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Manifestly covariant variational principle for gauge theories of gravity
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A variational principle for gauge theories of gravity is presented, which maintains manifest covariance
under the symmetries to which the action is invariant, throughout the calculation of the equations of motion
and conservation laws. This is performed by deriving explicit manifestly covariant expressions for the
Euler-Lagrange variational derivatives and Noether’s theorems for a generic action of the form typically
assumed in gauge theories of gravity. The approach is illustrated by application to two scale-invariant
gravitational gauge theories, namely Weyl gauge theory (WGT) and the recently proposed ‘extended” Weyl
gauge theory (eWGT), where the latter may be considered as a novel gauging of the conformal group; the
method can also be straightforwardly applied to other theories with smaller or larger symmetry groups. In
addition, the approach enables one easily to establish the relationship between manifestly covariant forms
of variational derivatives obtained when one or more of the gauge field strengths is set to zero either before
or after the variation is performed. This is illustrated explicitly for both WGT and eWGT in the case where
the translational gauge field strength (or torsion) is set to zero before and after performing the variation,

respectively.
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I. INTRODUCTION

For any given action, the process of deriving the mani-
festly covariant equations of motion for the fields on which it
depends can be very time consuming. A key reason is that for
an action that is invariant under some set of symmetries,
either global or local, the individual terms making up the
Euler-Lagrange equations are typically not covariant under
those symmetries. One therefore usually obtains equations of
motion that, although inevitably covariant, are not manifestly
s0. One then faces the task of combining terms in various
ways to achieve manifest covariance before continuing with
further analysis, and this process can require considerable
trial and error, often relying on inspired guesswork. Similar
difficulties are also encountered when deriving conservation
laws, which must again be covariant under the symmetries of
the action, but are typically not obtained in a manifestly
covariant form when they are derived using the standard
forms of Noether’s theorems.

Here we present an alternative approach whereby one
maintains manifest covariance throughout the calculation
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of the equations of motion and conservation laws, thereby
circumventing the above difficulties. Methods for achieving
this, at least for the equations of motion, have been con-
sidered previously in the context of gravitational theories that
are interpreted in the usual geometrical manner, where the
action depends typically on the spacetime metric g,,,
together perhaps with some nonmetric connection I,
[1-6]. Here we instead focus on developing a manifestly
covariant variational principle for gauge theories of gravity
[7-11]. In particular, we illustrate the method by application
to the scale-invariant Weyl gauge theory (WGT) [12-18]
(see also [19]) and its recently proposed ‘extended’ version
(eWGT) [20,21], but the approach presented can be straight-
forwardly applied to other theories with smaller or larger
symmetry groups, such as Poincaré gauge theory (PGT)
[10,22-24] or conformal gauge theory (CGT) [25-30]. In
addressing WGTand eWGT, we assume the action to depend
on a translational gauge field 4,/, a rotational gauge field
A , and adilational gauge field B, together with some set of
matter fields ¢,, which may include a scalar compensator
field (which we occasionally also denote by ¢). It is worth
noting that gauge theories of gravitation are most naturally
interpreted as field theories in Minkowski spacetime [31,32],
in the same way as the gauge field theories describing the
other fundamental interactions, and this is the viewpoint that
we shall adopt here. It is common, however, to reinterpret the
mathematical structure of gravitational gauge theories geo-
metrically, where in particular the translational gauge field
h,* is considered as forming the components of a vierbein
(or tetrad) system in a more general Weyl-Cartan spacetime,
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in which A%® , and B, then correspond to the spin-connection
and Weyl vector, respectively [10]. These issues are discussed
in more detail elsewhere [11,20]; we note here merely that the
Minkowski spacetime gauge theory approach and the geo-
metric interpretation provide equivalent descriptions up to
global topological considerations, so that either may be used
to describe local gravitational physics without any limitations.

The manifestly covariant approach presented here also
enables one easily to establish the relationship between
the forms of variational derivatives, and hence the field
equations, obtained by applying first- and second-order
variational principles, respectively. A particularly interest-
ing case is provided by comparing the variational deriv-
atives obtained by setting the translational gauge field
strength (or torsion) to zero after the variation is performed
(first-order approach) with those obtained by setting the
torsion to zero in the action before carrying out the variation
(second-order approach). In the latter case, the rotational
gauge field is no longer an independent field. In WGT (and
also PGT and CGT), it may be written explicitly in terms
the other gauge fields, whereas in eWGT there exists an
implicit constraint relating all the gauge fields. In both
cases, one may arrive at simple expressions for the
variational derivatives in the second-order approach in
terms of those from the first-order approach.

The outline of this paper is as follows. In Sec. II we
briefly review the concepts of local symmetries and
dynamics in classical field theory. We present our mani-
festly covariant variational principle in Sec. III, which is
applied to WGT and eWGT in Secs. IV and V, respectively.
We conclude in Sec. VI. In addition, in the Appendix, we
include a brief account of the Bessel-Hagen method [33]
for expressing the variation of the vector potential in
electromagnetism in a manifestly gauge-invariant form;
it is this approach that we generalize to gauge theories of
gravity in order to assist in directly obtaining manifestly
covariant conservation laws.

II. LOCAL SYMMETRIES AND DYNAMICS IN
CLASSICAL FIELD THEORY

We begin by presenting a brief outline of the conse-
quences of local symmetries for classical field theories,
focusing in particular on Noether’s first and second
theorems, the latter being discussed surprisingly rarely
in the literature. These considerations allow one also to
determine the dynamics of the fields.

Consider a spacetime manifold .#, labeled using
some arbitrary coordinates x*, in which the dynamics of
some set of (tensor and/or spinor) fields y(x) = {xa(x)}
(A=1,2,...) is described by the action'

'In our subsequent discussion, we will typically assume that .7
is Minkowski spacetime and x* are Cartesian inertial coordinates,
but this is unnecessary for the analysis in this section.

