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A variational principle for gauge theories of gravity is presented, which maintains manifest covariance
under the symmetries to which the action is invariant, throughout the calculation of the equations of motion
and conservation laws. This is performed by deriving explicit manifestly covariant expressions for the
Euler-Lagrange variational derivatives and Noether’s theorems for a generic action of the form typically
assumed in gauge theories of gravity. The approach is illustrated by application to two scale-invariant
gravitational gauge theories, namely Weyl gauge theory (WGT) and the recently proposed ‘extended’Weyl
gauge theory (eWGT), where the latter may be considered as a novel gauging of the conformal group; the
method can also be straightforwardly applied to other theories with smaller or larger symmetry groups. In
addition, the approach enables one easily to establish the relationship between manifestly covariant forms
of variational derivatives obtained when one or more of the gauge field strengths is set to zero either before
or after the variation is performed. This is illustrated explicitly for both WGT and eWGT in the case where
the translational gauge field strength (or torsion) is set to zero before and after performing the variation,
respectively.

DOI: 10.1103/PhysRevD.109.024022

I. INTRODUCTION

For any given action, the process of deriving the mani-
festly covariant equations of motion for the fields onwhich it
depends can bevery time consuming.A key reason is that for
an action that is invariant under some set of symmetries,
either global or local, the individual terms making up the
Euler-Lagrange equations are typically not covariant under
those symmetries. One therefore usually obtains equations of
motion that, although inevitably covariant, are notmanifestly
so. One then faces the task of combining terms in various
ways to achieve manifest covariance before continuing with
further analysis, and this process can require considerable
trial and error, often relying on inspired guesswork. Similar
difficulties are also encountered when deriving conservation
laws, whichmust again be covariant under the symmetries of
the action, but are typically not obtained in a manifestly
covariant form when they are derived using the standard
forms of Noether’s theorems.
Here we present an alternative approach whereby one

maintains manifest covariance throughout the calculation

of the equations of motion and conservation laws, thereby
circumventing the above difficulties. Methods for achieving
this, at least for the equations of motion, have been con-
sidered previously in the context of gravitational theories that
are interpreted in the usual geometrical manner, where the
action depends typically on the spacetime metric gμν,
together perhaps with some nonmetric connection Γσ

μν

[1–6]. Here we instead focus on developing a manifestly
covariant variational principle for gauge theories of gravity
[7–11]. In particular, we illustrate the method by application
to the scale-invariant Weyl gauge theory (WGT) [12–18]
(see also [19]) and its recently proposed ‘extended’ version
(eWGT) [20,21], but the approach presented can be straight-
forwardly applied to other theories with smaller or larger
symmetry groups, such as Poincaré gauge theory (PGT)
[10,22–24] or conformal gauge theory (CGT) [25–30]. In
addressingWGTand eWGT,we assume the action to depend
on a translational gauge field haμ, a rotational gauge field
Aab

μ anda dilational gauge fieldBμ, togetherwith some set of
matter fields φA, which may include a scalar compensator
field (which we occasionally also denote by ϕ). It is worth
noting that gauge theories of gravitation are most naturally
interpreted as field theories inMinkowski spacetime [31,32],
in the same way as the gauge field theories describing the
other fundamental interactions, and this is the viewpoint that
we shall adopt here. It is common, however, to reinterpret the
mathematical structure of gravitational gauge theories geo-
metrically, where in particular the translational gauge field
haμ is considered as forming the components of a vierbein
(or tetrad) system in a more general Weyl-Cartan spacetime,
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in which Aab
μ andBμ then correspond to the spin-connection

andWeyl vector, respectively [10]. These issues are discussed
inmore detail elsewhere [11,20]; we note heremerely that the
Minkowski spacetime gauge theory approach and the geo-
metric interpretation provide equivalent descriptions up to
global topological considerations, so that either may be used
to describe local gravitational physicswithout any limitations.
The manifestly covariant approach presented here also

enables one easily to establish the relationship between
the forms of variational derivatives, and hence the field
equations, obtained by applying first- and second-order
variational principles, respectively. A particularly interest-
ing case is provided by comparing the variational deriv-
atives obtained by setting the translational gauge field
strength (or torsion) to zero after the variation is performed
(first-order approach) with those obtained by setting the
torsion to zero in the action before carrying out the variation
(second-order approach). In the latter case, the rotational
gauge field is no longer an independent field. In WGT (and
also PGT and CGT), it may be written explicitly in terms
the other gauge fields, whereas in eWGT there exists an
implicit constraint relating all the gauge fields. In both
cases, one may arrive at simple expressions for the
variational derivatives in the second-order approach in
terms of those from the first-order approach.
The outline of this paper is as follows. In Sec. II we

briefly review the concepts of local symmetries and
dynamics in classical field theory. We present our mani-
festly covariant variational principle in Sec. III, which is
applied to WGT and eWGT in Secs. IVand V, respectively.
We conclude in Sec. VI. In addition, in the Appendix, we
include a brief account of the Bessel-Hagen method [33]
for expressing the variation of the vector potential in
electromagnetism in a manifestly gauge-invariant form;
it is this approach that we generalize to gauge theories of
gravity in order to assist in directly obtaining manifestly
covariant conservation laws.

II. LOCAL SYMMETRIES AND DYNAMICS IN
CLASSICAL FIELD THEORY

We begin by presenting a brief outline of the conse-
quences of local symmetries for classical field theories,
focusing in particular on Noether’s first and second
theorems, the latter being discussed surprisingly rarely
in the literature. These considerations allow one also to
determine the dynamics of the fields.
Consider a spacetime manifold M , labeled using

some arbitrary coordinates xμ, in which the dynamics of
some set of (tensor and/or spinor) fields χðxÞ ¼ fχAðxÞg
(A ¼ 1; 2;…) is described by the action1

S ¼
Z

L ðχ; ∂μχ; ∂μ∂νχÞd4x: ð1Þ

It should be understood here that the label A merely
enumerates the different fields, although (with some over-
loading of the notation) can also be considered to represent
one or more coordinate and/or local Lorentz frame indices
(either as subscripts or superscripts), which we denote by
lower-case Greek and Roman letters, respectively. It is
worth noting that, in general, each field χAðxÞmay be either
a matter field φAðxÞ or gauge field gAðxÞ. Allowing the
Lagrangian density L in the action (1) to depend on field
derivatives up to second order is sufficient to accommodate
all the gravitational gauge theories that we will consider
(and also general relativity).
Invariance of the action (1) under the infinitesimal

coordinate transformation x0μ ¼ xμ þ ξμðxÞ and form var-
iations δ0χAðxÞ in the fields (where, importantly, the latter
need not result solely from the coordinate transformation),2

implies that

δS ¼
Z

½δ0L þ ∂μðξμL Þ�d4x ¼ 0; ð2Þ

in which the form variation of the Lagrangian density is
given by

δ0L ¼ ∂L

∂χA
δ0χA þ ∂L

∂ð∂μχAÞ
δ0ð∂μχAÞ

þ ∂L

∂ð∂μ∂νχAÞ
δ0ð∂μ∂νχAÞ: ð3Þ

One should note that δ0 commutes with partial derivatives
and, according to the usual summation convention, there is
an implied sum on the label A. The integrand in the
invariance condition (2) can be rewritten directly using the
product rule to yield

δS ¼
Z �

δL

δχA
δ0χA þ ∂μJμ

�
d4x ¼ 0; ð4Þ

where the Euler-Lagrange variational derivative δL =δχA
and the Noether current Jμ are given, respectively, by

δL

δχA
¼ ∂L

∂χA
− ∂μ

�
∂L

∂ð∂μχAÞ
�
þ ∂μ∂ν

�
∂L

∂ð∂μ∂νχAÞ
�
; ð5aÞ

Jμ ¼
�

∂L

∂ð∂μχAÞ
− ∂ν

�
∂L

∂ð∂μ∂νχAÞ
��

δ0χA

þ ∂L

∂ð∂μ∂νχAÞ
∂νðδ0χAÞ þ ξμL : ð5bÞ

1In our subsequent discussion, we will typically assume thatM
is Minkowski spacetime and xμ are Cartesian inertial coordinates,
but this is unnecessary for the analysis in this section.

2Adopting Kibble’s original notation, for an infinitesimal
coordinate transformation x0μ ¼ xμ þ ξμðxÞ, the ‘form’ variation
δ0χðxÞ≡ χ0ðxÞ − χðxÞ is related to the ‘total’ variation δχðxÞ≡
χ0ðx0Þ − χðxÞ by δ0χðxÞ ¼ δχðxÞ − ξμ∂μχðxÞ.
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It is worth noting that the equations of motion for the
fields χAðxÞ are also obtained by considering the behavior
of the action under variations of the fields, but with
the coordinate system kept fixed, so that ξμðxÞ ¼ 0. One
further assumes that the variations δ0χAðxÞ vanish on the
boundary of the integration region of the action, and also
that their first derivatives ∂μðδ0χAðxÞÞ vanish in the case
whereL contains second derivatives of the fields. In order
for the action to be stationary δS ¼ 0 with respect to
arbitrary such variations δ0χAðxÞ of the fields, one thus
requires (4) to hold in these circumstances, which immedi-
ately yields the equations of motion δL =δχA ¼ 0.
Returning to considering (4) as denoting the invariance

of the action (1) under some general infinitesimal coordi-
nate transformation x0μ ¼ xμ þ ξμðxÞ and form variations
δ0χAðxÞ in the fields (which need not vanish on the boundary
of the integration region), one sees that if the field equations
δL =δχA ¼ 0 are satisfied for all the fields, then (4) reduces
to the (on shell)3 ‘conservation law’ ∂μJμ ≏ 0, which holds
up to a total divergence of any quantity that vanishes on the
boundary of the integration region of the action (1). This is
the content of Noether’s first theorem, which applies both to
global and local symmetries.
We will focus on the invariance of the action (1) under a

local symmetry. In particular, we consider the (usual) case
in which the form variations of the fields can be written as

δ0χA ¼ λCfACðχ; ∂χÞ þ ð∂μλCÞfμACðχ; ∂χÞ; ð6Þ

where λC ¼ λCðxÞ are a collection of independent arbitrary
functions of spacetime position, enumerated by the label C,
and fACðχ; ∂χÞ and fμACðχ; ∂χÞ are two collections of given
functions that, in general, may depend on all the fields and
their first derivatives. The general form (6) usually applies
only when χA ¼ gA is a gauge field, whereas typically
fμACðχ; ∂χÞ ¼ 0 if χA ¼ φA is a matter field. For each value
of C, the function λCðxÞ represents a set of infinitesimal
functions carrying one or more coordinate or local Lorentz
frame indices. It is worth noting that on substituting (6) into
(5b), one obtains an expression for the current Jμ where the
first term is proportional to (6) and, in the event that L
depends on second derivatives of the fields, the second term
is proportional to the first derivative of (6), which itself
contains second derivatives of the functions λCðxÞ.
Using the expression (6), and again employing the

product rule, the corresponding variation of the action
(4) is given by (suppressing functional dependencies for
brevity)

δS ¼
Z

λC
�
fAC

δL

δχA
− ∂μ

�
fμAC

δL

δχA

��

þ ∂μðJμ − SμÞd4x ¼ 0; ð7Þ

where we define the new current Sμ ≡ −λCfμACδL =δχA.
It is worth noting that Sμ depends much more simply than
Jμ on the functions λC. Since the λC are arbitrary functions,
for the action to be invariant one requires the separate
conditions

fAC
δL

δχA
− ∂μ

�
fμAC

δL

δχA

�
¼ 0; ð8aÞ

∂μðJμ − SμÞ ¼ 0; ð8bÞ

where the former hold for each value of C separately and
the latter holds up to a total divergence of a quantity that
vanishes on the boundary of the integration region.
The first set of conditions (8a) are usually interpreted as

conservation laws, which are covariant under the local
symmetry, although not manifestly so in the form given
above. The condition (8b) implies that Jμ ¼ Sμ þ ∂νQνμ,
where Qνμ ¼ −Qμν, so the two currents coincide up to a
total divergence, which is notable given their very different
dependencies on the functions λC, fAC and fμAC, as
described above. By contrast with the case of a global
symmetry,4 if the field equations δL =δχA ¼ 0 are satisfied
for all fields, then the conservation laws (8a) hold iden-
tically and the new current vanishes Sμ ≏ 0, so that
Jμ ≏ ∂νQνμ. Thus, the conditions (8a)–(8b) effectively
contain no information on shell, which is essentially the
content of Noether’s second theorem [34].
Nonetheless, the on shell condition that all the field

equations δL =δχA ¼ 0 are satisfied can only be imposed if
L is the total Lagrangian density, and not if L corre-
sponds only to some subset thereof (albeit one for which
the corresponding action should still be invariant under the
local symmetry). In particular, suppose one is considering a

3We use Dirac’s notation F ≏ 0 for local functions F that
vanish on shell (or weakly vanish), i.e., when the equations of
motion δL =δχA ¼ 0 are satisfied for all the fields. We further

denote by F ≏
m

0 and F ≏
g
0 when functions vanish if only the

equations of motion of the matter or gauge fields, respectively,
need be satisfied.

4For a global symmetry, the λC are constants and so the second
term on the rhs of (6) vanishes. The Noether current (5b) can be
then written as

Jμ ¼ λC
��

∂L

∂ð∂μχAÞ
− ∂ν

�
∂L

∂ð∂μ∂νχAÞ
��

fAC

þ ∂L

∂ð∂μ∂νχAÞ
∂νfAC þ ξμCL

�
≡ λCJμC;

where ξμC are a given set of functions such that ξμ ¼ λCξμC, and we
have also defined the further set of functions JμC. One can then
replace the two conditions (8) with the following single condition
that is not satisfied identically on shell,

fAC
δL

δχA
− ∂μJ

μ
C ¼ 0:
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field theory for which the total Lagrangian density L T ¼
LM þL G, where L G contains every term that depends
only on the gauge fields gA and/or their derivatives, and
LM contains all the remaining terms. Thus, if L ¼ LM,
then only the matter field equations δL =δφA ¼ 0 can
be imposed, whereas if L ¼ L G none of the field
equations can be imposed. In either case, the surviving
terms in (8a)–(8b) do contain information [35].

