracting tiny GW signals from large
fluctuations of pulse signals from individual pulsars.
Therefore, it is not surprising that an isolated SMBH
binary produces an identical cross-correlation pattern as
an isotropic stochastic background [14].
What happens in the pulsar correlation if the averaging

domain is changed from the whole sky? Any deviation

from the whole-sky average breaks the isotropy. It may thus
allow to use modified cross-correlation curves for the sky
localization of a GW source.
The main purpose of this paper is to examine if the

angular correlation pattern for pulsar pairs within a sky
hemisphere has a dependence on a GW compact source.
We show that, if a single GW source is dominant, the
variation in a hemisphere-averaged angular correlation
curve is greatest when the hemisphere has its North Pole
at the sky location of the GW source.
This paper is organized as follows. Section II considers

pulsar pairs within a sky hemisphere, for which the
pulsar correlation curve is discussed. In Sec. III, we
discuss the dependence of the maximum correlation
and the minimum one on the North Pole of a hemisphere.
We shall show that the difference between the maximum
and minimum correlations for a single hemisphere is
greatest, if and only if the hemisphere has its North Pole
at the sky location of the GW source. Section IV is
devoted to the Conclusion. Throughout this paper, a and
b label two pulsars as a pair, and the center of the
coordinates is the solar barycenter, safely approximated
as the Earth.

II. HEMISPHERE-AVERAGED ANGULAR-
CORRELATION PATTERN

A. Full-sky cross-correlation

Following Refs. [5–7], let us discuss a correlation of
pulsar pairs. See, e.g., Appendix C of [7] for detailed
calculations of deriving the standard HD curve.
We consider a GW compact source which is chosen as

the z direction in the coordinates ðx; y; zÞ. See Fig. 1 for the
GW-oriented coordinate system ðx; y; zÞ. The fractional
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frequency shift in the timing observation of the ath pulsar
can be written as [4]

δνa
νa

¼ RahðtÞ þ naðtÞ; ð1Þ

where hðtÞ is the GW signal, naðtÞ is the noise, and the
response Ra ¼ cos 2Φað1þ cosΘaÞ for Θa ∈ ½0; πÞ and
Φa ∈ ½0; 2πÞ.
By taking the average over the sky, the cross-correlation

of pulsar pairs is [4–7]

ΓS ≡ 1

4π

Z
S
RaRbdΩ; ð2Þ

where S is the unit sphere and the noise terms are assumed
to be uncorrelated. So far, Eq. (2) has been considered
mostly for isotropic stochastic GW background [5–12].

B. Hemisphere cross-correlation

Next, we consider a sky hemisphere H in Fig. 2. The
North Pole NH is denoted as NH ≡ ðsin α cos β; sin α sin β;
cos αÞ and α is the inclination angle of the hemisphere from

the GW source direction. Averaging over this hemisphere
may be expressed as

ΓH ≡ 1

2π

Z
H
RaRbdΩ; ð3Þ

where a factor in front of the hemisphere integral is 1=2π.
A practical problem is how to perform the integration,

becauseΘa andΦa for the hemisphere case are allowed in a
non-trivial domain, and thereby calculations of

R
H dΩ ¼R

sin θdθ
R
dϕ are not straightforward, because Θa and Φa

do not respect the North Pole of the hemisphere. Therefore,
the angle coordinates θ and ϕ shall be specified below to
respect a hemisphere that we wish to study.
For the purpose of practical calculations of Eq. (3),

therefore, it is convenient to introduce another coordinates
ðx0; y0; z0Þ such that the North Pole is chosen as the z0-axis.
See Fig. 3 for the new coordinates respecting the
North Pole of a hemisphere. In the coordinates, the unit
vector to the ath pulsar can be written as na ¼ ðsin θ cosϕ;
sin θ sinϕ; cos θÞ, for which the half sphere as θ∈ ½0; π=2Þ
and ϕ∈ ½0; 2πÞ fully agrees with the hemisphere.

C. Pulsar-oriented coordinates

The separation angle between the pulsar pair is denoted
as γ. For clearly describing the configuration of the two
pulsars, we introduce a third coordinate system ðX; Y; ZÞ
such that the a-th pulsar location is chosen along the
Z-axis. See Fig. 4 for the coordinates ðX; Y; ZÞ.
The bth pulsar is located on a cone where the apex is

the origin of the ðX; Y; ZÞ coordinates, the apex angle is γ,
and the ath pulsar is on the axis. In the third coordinate
system, the bth pulsar direction can be written as nb ¼
ðsin γ cos δ; sin γ sin δ; cos γÞ.