S = /.,2”(;(, 0,1, 0,0,)d"x. (1)

It should be understood here that the label A merely
enumerates the different fields, although (with some over-
loading of the notation) can also be considered to represent
one or more coordinate and/or local Lorentz frame indices
(either as subscripts or superscripts), which we denote by
lower-case Greek and Roman letters, respectively. It is
worth noting that, in general, each field y, (x) may be either
a matter field ¢4(x) or gauge field g,(x). Allowing the
Lagrangian density .Z in the action (1) to depend on field
derivatives up to second order is sufficient to accommodate
all the gravitational gauge theories that we will consider
(and also general relativity).

Invariance of the action (1) under the infinitesimal
coordinate transformation x* = x* + &(x) and form var-
iations Sgy4(x) in the fields (where, importantly, the latter
need not result solely from the coordinate trans’formation),2
implies that

58 = / [60-Z + 0,(8".L)]d*x = 0, (2)

in which the form variation of the Lagrangian density is
given by

0.L 5 0L

60 = — +—05y(0
0 P 0X A O(G,J(A) o( MA)

0L
+ a(aﬂay)(A)éo(aﬂav)(A)‘ (3)
One should note that §, commutes with partial derivatives
and, according to the usual summation convention, there is
an implied sum on the label A. The integrand in the
invariance condition (2) can be rewritten directly using the
product rule to yield

8.L
oS = / (—50)(A + 6ﬂJ/‘>d4x =0, (4)
Oxa

where the Euler-Lagrange variational derivative 6.Z/8y 4
and the Noether current J# are given, respectively, by

8. 0% 0.L 0.Z
—=—-0,|=——= ) +90,0,| m—— ], (5a
Oxa  Oxa ! <a(ay)(A)> ! <a(ayau)(/\)) ( )

0.7 0.7
JH = - 1)
L(%) ”(a(a,,a,m)] v
A
+ Way@o}m) +&Z. (5b)

2Adopting Kibble’s original notation, for an infinitesimal
coordinate transformation x# = x* + &(x), the ‘form’ variation
Sox(x) = 4/ (x) — y(x) is related to the ‘total’ variation Sy(x) =
7' () = x(x) by S (x) = &x(x) = &9z (x).

024022-2



MANIFESTLY COVARIANT VARIATIONAL PRINCIPLE FOR ...

PHYS. REV. D 109, 024022 (2024)

It is worth noting that the equations of motion for the
fields y4(x) are also obtained by considering the behavior
of the action under variations of the fields, but with
the coordinate system kept fixed, so that & (x) = 0. One
further assumes that the variations Syy 4 (x) vanish on the
boundary of the integration region of the action, and also
that their first derivatives d,(Spy4(x)) vanish in the case
where . contains second derivatives of the fields. In order
for the action to be stationary 6S =0 with respect to
arbitrary such variations Soy,(x) of the fields, one thus
requires (4) to hold in these circumstances, which immedi-
ately yields the equations of motion 6. /8y, = 0.

Returning to considering (4) as denoting the invariance
of the action (1) under some general infinitesimal coordi-
nate transformation x* = x* 4+ &(x) and form variations
Soxa(x) in the fields (which need not vanish on the boundary
of the integration region), one sees that if the field equations
6.7 /6y4 = 0 are satisfied for all the fields, then (4) reduces
to the (on shell)3 ‘conservation law’ 9,J* = 0, which holds
up to a total divergence of any quantity that vanishes on the
boundary of the integration region of the action (1). This is
the content of Noether’s first theorem, which applies both to
global and local symmetries.

We will focus on the invariance of the action (1) under a
local symmetry. In particular, we consider the (usual) case
in which the form variations of the fields can be written as

Soxa = A Fac(x. ) + (0,4°) fac(x. 9x). (6)

where A€ = 1€(x) are a collection of independent arbitrary
functions of spacetime position, enumerated by the label C,
and fxc(r, ox) and f~(x, dy) are two collections of given
functions that, in general, may depend on all the fields and
their first derivatives. The general form (6) usually applies
only when y, = g, is a gauge field, whereas typically
ficlr.ox) = 0if x4 = ¢, is a matter field. For each value
of C, the function A€(x) represents a set of infinitesimal
functions carrying one or more coordinate or local Lorentz
frame indices. It is worth noting that on substituting (6) into
(5b), one obtains an expression for the current J# where the
first term is proportional to (6) and, in the event that .
depends on second derivatives of the fields, the second term
is proportional to the first derivative of (6), which itself
contains second derivatives of the functions A¢(x).

Using the expression (6), and again employing the
product rule, the corresponding variation of the action
(4) is given by (suppressing functional dependencies for
brevity)

*We use Dirac’s notation F =0 for local functions F that
vanish on shell (or weakly vanish), i.e., when the equations of
motion 5. /8y, = 0 are satisfied for all the fields. We further

denote by F = 0 and F£0 when functions vanish if only the
equations of motion of the matter or gauge fields, respectively,
need be satisfied.

5 5
_ C = _ HoO
5= [ # g -alsies,)

+0,(J* = SM)d*x =0, (7)

where we define the new current S¥ = —ACf% 5% /5y s.
It is worth noting that $# depends much more simply than
J# on the functions A€. Since the AC are arbitrary functions,
for the action to be invariant one requires the separate

conditions
8.L A
— -9, fi.— ] =0, 8
fac 5 U (fAc 5)(A> (8a)
0ﬂ(J” -$) =0, (8b)

where the former hold for each value of C separately and
the latter holds up to a total divergence of a quantity that
vanishes on the boundary of the integration region.

The first set of conditions (8a) are usually interpreted as
conservation laws, which are covariant under the local
symmetry, although not manifestly so in the form given
above. The condition (8b) implies that J# = S* + 0,0,
where Q" = —Q", so the two currents coincide up to a
total divergence, which is notable given their very different
dependencies on the functions A€, f,c and fhes as
described above. By contrast with the case of a global
symmetry,” if the field equations 5.% /8y, = 0 are satisfied
for all fields, then the conservation laws (8a) hold iden-
tically and the new current vanishes S¥ =0, so that
J# =0,0". Thus, the conditions (8a)—(8b) effectively
contain no information on shell, which is essentially the
content of Noether’s second theorem [34].