III. MANIFESTLY COVARIANT
VARIATIONAL PRINCIPLE

In the standard variational approach outlined above,
one sees immediately from the plethora of partial deriva-
tives throughout the analysis that the various expressions
obtained are not, in general, manifestly covariant under the
symmetry group to which the action is invariant. In par-
ticular, although the equations of motion δL =δχA ¼ 0 for
each field must be covariant under this symmetry group, it
is clear that those derived from (5a) are not manifestly so.
Moreover, the conservation laws (8a) suffer from the same
shortcoming, but must also be expressible in a manifestly
covariant form. By contrast, the currents Jμ and Sμ are not
covariant (manifestly or otherwise), in general, since they
both contain the arbitrary functions λCðxÞ, and Jμ also con-
tains their partial derivatives. To obtain manifestly covariant
variational derivatives and conservation laws directly, it is
expedient to take a different approach that begins afresh by
reconsidering the variation of the action in (2).
We are primarily concerned here with gauge theories of

gravity. In constructing such theories, one typically begins
with an action dependent only on some set of matter fields
φA, which is defined on Minkowski spacetime M in
Cartesian inertial coordinates xμ (which we will assume
henceforth), and is invariant under some global spacetime
symmetry group G, where the coefficients λC in (6) are
constants. One then gauges the group G by demanding that
the action be invariant with respect to (infinitesimal,
passively interpreted) general coordinate transformations
(GCTs) and the local action of the subgroup H (say),
obtained by setting the translation parameters of G to zero
(which leaves the origin invariant), and allowing the
remaining group parameters to become independent arbi-
trary functions of position. For example, if one considers
global Weyl invariance, then fλ1; λ2; λ3g ¼ faα;ωαβ; ρg,
which denote a global spacetime translation, rotation and
dilation, respectively. The symmetry is then ‘promoted’ to a
local one by allowing λCðxÞ to become arbitrary functions of
spacetime position x. For localWeyl invariance, one thus has
fλ1ðxÞ; λ2ðxÞ; λ3ðxÞg ¼ faαðxÞ;ωabðxÞ; ρðxÞg, where aαðxÞ
is interpreted as an infinitesimal general coordinate trans-
formation and is usually denoted instead by ξαðxÞ, and
ωabðxÞ and ρðxÞ denote a position-dependent rotation of
the local Lorentz frames and a position-dependent dilation,
respectively. For the action to remain invariant under
the localized symmetry necessitates the introduction of

gravitational gauge fields gA with prescribed transformation
properties under the action of the localized symmetry. We
will also maintain the somewhat unorthodox viewpoint,
albeit hinted at in Kibble’s original paper, of considering
the gravitational gauge fields as fields in Minkowski space-
time, without attaching any geometric interpretation to them.
Consequently, we will adopt a global Cartesian inertial
coordinate system xμ in our Minkowski spacetime, which
greatly simplifies calculations, but more general coordinate
systems may be straightforwardly accommodated, if
required [20].
For an action (1) containing both matter fields χA ¼ ψA

and gauge fields χA ¼ gA to be invariant under a local
symmetry of the form (6), one requires the Lagrangian
density L to be covariant under this symmetry. One
typically always requires invariance of the action under
at least (infinitesimal) GCTs, which can be considered as
promoting the set of constants λC representing global
translations to arbitrary functions of position; this neces-
sitates the introduction of the corresponding translational
gravitational gauge field, which we will denote by haμ and
its inverse by baμ (such that haμbaν ¼ δμν and haμbcμ ¼ δca).
It is therefore convenient to write the Lagrangian density as
the product L ¼ h−1L, where h ¼ detðhaμÞ is a scalar
density, since h−1d4x is an invariant volume element under
GCTs.5 The remaining factor L, which we term the
Lagrangian, is also a scalar density constructed from
covariant quantities.6 These typically include the matter
fields φA themselves and their covariant derivatives,
together with the field strength tensors FB of the gauge
fields gB, which typically depend both on the gauge fields
themselves and their partial derivatives (where we have
adopted a ‘symbolic’ form that suppresses coordinate
and local Lorentz frame indices). In this section, we will
denote the generic covariant dervative by Da ≡ haμDμ ¼
haμð∂μ þ ΓμÞ, where Γμ is a linear combination of the
generators of the subgroup H that may depend, in general,
on the gauge fields gA and their first derivatives ∂gA (note
that we will occasionally retain the indices on covariant
derivatives, when convenient to do so). In any case, one can
thus denote the functional dependence of the Lagrangian
symbolically by L ¼ LðφA;DaφA;FBÞ.

A. Manifestly covariant variational derivatives

We begin by rewriting the variation of the action (2) so
that one can directly identify manifestly covariant forms for
the variational derivatives δL =δχA. One must first obtain a
covariant form for the divergence in (2) by constructing a
further covariant derivative operator Da such that, for any
coordinate vector Vμ (of the same Weyl weight as the

5We will also denote h−1 by b where b≡ detðbaμÞ.
6It should be noted that if the set of local symmetries (6) of the

action include local scale transformations, then the Weyl weights
of the scalar densities b and L should sum to zero, namely
wðbÞ þ wðLÞ ¼ 0, so that the action S is invariant.
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Lagrangian density L ), one has ∂μVμ ¼ h−1DaðhVaÞ,
where we define the local Lorentz frame vector7 Va ¼
baμVμ. The construction of such anoperator requires one first
to define the field strength tensor T a

bc ¼ 2hbμhcνD½μbaν� of
the translational gauge field, which has the unique (up to a
sign) nontrivial contraction T b ≡ T a

ba ¼ hDμðh−1hbμÞ. It
is then straightforward to show that the required derivative
operator is given by Da ¼ Da þ T a. The presence of the
(contracted) field strength tensor T a within this extended
covariant derivative operator occurs because of the generic
form L ¼ h−1L for the Lagrangian density. In order to
obtain a manifestly covariant form for the divergence
appearing in (2) and thereby arrive below at such a form
for Noether’s first theorem (4), one must factorize out the
invariant volume element h−1d4x under GCTs. This leads
inevitably to the consideration of derivatives of the transla-
tional gauge field haμ and hence the occurrence of the
corresponding field strength tensor.
One may then rewrite the variation of the action (2) in the

alternative form

δS ¼
Z

½δ0L þ h−1ðDa þ T aÞðξaLÞ�d4x ¼ 0; ð9Þ

in which ξa ¼ baμξμ and the form variation of the
Lagrangian density (3) can be rewritten symbolically as

δ0L ¼ h−1
�
∂L
∂φA

δ0φAþ
∂L

∂ðDaφAÞ
δ0ðDaφAÞþ

∂L
∂FB

δ0FB

�

þLδ0h−1; ð10Þ

where ∂L=∂φ≡ ½∂Lðφ;Dau;…Þ=∂φ�u¼φ, so that φ and
Daφ are treated as independent variables, rather than φ and
∂μφ. In order to progress further, the variations δ0ðDaφAÞ,
δ0FB and δ0h−1 in (10) must be expressed in terms of the
variations δ0φA and δ0gB, respectively, of the matter and
gauge fields themselves. In so doing, one typically encoun-
ters terms of the (symbolic) form Dðδ0φAÞ∂L=∂ðDφAÞ and
Dðδ0gBÞ∂L=∂FB, which can be accommodated by con-
sidering the quantity ðDa þ T aÞðhVaÞ, where (again in
symbolic form) hV ∼ δ0φA∂L=∂ðDφAÞ þ δ0gB∂L=∂FB,
and then using the product rule. Following such a pro-
cedure, one may rewrite (10) in the general form

δ0L ¼ h−1½αAδ0φA þ βBδ0gB þ ðDa þ T aÞðhVaÞ�; ð11Þ

where αA and βB are manifestly covariant expressions that
typically depend on φA, ∂L=∂φA and FB, together with

∂L=∂ðDφAÞ and ∂L=∂FB and their covariant derivatives.
Inserting (11) into (9), Noether’s first theorem (4) becomes

δS¼
Z

½αAδ0φAþβBδ0gBþðDaþT aÞðhJaÞ�h−1d4x¼0;

ð12Þ
where the current hJa ¼ hVa þ ξaL has the symbolic
form

hJ ∼
∂L

∂ðDφAÞ
δ0φA þ ∂L

∂FB
δ0gB þ ξL: ð13Þ

By comparing (4) and (12), and noting that h−1ðDa þ T aÞ×
ðhJaÞ ¼ ∂μJμ, one may then immediately identify mani-
festly covariant expressions for the variational derivatives
with respect to the matter and gauge fields, respectively, as

δL

δφA
¼ bαA;

δL

δgB
¼ bβB: ð14Þ

If one does not wish to distinguish betweenmatter and gauge
fields, one can instead denote the above relations generically
by δL =δχA ¼ bγA, where γA is a manifestly covariant
expression.

B. Manifestly covariant conservation laws

We now turn to the direct construction of manifestly
covariant expressions for the conservation laws (8a).
Clearly, the manifestly covariant expressions (14) may
now be used for the variational derivatives, but one
encounters two remaining issues, namely the presence of
the explicit partial derivative in the second term in (8a), and
the fact that the functions fAC and fμAC may not be covariant
quantities. Indeed, the latter problem always occurs when
the functions λCðxÞ (say for C ¼ 1) correspond to GCTs,
such that λ1ðxÞ ¼ fξαðxÞg; this arises because δ0χA ¼
δχA − ξα∂αχA for any field and so fA1 always contains
the noncovariant term −∂αχA. Other functions from the sets
fAC and fμAC may also be noncovariant, depending on the
gauge theory under consideration.
Nonetheless, it is important to recall that the conserva-

tion law (8a) holds for any set of form variations of the
fields (6) that leave the action invariant. In particular, by
generalizing the approach first proposed by Bessel-Hagen
for electromagnetism (see Appendix), one can choose
specific forms for the functions λCðxÞ for C ≠ 1 in terms
of λ1ðxÞ and the nontranslational gauge fields gB, such that
all the functions fμAC become (manifestly) covariant (as
typically do many of the functions fAC). In this case, one
may then write the second term in (8a) by extending the
definition of the covariant derivative ðDa þ T aÞ to accom-
modate any additional free indices represented by the
subscript C. In particular, it is convenient to require that
for any quantity VC

μ with this index structure (and the
same Weyl weight as the Lagrangian density L ), one

7We will typically denote a quantity possessing only Roman
indices (and its contractions over such indices) as the calligraphic
font version of the kernel letter of the corresponding quantity
possessing only Greek indices (following [20]), with the ex-
ception of quantities having Greek or lower-case kernel letters.
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has h−1ðDa þ T aÞðhbaμVC
μÞ ¼ DμVC

μ ¼ ð∂μ þ ΓμÞVC
μ,

so that in the case where C does not represent any
additional indices one recovers the original requirement
that h−1ðDa þ T aÞðhbaμVμÞ ¼ ∂μVμ. One may then write
the conservation law (8a) as

ðDa þ T aÞðbaμfμACγAÞ − ðfAC þ Γμf
μ
ACÞγA ¼ 0: ð15Þ

The first term on the lhs of (15) is nowmanifestly covariant.
Consequently, although the second term on the lhs is not
manifestly covariant, it must also be expressible in such a
form; indeed, one typically finds that this second term
immediately assembles as such, as we will demonstrate in
Secs. IV and V where we apply this approach to WGT and
eWGT, respectively.

C. Relationship between currents
in Noether’s second theorem

Finally, we consider the relationship (8b) between the
two currents Jμ and Sμ. As noted above, both currents
depend on the functions λC and so neither is covariant.
Nonetheless, from the above discussion, one may rewrite
(8b) as ðDa þ T aÞ½hðJa −S aÞ� ¼ 0, in which

hS a ¼ −λChbaμf
μ
AC

δL

δχA
¼ −λCbaμf

μ
ACγ

A

¼ −λCbaμðfμACαA þ fμBCβ
BÞ; ð16Þ

where we have used the relations (14) to write the final
expression in terms of the matter fields and gauge fields
separately, in keeping with the (symbolic) expression (13)
for hJa. Thus, hS a has the form of linear combination of
terms that are manifestly covariant (or can be made so using
a generalization of the Bessel-Hagen method) with coef-
ficients λC. Turning to hJa, if one substitutes (6) into (13),
and recalls that fμAC typically vanishes for matter fields, one
obtains the (symbolic) expression

hJ ∼λC
�

∂L
∂ðDφAÞ

fACþδ1CL

�
þ ∂L
∂FB

ðfBCλCþfμBC∂μλ
CÞ;

ð17Þ

where we have again assumed that C ¼ 1 corresponds to
GCTs. One may show, in general, that the forms of the
manifestly covariant expressions αA and βB obtained in (11)
guarantee that the relationship ðDa þ T aÞ½hðJa −S aÞ� ¼ 0

is satisfied, and so it contains no further information. It is
worth noting, however, that for the special case in which L
does not depend on the gauge field strengths, such that
∂L=∂FB ¼ 0, the relationship takes the form

ðDa þ T aÞ
�
λC
�

∂L
∂ðDaφAÞ

fAC þ δ1CLþ baμf
μ
ACα

A

��
¼ 0;

ð18Þ

which may be satisfied by requiring the term in parentheses
to vanish for each value of C. In so doing, one obtains a
straightforward expression for αA, which one can show agrees
with that obtained in (11).
The procedures presented in this section are best illus-

trated by example and we apply them to WGT and eWGT
in Secs. IV and V, respectively. As we will also show in
these examples, the general approach outlined above
further lends itself to elucidating the relationship between
first- and second-order variational derivatives.

IV. WEYL GAUGE THEORY

It was the gauging of the Poincaré group byKibble [8] that
first revealed how to achieve ameaningful gauging of groups
that act on the points of spacetime as well as on the
components of physical fields, and so laid the foundations
for the construction of gauge theories of gravity. Indeed,
the resulting Poincaré gauge theories (PGTs) have since been
extensively studied (see, for example, [11] for an accessible
summary). Nonetheless, the lack of a clear route to quantiz-
ing PGT has led to interest in imposing extra gauge
symmetries beyond local Poincaré symmetry. In particular,
perhaps the most natural extension of PGT is also to demand
local scale invariance, which might provide a clearer route to
renormalizability, since such theories contain no absolute
energy scale.
Themost direct approach to constructing gauge theories of

gravity that are invariant under local changes of scale, in
addition to local Poincaré transformations, is to gauge the
Weyl group [12–18]. As in PGT, the resulting Weyl gauge
theories (WGTs) assume the physical model of an underlying
Minkowski spacetime in which a continuum matter field (or
fields) is distributed continuously and the dynamics are
described by a matter action that is invariant under global
Weyl coordinate transformations. By then demanding the
matter action to be invariant with respect to local Weyl
transformations, in which the eleven Weyl group parameters
become arbitrary functions of position, one is led to the
introduction of the gravitational gauge fields haμ, Aab

μ ¼
−Aba

μ and Bμ corresponding to the translational, rotational
and dilational parts of the local Weyl transformations,
respectively. The field strength tensors of these gauge fields
are typically denoted byRabcd,T �

abc andH ab, respectively.
For WGT, the Lagrangian density has the usual form

L ¼ h−1L, where the translational gauge field haμ (with
inverse baμ) is assigned a Weyl weight w ¼ −1, so that h ¼
detðhaμÞ and L are scalar densities both of Weyl weight
w ¼ −4, and hence the action S is invariant under local
scale transformations. The Lagrangian has the functional
dependencies

L ¼ LðφA;D�
aφA;Rabcd;T �

abc;H abÞ; ð19Þ
where φA are the matter fields, which typically include a
scalar compensator field of Weyl weight w ¼ −1 (that we
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sometimes denote also by ϕ), and their covariant derivatives
are denoted in this section by [11,20,21]

D�
aφA ¼ haμD�

μφA ¼ haμð∂μ þ Γ�
μÞφA

¼ haμ
�
∂μ þ

1

2
Acd

μΣcd þ wABμ

�
φA; ð20Þ

in which Σab ¼ −Σba are the generator matrices of the
SLð2; CÞ representation to which the field φA belongs.8