D. Transformations among the GW-oriented,
pulsar-oriented, and hemisphere-oriented

coordinates

The coordinate transformation from ðx0; y0; z0Þ to ðx; y; zÞ
is a composed rotation as

FIG. 1. GW-oriented coordinates ðx; y; zÞ. The GWs propagate
downward along the z-axis. The latitude and longitude of the ath
pulsar are Θa and Φa, respectively.

FIG. 2. Hemisphere in the coordinates ðx; y; zÞ. The latitude
and longitude of the North Pole are α and β, respectively.

FIG. 3. Hemisphere-oriented coordinates ðx0; y0; z0Þ. The lat-
itude and longitude of the ath pulsar are θ and ϕ, respectively.
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S ¼

0
B@

cos α cos β − sin β sin α cos β

cos α sin β cos β sin α sin β

− sin α 0 cos α

1
CA; ð4Þ

and that from ðX; Y; ZÞ to ðx0; y0; z0Þ is

T ¼

0
B@

cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ

1
CA: ð5Þ

In the ðx; y; zÞ coordinate representation, the ath and bth
pulsar directions are na ¼ Sðsin θ cosϕ; sin θ sinϕ; cos θÞT,
and nb¼STðsinγcosδ;sinγsinδ;cosγÞT, where the super-
script T denotes the transposition.

E. Hemisphere cross-correlation II

The response RAðA ¼ a; bÞ for the plus and cross modes
of GWs coming from the directionΩ can be rewritten in the
covariant form as [7,13]

Rþ
A ¼ 1

2

ðnA · l̂Þ2 − ðnA · m̂Þ2
1þΩ · nA

R×
A ¼ ðnA · l̂ÞðnA · m̂Þ

1þΩ · nA
; ð6Þ

where l̂ ¼ ð0;−1; 0Þ and m̂ ¼ ð−1; 0; 0Þ in the ðx; y; zÞ
coordinates are the orthonormal bases on the plane
perpendicular to the GW propagation and l̂ and m̂ can
be used in the definition of the plus and cross modes.
Therefore, the total correlation by both the plus and cross

modes is [7,13]

ΓHðα; β; γÞ ¼
1

ð2πÞ2
Z

2π

0

dδ
Z
H
ðRþ

a R
þ
b þ R×

aR×
b ÞdΩ; ð7Þ

where the ath pulsar is averaged on the hemisphere
[ð1=2πÞ R dΩ], and the bth pulsar is averaged over the

cone [ð1=2πÞ R dδ]. The denominator in front of the
integrals is 2πðhemisphereÞ × 2πðδ integralÞ ¼ 4π2.
After substituting Eq. (6) into Eq. (7), the integrand is a

function of six angles α; β; γ; δ; θ;ϕ. For the average over
the present hemisphere, Eq. (7) explicitly becomes

ΓHðα;β;γÞ

¼ 1

4π2

Z
2π

0

dδ
Z

2π

0

dϕ
Z

π=2

0

sinθdθðRþ
a R

þ
b þR×

aR×
b Þ: ð8Þ

In the present formulation, we do not need take special
care of the integration domain, whereas Eq. (3) needs a
special care for a hemisphere case because the GW propa-
gation axis is not alignedwith the polar axis of a hemisphere.
In this paper, the integration in Eq. (8) is done numeri-

cally for a hemisphere, whereas the correlation integration
can be done analytically for the full sky [4,7].

III. GW SKY LOCATION AND THE MAXIMUM
AND MINIMUM CORRELATIONS

A. Angular correlation pattern for a hemisphere

Numerical calculations of Eq. (8) give angular correlation
patterns. It follows that the curves depend upon α but not
upon β, because they are symmetric around the propagation
axis of GWs. See Fig. 5 for the numerical plots.
The angular correlation pattern for a hemisphere has a

rotational symmetry around the polar axis of the hemi-
sphere. Therefore, the plot for α ¼ π=2 in Fig. 6 is acci-
dentally the same as the standard HD curve, though the
former curve is for a hemisphere and the latter one is for the
whole sky. The reason for this coincidence is that only
the α ¼ π=2 has pulsars in the north and south skies in the
same proportion (a half) to the whole sky in the HD curve.
At γ ¼ 0, the correlation decreases as α increases. This is

because as the hemisphere is more inclined with respect to
the GWaxis, Θa of pulsars in the hemisphere are larger and
hence the response Ra is smaller.
The maximum correlation Γmax for each value of α

monotonically decreases as α increases. On the other hand,
the minimum correlation Γmin monotonically increases.
Therefore, the difference between the maximum and
minimum correlations (ΔΓ≡ Γmax − Γmin) is more sensi-
tive to α than either of Γmax and Γmin.