Nonetheless, the on shell condition that all the field
equations 6.7 /8y 4 = 0 are satistied can only be imposed if
£ is the rotal Lagrangian density, and not if . corre-
sponds only to some subset thereof (albeit one for which
the corresponding action should still be invariant under the
local symmetry). In particular, suppose one is considering a

*For a global symmetry, the A€ are constants and so the second
term on the rhs of (6) vanishes. The Noether current (5b) can be
then written as

=1 o o) e

0L
~=—=—0, L =200,
BT P AR } “

where & are a given set of functions such that & = A&, and we
have also defined the further set of functions J-. One can then
replace the two conditions (8) with the following single condition
that is not satisfied identically on shell,

0L
fAC% - dﬂf’é = 0
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field theory for which the total Lagrangian density %t =
Ly + L, where £ contains every term that depends
only on the gauge fields g, and/or their derivatives, and
2L\ contains all the remaining terms. Thus, if .2 = 2,
then only the matter field equations 6.Z/6p, = 0 can
be imposed, whereas if ¥ =_.%g none of the field
equations can be imposed. In either case, the surviving
terms in (8a)—(8b) do contain information [35].

III. MANIFESTLY COVARIANT
VARIATIONAL PRINCIPLE

In the standard variational approach outlined above,
one sees immediately from the plethora of partial deriva-
tives throughout the analysis that the various expressions
obtained are not, in general, manifestly covariant under the
symmetry group to which the action is invariant. In par-
ticular, although the equations of motion 6.2 /8y, = 0 for
each field must be covariant under this symmetry group, it
is clear that those derived from (5a) are not manifestly so.
Moreover, the conservation laws (8a) suffer from the same
shortcoming, but must also be expressible in a manifestly
covariant form. By contrast, the currents J# and S$* are not
covariant (manifestly or otherwise), in general, since they
both contain the arbitrary functions A (x), and J¥ also con-
tains their partial derivatives. To obtain manifestly covariant
variational derivatives and conservation laws directly, it is
expedient to take a different approach that begins afresh by
reconsidering the variation of the action in (2).

We are primarily concerned here with gauge theories of
gravity. In constructing such theories, one typically begins
with an action dependent only on some set of matter fields
@4, which is defined on Minkowski spacetime .# in
Cartesian inertial coordinates x* (which we will assume
henceforth), and is invariant under some global spacetime
symmetry group G, where the coefficients A€ in (6) are
constants. One then gauges the group G by demanding that
the action be invariant with respect to (infinitesimal,
passively interpreted) general coordinate transformations
(GCTs) and the local action of the subgroup H (say),
obtained by setting the translation parameters of G to zero
(which leaves the origin invariant), and allowing the
remaining group parameters to become independent arbi-
trary functions of position. For example, if one considers
global Weyl invariance, then {A', A%, 2%} = {a% ™, p},
which denote a global spacetime translation, rotation and
dilation, respectively. The symmetry is then ‘promoted’ to a
local one by allowing A€ (x) to become arbitrary functions of
spacetime position x. For local Weyl invariance, one thus has
{41(x). 22(x). 2 (x)} = {a”(x), @ (x). p(x) }, where a* (x)
is interpreted as an infinitesimal general coordinate trans-
formation and is usually denoted instead by &%(x), and
o (x) and p(x) denote a position-dependent rotation of
the local Lorentz frames and a position-dependent dilation,
respectively. For the action to remain invariant under
the localized symmetry necessitates the introduction of

gravitational gauge fields g, with prescribed transformation
properties under the action of the localized symmetry. We
will also maintain the somewhat unorthodox viewpoint,
albeit hinted at in Kibble’s original paper, of considering
the gravitational gauge fields as fields in Minkowski space-
time, without attaching any geometric interpretation to them.
Consequently, we will adopt a global Cartesian inertial
coordinate system x* in our Minkowski spacetime, which
greatly simplifies calculations, but more general coordinate
systems may be straightforwardly accommodated, if
required [20].

For an action (1) containing both matter fields y, = w4
and gauge fields y4, = g4 to be invariant under a local
symmetry of the form (6), one requires the Lagrangian
density .Z to be covariant under this symmetry. One
typically always requires invariance of the action under
at least (infinitesimal) GCTs, which can be considered as
promoting the set of constants A representing global
translations to arbitrary functions of position; this neces-
sitates the introduction of the corresponding translational
gravitational gauge field, which we will denote by %,# and
its inverse by b, (such that h,#b“, = &, and h,*b¢ u = 6q)-
It is therefore convenient to write the Lagrangian density as
the product . = h~'L, where h = det(h,*) is a scalar
density, since A~'d*x is an invariant volume element under
GCTs.> The remaining factor L, which we term the
Lagrangian, is also a scalar density constructed from
covariant quantities.6 These typically include the matter
fields ¢, themselves and their covariant derivatives,
together with the field strength tensors %5 of the gauge
fields gp, which typically depend both on the gauge fields
themselves and their partial derivatives (where we have
adopted a ‘symbolic’ form that suppresses coordinate
and local Lorentz frame indices). In this section, we will
denote the generic covariant dervative by 4, = h,//D, =
h,*(d, +T,), where ', is a linear combination of the
generators of the subgroup H that may depend, in general,
on the gauge fields g4 and their first derivatives dg, (note
that we will occasionally retain the indices on covariant
derivatives, when convenient to do so). In any case, one can
thus denote the functional dependence of the Lagrangian
symbolically by L = L(p4, D@4, F p).

A. Manifestly covariant variational derivatives

We begin by rewriting the variation of the action (2) so
that one can directly identify manifestly covariant forms for
the variational derivatives 6.2’/ 8y 4. One must first obtain a
covariant form for the divergence in (2) by constructing a
further covariant derivative operator ®, such that, for any
coordinate vector V# (of the same Weyl weight as the

>We will also denote A~ by b where b = det(b®,).