In the expression (20), each field is assumed to have
weight wA (note that this appearance of the index A is purely
a label and hence is understood never to be summed over). It
is also convenient to define the further derivative operator
∂
�
μφA ¼ ð∂μ þ wABμÞφA, of which we will make occa-
sional use.
Under infinitesimal local Weyl transformations consist-

ing of GCTs, rotations of the local Lorentz frames and
dilations, which are parametrized by ξμðxÞ, ωabðxÞ ¼
−ωbaðxÞ and ρðxÞ, respectively, a matter field φ of weight
w and the gauge fields transform as [11,21]

δ0φ ¼ −ξν∂νφþ
�
1

2
ωabΣab þ wρ

�
φ; ð21aÞ

δ0haμ ¼ −ξν∂νhaμ þ haν∂νξμ − ðωb
a þ ρδbaÞhbμ; ð21bÞ

δ0Aab
μ ¼ −ξν∂νAab

μ − Aab
ν∂μξ

ν − 2ω½a
cAb�c

μ − ∂μω
ab;

ð21cÞ
δ0Bμ ¼ −ξν∂νBμ − Bν∂μξ

ν − ∂μρ; ð21dÞ
from which one may verify that D�

aφA does indeed trans-
form covariantly under (infinitesimal) local Weyl trans-
formations with weight w − 1 [20,21].
The field strength tensors Rabcd, T �

abc and H ab in (19)
are defined through the action of the commutator of two
covariant derivatives on some field φ of weight w by

½D�
c;D�

d�φ¼
�
1

2
Rab

cdΣabþwH cd−T �a
cdD

�
a

�
φ; ð22Þ

which yields the forms Rab
cd ¼ haμhbνRab

μν, H cd ¼
hcμhdνHμν and T �a

bc ¼ hbμhcνT�a
μν, where

Rab
μν ¼ 2ð∂½μAab

ν� þ ηcdAac½μAdb
ν�Þ; ð23aÞ

Hμν ¼ 2∂½μBν�; ð23bÞ
T�a

μν ¼ 2D�
½μb

a
ν�: ð23cÞ

From the transformation laws (21), it is straightforward to
verify that, in accordance with their index structures, the
gauge field strength tensors Rab

cd, H cd and T �a
bc are

invariant under GCTs, and transform covariantly under local
Lorentz transformations and dilations with Weyl weights
w ¼ −2, w ¼ −2 and w ¼ −1, respectively [20,21].
It is worth noting that Rab

cd has the same functional
form as the rotational field strength in PGT, but that
T �a

bc ¼ T a
bc þ δacBb − δabBc, where T a

bc is the trans-
lational field strength in PGT; we also defineBa ¼ haμBμ.
Moreover, using the expression (23c) and defining the
quantities c�abc ≡ 2hbμhcν∂�½μb

a
ν�, one may show that the

fully anholonomic rotational gauge field A ab
c ≡ hcμAab

μ

can be written as [11,20]

A abc ¼
1

2
ðc�abc þ c�bca − c�cabÞ−

1

2
ðT �

abc þT �
bca −T �

cabÞ:
ð24Þ

It is also convenient for our later development to obtain
the Bianchi identities satisfied by the gravitational gauge
field strengths Rab

cd, T �a
bc and H ab in WGT. These

may be straightforwardly derived from the Jacobi identity
applied to the generalized covariant derivative, namely
½D�

a; ½D�
b;D

�
c��φþ ½D�

c; ½D�
a;D�

b��φþ ½D�
b; ½D�

c;D�
a��φ ¼ 0.

Inserting the form (20) for the WGT generalized covariant
derivative, one quickly finds the threeBianchi identities [20]9

D�
½aR

de
bc� −T �f ½abRde

c�f ¼ 0;

ð25aÞ

D�
½aT

�d
bc� −T �e½abT �d

c�e −Rd½abc� −H ½abδdc� ¼ 0;

ð25bÞ
D�

½aH bc� −T �e½abH c�e ¼ 0:

ð25cÞ
By contracting over various indices, one also obtains the
following nontrivial contracted Bianchi identities:

D�
aR

ae
bc − 2D�

½bR
e
c� − 2T �f

a½bRae
c�f −T �f

bcR
e
f ¼ 0;

ð26aÞ

D�
a

�
Ra

c −
1

2
δacR

�
þT �f

bcR
b
f þ

1

2
T �f

abR
ab

cf ¼ 0;

ð26bÞ
D�

aT
�a

bc þ 2D�
½bT

�
c� þT �e

bcT
�
e þ 2R½bc� − 2H bc ¼ 0:

ð26cÞ
8The asterisks in the definition of the derivative operator are

intended simply to distinguish it from the usual notation used
[11,20,21] for the covariant derivative DaφA ¼ haμDμφA ¼
haμð∂μ þ ΓμÞφA ¼ haμð∂μ þ 1

2
Acd

μΣcdÞφA of Poincaré gauge
theory (PGT), and should not be confused with the operation
of complex conjugation.

9Note that these expressions correct a typographical error in
[20] by reversing the sign of each term containing H ab.
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A. Manifestly covariant variational
derivatives in WGT

We now apply the manifestly covariant variational
principle described in Sec. III to WGT. We begin by
deriving the variational derivatives, and hence the
Euler-Lagrange equations, for the matter fields φA

and the gravitational gauge fields haμ, Aab
μ and Bμ.

Using the fact that δ0h−1 ¼ −h−1baμδ0haμ, one may
write (10) as

hδ0L ¼ δ0L − baμLδ0haμ;

¼ ∂L
∂φA

δ0φA þ ∂L
∂ðD�

aφAÞ
δ0ðD�

aφAÞ

þ ∂L
∂Rabcd

δ0Rabcd þ
∂L

∂T �
abc

δ0T
�
abc

þ ∂L
∂H ab

δ0H ab − baμLδ0haμ: ð27Þ

In order to progress further, one must determine how the
variations in (27) depend on the variations of the matter and
gravitational gauge fields themselves. This is easily
achieved using the definition of the WGT covariant
derivative and the expressions (23a)–(23c) for the field
strengths. One must also make use of the fact that for any
coordinate vector Vμ of weight w ¼ 0 (i.e., invariant under
local scale transformations, like the Lagrangian density
L ), one may show that ∂μVμ ¼ h−1ðD�

a þT �
aÞðhbaμVμÞ

or, equivalently, for any local Lorentz vector Va having
Weyl weight w ¼ −3 one has [20]

ðD�
a þT �

aÞVa ¼ h∂μðh−1haμVaÞ: ð28Þ
Such expressions on the rhs of (27) therefore contribute
only surface terms to the variation of the action in (9), but
we will retain them nonetheless, as they are required for our
later discussion.
We begin by considering together the first two terms on

the rhs of (27), for which one obtains

∂L
∂φA

δ0φA þ ∂L
∂ðD�

aφAÞ
δ0ðD�

aφAÞ ¼
∂L
∂φA

δ0φA þ ∂L
∂ðD�

aφAÞ
�
D�

aðδ0φAÞ þ δ0haμD�
μφA þ haμ

�
wAδ0Bμ þ

1

2
δ0Abc

μΣbc

�
φA

�
;

¼
�
∂L
∂φA

− ðD�
a þT �

aÞ
∂L

∂ðD�
aφAÞ

�
δ0φA þ ∂L

∂ðD�
aφAÞ

�
δ0haμD�

μφA

þ haμ
�
wAδ0Bμ þ

1

2
δ0Abc

μΣbc

�
φA

�
þ ðD�

a þT �
aÞ
�

∂L
∂ðD�

aφAÞ
δ0φA

�
; ð29Þ

where the quantity in square brackets in the final term is readily shown to have Weyl weight w ¼ −3. Analyzing the further
terms containing derivatives on the rhs of (27) in a similar manner, one finds

∂L
∂Rabcd

δ0Rabcd ¼ 2
∂L

∂Rabcd
½Rabμdδ0hcμ þ hdμD�

cðδ0AabμÞ�

¼ 2
∂L

∂Rabcd
Rab½μd�δ0hcμ þ ½2hcμðD�

d þT �
dÞ þ heμT �e

cd�
�

∂L
∂Rabcd

�
δ0Aabμ

− 2ðD�
d þT �

dÞ
�

∂L
∂Rabcd

hcμδ0Aabμ

�
; ð30Þ

∂L
∂T �

abc
δ0T

�
abc ¼ 2

∂L
∂T �

abc
½T�

aμνhcνδ0hbμ þ hcνD�
bðδ0baνÞ þ hbμδ0Aacμ þ ηachbμδ0Bμ�

¼ 2
∂L

∂T �
abc

��
T�
aμνhcνδdb −

1

2
T �d

bcbaμ

�
δ0hdμ þ hbμδ0Aacμ þ ηachbμδ0Bμ

�

− 2ðD�
c þT �

cÞ
�

∂L
∂T �

abc

�
baμδ0hbμ þ 2ðD�

c þT �
cÞ
�

∂L
∂T �

abc
baμδ0hbμ

�
; ð31Þ

∂L
∂H ab

δ0H ab ¼ 2
∂L

∂H ab
½Hμνhbνδ0haμ þ hbνD�

aðδ0BνÞ�

¼ 2
∂L

∂H ab

�
Hμνhbνδ0haμ þ

1

2
T �c

abhcνδ0Bν

�
þ 2ðD�

b þT �
bÞ
�

∂L
∂H ab

�
haνδ0Bν

− 2ðD�
b þT �

bÞ
�

∂L
∂H ab

haνδ0Bν

�
: ð32Þ
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In the above expressions it is assumed that the appro-
priate antisymmetrizations, arising from the symmetries
of the field strength tensors, are performed when the rhs
are evaluated. It is also easily shown that the quantity in
square brackets in each of the last terms in (30)–(32) has
Weyl weight w ¼ −3, so according to (28) each such
term contributes a surface term to the variation of the
action (9).
One may then substitute the expressions (29)–(32)

into (27), which may itself subsequently be substituted
into (9) to obtain an expression of the general form (12) for
Noether’s first theorem, which may be written as

δS ¼
Z

½υAδ0φA þ τaμδ0haμ þ σab
μδ0Aab

μ þ ζμδ0Bμ

þ h−1ðD�
p þT �

pÞðhJpÞ�d4x ¼ 0; ð33Þ

where the current hJp is given by

hJp ¼ ∂L
∂ðD�

pφAÞ
δ0φA þ 2

�
∂L

∂T �
abp

baμδ0hbμ

−
∂L

∂Rabcp
hcμδ0Aabμ −

∂L
∂H ap

haμδ0Bμ

�
þ bpμξμL;

ð34Þ

and we have defined the variational derivative υA ≡
δL =δφA with respect to the matter field φA, and the
total dynamical energy-momentum τaμ ≡ δL =δhaμ, spin-
angular-momentum σab

μ ≡ δL =δAab
μ and dilation current

ζμ ≡ δL =δBμ of both the matter and gravitational gauge
fields. Manifestly covariant forms for these variational
derivatives may be read off from the expressions (29)–
(32). Converting all Greek indices to roman and defining the
quantities τab ≡ τaμhbμ, σabc ≡ σab

μbcμ and ζa ≡ ζμbaμ,
one then makes the following identifications:

hυA ¼ ∂L
∂φA

− ðD�
a þT �

aÞ
∂L

∂ðD�
aφAÞ

; ð35aÞ

hτab ¼
∂L

∂ðD�
aφAÞ

D�
bφA þ 2

∂L
∂Rpqra

Rpqrb þ 2
∂L

∂H pa
H pb þ 2

∂L
∂T �

pqa
T �

pqb − ½T �a
qr þ 2δaqðD�

r þT �
rÞ�

∂L
∂T �b

qr
− δbaL;

ð35bÞ

hσabc ¼
1

2

∂L
∂ðD�

cφAÞ
ΣabφA þ ½T �c

pq þ 2δcpðD�
q þT �

qÞ�
∂L

∂Rab
pq

− 2
∂L

∂T �½ab�
c
; ð35cÞ

hζa ¼ ∂L
∂ðD�

aφAÞ
wAφA þ ½T �a

pq þ 2δapðD�
q þT �

qÞ�
∂L

∂H pq
þ 2

∂L
∂T �p

qr
δaqδ

p
r ; ð35dÞ

where, once again, it is assumed that the appropriate
antisymmetrizations, arising from the symmetries of the
field strength tensors, are performed when the rhs are
evaluated. The expressions (35) constitute the completion
of our first goal. One sees immediately that, unlike (5a), the
above forms for the variational derivative of each field
(and hence the equations of motion obtained by setting
each rhs to zero) are manifestly covariant. Moreover, they
are straightforward to evaluate, since they require one only
to differentiate the Lagrangian L with respect to the matter
fields, their covariant derivatives and the field strengths,
respectively. One may easily confirm that the above
expressions lead to precisely the same variational deriva-
tives as those obtained by using the standard (but much
longer) approach of evaluating (5a) for each field and then
reassembling the many resulting terms into manifestly
covariant forms.

The expressions (35) not only provide a significant
calculational saving in obtaining the variational derivatives
in WGT, but also yield a useful insight into their general
form. In particular, one notes that for a Lagrangian L that
does not contain the gauge field strength tensors, but
depends only on the matter fields and their covariant
derivatives, the variational derivatives with respect to the
gauge fields reduce to the covariant canonical currents
[11,21] of the matter fields. For Lagrangians that do depend
on the gauge field strengths, also of interest are the
analogous forms of the penultimate terms on the rhs of
(35b)–(35d), which are the only terms capable of producing
a dependence on the covariant derivatives of the field
strength tensors; in each case, the corresponding term
depends on the covariant derivative of the field strength
tensor for the gauge field with respect to which the
variational derivative is taken. It is also worth pointing
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out that we have not assumed the equations of motion to be
satisfied in deriving (35a)–(35d). Thus, one may calculate
the corresponding variational derivatives for any subset
of terms in L that is a scalar density of weight w ¼ −4.
Individually, however, such quantities do not vanish, in
general. Rather, each equation of motion requires only the
vanishing of the sum of such quantities, when derived from
disjoint subsets that exhaust the total Lagrangian L.
Finally, we note that the above approach is easily adapted

to other gravitational gauge theories. For example, to apply
it to PGT one needs simply to ‘remove the asterisks’,
thereby replacing the WGT covariant derivative and torsion
by their PGT counterparts, and set Bμ ≡ 0, so that ζa and
H ab also vanish identically. Indeed, the above approach is
of even greater use in PGT than WGT, since the functional
dependence of the PGT Lagrangian on the matter fields,
their covariant derivatives and the field strengths can be
more complicated than in WGT, as in PGT one does not
require L to have Weyl weight w ¼ −4 [11,20].