B. Source localization in the sky

ΔΓ is maximized in the direction of the GW source on the
sky. See Fig. 6 for a contour sky map of ΔΓ. This figure
shows that the position of the maximumΔΓ perfectly agrees
with theGWsky location. The contours have no dependence
on the angle β as a consequence of the averaging over each
hemisphere as mentioned above. Plots such as Figs. 5 and 6
from future observation data could potentially suggest the
existence of a GWcompact sourcewith an allowed region in
the sky.

FIG. 4. Pulsar-oriented coordinates ðX; Y; ZÞ and the separation
angle γ between the ath pulsar and the bth one. The bth pulsar is
on a cone and its direction is specified by two angles γ and δ.
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What is the expected accuracy of the GW sky localiza-
tion by using the hemisphere cross-correlation? For its
simplicity, we assume the measurement accuracy of the
cross-correlation, say 10 percents, which means roughly
the error in ΔΓ ∼Oð0.1Þ. According to Fig. 6, the accuracy
for the determined latitude (corresponding to α) is nearly
10–20 degrees. This is not enough for pointing a host
galaxy that may include a relevant GW source like a binary
of supermassive black holes.
In the above discussion, we know the GW direction

a priori. How can we use the hemisphere-averaged corre-
lation for a GW source localization from future PTA
observations? For instance, we prepare a set of hemispheres,
e.g., 12 latitudes and 24 longitudes (by 15 degree step). For
12 × 24 ¼ 288 hemispheres, we estimate ΔΓ. The maxi-
mum ΔΓ could indicate the GW location in the sky.

C. On the hemisphere

Is there a caveat in a half size of the full sky? In their
pioneering work [4], it was pointed out that a total number
of pulsar pairs should be increased for statistically increas-
ing the signal-to-noise ratio, because fluctuations of tim-
ings of individual pulsars are not so negligible. The
maximum number of the pairs is available for the whole
sky (4π). For Npulsar as the total number of the observed
pulsars in PTAs, the number of pulsars in the present
method is nearly a half of Npulsar, where the isotropic
distribution of pulsars is simply assumed. From the full sky
to the hemisphere, the number of the pairs is reduced from
ðNpulsarÞðNpulsar − 1Þ=2 to ðNpulsar=2ÞðNpulsar=2 − 1Þ=2. For
Npulsar ≫ 1, this means from ðNpulsarÞ2=2 to ðNpulsarÞ2=8.
Namely, it becomes one fourth, so that the statistical
error increases twofold. For the current level of statistics
in PTAs [9–12], the hemisphere method may thus be a little
challenging.

D. Relevant GW amplitude and source distance

How large is the GW amplitude relevant to the
hemisphere-method? For estimating it, we use Eq. (1) to
obtain the correlation of pulsar pairs as [4]

hzazbi ∼ ΓHhh2i; ð9Þ

where za and zb denote the redshifts of pulse signals from the
ath and bth pulsars, respectively, hi denotes the autocorre-
lation, and hnahi ¼ 0 and hnanbi. Roughly estimating,
za ∼ Δta=Tobs, where Δta is the delay from the expected
arrival time and Tobs denotes the observation duration.
In PTA observations, Tobs is roughly the inverse of the
relevantGWfrequency fGW.Hence, za ∼ zb ∼ ðΔta=TobsÞ∼
fGWΔta, which leads to the variance of the cross correlation
hzazbi as ½σðhzazbiÞ�2 ∼ ðNpairÞ−1ðΔta=TobsÞ4 forNpair pairs
of the pulsars. The standard deviation is roughly

FIG. 5. Hemisphere-averaged angular-correlation pattern for pulsar pairs. It depends upon an inclination angle α, which runs from 0°
to 180° every 30 degrees. The separation angle viewed from the Earth is γ.