®It should be noted that if the set of local symmetries (6) of the
action include local scale transformations, then the Weyl weights
of the scalar densities b and L should sum to zero, namely
w(b) +w(L) = 0, so that the action S is invariant.
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Lagrangian density .%), one has 9,V* = h™'® (h%“)
where we define the local Lorentz frame vector’ 74 =
b*,V*. The construction of such an operator requires one first

to define the field strength tensor 7. = 2h,"h.*D}, b, of

the translational gauge field, which has the unique (up to a
sign) nontrivial contraction 7, =79, = hDﬂ(h‘lhb”). It
is then straightforward to show that the required derivative
operator is given by ®, = D, + 7 ,. The presence of the
(contracted) field strength tensor 7, within this extended
covariant derivative operator occurs because of the generic
form % = h™'L for the Lagrangian density. In order to
obtain a manifestly covariant form for the divergence
appearing in (2) and thereby arrive below at such a form
for Noether’s first theorem (4), one must factorize out the
invariant volume element 4~'d*x under GCTs. This leads
inevitably to the consideration of derivatives of the transla-
tional gauge field #,# and hence the occurrence of the
corresponding field strength tensor.

One may then rewrite the variation of the action (2) in the
alternative form

58 = / [60.% + h™'(D, + T,)(&°L)]d*x = 0, (9)

in which &% =59, and the form variation of the
Lagrangian density (3) can be rewritten symbolically as

oL oL oL
6oL =h~ 0 0o (D, ——60F
0 { 0P A +5(Da(ﬂA) 0(Da@a) + af 0 B
L Logh, (10)
where 0L/d¢p = [0L(¢.D,u....)/d¢],_,. so that ¢ and

D, are treated as independent variables, rather than ¢ and

d,. In order to progress further, the variations 6y(D,,),

80-F g and yh~" in (10) must be expressed in terms of the
variations Sy, and &ygp, respectively, of the matter and
gauge fields themselves. In so doing, one typically encoun-
ters terms of the (symbolic) form D(5yp4)0L/d(Dg,) and
D(80g5)0L/0.F g, which can be accommodated by con-
sidering the quantity (D, + 7 ,)(h?™“), where (again in
symbolic form) A7 ~ Sqpa0L/d(Dpy) + S0gsdL/0F g,
and then using the product rule. Following such a pro-
cedure, one may rewrite (10) in the general form

8oL = W |Gy + BPSogs + (Do + T o) (h7*)], (11)

where a* and 2 are manifestly covariant expressions that
typically depend on ¢,, dL/d¢p, and .F 3, together with

"We will typically denote a quantity possessing only Roman
indices (and its contractions over such indices) as the calligraphic
font version of the kernel letter of the corresponding quantity
possessing only Greek indices (following [20]), with the ex-
ception of quantities having Greek or lower-case kernel letters.

0L/0(Dg,) and 0L/0.% p and their covariant derivatives.
Inserting (11) into (9), Noether’s first theorem (4) becomes

55:/[ a*8opa+PP80gp+ (Do +T,)(h 7)) h~ d*x =0,
(12)

where the current h_#¢ = h7'* 4 £°L has the symbolic
form

oL
h ¥ ~—n
/ 0 (D§0A

oL
)50(PA +—~—=—060gp + SL. (13)
B

0F
By comparing (4) and (12), and noting that 2~' (D, + T ,) X
(h_#%) = d,J#, one may then immediately identify mani-
festly covariant expressions for the variational derivatives
with respect to the matter and gauge fields, respectively, as
6L 0L
— = ba?, — = bpb. (14)
04 9p
If one does not wish to distinguish between matter and gauge
fields, one can instead denote the above relations generically
by 6.%/8ys = by, where y* is a manifestly covariant
expression.

B. Manifestly covariant conservation laws

We now turn to the direct construction of manifestly
covariant expressions for the conservation laws (8a).
Clearly, the manifestly covariant expressions (14) may
now be used for the variational derivatives, but one
encounters two remaining issues, namely the presence of
the explicit partial derivative in the second term in (8a), and
the fact that the functions f ¢ and f* - may not be covariant
quantities. Indeed, the latter problem always occurs when
the functions A€(x) (say for C = 1) correspond to GCTs,
such that A!(x) = {&%(x)}; this arises because oy, =
Oya —E%uya for any field and so f,; always contains
the noncovariant term —d,y 4. Other functions from the sets
fac and f% may also be noncovariant, depending on the
gauge theory under consideration.

Nonetheless, it is important to recall that the conserva-
tion law (8a) holds for any set of form variations of the
fields (6) that leave the action invariant. In particular, by
generalizing the approach first proposed by Bessel-Hagen
for electromagnetism (see Appendix), one can choose
specific forms for the functions A€(x) for C # 1 in terms
of 2'(x) and the nontranslational gauge fields gz, such that
all the functions f’:xc become (manifestly) covariant (as
typically do many of the functions f,.). In this case, one
may then write the second term in (8a) by extending the
definition of the covariant derivative (D, + 7 ,) to accom-
modate any additional free indices represented by the
subscript C. In particular, it is convenient to require that
for any quantity V# with this index structure (and the
same Weyl weight as the Lagrangian density .%), one
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has ]’l_l (Da + Ta)(hbaﬂVCﬂ) = D/AVC” = (aﬂ +Fﬂ)VCﬂ,
so that in the case where C does not represent any
additional indices one recovers the original requirement
that ~'(D, + T ,)(hb*,V*) = 9,V*. One may then write
the conservation law (8a) as

(Da + Ta)(baufﬁCVA) - (fAC + prﬁc)YA =0.

The first term on the lhs of (15) is now manifestly covariant.
Consequently, although the second term on the lhs is not
manifestly covariant, it must also be expressible in such a
form; indeed, one typically finds that this second term
immediately assembles as such, as we will demonstrate in
Secs. IV and V where we apply this approach to WGT and
eWGT, respectively.