B. Relationship between first- and second-order
variational derivatives in WGT

Before turning our attention to the direct derivation of
manifestly covariant conservation laws for WGT, we first
briefly demonstrate how the analysis in the previous section
is well suited to comparing first- and second-order varia-
tional derivatives. In particular, we will focus on the
example of the variational derivatives obtained by setting

the WGT torsion to zero after the variation is performed
(first-order approach) with those obtained by setting
the torsion to zero in the action before carrying out the
variation (second-order approach).
Let us begin by considering the simpler case of the first-

order approach, where one merely sets T �a
bc ¼ 0 (which

is a properly WGT-covariant condition) in the expressions
(35a)–(35d). The condition T �a

bc ¼ 0 results in the rota-
tional gauge field Aab

μ no longer being an independent
field, but one determined explicitly by the other gauge
fields haμ and Bμ, which we thus denote by 0A�ab

μ and term
the ‘reduced’ A-field [20,21]. From (24), these quantities
are given explicitly by 0A�

abμ ¼ bcμ0A �
abc, where

0A �
abc ¼

1

2
ðcabc þ cbca − ccabÞ þ ηacBb − ηbcBa; ð36Þ

in which cabc ≡ hbμhcνð∂μbaν − ∂νbaμÞ. Under a local
Weyl transformation, the quantities 0A�ab

μ transform in
the same way as Aab

μ, so one may construct the ‘reduced’
WGT covariant derivative 0D�

aφ ¼ haμ0D�
μφ ¼ haμð∂μ þ

1
2
0A�cd

μΣcd þ wBμÞφ, which transforms in the same way
asD�

aφ, but depends only on the h field, its first derivatives,
and the B-field. Thus, the corresponding quantities to
(35a)–(35d) are obtained simply by evaluating the rhs with
T �a

bc (and its contractions) set to zero, which also implies
D�

a → 0D�
a. This yields

h0υA ¼ ∂L
∂φA

����
0

− 0D�
a

∂L
∂ðD�

aφAÞ
����
0

; ð37aÞ

h0τab ¼
∂L

∂ðD�
aφAÞ

����
0

0D�
bφA þ 2

∂L
∂Rpqra

����
0

0Rpqrb þ 2
∂L

∂H pa

����
0

H pb þ 20D�
r

∂L
∂T �b

ar

����
0

− δbaLj0; ð37bÞ

h0σabc ¼
1

2

∂L
∂ðD�

cφAÞ
����
0

ΣabφA þ 2δcr
0D�

s
∂L

∂Rab
rs

����
0

− 2
∂L

∂T �½ab�
c

����
0

; ð37cÞ

h0ζa ¼ ∂L
∂ðD�

aφAÞ
����
0

wAφA þ 2δap
0D�

q
∂L

∂H pq

����
0

þ 2
∂L

∂T �p
qr

����
0

δaqδ
p
r ; ð37dÞ

where j0 denotes that the quantity to its immediate left is
evaluated assuming T �

abc ¼ 0. The equations of motion
from the first-order approach are then given simply by
equating each of (37a)–(37d) to zero. Once again, it is worth
noting that we have not assumed any equations of motion to
be satisfied in deriving the quantities (37a)–(37d). Thus, one
may derive corresponding quantities for any subset of terms
in L that are a scalar density with weight w ¼ −4, and these
quantities do not vanish, in general.
We now consider the second-order approach, where one

imposesT �
abc ¼ 0 at the level of action, prior to evaluating

the variational derivatives. In this case, the rotational gauge

field Aab
μ is again determined explicitly by haμ and Bμ

according to (36), and so now the action depends only on
these other gauge fields. From (36), one readily finds that

δ0Aabμ ¼ bcμðh½cν0D�
b�δ0baν þ h½aν0D�

c�δ0bbν

− h½bν0D�
a�δ0bcν þ 2ηc½ahb�νδ0BνÞ; ð38Þ

from which one may show that (up to terms that are the
divergence of a quantity that vanishes on the boundary of
the integration region) the integrand in the expression (2)
for the variation of the action is given by
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δL
δχA

δ0χA ¼ 0υAδ0φA þ 0τ̃aμδ0haμ − bbfμðηfaδe½b0D�
c�

þ ηfbδ
e
½c
0D�

a� − ηfcδ
e
½a
0D�

b�Þðh0σ̃abcÞδ0heμ

þ 20σ̃abcηc½ahb�νδ0Bμ þ 0ζ̃μδ0Bμ; ð39Þ

≡vAδ0φA þ taμδ0haμ þ jμδ0Bμ; ð40Þ

where we have again made use of (28) and 0τ̃aμ, 0σ̃cab and
0ζ̃μ denote quantities analogous to (37b)–(37d), respec-
tively, but without the terms containing ∂L=∂T �

abcj0. In the
last line, we have also defined the total dynamical energy-
momentum taμ and dilation current jμ of both the matter
and gravitational gauge fields, and the matter field varia-
tional derivatives vA, in the second-order approach. By
comparing (39) and (40), and converting all indices to
Roman, one finds that the second-order variational deriv-
atives are given in terms of the first-order ones by

hvA ¼ h0υA; ð41Þ
htab ¼ h0τ̃ab þ 0D�

cðh0σ̃abc − h0σ̃cab − h0σ̃cbaÞ; ð42Þ
hja ¼ hð0ζ̃a − 20σ̃abbÞ: ð43Þ

It is clear that the forms of the matter variational
derivatives are identical in the two approaches, but those
of the gravitational gauge fields haμ and Bμ differ, in
general. In particular, the form for the energy-momentum
tensor tab in the second-order approach is clearly the
gauge theory equivalent of the Belinfante tensor [36].
By analogy, the expression (43) may be considered to
define an associated Belinfante dilation current, which
is clearly related to the ‘field virial’ that is relevant
to the invariance of an action under special conformal
transformations [21,37].
It is again worth noting that the expressions (41)–(43)

have been derived without assuming any equations of
motion are satisfied. One may therefore obtain analogous
relations between corresponding first- and second-order
variational derivatives derived from any subset of the terms
in the total Lagrangian L that are a scalar density of weight
w ¼ −4. If one does consider the total Lagrangian L,
however, then the second-order equations of motion for the
matter and gauge fields are obtained simply by setting
the expressions (41)–(43) to zero. In this case, provided the
terms of the form ∂L=∂T �

abcj0 vanish in the first-order
equations of motion obtained by setting (37)–(37d) to zero,
then this implies that the second-order equations of motion
obtained by setting (41)–(43) to zero are also satisfied, but
the contrary does not necessarily hold.

C. Manifestly covariant conservation laws in WGT

We now turn our attention to deriving the conservation
laws for WGT in a manner that maintains manifest

covariance throughout, by applying the general method
outlined in Sec. III. One may begin by considering the
general form of the conservations laws given in (15). As
discussed above, the key issue to address is the forms of the
functions fAC and fμAC that appear in this expression and
define the form variations (6) of the fields, since these
are typically not covariant. For (15) to be valid, one requires
at least the functions fμAC to be (manifestly) covariant,
although many of the functions fAC may also be made so;
as outlined in Sec. III, this is performed by generalizing the
approach introduced by Bessel-Hagen for electromagnet-
ism, which is reviewed in Appendix, and developed
further below.
The form variations of the fields in WGT are given in

(21). By comparing these transformation laws with the
generic form (6), one may read off the functions fAC
and fμAC in the latter from the coefficients of fλCg ¼
fλ1; λ2; λ3g ¼ fξα;ωab; ρg and their partial derivatives,
respectively. As anticipated, one immediately finds that
many of the functions fAC and fμAC are not covariant
quantities. In the context of the Bessel-Hagen method, the
form variations (21) are already in the most general form
that leaves the generic WGT action invariant (ignoring the
possibility of additional accidental symmetries occurring).
Following the general methodology outlined for electro-
magnetism in Appendix, we consider separately the con-
servation laws that result from the invariance of the WGT
action under infinitesimal GCTs, local rotations and local
dilations, respectively.
Considering first the infinitesimal GCTs characterized

by ξαðxÞ (which we take to correspond to C ¼ 1), one
may make use of the invariance of the action under the
transformations (21) for arbitrary functions ωabðxÞ and
ρðxÞ by choosing them in a way that yields covariant
forms for the new functions fμA1 (and also fA1 in this
case) in the resulting form variations. This is achieved by
setting ωab ¼ −Aab

νξ
ν and ρ ¼ −Bνξ

ν (where the minus
signs are included for later convenience), which yields
transformation laws of a much simpler form than in (21),
given by

δ0φ ¼ −ξνD�
νφ; ð44aÞ

δ0haμ ¼ −ξνD�
νhaμ þ haν∂νξμ; ð44bÞ

δ0Aab
μ ¼ ξνRab

μν; ð44cÞ

δ0Bμ ¼ ξνHμν: ð44dÞ

From these form variations, one may immediately read
off the new forms of the functions fA1 and fμA1, all of
which are now manifestly covariant. Inserting these
expressions into the general form (15), one directly
obtains the manifestly covariant conservation law
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ðD�
c þT �

cÞðhτcνÞ − hðσabμRab
μν þ ζμHμν − τaμD�

νh
μ
a

− υAD�
νφAÞ ¼ 0; ð45Þ

where it is worth noting that hυA ¼ δL=δφA. On multi-
plying through by hdν, one may rewrite the conservation
law wholly in term of quantities possessing only Roman
indices as

ðD�
c þT �

cÞðhτcdÞ − hðσabcRab
cd þ ζcH cd

− τcbT
�b

cd − υAD�
dφAÞ ¼ 0: ð46Þ

We next consider invariance of the action under infini-
tesimal local Lorentz rotations characterized by ωabðxÞ
(which we take to correspond to C ¼ 2). In this case, the
functions fμA2 in the original set of transformation laws (21)
are already manifestly covariant. One may thus insert the
functions fμA2 and fA2 read off from (21) directly into the
general form (15), without employing the Bessel-Hagen
method. On recalling that Γ�

βσpq
β ¼ −Ar

pβσrq
β − Ar

qβσpr
β

(since σabμ has Weyl weight w ¼ 0) one finds that the final
set of terms on the lhs of (15) vanish when γA corresponds
to hσabμ, and one immediately obtains the manifestly
covariant conservation law

ðD�
c þT �

cÞðhσabcÞ þ hτ½ab� þ
1

2
hυAΣabφA ¼ 0: ð47Þ

Finally, we consider invariance of the action under
infinitesimal local dilations characterized by ρðxÞ (which
we take to correspond to C ¼ 3). Once again, the relevant
functions fμA3 in the original set of transformation laws (21)
are already manifestly covariant. One may thus insert fμA3
and fA3 read off from (21) directly into the general form
(15), which immediately yields the manifestly covariant
conservation law

ðD�
c þT �

cÞðhζcÞ − hτcc þ hυAwAφA ¼ 0: ð48Þ

It is straightforward to verify that the manifestly covar-
iant conservations WGT laws (46)–(47) have the correct
forms [20,21] and match those derived (albeit at con-
siderably greater length) using the standard form of
Noether’s second theorem (8a). Before moving on to con-
sider the further condition (8b) arising from Noether’s
second theorem, in the context of WGT, we note that the
conservation law (47) may be used to simplify the
expression (42) for the second-order variational derivative
with respect to haμ in terms of first-order variational
derivatives. Imposing the condition T �

abc ¼ 0, the con-
servation law (47) becomes

0D�
cðh0σ̃abcÞ þ h0τ̃½ab� þ

1

2
h0υ̃AΣabφA ¼ 0: ð49Þ

If one assumes the matter equations of motion 0υ̃A ¼ 0 are
satisfied (or, equivalently, that the Lagrangian L does not
depend on matter fields), the expression (42) can thus be
written in the simpler and manifestly symmetric form

htab ≏
m
h0τ̃ðabÞ − 20D�

cðh0σ̃cðabÞÞ: ð50Þ

D. Relationship between currents
in Noether’s second theorem in WGT

Weconclude this sectionby considering the relationship in
WGT between the two currents that appear in Noether’s
second theorem (8b).As discussed in Sec. III C, this equation
may be rewritten as ðD�

a þT �
aÞ½hðJa −S aÞ� ¼ 0, where

hJa for WGT is given by (34) and the expression for hS a

may be obtained from the general form (16), which on using
the original WGT field variations (21) yields

hS p ¼ h½−ξμðτpμ − σab
pAab

μ − ζpBμÞ þ ωabσab
p þ ρζp�:

ð51Þ

It is worth noting that this expression does not depend on the
variational derivatives υA ≡ δL =δψA with respect to the
matter fields since, as expected, the functions fμAC vanish in
this case, as can be read off from the field variations (21).
Thus, in order for hS p to vanish, it is sufficient that just the
equations of motion of the gauge fields are satisfied.
If one substitutes the original form variations (21) into

the expression (34) for hJp, one finds after a long
calculation,10 which requires careful use of the definition
(22) of the field strength tensors, the contracted Bianchi
identity (26c) and the manifestly covariant expressions
(35b)–(35d) for the variational derivatives with respect to
the gravitational gauge fields, that

ðD�
p þT �

pÞðhJpÞ ¼ ðD�
p þT �

pÞ½−ξμhðτpqbqμ
− σab

pAab
μ − ζpBμÞ

þ ωabhσabp þ ρhζp�
¼ ðD�

p þT �
pÞðhS pÞ; ð52Þ

thereby verifying explicitly the relationship between the two
currents that is implied by Noether’s second theorem (8b).

10The calculation can be somewhat shortened, better organized
and carried out in a largely manifestly covariant manner if one
assumes the local Weyl transformaton parameters in (21) to have
the forms ξμðxÞ, ωabðxÞ ¼ ω̄abðxÞ − Aab

νξ
ν and ρðxÞ ¼ ρ̄ðxÞ −

Bνξ
ν, where ξμðxÞ, ω̄abðxÞ and ρ̄ðxÞ are arbitrary functions of

position, and considers separately the three cases: (i) ω̄ab¼0¼ ρ̄;
(ii) ξμ ¼ 0 ¼ ρ̄; and (iii) ξμ ¼ 0 ¼ ω̄ab. This is a similar approach
to that used in Sec. IV C to derive directly the manifestly
covariant forms of the WGT conservation laws and, in particular,
allows one in case (i) to make use again of the manifestly
covariant form variations (44) derived using the Bessel-Hagen
method.
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Thus, as expected for an action that is invariant under a set
of local symmetries, this relationship contains no further
information, but nonetheless provides a useful check of
the derivation of the expressions (35b)–(35d). Indeed, the
requirement ðD�

aþT �
aÞ½hðJa−S aÞ�¼0 from Noether’s

second theorem can thus be used as an alternative (albeit
rather longer)means of deriving the expressions (35b)–(35d)
for the variational derivativeswith respect to the gravitational
gauge fields; it has been demonstrated, however, that this
equivalence between the Noether and Hilbert (variational)
approaches does not hold in general for all modified gravity
theories [38].