FIG. 6. Contour map of the difference between the maximum
and minimum correlations ΔΓ. For its simplicity, the North Pole
is chosen as the direction of a GW source.
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σðhzazbiÞ∼ðNpulsarÞ−1ðΔta=TobsÞ2, where Npair∼ðNpulsarÞ2.
The α-dependence of the hemisphere correlation can be
detectedwhen σðhzazbiÞ≲ ðδαΓHÞhh2i, where δαΓH denotes
the size of the variation of ΓH for changing α.
Therefore, the GW amplitude possibly relevant to the

current PTAs by using the hemisphere-averaged correlation
is roughly estimated as

h ∼
ffiffiffiffiffiffiffiffiffi
hh2i

q

≳ 10−14
�

102

Npulsar

�
1=2

�
fGW
1 yr−1

��
Δta

1 μ sec

��
0.1
δαΓH

�
1=2

;

ð10Þ

where δαΓH is ∼0.1, and the average accuracy in the time
residual measurement is Oð1Þ μ sec.
From Eq. (10), a nearby GW source can be marginally

detected when the distance D to the source is

D≲ 10 Mpc

�
Npulsar

102

�
1=2

�
1 μ sec
Δta

��
δαΓH

0.1

�
1=2

×

�
M

109M⊙

�
5=3

�
1 yr−1

fGW

�
1=3

; ð11Þ

where the quadrupole formula for a binary is used as h ∼
ðMR2Þ=ðDT2Þ ∼M5=3ðfGWÞ2=3=D for the total mass M,
the orbital radius R, the orbital period T (T ∼ 2=fGW) [5,6].
On the other hand, a lower bound on the distance to the
dominant source can be placed, unless δαΓH is detected.
The near future SKA would significantly improve the

sensitivity of PTAs by a factor ∼5 or more through newly
finding hundreds of millisecond pulsars [15]. In the SKA
era, the hemisphere method can be thus expected for, e.g.,
the Coma cluster at ∼100 Mpc.

E. Multiple sky locations of GWs

Before closing this section, we briefly mention the
number of GW sources relevant to the cross-correlation
curve. The present paper assumes a single GW source. How
can the hemisphere cross-correlation curve be modified, if
multiple GW compact sources are dominant in the cross-
correlation curves? In the forthcoming PTA observations,
GW frequencies from multiple strong GW sources (if they
exist) are likely to be distinguishable from each other, since
it is less feasible that the orbital period of one of SMBHSs
is accidentally the same as that of another one. Here, what
we mean by a strong GW source is that it can make signals
larger than the stochastic GW background.
For each source with a different GW frequency, the

hemisphere cross-correlation method can be used sepa-
rately, if the number of the sources is not large, say a few.
For more than a dozen of strong GW sources, two or more
GW sources are degenerate in Fourier spaces. For such a

case, the hemisphere method needs significant improve-
ment by simultaneous inclusion of multiple sources.
Detailed investigations taking account of two or more
GW compact sources are beyond the scope of this paper.
Finally, we mention the term within the hemisphere.

In the above formulation, most of the pulsar pairs in the
same hemisphere are taken into account. Exactly speaking,
however, both components of a pair of pulsars do not need
to live in the hemisphere simultaneously; there can be a
case that one of the pair is in H but the other is outside. The
latter case is very rare for small γ, while it is a larger
fraction for large γ. On the other hand, Eq. (3) cannot be
calculated, unless a pulsar pair within a hemisphere is
clearly defined in terms of the GW-oriented coordinates
ðx; y; zÞ.
The present result has an interesting implication. The

distribution of pulsars observed by the current PTAs [9–12]
is highly anisotropic, because we do not live in the galactic
center. The deviation from the ideal HD curve in the current
PTA observations [9–12] could be due to the anisotropic
distribution of pulsars for a possible GW point-like source,
though the deviation has not been established statistically.
It would be interesting to pursue this direction further.

IV. CONCLUSION

We discussed the hemisphere-averaged angular correla-
tion pattern to pulsar pairs. Our numerical calculations
showed that, if a singleGWsource is dominant, the variation
in a hemisphere-averaged angular correlation curve is
greatest when the hemisphere has its North Pole at the
sky location of the GW source. Possible GWamplitude and
source distance relevant to the current PTAs by using the
hemisphere-averaged correlation were investigated. The
near future SKA will make it possible to perform sky
localization by using the hemisphere-averaged correlations.
We mention also the validity of the present method. We

confirmed numerically that, regardless of α and β, Eq. (8)
for the whole sky perfectly recovers the standard HD curve,
if θ runs from 0 to π in the integration by θ.
The hemisphere condition adopted in the present paper is

that at least one pulsar of a pulsar pair is in the hemisphere.
Another option is that both pulsars in a pair are located
within the same hemisphere. It would be interesting to use
such an option to examine which condition is more suitable
for the sky localization. It is left for future.
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