(15)

C. Relationship between currents
in Noether’s second theorem

Finally, we consider the relationship (8b) between the
two currents J# and S¥. As noted above, both currents
depend on the functions 1€ and so neither is covariant.
Nonetheless, from the above discussion, one may rewrite

(8b) as (D, + T ,)[h( 7% —.#%)] =0, in which

8
Wt = =AW fhe = =AY fher’

= _Acbau (fﬁCaA =+ fécﬁB),

where we have used the relations (14) to write the final
expression in terms of the matter fields and gauge fields
separately, in keeping with the (symbolic) expression (13)
for h / 4. Thus, h.7? has the form of linear combination of
terms that are manifestly covariant (or can be made so using
a generalization of the Bessel-Hagen method) with coef-
ficients A. Turning to & 7, if one substitutes (6) into (13),
and recalls that f* - typically vanishes for matter fields, one
obtains the (symbolic) expression

(16)

oL oL
h ~ ) = 51L = C " b) C
I~ (0(D¢A)fAC+ c >+093(f30/1 + [Bc0uA),

(17)

where we have again assumed that C = 1 corresponds to
GCTs. One may show, in general, that the forms of the
manifestly covariant expressions o and ? obtained in (11)
guarantee that the relationship (D, + 7 ,)[h(_ 7% — /%) =0
is satisfied, and so it contains no further information. It is
worth noting, however, that for the special case in which L
does not depend on the gauge field strengths, such that
0L /0.7 5 = 0, the relationship takes the form

oL
(D, +7,) [ﬂc <5(Du§0A)fAC +6¢L + b“,,fzca’*)] =0,

(18)

which may be satisfied by requiring the term in parentheses
to vanish for each value of C. In so doing, one obtains a
straightforward expression for a*, which one can show agrees
with that obtained in (11).

The procedures presented in this section are best illus-
trated by example and we apply them to WGT and eWGT
in Secs. IV and V, respectively. As we will also show in
these examples, the general approach outlined above
further lends itself to elucidating the relationship between
first- and second-order variational derivatives.

IV. WEYL GAUGE THEORY

It was the gauging of the Poincaré group by Kibble [8] that
first revealed how to achieve a meaningful gauging of groups
that act on the points of spacetime as well as on the
components of physical fields, and so laid the foundations
for the construction of gauge theories of gravity. Indeed,
the resulting Poincaré gauge theories (PGTs) have since been
extensively studied (see, for example, [11] for an accessible
summary). Nonetheless, the lack of a clear route to quantiz-
ing PGT has led to interest in imposing extra gauge
symmetries beyond local Poincaré symmetry. In particular,
perhaps the most natural extension of PGT is also to demand
local scale invariance, which might provide a clearer route to
renormalizability, since such theories contain no absolute
energy scale.

The most direct approach to constructing gauge theories of
gravity that are invariant under local changes of scale, in
addition to local Poincaré transformations, is to gauge the
Weyl group [12—-18]. As in PGT, the resulting Weyl gauge
theories (WGTs) assume the physical model of an underlying
Minkowski spacetime in which a continuum matter field (or
fields) is distributed continuously and the dynamics are
described by a matter action that is invariant under global
Weyl coordinate transformations. By then demanding the
matter action to be invariant with respect to local Weyl
transformations, in which the eleven Weyl group parameters
become arbitrary functions of position, one is led to the
introduction of the gravitational gauge fields h,*, A% §=
—Aba , and B, corresponding to the translational, rotational
and dilational parts of the local Weyl transformations,
respectively. The field strength tensors of these gauge fields
are typically denoted by Z 44, 7 1, and S, respectively.

For WGT, the Lagrangian density has the usual form
% = h™'L, where the translational gauge field A,* (with
inverse b,/) is assigned a Weyl weight w = —1, so that 4 =
det(h,*) and L are scalar densities both of Weyl weight
w = —4, and hence the action S is invariant under local
scale transformations. The Lagrangian has the functional
dependencies

L :L(¢A’92¢A7%abcd’ <7Zbc“%ab)’ (19)

where ¢, are the matter fields, which typically include a
scalar compensator field of Weyl weight w = —1 (that we

024022-6



MANIFESTLY COVARIANT VARIATIONAL PRINCIPLE FOR ...

PHYS. REV. D 109, 024022 (2024)

sometimes denote also by ¢), and their covariant derivatives
are denoted in this section by [11,20,21]

@Z(pA =h MD*§0A - h (a;t +F,Z)§0A
1
= ha” (aﬂ +§ACdﬂzcd + WABM) DA, (20)

in which X,, = —X,, are the generator matrices of the
SL(2,C) representation to which the field ¢, belongs.®
In the expression (20), each field is assumed to have
weight w, (note that this appearance of the index A is purely
a label and hence is understood never to be summed over). It
is also convenient to define the further derivative operator
0,9 = (0, +waB,)p4, of which we will make occa-
sional use.

Under infinitesimal local Weyl transformations consist-
ing of GCTs, rotations of the local Lorentz frames and
dilations, which are parametrized by & (x), o™ (x) =
—w"?(x) and p(x), respectively, a matter field ¢ of weight
w and the gauge fields transform as [11,21]

1
Sop = —E 0, + (5 0Ty, + w) P, (21a)
50haﬂ = _éyavha” + hayaygﬂ - (a)ba +p53)hbﬂ’ (2lb)
50Aab” — _gvaDAab Aab a 51/ Zwa Ab] _ aﬂwab’
(21c)
ooB, = —-§"0,B, — B,0,&" — (21d)

from which one may verify that Z;¢, does indeed trans-
form covariantly under (infinitesimal) local Weyl trans-
formations with weight w — 1 [20,21].