V. EXTENDED WEYL GAUGE THEORY

We now move on to consider eWGT [20], which
proposes an ‘extended’ form for the transformation laws
of the rotational and dilational gauge fields under local
dilations. In particular, under infinitesimal local Weyl
transformations consisting of GCTs, rotations of the
local Lorentz frames and dilations, parametrized by
ξμðxÞ, ωabðxÞ ¼ −ωbaðxÞ and ρðxÞ, respectively, a matter
field φ of weight w and the gauge fields transform as

δ0φ ¼ −ξν∂νφþ
�
1

2
ωabΣab þ wρ

�
φ; ð53aÞ

δ0haμ ¼ −ξν∂νhaμ þ haν∂νξμ − ðωb
a þ ρδbaÞhbμ; ð53bÞ

δ0Aab
μ ¼ −ξν∂νAab

μ − Aab
ν∂μξ

ν − 2ω½a
cAb�c

μ

− ∂μω
ab þ 2θηc½abb�μhcν∂νρ; ð53cÞ

δ0Bμ ¼ −ξν∂νBμ − Bν∂μξ
ν − θ∂μρ; ð53dÞ

where θ is an arbitrary parameter that can take any value. The
proposed form for the transformation law (53c) of the
rotational gauge field is motivated by the observation that
the WGT (and PGT) matter actions for the massless Dirac
field and the electromagnetic field (neither of which depends
on the dilation gauge field) are invariant under local dilations
even if one assumes this ‘extended’ transformation law for
the rotational gauge field. A complementary motivation for
introducing the extended transformation law (53c) is that
under local dilations it places the transformation properties of
the PGT rotational gauge field strength Rab

cd and transla-
tional gauge field strength T a

bc on a more equal footing:
for general values of θ, neither Rab

cd nor T a
bc transforms

covariantly, butRab
cd does transform covariantly andT a

bc
transforms inhomogeneously for θ ¼ 0, and vice versa for
θ ¼ 1. It is also worth noting that the extended trans-
formation law for the rotational gauge field reduces to that
inWGT for θ ¼ 0, whereas the extended transformation law
(53d) for the dilational gauge field reduces to theWGT form
for θ ¼ 1; thus there is no value of θ for which both
transformation laws reduce to their WGT forms.

In eWGT, the covariant derivative, denoted by D†
a, has a

somewhat different form to that shown in (20) for WGT. In
particular, one does not adopt the standard approach of
introducing each gauge field as the linear coefficient of the
corresponding generator. Rather, in order to accommodate
our proposed extended transformation law (53c) under
local dilations, one is led to introduce the ‘rotational’ gauge
field Aab

μðxÞ and the ‘dilational’ gauge fieldBμðxÞ in a very
different way, so that11

D†
aφA ¼ haμD

†
μφA ¼ haμð∂μ þ Γ†

μÞφA

¼ haμ
�
∂μ þ

1

2
A†ab

μΣab þ wA

�
Bμ −

1

3
Tμ

��
φA;

ð54Þ

where we have introduced the modified A-field

A†ab
μ ≡ Aab

μ þ 2b½aμBb�; ð55Þ

in which Ba ¼ haμBμ and Tμ ¼ baμT a, where T a ≡
T b

ab is the trace of the PGT torsion.12 It is straightforward
to show that, if φ has Weyl weight w, then (54) does indeed
transform covariantly with Weyl weight w − 1, as required.
Unlike the transformation laws forAab

μ andBμ, the covariant
derivative (54) does not explicitly contain the parameter θ.
Consequently, it does not reduce to the standard WGT
covariant derivative D�

aφA in either special case θ ¼ 0 or
θ ¼ 1, while retaining its covariant transformation law for
any value of θ.
The derivative (54) does in fact transform covariantly

under the much wider class of gauge field transformations
in which θ∂μρðxÞ is replaced in (53c)–(53d) by an arbitrary
vector field YμðxÞ. Indeed, one finds that the WGT (and
PGT) matter actions for the massless Dirac field and the
electromagnetic field are still invariant under local dilations
after such a replacement, although the discussion above
regarding the transformation properties ofRab

cd and T a
bc

following requires appropriate modification, since neither
transforms covariantly if θ∂μρðxÞ is replaced by an arbitrary
vector YμðxÞ. The covariance of D†

aφA under this wider
class of transformations allows one to identify a further
gauge symmetry of eWGT, namely under the simultaneous
transformations

11The daggers in the definition of the derivative operator are
intended simply to distinguish it from the usual notation used
[11,20,21] for the covariant derivatives ofPGTandWGT, and should
not be confused with the operation of Hermitian conjugation.

12It is worth noting that A†ab
μ is not considered to be a

fundamental field (notwithstanding the variational approach
adopted below), but merely a shorthand for the above com-
bination of the gauge fields haμ (or its inverse), Aab

μ and Bμ.
Similarly, Tμ is merely a shorthand for the corresponding
function of the gauge fields haμ (or its inverse) and Aab

μ.
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Aab
μ → Aab

μ þ 2b½aμY b�; Bμ → Bμ − Yμ; ð56Þ

where Y a ¼ haμYμ and Yμ is an arbitrary vector field.
Under this symmetry, both A†ab

μ and Bμ − 1
3
Tμ remain

unchanged and thus D†
aφ is invariant, as too are the eWGT

field strengths and action discussed below. One may make
use of this symmetry of eWGT to choose a gauge in which
either Bμ or Tμ is self-consistently set to zero, which can
considerably simplify subsequent calculations.
It was noted in [20] that the extended transformation laws

(53c)–(53d) implementWeyl scaling in a novelway thatmay
be related to gauging of the full conformal group. This is
discussed inmore detail in [21], where it is shown that eWGT
does indeed constitute a valid novel gauge theory of the
conformal group.We briefly summarize below the aspects of
eWGT that are relevant to our present discussion, and refer
the reader to [20,21] for further details.
By analogy with WGT, the Lagrangian density in eWGT

has the usual form L ¼ h−1L, where the translational
gauge field haμ is assigned a Weyl weight w ¼ −1, so that
h ¼ detðhaμÞ and L are scalar densities both of Weyl
weight w ¼ −4, and hence the action S is invariant under
local scale transformations. The Lagrangian has the func-
tional dependencies

L ¼ LðφA;D
†
aφA;R

†
abcd;T

†
abc;H

†
abÞ; ð57Þ

where the quantities R†
abcd, T

†
abc, H

†
ab are the eWGT

‘rotational’, ‘translational’ and ‘dilational’ gauge field
strengths, respectively, which are defined through the
action of the commutator of two eWGT covariant deriv-
atives on some field φ of weight w by

½D†
c;D

†
d�φ¼

�
1

2
R†ab

cdΣabþwH †
cd−T †a

cdD
†
a

�
φ: ð58Þ

The field strengths have the formsR†ab
cd ¼ haμhbνR†ab

μν,

H †
cd ¼ hcμhdνH

†
μν and T †a

bc ¼ hbμhcνT†a
μν, where

R†ab
μν ¼ 2ð∂½μA†ab

ν� þ ηcdA†ac½μA†db
ν�Þ; ð59Þ

H†
μν ¼ 2

�
∂½μBν� −

1

3
∂½μTν�

�
; ð60Þ

T†a
μν ¼ 2D†

½μb
a
ν�: ð61Þ

From the transformation laws (53), it is straightforward to
verify that, in accordance with their index structures, the
gauge field strength tensors R†ab

cd, H
†
cd and T †a

bc are
invariant under GCTs, and transform covariantly under
local Lorentz transformations and dilations with Weyl
weights w ¼ −2, w ¼ −2 and w ¼ −1, respectively
[20,21], similarly to their WGT counterparts.

It is worth noting, however, thatR†ab
cd andT †a

bc differ
in form substantially from those in WGT, and are given in
terms of the PGT field strengths Rab

cd and T a
bc by

R†ab
cd ¼ Rab

cd þ 4δ½b½cDd�Ba� − 4δ½b½cBd�Ba�

− 2B2δ½ac δ
b�
d − 2B½aT b�

cd;

T †a
bc ¼ T a

bc þ
2

3
δa½bT c�; ð62Þ

where B2 ≡BaBa and Da ≡ haμDμ ≡ haμð∂μ þ
1
2
Aab

μΣabÞ is the PGT covariant derivative operator.
It is particularly important to note that the trace of the
eWGT translational field strength tensor vanishes identi-
cally, namely T †

b≡T †a
ba¼0, so that T †a

bc is com-
pletely trace-free (contraction on any pair of indices yields
zero). Moreover, using the expression (61) and defining
the quantities c�abc ≡ 2hbμhcν∂

†
½μb

a
ν�, where ∂

†
μ ¼ ∂μ þ

wðBμ − 1
3
TμÞ, one may show that the fully anholonomic

modified A-field A†ab
c ≡ hcμA†ab

μ can be written as [20]

A †
abc ¼

1

2
ðc†abc þ c†bca − c†cabÞ−

1

2
ðT †

abc þT †
bca −T †

cabÞ:
ð63Þ

As in our discussion of WGT, it is convenient to list
the Bianchi identities satisfied by the gravitational gauge
field strengths R†ab

cd, T †a
bc and H †

ab in eWGT. These
may again be straightforwardly derived from the Jacobi
identity, but now applied to the eWGT covariant derivative.
One quickly finds the three Bianchi identities [20]

D†
½aR

†de
bc� −T †f ½abR†de

c�f ¼ 0;

ð64aÞ
D†

½aT
�d

bc� −T †e½abT †d
c�e −R†d½abc� −H †

½abδ
d
c� ¼ 0;

ð64bÞ
D†

½aH
†
bc� −T †e½abH

†
c�e ¼ 0:

ð64cÞ
By contracting over various indices, one also obtains the
following nontrivial contracted Bianchi identities:

D†
aR†ae

bc−2D†
½bR

†e
c�−2T †f

a½bR†ae
c�f−T †f

bcR
†e

f¼0;

ð65aÞ

D†
a

�
R†a

c−
1

2
δacR

†
�
þT †f

bcR
†b

f þ
1

2
T †f

abR
†ab

cf ¼ 0;

ð65bÞ
D†

aT †a
bc þ 2R†

½bc� − 2H †
bc ¼ 0;

ð65cÞ
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which are somewhat simpler than their WGT counterparts
(26a)–(26c) on account of the condition T †

a ¼ 0.

A. Manifestly covariant variational derivatives
in eWGT

As in WGT, we begin by considering directly the
variation of the action. In particular, by analogy with
(27), one may immediately write

hδ0L ¼ ∂L
∂φA

δ0φA þ ∂L

∂ðD†
aφAÞ

δ0ðD†
aφAÞ

þ ∂L

∂R†
abcd

δ0R
†
abcd þ

∂L

∂T †
abc

δ0T
†
abc

þ ∂L

∂H †
ab

δ0H
†
ab − baμLδ0haμ: ð66Þ

In eWGT, however, there is an additional subtlety compared
with WGT: although the dynamical energy-momentum
tensor τaμ ≡ δL =δhaμ derived from the total Lagrangian
density is covariant, this does not necessarily hold for the
corresponding quantities obtained from subsets of the terms
in L, even if they transform covariantly with weight w ¼ −4
[20]. This leads one to the construct an alternative quantity
for which this more general covariance property does hold.
This may be arrived at more directly from an alternative
variational principle, in which one makes a change of field
variables from the set φA, h

μ
a, Aab

μ and Bμ to the new set φA,
hμa,A†ab

μ andBμ. It is worth noting that one is simplymaking
a change of field variables here, rather than consideringA†ab

μ

to be an independent field variable; in other words, one still
considers A†ab

μ to be given in terms of hμa, Aab
μ, Bμ by its

defining relationship (55), rather than an independent quan-
tity whose relationship to the other variables would be
determined from the variational principle. Moreover, as

shown in [20], the eWGT covariant derivative can be
expressed wholly in terms of the fields hμa (or its inverse)
and A†ab

μ, and thus so too can the eWGT field strengths. In
particular, if one defines the (noncovariant) derivative
operator D♮

aφ≡ haμD
♮
μφ≡ haμð∂μ þ 1

2
A†bc

μΣbcÞφ and the

quantities T ♮a
bc ≡ 2hbμhcνD

♮
½μb

a
ν�, then one may easily

show that D†
aφ ¼ ðD♮

a − 1
3
wT ♮

aÞφ. Consequently, in the
new set of field variables, the Lagrangian L in (57) has no
explicit dependence on Bμ.
Following the general procedure used for WGT, one

must now determine how the variations in (66) depend on
the variations the new set of fields φA, h

μ
a and A†ab

μ them-
selves. This is easily achieved using the definition of the
eWGT covariant derivative and the expressions (59)–(61)
for the field strengths. By analogy with the approach
adopted for WGT, one must also make use of the fact that
for any coordinate vector Vμ of weightw ¼ 0 (i.e., invariant
under local scale transformations, like the Lagrangian
density L ), one may show that ∂μVμ ¼ h−1D†

aðhbaμVμÞ
or, equivalently, for any local Lorentz vector Va having
Weyl weight w ¼ −3 one has [20]

D†
aVa ¼ h∂μðh−1haμVaÞ; ð67Þ

which is somewhat simpler than its WGT counterpart (67)
because of the condition T †

a ¼ 0. Expressions of the
form (67) on the rhs of (66) therefore contribute only
surface terms to the variation of the action in (9), but we
will retain them nonetheless, as they are required for our
later discussion.
We begin by considering together the first two terms on

the rhs of (66), for which one obtains (after a rather lengthy
calculation)

∂L
∂φA

δ0φA þ
∂L

∂ðD†
aφAÞ

δ0ðD†
aφAÞ ¼

∂L
∂φA

δ0φA þ
∂L

∂ðD†
aφAÞ

�
D†

aðδ0φAÞ þ δ0haμD
†
μφA þ

�
1

2
haμΣbc þ

1

3
wAηa½chb�μ

�
φAδ0A†bc

μ

þ2

3
wAφA

�
h½aμD

†
b� þ

1

2
hcμT †c

ab

�
δ0bbμ

�
;

¼
�
∂L
∂φA

−D†
a

∂L

∂ðD†
aφAÞ

�
δ0φA þ

�
∂L

∂ðD†
aφAÞ

D†
μφA þ

2

3
wAbcμδa½bD

†
c�

�
∂L

∂ðD†
bφAÞ

φA

��
δ0haμ

þ ∂L

∂ðD†
aφAÞ

�
1

2
haμΣbc þ

1

3
wAηa½chb�μ

�
φAδ0A†bc

μ;

þD†
a

�
∂L

∂ðD†
aφAÞ

δ0φA þ
2

3

∂L

∂ðD†
½aφAÞ

wAφAbb�μδ0hbμ
�
; ð68Þ

where both terms in square brackets in the last line are readily shown to have Weyl weight w ¼ −3, with the second one
having no analog in the corresponding expression (29) in WGT. Analyzing the further terms containing derivatives on the
rhs of (66) in a similar manner, one finds (again after lengthy calculations in each case)
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∂L

∂R†
abcd

δ0R
†
abcd ¼ 2

∂L

∂R†
abcd

½R†
abμdδ0hc

μ þ hdμD
†
cðδ0A†

abμÞ�;

¼ 2
∂L

∂R†
abcd

R†
ab½μd�δ0hc

μ þ ðheμT †e
cd þ 2hcμD

†
dÞ
�

∂L

∂R†
abcd

�
δ0A

†
abμ − 2D†

d

�
∂L

∂R†
abcd

hcμδ0A
†
abμ

�
; ð69Þ

∂L

∂T †
abc

δ0T
†
abc ¼ 2

∂L

∂T †
abc

½T†
aμνhcνδ0hbμ þ hcνD

†
bðδ0baνÞ þ hbμδ0A

†
acμ

−
1

3
ηacðηb½phq�μδ0A†pq

μ þ 2h½qμD
†
b�ðδ0bqμÞ þ hpμT †p

qbδ0bqμÞ�;

¼ 2
∂L

∂T †
abc

��
T†
aμνhcνδdb −

1

2
T †d

bcbaμ

�
δ0hdμ þ hbμδ0A

†
acμ

�
− 2D†

c

�
∂L

∂T †
abc

�
baμδ0hbμ

−
2

3
ηac

��
bpμD

†
b − δpbb

q
μD

†
q

��
∂L

∂T †
abc

�
δ0hpμ þ

∂L

∂T †
abc

ηb½phq�μδ0A†pq
μ

�

þ 2D†
c

��
∂L

∂T †
abc

baμ −
2

3
ηpq

∂L

∂T †
pq½c

bb�μ

�
δ0hbμ

�
; ð70Þ

∂L

∂H †
ab

δ0H
†
ab ¼ 2

∂L

∂H †
ab

�
H†

μνhbνδ0haμ þ hbνD
†
a

�
δ0Bν −

1

3
δ0Tν

��
;

¼ 2
∂L

∂H †
ab

H†
μνhbνδ0haμ þ

2

3
ba½μD

†
c�

�
ðT †c

pq þ 2δcpD
†
qÞ
�

∂L

∂H †
pq

��
δ0haμ

þ 2

3
ηc½ahb�μ

�
δcpD

†
q þ 1

2
T †c

pq

��
∂L

∂H †
pq

�
δ0A†ab

μ

−
2

3
D†

c

��
∂L

∂H †
pq

T †½c
pqba�μ þ 2δ½cpD†

q

�
∂L

∂H †
pq

�
ba�μ

�
δ0haμ

�
: ð71Þ

In the above expressions it is again assumed that the
appropriate antisymmetrizations, arising from the sym-
metries of the field strength tensors, are performed when
the rhs are evaluated. It is also easily shown that the quantity
in brackets in each of the last terms in (69)–(71) has Weyl
weight w ¼ −3, so according to (67) each such term
contributes a surface term to the variation of the action (9).
Following an analogous approach to that adopted for

WGT, one may then substitute the expressions (68)–(71)

into (66), which may itself subsequently be substituted into
(9) to obtain an expression of the general form (12) for
Noether’s first theorem. This may be written as

δS ¼
Z

½υAδ0φA þ τ†aμδ0haμ þ σab
μδ0A†ab

μ

þ h−1D†
pðhJpÞ�d4x ¼ 0; ð72Þ

where the current hJp is given by

hJp ¼ ∂L

∂ðD†
pφAÞ

δ0φA

þ 2

�
1

3

∂L

∂ðD†
½pφAÞ

wAφAbb�μ þ
∂L

∂T †
abp

baμ −
2

3
ηrs

∂L

∂T †
rs½p

bb�μ −
1

3

∂L

∂H †
rs
T †½p

rsbb�μ −
2

3
δ½pr D†

s

�
∂L

∂H †
rs

�
bb�μ

�
δ0hbμ

− 2
∂L

∂R†
abcp

hcμδ0A
†
abμ þ bpμξμL; ð73Þ

and we have defined the variational derivative13 υA ≡ ðδL =δφAÞ† ¼ δL =δφA with respect to the matter field
φA, and the total modified dynamical energy-momentum τ†aμ ≡ ðδL =δhaμÞ† and spin-angular-momentum

13We denote the variational derivative of L with respect to any one of the fields χ in the new set of variables by ðδL =δχÞ† to
distinguish it from the variational derivative δL =δχ in the original set.
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σab
μ ≡ ðδL =δA†ab

μÞ† ¼ δL =δAab
μ of both the matter and gravitational gauge fields. It is also worth noting that the

(identically vanishing) dilation current ζ†μ ≡ ðδL =δBμÞ† in the new set of variables is related to that in the original set by
ζ†μ ¼ ζμ − 2haμσabb, so that the latter is given simply by ζμ ¼ 2haμσabb. Manifestly covariant forms for the variational
derivatives may then be read off from the expressions (68)–(71). Converting all Greek indices to roman and defining the
quantities τ†ab ≡ τ†aμhbμ and σab

c ≡ σab
μbcμ, one then makes the following identifications:

hυA ¼ ∂L
∂φA

−D†
a

∂L

∂ðD†
aφAÞ

; ð74aÞ

hτ†ab ¼
∂L

∂ðD†
aφAÞ

D†
bφA þ 2

∂L

∂R†
pqra

R†
pqrb þ 2

∂L

∂H †
pa

H †
pb þ 2

∂L

∂T †
pqa

T †
pqb − ðT †a

qr þ 2δaqD
†
rÞ ∂L
∂T †b

qr

− δbaL − 2D†
cðhσ̂cabÞ; ð74bÞ

hσabc ¼
1

2

∂L

∂ðD†
cφAÞ

ΣabφA þ ðT †c
rs þ 2δcrD

†
sÞ ∂L
∂R†ab

rs
− 2

∂L

∂T †½ab�
c
þ hσ̂abc; ð74cÞ

where for convenience we have also defined the quantity

hσ̂abc ¼
1

3
δc½aηb�r

∂L

∂ðD†
rφAÞ

wAφA þ 2

3
ηprδ

c
½aηb�q

∂L

∂T †
pqr

−
1

3
δc½aηb�rðT †r

pq þ 2δrpD
†
qÞ ∂L

∂H †
pq

: ð75Þ

Once again, it is assumed that the appropriate antisymmet-
rizations, arising from the symmetries of the field strength
tensors, are performed when the rhs are evaluated. As
mentioned above, ζ†a ≡ 0 since L does not explicitly
depend on Bμ in the new set of variables; the dilation current
in the original set of variables is thus given by ζa ¼ 2σabb. As
anticipated, the expressions (74a)–(74c) are manifestly
covariant (and hence so too are the equations of motion
obtained by setting each rhs to zero) and straightforward to
evaluate, requiring one only to differentiate the LagrangianL
with respect to the matter fields, their covariant derivatives
and the field strengths.Onemay easily confirm that the above
expressions lead to precisely the same variational derivatives
as those obtained by using the standard (but much longer)
approach of evaluating (5a) for each field.
It is worth comparing the expressions (74a)–(74c) with

their counterparts (35a)–(35c) in WGT. One sees that the
eWGT expression for hυA is obtained simply by ‘replacing
asterisks with daggers’ and recalling that T †

a ≡ 0, but the
expressions in eWGT for hτ†ab and hσabc each contain an
additional final term beyond those obtained by performing
the same process on their WGT counterparts (35b)–(35c).
In particular, one sees that the final terms in (74b) and (74c)
each depend on the quantity (75) and have no analog in
WGT. It is a noteworthy feature of eWGT that the addi-
tional term in the expression for hτ†ab is given by the
covariant derivative of the additional term (with permuted
indices) in the expression for hσabc, and this has some
novel consequences. First, one notes that for a Lagrangian
L that does not contain the gauge field strength tensors, but
depends only on the matter fields and their covariant
derivatives, the variational derivatives with respect to the

gauge fields do not reduce to the covariant canonical
currents [11,21] of the matter fields. Indeed, there exist
additional terms proportional to the dilational generatorΔ ¼
wAI for the matter fields φA, so that any matter field with
nonzeroWeyl weightwA contributes additionally both to the
modified energy-momentum tensor and to the spin-angular-
momentum tensor, irrespective of its spin. Second, for
Lagrangians that do depend on the gauge field strengths,
there are additional terms capable of producing a depend-
ence on the covariant derivatives of the field strength tensors,
and in each case these terms depend on the covariant
derivatives of field strength tensors for different gauge fields
than those with respect to which the variational derivative is
taken. Moreover, the final term on the rhs of (74b) contains
second covariant derivatives of ∂L=∂H †

ab.
From (60), it appears at first sight that H †

ab is linear in
second-order derivatives of haμ and first-order derivatives
of haμ and A†ab

μ (and hence of Aab
μ and Bμ). In that case, if

the Lagrangian contains a term proportional to H †
abH

†ab

(which has the required Weyl weight w ¼ −4 to be scale-
invariant) it would follow that the final term on the rhs of
(74b) is linear in fourth-order derivatives of haμ and third-
order derivatives of all three gauge fields haμ, Aab

μ and Bμ.
Similarly, the final term in (74c) would be linear in third-
order derivatives of haμ. Moreover, if the Lagrangian
contains a term proportional to R†

½ab�H
†ab, the final term

on the rhs of (74b) would be linear in third-order deriva-
tives of haμ, Aab

μ and Bμ. These considerations would
seem to indicate that eWGTs containing either term in the
Lagrangian suffer from Ostrogradsky’s instability [39,40].
As noted in [20], however, this conclusion is not clear cut,
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since in applying such theories to particular physical
systems or in the general linearized case, one finds that
the resulting field equations always organize themselves
into combinations of coupled second-order equations in the
gauge fields [20]. Specifically, one finds the terms con-
taining higher-order derivatives correspond to the deriva-
tive of already known expressions, and so contain no new
information. Having now identified the gauge symmetry
(56) and obtained the general expressions (74b) and (74c)
for the variational derivatives, one may indeed show that
this always occurs in the general nonlinear case. First, one
may use the gauge transformation (56) to set Tμ ¼ 0, so
that H †

ab is merely linear in first-order derivatives of Bμ.
Nonetheless, if the Lagrangian contains a term proportional
to H †

abH
†ab, the final term in (74b), specifically the part

that arises from the final term in (75), still contains third-
order derivatives of Bμ. This is unproblematic, however,
since this term is the covariant derivative of an expression
that is already known from the field equation hσabc ¼ 0.
Hence, in the final field equations one encounters field
derivatives of only second-order or lower, thereby avoiding
Ostrogradsky’s instability.
It is also worth pointing out that, as for WGT, we have

not assumed the equations of motion to be satisfied in
deriving (74a)–(74c). Thus, one may calculate the corre-
sponding variational derivatives for any subset of terms in
L that is a scalar density of weight w ¼ −4. Individually,
however, such quantities do not vanish, in general. Rather,
each equation of motion requires only the vanishing of the
sum of such quantities, when derived from disjoint subsets
that exhaust the total Lagrangian L.

B. Relationship between first- and second-order
variational principles in eWGT

As we did for WGT, we now demonstrate how the
approach outlined above is well suited to comparing

first- and second-order variational derivatives. We again
focus on the example of the variational derivatives obtained
by setting the (eWGT) torsion to zero after the variation is
performed (first-order approach) with those obtained by
setting the torsion to zero in the action before carrying out
the variation (second-order approach). As mentioned in the
Introduction, however, in eWGT one faces an additional
complication relative to WGT, since setting the torsion to
zero does not lead to an explicit expression for the rota-
tional gauge field in terms the other gauge fields, but
instead an implicit constraint relating all the gauge fields.
We again begin by considering the simpler case of the first-

order approach, where one merely setsT †a
bc ¼ 0 (which is

a properly eWGT-covariant condition) in the expressions
(74a)–(74c). In eWGT, however, the condition T †a

bc ¼ 0
results in an implicit constraint between the gauge fields haμ,
Aab

μ andBμ. Once again, it proves useful in eWGT towork in
terms of the modified rotational gauge field, or rather its
‘reduced’ form in the case T †a

bc ¼ 0 [20,21]. From (63),
this is given by 0A†

abμ ¼ bcμ0A
†
abc, where

14

0A †
abc ¼

1

2
ðcabc þ cbca − ccabÞ þ ηac

�
Bb −

1

3
T b

�

− ηbc

�
Ba −

1

3
T a

�
: ð76Þ

In an analogous manner to WGT, under a local extended
Weyl transformation, the quantities 0A†ab

μ transform in
the same way as A†ab

μ, and so one may construct the

‘reduced’ eWGT covariant derivative 0D†
aφ ¼ haμ0D�

μφ ¼
haμð∂μ þ 1

2
0A†ab

μΣab þ wBμÞφ, which transforms in the

same way as D†
aφ. Thus, the corresponding quantities

to (74a)–(74c) are obtained simply by evaluating the rhs
with T †a

bc set to zero, which also implies D†
a → 0D†

a.
This yields

h0υA ¼ ∂L
∂φA

����
0

− 0D†
a

∂L

∂ðD†
aφAÞ

����
0

; ð77aÞ

h0τ†ab ¼
∂L

∂ðD†
aφAÞ

����
0

0D†
bφA þ 2

∂L

∂R†
pqra

����
0

0R†
pqrb þ 2

∂L

∂H †
pa

����
0

H †
pb þ 20D†

r
∂L

∂T †b
ar

����
0

− δbaLj0 − 20D†
cðh0σ̂cabÞ; ð77bÞ

h0σabc ¼
1

2

∂L

∂ðD†
cφAÞ

����
0

ΣabφA þ 2δcr
0D†

s
∂L

∂R†ab
rs

����
0

− 2
∂L

∂T †½ab�
c

����
0

þ h0σ̂abc; ð77cÞ

where by analogy with (75) we have defined the quantity

h0σ̂abc ¼
1

3
δc½aηb�r

∂L

∂ðD†
rφAÞ

����
0

wAφA þ 2

3
δc½aηb�qηpr

∂L

∂T †
pqr

����
0

−
2

3
δc½aηb�p

0D†
q

∂L

∂H †
pq

����
0

: ð78Þ

14It is important to note that there is a fundamental difference with WGT here, since 0A†ab
μ depends on the rotational gauge field Aab

μ
through the terms containing T a, and hence cannot be written entirely in terms of the other gauge fields haμ and Bμ.
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Once again, it is worth noting that we have not assumed
any equations of motion to be satisfied in deriving the
quantities (77a)–(77c). Thus, one may derive corresponding
quantities for any subset of terms inL that are a scalar density
with weight w ¼ −4, and these quantities do not vanish,
in general.
We now consider the second-order approach, where one

imposes T †
abc ¼ 0 at the level of the action, prior to eva-

luating the variational derivatives. In this case,A†ab
μ is again

given by (76), inwhich case onemay show that the following
constraint must be satisfied while performing the variation:

Cabμ ≡ A†
abμ −

2

3
hdνb½ajμA†djb�ν − 0Aabμ

þ 2

3
hdνb½ajμ0Adjb�ν ¼ 0; ð79Þ

where 0Aabμ ¼ 1
2
bcμðcabc þ cbca − ccabÞ. It is worth noting

that Cabμ depends on all the gauge fields; moreover, since
0Aabμ depends both on the h-field and its derivatives, the
expression (79) constitutes a nonholonomic constraint. We
therefore consider the augmented total Lagrangian density
L̂ ≡L þ λabμCabμ, where λabμ is a field of weight w ¼ 0

with the same symmetries as Cabμ that acts as a Lagrange
multiplier. Thus, up to terms that are the divergence of a
quantity that vanishes on the boundary of the integration
region, the integrand in the expression (2) for the variation of
the action is given by