The field strength tensors Z .4, 7 ). and 2, in (19)
are defined through the action of the commutator of two
covariant derivatives on some field ¢ of weight w by

1
7070 = (35" i W =TT 0. (2

which yields the forms %% ., = h/hy*R®,,, H q=
hth'H,, and T, = h}h ' T*,,, where

Rab;w = Z(aUtAabv] + Nea ac[ﬂAdby])’ (238')

H,, =20,B,). (23b)

T*,, = 2D} b, (23¢)

¥The asterisks in the definition of the derivative operator are
intended simply to distinguish it from the usual notation used
[11,20,21] for the covariant derivative 2,9, = h,*D, @, =
h# (0, + T, )@s = h*(0, + 1A, Z.1)ps of Poincaré gauge
theory (PGT), and should not be confused with the operation
of complex conjugation.

From the transformation laws (21), it is straightforward to
verify that, in accordance with their index structures, the
gauge field strength tensors #.;, H# .4 and .T*¢,, are
invariant under GCTs, and transform covariantly under local
Lorentz transformations and dilations with Weyl weights
w=-=2,w=-2and w = —1, respectively [20,21].

It is worth noting that %’ ., has the same functional
form as the rotational field strength in PGT, but that
T e = T + 08B, — 6B, where T, is the trans-
lational field strength in PGT; we also define %, = h,*B,,.
Moreover, using the expression (23c) and defining the
quantities ¢*%,. = 2hb"h6”d’{”b“y], one may show that the

fully anholonomic rotational gauge field &/**, = h A%,
can be written as [11,20]

%uhc = (chc + Can - Czab) (yabc + ybca rycab)

| =

(24)

It is also convenient for our later development to obtain
the Bianchi identities satisfied by the gravitational gauge
field strengths #°* ., 7*%,. and #,, in WGT. These
may be straightforwardly derived from the Jacobi identity
applied to the generalized covariant derivative, namely
(Z:.1%5 70 + 12125 D30 + (3. 2. 729 = 0.
Inserting the form (20) for the WGT generalized covariant
derivative, one quickly finds the three Bianchi identities [207°

DA = T % gy =

(25a)
@?ay*dbc] - g*e[ahy*dc]e _%d[abc] - jf[abé] =0,
(25b)
@Fa%bc] - <?*e[abjfc]e -
(25¢)

By contracting over various indices, one also obtains the
following nontrivial contracted Bianchi identities:

- 9*fb0%€f = 0
(26a)

DR e = 2D, B = 2T s B

1 X 1 i
@Z (%ac - 55?%) + g*fbce%bf + 5 y*fab%abcf - 0’
(26b)
- Z%bc - 0
(26¢)

DT+ 2.@@9& + T T o+ 2R

°Note that these expressions correct a typographical error in
[20] by reversing the sign of each term containing 7.
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A. Manifestly covariant variational
derivatives in WGT

We now apply the manifestly covariant variational
principle described in Sec. III to WGT. We begin by
deriving the variational derivatives, and hence the
Euler-Lagrange equations, for the matter fields ¢,
and the gravitational gauge fields h,*, A”bﬂ and B,.
Using the fact that §yh~' = —h~'b%,60h,", one may
write (10) as

héog — 50L - ba”Léohaﬂ,
oL

oL
=—9 — 50 (D
0n 0¢A+0(92¢A) o(Zupa)

In order to progress further, one must determine how the
variations in (27) depend on the variations of the matter and
gravitational gauge fields themselves. This is easily
achieved using the definition of the WGT covariant
derivative and the expressions (23a)—(23c) for the field
strengths. One must also make use of the fact that for any
coordinate vector V¥ of weight w = 0 (i.e., invariant under
local scale transformations, like the Lagrangian density
&), one may show that ,V* = h™'(Z; + T;)(hb*,V*)
or, equivalently, for any local Lorentz vector 7' having
Weyl weight w = —3 one has [20]

(T + TV = hd, (b~ h V). (28)

Such expressions on the rhs of (27) therefore contribute

oL oL only surface terms to the variation of the action in (9), but
tos O vy 60 R abed + 5 0.7 807 b we will retain them nonetheless, as they are required for our
e abe later discussion.
oL —— 50y — b, LSgh . (27) We begin by considering together the first two terms on
5% ab g the rhs of (27), for which one obtains
|
oL oL . oL oL . . 1 .
@5040/& + m%(@a%) = £50€0A +m |:@a(50§0A) + Soh' Dy + ht <WA50BM +§50Ah ﬂzbc) fﬂA]a
oL oL oL
=|——(Z5+ T} —*]6 Pa+——— {5 hDig
[a% ( )0( aPa) o o Zapa) ’ H
1 bc * * oL
+ bt ( WaboB, + 5 80A™ e |@a| + (Do + T o) | 57— O0@a | » (29)
2 ()( a(pA)
where the quantity in square brackets in the final term is readily shown to have Weyl weight w = —3. Analyzing the further
terms containing derivatives on the rhs of (27) in a similar manner, one finds
oL oL .
Rps 00K apea = Zm [Rappadohct + hi D (60Aapy)]
oL oL
=2—R Soht + 2h (D5 + T%) + h A T* 4| —— | 50A
a%uhcd ablud)90"tc +[ c ( a T d) + h, Ld] <a%ahcd> 0 abu
27+ 79| ~2E p s, (30)
d d a‘%abcd R
oL oL
ay , ‘72170 o aﬂ b [ Zﬂvh D(sOhbﬂ + hcb-@;;((s()bav) + hb”(sOAacy + rlachb”(SOBy]

oL
= 269* K T ht ) —= y*dbcb >50hd” + hy"S0Agcu + ﬂachbﬂéoBﬂ:|

abc

_2(T + T) ( a;Lsz)b Sohyt + 2%+ T7) [ d%bc b, 50hbﬂ] , (31)
S 00 = 25 (H Bkt D608,
- 2% <Hﬂyhb”5oha” n % 9*Cabh;503y) + 22+ T) <%> h,"5,B,
— 2D, + T7) [% ha”éoBD] : (32)
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In the above expressions it is assumed that the appro-
priate antisymmetrizations, arising from the symmetries
of the field strength tensors, are performed when the rhs
are evaluated. It is also easily shown that the quantity in
square brackets in each of the last terms in (30)—(32) has
Weyl weight w = -3, so according to (28) each such
term contributes a surface term to the variation of the
action (9).

One may then substitute the expressions (29)—(32)
into (27), which may itself subsequently be substituted
into (9) to obtain an expression of the general form (12) for
Noether’s first theorem, which may be written as

oS = /[UAéo(/)A + Taﬂéohaﬂ + O'abﬂ(S()Aabﬂ + CﬂéoBﬂ

0
h P =——0 2 b auohy”
/ p(pA) oPa <a‘7abp o
oL oL
- h 00Aupy — ———h'00B b? E'L,
d@ahcp c Y0 abu a%ap a “0 ;4> + ;45

(34)

and we have defined the variational derivative v* =
6.2 /6¢p, with respect to the matter field ¢4, and the
total dynamical energy-momentum ¢, = 6.%'/5h,", spin-
angular-momentum o,,* = 5.4 /5A“?, and dilation current
{t'=62/6B, of both the matter and gravitational gauge
fields. Manifestly covariant forms for these variational
derivatives may be read off from the expressions (29)—

Dy + T3)(h_FP)|d'x =0, (33)  (32). Converting all Greek indices to roman and defining the
quantities ¢, =79, h¥, 6,,° =0,'D¢, and ¢ = {FDY,
where the current &_#7 is given by one then makes the following identifications:
oL oL
Wt == (7 T 35a
N ( )5( aPa) (35a)
oL 0 oL oL oL
hty, = —— 2———% 2——H 2——— T T 264( Dk + T - 8L,
b a( ZqDA) »PA + a%pqm pqrb + a% pb + ay;qa pgb [ qr + 11( r + r)] ay*bqr a
(35b)
1 oL oL oL
l’l c :772 y*c 26c @* 9* _2 , 35
7 = 20 T e 2T+ T R g 0T, (35¢)
oL oL oL
h{* = —— T 209(9% + T 2 5487, 35d
C a(@Z§0A) Wa@a + [ Pq + p( q + q)] a%pq + ay*pqr q ( )

where, once again, it is assumed that the appropriate
antisymmetrizations, arising from the symmetries of the
field strength tensors, are performed when the rhs are
evaluated. The expressions (35) constitute the completion
of our first goal. One sees immediately that, unlike (5a), the
above forms for the variational derivative of each field
(and hence the equations of motion obtained by setting
each rhs to zero) are manifestly covariant. Moreover, they
are straightforward to evaluate, since they require one only
to differentiate the Lagrangian L with respect to the matter
fields, their covariant derivatives and the field strengths,
respectively. One may easily confirm that the above
expressions lead to precisely the same variational deriva-
tives as those obtained by using the standard (but much
longer) approach of evaluating (5a) for each field and then
reassembling the many resulting terms into manifestly
covariant forms.

The expressions (35) not only provide a significant
calculational saving in obtaining the variational derivatives
in WGT, but also yield a useful insight into their general
form. In particular, one notes that for a Lagrangian L that
does not contain the gauge field strength tensors, but
depends only on the matter fields and their covariant
derivatives, the variational derivatives with respect to the
gauge fields reduce to the covariant canonical currents
[11,21] of the matter fields. For Lagrangians that do depend
on the gauge field strengths, also of interest are the
analogous forms of the penultimate terms on the rhs of
(35b)—(35d), which are the only terms capable of producing
a dependence on the covariant derivatives of the field
strength tensors; in each case, the corresponding term
depends on the covariant derivative of the field strength
tensor for the gauge field with respect to which the
variational derivative is taken. It is also worth pointing
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out that we have not assumed the equations of motion to be
satisfied in deriving (35a)—(35d). Thus, one may calculate
the corresponding variational derivatives for any subset
of terms in L that is a scalar density of weight w = —4.
Individually, however, such quantities do nrot vanish, in
general. Rather, each equation of motion requires only the
vanishing of the sum of such quantities, when derived from
disjoint subsets that exhaust the total Lagrangian L.

Finally, we note that the above approach is easily adapted
to other gravitational gauge theories. For example, to apply
it to PGT one needs simply to ‘remove the asterisks’,
thereby replacing the WGT covariant derivative and torsion
by their PGT counterparts, and set B, = 0, so that {* and
A ,;, also vanish identically. Indeed, the above approach is
of even greater use in PGT than WGT, since the functional
dependence of the PGT Lagrangian on the matter fields,
their covariant derivatives and the field strengths can be
more complicated than in WGT, as in PGT one does not
require L to have Weyl weight w = —4 [11,20].

B. Relationship between first- and second-order
variational derivatives in WGT

Before turning our attention to the direct derivation of
manifestly covariant conservation laws for WGT, we first
briefly demonstrate how the analysis in the previous section
is well suited to comparing first- and second-order varia-
tional derivatives. In particular, we will focus on the
example of the variational derivatives obtained by setting
|

the WGT torsion to zero after the variation is performed
(first-order approach) with those obtained by setting
the torsion to zero in the action before carrying out the
variation (second-order approach).

Let us begin by considering the simpler case of the first-
order approach, where one merely sets .7*?;,. = 0 (which
is a properly WGT-covariant condition) in the expressions
(35a)—(35d). The condition 7**,. = 0 results in the rota-
tional gauge field A“bﬂ no longer being an independent
field, but one determined explicitly by the other gauge
fields i, and B,, which we thus denote by °A**, and term
the ‘reduced’ A-field [20,21]. From (24), these quantities
are given explicitly by °A’, = b¢,°</, ., where

abce’

1

OM* _
2

abc (cabc + Chea — c(?ab) + ﬂacﬁb - ﬂbc%av (36)

in which ¢%,. = hy"h.*(9,b%, —9,b%,). Under a local
Weyl transformation, the quantities °A*?*, transform in
the same way as A% 4» S0 one may construct the ‘reduced’
WGT covariant derivative °Z;¢ = h,*°Dyp = h,*(9, +
104*<d ¥ 4+ wB,)p, which transforms in the same way
as 7% @, but depends only on the # field, its first derivatives,
and the B-field. Thus, the corresponding quantities to
(35a)—(35d) are obtained simply by evaluating the rths with

J*4,. (and its contractions) set to zero, which also implies
9% — Y97, This yields

poot = 9L| _ogn L | (37a)
P4 o N Zapa)lo

RO %% St 2657, a;fbm - Za;f[a,,]c 0 (37¢)

Hogs — ﬁ S + 25405 j;,,q +2; ;*qur . (37d)

where |, denotes that the quantity to its immediate left is
evaluated assuming .77, = 0. The equations of motion
from the first-order approach are then given simply by
equating each of (37a)—(37d) to zero. Once again, it is worth
noting that we have not assumed any equations of motion to
be satisfied in deriving the quantities (37a)—(37d). Thus, one
may derive corresponding quantities for any subset of terms
in L that are a scalar density with weight w = —4, and these
quantities do not vanish, in general.

We now consider the second-order approach, where one
imposes .7, . = 0 at the level of action, prior to evaluating

abc
the variational derivatives. In this case, the rotational gauge

[

field A%b , 1s again determined explicitly by h,* and B,
according to (36), and so now the action depends only on
these other gauge fields. From (36), one readily finds that

SoAapy = b, (hie"° D80y + hia° T S0b,,

- h[bb()@;]a()bcy + 2nc[ahb]béoBu)’ (38)
from which one may show that (up to terms that are the
divergence of a quantity that vanishes on the boundary of
the integration region) the integrand in the expression (2)
for the variation of the action is given by
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oL ~ ,
57 wra = 0A8pa + 7 80h ! — bbfﬂ(’?fﬁfb()@d
+ 17fb5f6092] - ’7fc5fa092])(h05uh6)50he”
+ 205abcﬂc[ahb]y503/4 + OZMOBM’ (39)
= v480pa + 1,600 + J*50B,, (40)

where we have again made use of (28) and 7, ©

6¢, and
OZ" denote quantities analogous to (37b)—(37d), respec-
tively, but without the terms containing 0L /07 %, |,. In the
last line, we have also defined the total dynamical energy-
momentum 74, and dilation current j* of both the matter
and gravitational gauge fields, and the matter field varia-
tional derivatives v*, in the second-order approach. By
comparing (39) and (40), and converting all indices to
Roman, one finds that the second-order variational deriv-
atives are given in terms of the first-order ones by

hvt = h%A, (41)
htab = ho%ah + 0-@26 (hoéahc - ho&cab - ho&cbu)’ (42)
hj* = h(°C* = 295,). (43)

It is clear that the forms of the matter variational
derivatives are identical in the two approaches, but those
of the gravitational gauge fields &, and B, differ, in
general. In particular, the form for the energy-momentum
tensor f,, in the second-order approach is clearly the
gauge theory equivalent of the Belinfante tensor [36].
By analogy, the expression (43) may be considered to
define an associated Belinfante dilation current, which
is clearly related to the ‘field virial’ that is relevant
to the invariance of an action under special conformal
transformations [21,37].

It is again worth noting that the expressions (41)—(43)
have been derived without assuming any equations of
motion are satisfied. One may therefore obtain analogous
relations between corresponding first- and second-order
variational derivatives derived from any subset of the terms
in the total Lagrangian L that are a scalar density of weight
w = —4. If one does consider the total Lagrangian L,
however, then the second-order equations of motion for the
matter and gauge fields are obtained simply by setting
the expressions (41)—(43) to zero. In this case, provided the
terms of the form 0L/0.7%, |, vanish in the first-order
equations of motion obtained by setting (37)—(37d) to zero,
then this implies that the second-order equations of motion
obtained by setting (41)—(43) to zero are also satisfied, but
the contrary does not necessarily hold.

C. Manifestly covariant conservation laws in WGT

We now turn our attention to deriving the conservation
laws for WGT in a manner that maintains manifest

covariance throughout, by applying the general method
outlined in Sec. III. One may begin by considering the
general form of the conservations laws given in (15). As
discussed above, the key issue to address is the forms of the
functions f,c and f* . that appear in this expression and
define the form variations (6) of the fields, since these
are typically not covariant. For (15) to be valid, one requires
at least the functions f%. to be (manifestly) covariant,
although many of the functions f,- may also be made so;
as outlined in Sec. III, this is performed by generalizing the
approach introduced by Bessel-Hagen for electromagnet-
ism, which is reviewed in Appendix, and developed
further below.

The form variations of the fields in WGT are given in
(21). By comparing these transformation laws with the
generic form (6), one may read off the functions f4¢
and f%. in the latter from the coefficients of {A¢} =
{22, 23} = {&%, 0™, p} and their partial derivatives,
respectively. As anticipated, one immediately finds that
many of the functions f4¢ and f%. are not covariant
quantities. In the context of the Bessel-Hagen method, the
form variations (21) are already in the most general form
that leaves the generic WGT action invariant (ignoring the
possibility of additional accidental symmetries occurring).
Following the general methodology outlined for electro-
magnetism in Appendix, we consider separately the con-
servation laws that result from the invariance of the WGT
action under infinitesimal GCTs, local rotations and local
dilations, respectively.

Considering first the infinitesimal GCTs characterized
by &*(x) (which we take to correspond to C = 1), one
may make use of the invariance of the action under the
transformations (21) for arbitrary functions w“(x) and
p(x) by choosing them in a way that yields covariant
forms for the new functions f%, (and also f4; in this
case) in the resulting form variations. This is achieved by
setting @™ = —A & and p = —B,& (where the minus
signs are included for later convenience), which yields
transformation laws of a much simpler form than in (21),
given by

Sop = =&'D;, (44a)
Sohy = =& Dyh,* + h,* 0,8, (44b)
oA, = 'R, (44c)
0B, = E'H,,. (44d)

From these form variations, one may immediately read
off the new forms of the functions f,; and f%,, all of
which are now manifestly covariant. Inserting these
expressions into the general form (15), one directly
obtains the manifestly covariant conservation law
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(92‘ + gi)(hrcv) - h(o-ab”Rab;w + Z:