�
δL̂

δχA

�
†
δ0χA ¼ υAδ0φA þ τ†aμδ0haμ þ σab

μδ0A†ab
μ

þ λabμδ0Cabμ þ Cabμδ0λ
abμ; ð80Þ

From (79), one finds after some calculation that

δ0Cabμ ¼ δ0A
†
abμ −

2

3
b½ajμhqσδ0A†qjb�σ − bcμðh½cν0D†

b�δ0baν

þ h½aν0D
†
c�δ0bbν − h½bν0D

†
a�δ0bcνÞ

þ 2

3
bcμðηcah½qσ0D†

b� − ηcbh½qσ0D
†
a�Þδ0bqσ; ð81Þ

from which one may show that (80) becomes (up to a total
divergence)

�
δL̂

δχA

�
†
δ0χA ¼ 0υAδ0φA þ 0τ̃†aμδ0haμ

þ
�

0σ̃ab
μ þ λab

μ −
2

3
haμλcbc

�
δ0A†ab

μ

þ bbfμ½ðηfaδe½b0D†
c� þ ηfbδ

e
½c
0D†

a�

− ηfcδ
e
½a
0D†

b�ÞðhλabcÞ þ
4

3
δe½f

0D†
b�ðhλabaÞ�

× δ0heμ þ Cabμδ0λ
abμ; ð82Þ

≡vAδ0φA þ t†aμδ0haμ þ sabμδ0A†ab
μ þ Cabμδ0λ

abμ; ð83Þ
where we have again made use of (67) and 0τ̃aμ and 0σ̃ab

c

denote quantities analogous to (77b)–(77c), respectively, but
without the terms containing ∂L=∂T †

abcj0. In the last line, we
have also defined the modified total dynamical energy-
momentum t†aμ and spin-angular momentum sabμ of both
the matter and gravitational gauge fields, and thematter field
variational derivatives vA, in the second-order approach.
From (83), one sees immediately that the equation of

motion for the Lagrange multiplier field λabμ is simply
Cabμ ¼ 0, which enforces the original constraint (79), as
required. By comparing (82) and (83), and converting all
indices to Roman, one further finds that the second-order
variational derivatives are related to the first-order ones by

hvA ¼ h0υA; ð84Þ

ht†ab ¼ h0τ̃†ab þ 0D†
cðhλcab þ hλcba − hλabcÞ

−
2

3
ηab

0D†
cðhλcddÞ þ

2

3
0D†

bðhλaddÞ; ð85Þ

hsabc ¼ h

�
0σ̃abc þ λabc þ

2

3
ηc½aλb�dd

�
: ð86Þ

To proceed further, one must eliminate the dependence
of (85)(86) on the Lagrange multiplier field λabc. This is
achieved by enforcing the A-field equation of motion, so
that hsabc ¼ 0, which now merely determinines λabc under
the constraint Cabμ ¼ 0. Using the resulting condition
0σ̃abc þ λabc þ 2

3
ηc½aλb�dd ¼ 0, one may now eliminate the

Lagrange multiplier field from (85), and one finally obtains

hvA ¼ h0υA; ð87Þ

ht†ab ¼ h0τ̃†ab þ 0D†
cðh0σ̃abc − h0σ̃cab − h0σ̃cbaÞ: ð88Þ

As was the case for WGT, the forms of the matter variational
derivatives are identical in the first- and second-order
approaches, and the form for themodified energy-momentum
tensor in the second-order approach is reminiscent of the
Belinfante tensor. Since, one has not used the equations of
motion for thematter fields and the gauge fieldhaμ in deriving
the expressions (87)–(88), they remain valid for any subset of
the terms in L that are a scalar density of weight w ¼ −4.
If one does consider the total Lagrangian L, however, then
the second-order equations of motion for the matter and
gauge fields are obtained simply by setting the expressions
(87)–(88) to zero. In this case, provided the terms of the form
∂L=∂T †

abcj0 vanish in the first-order equations of motion
obtained by setting (37)–(37d) to zero, then this implies that
the second-order equations of motion obtained by setting
(87)–(88) to zero are also satisfied, but the contrary does not
necessarily hold.
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C. Manifestly covariant conservation laws in eWGT

We now derive the conservation laws for eWGT in a
manner that maintains manifest covariance throughout, by
applying the general method outlined in Sec. III in a similar
way to that performed in Sec. IV C for WGT. Once again,
we begin by considering the general form of the con-
servations laws given in (15). As in the previous section, we
work in the new set of variables φA, h

μ
a, A†ab

μ, in which
the Lagrangian does not depend explicitly on the gauge
field Bμ. In this case, under infinitesimal local Weyl
transformations consisting of GCTs, rotations of the local
Lorentz frames and dilations, parametrized by ξμðxÞ,
ωabðxÞ and ρðxÞ, the form variations (53) are replaced by

δ0φ ¼ −ξν∂νφþ
�
1

2
ωabΣab þ wρ

�
φ; ð89aÞ

δ0haμ ¼ −ξν∂νhaμ þ haν∂νξμ − ðωb
a þ ρδbaÞhbμ; ð89bÞ

δ0A†ab
μ ¼ −ξν∂νA†ab

μ − A†ab
ν∂μξ

ν − 2ω½a
cA†b�c

μ − ∂μω
ab:

ð89cÞ

By comparing these transformation laws with the generic
form (6), one may read off the functions fAC and fμAC in
the latter from the coefficients of fλCg ¼ fλ1; λ2; λ3g ¼
fξα;ωab; ρg and their partial derivatives, respectively. As
anticipated, one immediately finds thatmany of the functions
fAC and fμAC are not covariant quantities. One therefore
again employs the Bessel-Hagen method to obtain new form
variations of the fields in which the functions fμAC are
manifestly covariant, as required, although many of the
functions fAC may also be made so. Following the general
methodology outlined in Appendix, we consider separately
the conservation laws that result from the invariance of the
eWGT action under infinitesimal GCTs, local rotations and
local dilations, respectively.
Considering first the infinitesimal GCTs characterized by

ξαðxÞ (whichwe take to correspond toC ¼ 1), onemaymake
use of the invariance of the action under the transformations
(89) for arbitrary functions ωabðxÞ and ρðxÞ by choosing
them in a way that yields covariant forms for the new
functions fμA1 (and also fA1 in this case) in the resulting form
variations. This is achieved by setting ωab ¼ −A†ab

νξ
ν and

ρ ¼ −ðBν − 1
3
TμÞξν (where the minus signs are included for

later convenience), which yields transformation laws of a
much simpler form than in (89), given by

δ0φ ¼ −ξνD†
νφ; ð90aÞ

δ0haμ ¼ −ξνD†
νhaμ þ haν∂νξμ; ð90bÞ

δ0A†ab
μ ¼ ξνR†ab

μν: ð90cÞ

From these form variations, one may immediately read off
the new forms of the functions fA1 and f

μ
A1, all of which are

now manifestly covariant. Inserting these expressions into
the general form (15), one directly obtains the manifestly
covariant conservation law

D†
cðhτ†cνÞ − hðσabμR†ab

μν − τ†aμD
†
νh

μ
a − υAD†

νφAÞ ¼ 0;

ð91Þ

where hυA ¼ ðδL=δφAÞ† ¼ δL=δφA. On multiplying
through by hdν, onemay rewrite the conservation lawwholly
in term of quantities possessing only Roman indices as

D†
cðhτ†cdÞ − hðσabcR†ab

cd − τ†cbT
†b

cd − υAD†
dφAÞ ¼ 0:

ð92Þ

We next consider invariance of the action under infini-
tesimal local Lorentz rotations characterized by ωabðxÞ
(which we take to correspond to C ¼ 2). In this case,
the functions fμA2 in the set of transformation laws (89)
are already manifestly covariant. One may thus insert the
functions fμA2 and fA2 read off from (89) directly into
the general form (15), without employing the Bessel-
Hagen method. On recalling that Γ†

βσpq
β ¼ −A†r

pβσrq
β −

A†r
qβσpr

β (since σab
μ has Weyl weight w ¼ 0) one finds

that the final set of terms on the lhs of (15) vanish when γA

corresponds to hσabμ, and one immediately obtains the
manifestly covariant conservation law

D†
cðhσabcÞ þ hτ†½ab� þ

1

2
hυAΣabφA ¼ 0: ð93Þ

Finally, we consider invariance of the action under
infinitesimal local dilations characterized by ρðxÞ (which
we take to correspond to C ¼ 3). Once again, the relevant
functions fμA3 in the set of transformation laws (89) are
already manifestly covariant. One may thus insert fμA3 and
fA3 read off from (89) directly into the general form (15),
which immediately yields the manifestly covariant alge-
braic conservation law

hτ†cc − hυAwAφA ¼ 0: ð94Þ

It is straightforward to verify that the manifestly covar-
iant conservations WGT laws (92)–(94) have the correct
forms [20,21] and match those derived (albeit at consid-
erably greater length) using the standard form of Noether’s
second theorem (8a).
Before moving on to consider the further condition (8b)

arising from Noether’s second theorem, in the context of
eWGT, we note that the conservation law (93) may be used
to simplify the expression (88) for the second-order varia-
tional derivative with respect to haμ in terms of first-order
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variational derivatives. Imposing the condition T †
abc ¼ 0,

the conservation law (93) becomes

0D†
cðh0σ̃abcÞ þ h0τ̃†½ab� þ

1

2
h0υ̃AΣabφA ¼ 0: ð95Þ

If one assumes the matter equations of motion 0υ̃A ¼ 0 are
satisfied (or, equivalently, that the Lagrangian L does not
depend on matter fields), the expression (88) can thus be
written in the simpler and manifestly symmetric form

ht†ab ≏
m
h0τ̃†ðabÞ − 20D†

cðh0σ̃cðabÞÞ: ð96Þ

D. Relationship between currents in Noether’s
second theorem in eWGT

We conclude this section by considering the relationship
in WGT between the two currents that appear in Noether’s
second theorem (8b). As discussed in Sec. III C, this
equation may be rewritten as D†

a½hðJa −S aÞ� ¼ 0,
where hJa for eWGT is given by (73) and the expression
for hS a may be obtained from the general form (16),
which on using the eWGT field variations (89) yields

hS p ¼ h½−ξμðτ†pμ − σab
pA†ab

μÞ þ ωabσab
p�: ð97Þ

As was the case for WGT, this expression does not depend
on the variational derivatives υA ≡ δL =δψA with respect
to the matter fields since, as expected, the functions fμAC
vanish in this case, as can be read off from the form
variations (89) of the new set of fields. Thus, in order for
hS p to vanish, it is sufficient that just the equations of
motion of the gauge fields are satisfied. Moreover, in
eWGT, the current (97) also does not depend on the
dilation ρðxÞ.
If one substitutes the form variations (89) of the new set

of fields into the expression (73) for hJp, one finds after a
long calculation of a similar nature to that required in WGT,
which makes careful use of the definition (58) of the field
strength tensors, the contracted Bianchi identity (65c) and
the manifestly covariant expressions (74b)–(74c) for the
variational derivatives with respect to the gravitational
gauge fields, that

D†
pðhJpÞ ¼ D†

p½−ξμhðτpqbqμ − σab
pAab

μÞ þ ωabhσabp�
¼ D†

pðhS pÞ; ð98Þ
thereby verifying explicitly the relationship between the
two currents that is implied by Noether’s second theorem
(8b), as was the case in WGT. Thus, as expected for an
action that is invariant under a set of local symmetries,
this relationship contains no further information, but
nonetheless provides a useful check of the derivation of
the expressions (74b)–(74c). Indeed, in a similar way
to WGT, the requirement D†

a½hðJa −S aÞ� ¼ 0 from
Noether’s second theorem can thus be used as an alternative

(albeit rather longer) means of deriving the expressions
(35b)–(35d) for the variational derivatives with respect to
the gravitational gauge fields.

VI. CONCLUSIONS

We have presented a variational principle that maintains
manifest covariance throughout when applied to the actions
of gauge theories of gravity. In particular, it directly yields
field equations and conservation laws that are manifestly
covariant under the symmetries to which the action is
invariant. This is achieved by deriving explicit manifestly
covariant forms for the Euler-Lagrange variational deriv-
atives and Noether’s theorems for a generic action of the
form typically assumed in gauge theories of gravity.
The manifestly covariant form of Noether’s first theorem

and the expressions for the variational derivatives derived
therefrom not only provide a significant calculational
saving relative to the traditional method of evaluation,
but also yield useful insights into their general forms. In
particular, these expressions enable one easily to establish
the relationship between the forms of variational deriva-
tives, and hence the field equations, obtained by applying
first- and second-order variational principles, respectively.
An interesting case is provided by comparing the varia-
tional derivatives obtained by setting the torsion to zero
after the variation is performed (first-order approach) with
those obtained by setting the torsion to zero in the action
before carrying out the variation (second-order approach).
The reexpression of Noether’s second theorem in terms

of manifestly covariant quantities provides further utility
and insights. In particular, one may use it to derive the
conservation laws obeyed by the matter and gravitational
gauge fields in a manifestly covariant manner. This also
relies on being able to express the form variations of these
fields such that at least the coefficient functions of the
derivatives of the parameters of the symmetry transforma-
tions are manifestly covariant. This may be achieved by
generalizing the approach introduced by Bessel-Hagen for
electromagnetism, which is discussed in Appendix. The
reexpression of Noether’s second theorem further allows
one straightforwardly to verify the relationship between the
two currents on which it depends. Indeed, one may use
Noether’s second theorem as an alternative (albeit some-
what longer) means of deriving manifestly covariant forms
for the variational derivatives.
The manifestly covariant variational principle is illus-

trated by application to the scale-invariant WGT and its
recently proposed eWGT version, but can be straightfor-
wardly applied to other gravitational gauge theories with
smaller or larger symmetry groups. For WGT and eWGT,
the fields in the theory consist of a translational gauge field
haμ (with inverse baμ), a rotational gauge field Aab

μ and a
dilational gauge field Bμ, together with some set of matter
fields φA, which may include a scalar compensator field. In
eWGT, however, it is more natural to work in terms of the
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alternative set of variables φA, h
μ
a, A†ab

μ and Bμ, where the
modified rotational gauge field A†ab

μ ≡ Aab
μ þ 2b½aμBb�

and Ba ¼ haμBμ. Moreover, eWGT may be shown to
be invariant under the simultaneous ‘torsion-scale’ gauge
transformations Aab

μ→Aab
μþ2b½aμY b� and Bμ→Bμ−Yμ,

where Y a ¼ haμYμ and Yμ is an arbitrary vector field; this
may be used to set either Bμ or Tμ to zero, which can
considerably simplify subsequent calculations. The scale-
invariant actions for WGT and eWGT are further assumed
to depend only on the matter fields, their covariant
derivatives and the field strength tensors of the gravitational
gauge fields. In this case, the eWGTaction in the alternative
set of variables does not depend explicitly on Bμ, hence
reducing by one the number of independent variational
derivatives. As might be expected from the above consid-
erations, one finds a number of similarities between WGT
and eWGT, and also some important and novel differences.
Considering first the manifestly covariant expressions

for the variational derivatives in WGT, one finds that these
reduce to the corresponding covariant canonical currents of
the matter fields if the Lagrangian does not depend on the
gravitational gauge field strengths. For Lagrangians that do
depend on the gauge field strengths, one finds that the only
terms that contain the covariant derivative of a field strength
tensor depend on the field strength tensor of the gauge field
with respect to which the variational derivative is taken. By
contrast, in eWGT one finds that the variational derivatives
with respect to the translational and modified rotational
gauge fields contain additional terms beyond those
obtained by ‘replacing asterisks with daggers’ in their
WGT counterparts. Moreover, the additional terms in the
translational variational derivative are given by the covar-
iant derivative of the additional terms (with permuted
indices) in the expression for the rotational variational
derivative; this has some novel consequences. First, for a
Lagrangian that depends only on the matter fields and
their covariant derivatives, the variational derivatives with
respect to the gauge fields do not reduce to the covariant
canonical currents of the matter fields, but comtain addi-
tional terms proportional to the dilational generator
Δ ¼ wAI for the matter fields φA. Thus, any matter field
with nonzero Weyl weight wA contributes additionally both
to the modified energy-momentum tensor and to the
spin-angular-momentum tensor, irrespective of its spin.
Second, for Lagrangians L that depend on the gauge field
strengths, there are additional terms capable of producing a
dependence on the covariant derivatives of the field
strength tensors, and in each case these terms depend on
the covariant derivatives of field strength tensors for
different gauge fields than those with respect to which
the variational derivative is taken. Moreover, there exist
terms containing covariant derivatives of ∂L=∂H †

ab. By
using the ‘torsion-scale’ gauge symmetry and the mani-
festly covariant forms of the variational derivatives,

however, one may show that the final eWGT field equa-
tions contain field derivatives of only second-order or
lower, thereby avoiding Ostrogradsky’s instability.
On comparing the variational derivatives obtained by

setting the torsion to zero after the variation is performed
(first-order approach) with those obtained by setting the
torsion to zero in the action before carrying out the variation
(second-order approach), one finds important differences
between WGT and eWGT. In both cases, the rotational
gauge field is no longer an independent field, but in WGT
it may be written explicitly in terms of the other gauge
fields, whereas in eWGT there exists an implicit constraint
relating all the gauge fields. In both cases, however, one
may arrive at simple expressions for the variational deriv-
atives in the second-order approach in terms of those from
the first-order approach. In particular, the translational
variational derivative in the second-order approach for
WGT and eWGT is the gauge theory equivalent of the
Belinfante tensor. Moreover, in WGT the second-order
dilational variational derivative may be considered to define
an associated Belinfante dilation current, which is clearly
related to the ‘field virial’ that is relevant to the invariance
of an action under special conformal transformations.
Turning to the re-expression of Noether’s second theorem,

the resulting derivations of manifestly covariant forms of
the conservation laws satisfied by the fields in WGT
and eWGT, yield similar forms in both cases for the laws
corresponding to invariance under local translations and
rotations, respectively. For invariance under local dilations,
however, one finds the resulting conservation law is dif-
ferential in WGT, but algebraic in eWGT. In both WGTand
eWGT, one may also use the re-expression of Noether’s
second theorem to verify the relationship between the two
currents on which it depends, although in both cases this
verification requires a calculation of considerable length.
Alternatively, in each case, one may use Noether’s second
theorem as an alternative (albeit considerably longer) means
of deriving manifestly covariant forms for the variational
derivatives.
Whilst this paper has focussed heavily on the Lagrangian

prescription of field theory, and the associated field equations
and conservation laws, we note that the techniques developed
here may impart even stronger benefits in the Hamiltonian
formulation. Hamiltonian gauge field theory is characterized
by the presence of field-valued constraints, which encode not
only the gauge symmetries but also the whole nonlinear
dynamics, as elucidated by the consistency algorithmofDirac
and Bergmann [41–43]. The fundamental currency of the
consistency algorithm is the Poisson bracket,15 which is a
bilinear in functional variations with respect to dynamical
fields. In the context of gravitational gauge fields, the
Hamiltonian formulation is typically realized using the

15More sophisticated Dirac brackets [44] also arise; these are
equally relevant to our discussion.
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so-called 3þ 1 orArnowitt-Deser-Misner (ADM) technique,
whereby manifest diffeomorphism covariance is preserved
despite the imposition of a spacelike foliation. Accordingly,
the ADM Poisson bracket presents a clear opportunity for
manifestly covariant variational methods, such as those
expressed in Eqs. (35) and (74). The Hamiltonian demand
is, if anything, more pronounced than the Lagrangian
demand. In the latter case, a countably small collection of
field equations (not including indices) must be obtained (e.g.,
one set of Einstein equations). In the former case and for a
gravitational gauge theory, all Poisson brackets between all
constraints must be evaluated in order to classify the gauge
symmetries: this can in practice correspond to tens or
hundreds of brackets [45–49]. Separately, the variations of
a constraint can be more challenging than those of an action
because: (i) the constraints are typically indexed and always
(quasi-) local, necessitating the use of smearing functions;
(ii) they may contain more terms in ADM form than the
original Lagrangian; and crucially (iii) they are of unlimited16

order in spatial gradients [50] even when the Lagrangian is
second order as assumed in (1). The extension of the
techniques discussed here to the higher-order, ADM varia-
tional derivative, is left to future work.
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APPENDIX: BESSEL-HAGEN METHOD
FOR ELECTROMAGNETISM

For classical electromagnetism (EM) in Minkowski
spacetime M labeled using Cartesian inertial coordi-
nates xμ, the action is given by S ¼ R

Ld4x, where the
Lagrangian density L ¼ − 1

4
FμνFμν and the (Faraday)

field strength tensor Fμν ¼ ∂μAν − ∂νAμ, in which Aμ is
the electromagnetic 4-potential (which is not to be confused
with the rotational gravitational gauge field Aab

μ appearing
throughout the main text of the paper). As is well-known,
the most general infinitesimal global coordinate trans-
formations under which the EM action is invariant are
the conformal transformations17; these have the form
x0μ ¼ xμ þ ξμðxÞ, where

ξμðxÞ ¼ aμ þ ωμ
νxν þ ρxμ þ cμx2 − 2c · xxμ; ðA1Þ

in which the 15 infinitesimal parameters aμ, ωμν ¼ −ωνμ, ρ
and cμ are constants, and we use the shorthand notation

x2 ≡ ημνxμxν and c · x≡ ημνcμxν. If the four parameters cμ

defining the so-called special conformal transformation
(SCT) vanish, then (A1) reduces to an infinitesimal global
Weyl transformation. Moreover, if the parameter ρ defining
the dilation (or scale transformation) also vanishes, then
(A1) further reduces to an infinitesimal global Poincaré
transformation, consisting of a restricted Lorentz rotation
defined by the six parameters ωμν and a spacetime trans-
lation defined by the four parameters aμ.
Under the action of any infinitesimal coordinate trans-

formation x0μ ¼ xμ þ ξμðxÞ, the 4-potential has the form
variation

δðξÞ0 Aμ ¼ δðξÞAμ − ξν∂νAμ ¼ −Aν∂μξ
ν − ξν∂νAμ; ðA2Þ

where we have explicitly denoted the form and total
variations as being induced by the infinitesimal coordinate
transformation. Thus, the corresponding Noether current
(5b) has the form

Jμ ¼ ∂L

∂ð∂μAσÞ
δðξÞ0 Aσ þ ξμL

¼ FμσðAν∂σξ
ν þ ξν∂νAσÞ −

1

4
ξμFρσFρσ: ðA3Þ

Using the expression (A1) for an infinitesimal global
conformal coordinate transformation, one finds that (A3)
may be written as

Jμ ¼ −aαtμα þ
1

2
ωαβMμ

αβ þ ρDμ þ cαKμ
α; ðA4Þ

where the coefficients of the parameters of the conformal
transformation are defined by

tμα ≡ ∂L

∂ð∂μAσÞ
∂αAσ − δμαL ¼ −Fμσ

∂αAσ þ
1

4
δμαFρσFρσ;

ðA5aÞ
Mμ

αβ ≡ xαtμβ − xβtμα þ sμαβ; ðA5bÞ
Dμ ≡ −xαtμα þ jμ; ðA5cÞ

Kμ
α ≡ ð2xαxβ − δβαx2Þtμβ þ 2xβðsμαβ − ηαβjμÞ; ðA5dÞ

which are the canonical energy momentum, angular
momentum, dilation current and special conformal current,
respectively, of the 4-potential Aμ. We have also defined the
quantities

sμαβ ≡ ∂L

∂ð∂μAσÞ
ðΣαβÞσρAρ ¼ −2Fμ½αAβ�; ðA6aÞ

jμ ≡ ∂L

∂ð∂μAσÞ
wAσ ¼ FμσAσ; ðA6bÞ

which are the canonical spin angular momentum and
intrinsic dilation current of the 4-potential; here ðΣαβÞσρ ¼
2ησ½αδ

ρ
β� are the generators of the vector representation

16This is due to cumulative derivatives arising in the course of
the Dirac algorithm.

17The action is also invariant under finite global conformal
coordinate transformations [51–53]; these include conformal
inversions x0μ ¼ xμ=x2 for x2 ≠ 0, which are not connected to
the identity and so are not considered here.
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of the Lorentz group and w ¼ −1 is the Weyl weight
of Aμ.
If the field equations δL =δAν ¼ ∂μFμν ¼ 0 are satisfied,

then invariance of the action implies the conservation law
∂μJμ ≏ 0. Since the parameters of the global conformal
coordinate transformation in (A4) are constants, one thus
obtains separate conservation laws given by

∂μtμα ≏ 0; ðA7aÞ
∂μsμαβ þ 2t½αβ� ≏ 0; ðA7bÞ

∂μjμ − tμμ ≏ 0; ðA7cÞ
sμαμ − jα ≏ 0; ðA7dÞ

which hold up to a total divergence of any quantity that
vanishes on the boundary of the integration region of the
action. It is worth noting that the first condition has been used
to derive the second and third conditions, and the first three
conditions have all been used to derive the final condition.
The conservation laws (A7) may be easily verified directly
using the expressions (A5a) and (A6) for tμα, sμαβ and jμ,
respectively, and the EM equations of motion. It is worth
noting that the conservation law (A6), which results from
invariance of the action under special conformal transforma-
tions, requires the ‘field virial’ to vanish [37].
In addition to being invariant under infinitesimal global

conformal coordinate transformations of the form (A1),
however, the EM action is also well-known to be invariant
under the gauge transformation Aμ → A0

μ ¼ Aμ þ ∂μα,
where αðxÞ is an arbitrary function of spacetime position.
Since our considerations thus far have not taken this into
account, it is perhaps unsurprising that the canonical
quantities tμα, sμαβ and jμ are not invariant under the gauge
transformation, as is easily demonstrated. Moreover, it is
immediately apparent that the overall Noether current Jμ

in (A3) is also not gauge invariant. All these problems

originate from the form variation δðξÞ0 Aσ in (A2) itself not
being gauge invariant. The lack of gauge invariance of the
canonical expressions is a severe shortcoming, which means
that these quantities must be unphysical. The situation is
usually remedied, at least for the energy-momentum tensor in
electromagnetism, by using the Belinfante method [36] of
adding ad hoc terms, which do not follow from Noether’s
theorem, to the canonical energy momentum in order to
construct a ‘modified’ energy-momentum tensor, which
is gauge invariant (and symmetric) and can be further
‘improved’ to be traceless also [54]. One should note,
however, that these methods are not guaranteed to yield a
gauge-invariant energy-momentum tensor for general gauge
field theories when matter fields are coupled to a gauge field
[55], although this deficiency is addressed in [56].
An alternative approach, which makes direct use of

the gauge invariance of the EM action and Noether’s
theorem, was first proposed in 1921 by Bessel-Hagen

(who acknowledges Noether for suggesting the idea) [33].
This work is not widely known, however, and similar
approaches have since been proposed by other authors
[57–60], although Bessel-Hagen’s original method arguably
remains the most straightforward and intuitive [38]. The key
to the method is to recognize that the form variations δ0χA of
the fields appearing in the general expression (5b) for the
Noether current Jμ may correspond to any transformation
that leaves the action invariant. Indeed, it is advantageous to
consider themost general such transformation.Applying this
notion toEM,one should thus replace the formvariation (A2)
induced solely by the infinitesimal global conformal coor-
dinate transformation by the general form

δ0Aμ ¼ δðξÞAμ þ ∂μα− ξν∂νAμ ¼ −Aν∂μξ
ν þ ∂μα− ξν∂νAμ;

ðA8Þ
which also includes the contribution induced by the EM
gauge transformation. Since the form variation (A8) leaves
the EM action invariant for ξμðxÞ given by (A1) and for
arbitrary αðxÞ, one may choose the latter to be as convenient
as possible. Given that our goal is to arrive at a gauge-
invariant form for the Noether current Jμ, one should
therefore choose αðxÞ such that the form variation (A8) is
itself gauge-invariant; this is the central idea underlying the
Bessel-Hagen method.
One may easily obtain a gauge-invariant form variation

by setting α¼Aνξ
ν, which immediately yields δ0Aμ¼ ξνFμν.

Consequently, the Noether current (A3) is replaced by the
new form

Jμ ¼ ∂L

∂ð∂μAσÞ
δ0Aσ þ ξμL ¼ ξν

�
FμσFνσ −

1

4
δμνFρσFρσ

�

¼ −ξντμν; ðA9Þ
where in the final equality we have identified the standard
physical energy-momentum tensor τμν ¼ −ðFμσFνσ −
1
4
δμνFρσFρσÞ of the EM field, which is immediately seen

to be gauge invariant, symmetric and traceless. Substituting
the form (A1) for ξμ into (A9), one finds that the expres-
sion (A4) for the Noether current is replaced by the much
simpler form

Jμ ¼ −aατμα þ
1

2
ωαβðxατμβ − xβτμαÞ − ρxατμα

þ cαð2xαxβ − δβαx2Þτμβ; ðA10Þ
from which one can further identify new forms for the
angular momentum, dilation current and special conformal
current of the EM field, all of which are gauge invariant. If
one again assumes the EM field equations to hold and uses
the fact that the parameters of the global conformal coor-
dinate transformation are constants, one obtains separate
conservation laws that replace those in (A7) and are given by
the succinct forms
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∂μτ
μ
α ≏ 0; ðA11aÞ

τ½αβ� ≏ 0; ðA11bÞ

τμμ ≏ 0; ðA11cÞ

where, in this case, the conservation law derived from the
coefficient of the SCT parameters cμ is satisfied automati-
cally given the other three conservation laws above, all of
which may be easily verified directly.
Finally, one should also determine the further conserva-

tion law that results solely from invariance of the action
under EM gauge transformations. This is easily achieved by

setting ξμ ¼ 0, which is equivalent to all of the constant
parameters in (A1) vanishing. In this case, (A8) becomes
simply δ0Aμ ¼ ∂μα and the Noether current is immediately
given by

Jμ ¼ ∂L

∂ð∂μAσÞ
δ0Aσ ¼ −Fμσ

∂σα: ðA12Þ

Assuming the EM field equations to hold, the resulting
conservation law ∂μJμ ≏ 0may be written as Fμσ

∂μ∂σα ≏ 0,
which is satisfied identically because of the antisymmetry
of Fμσ .
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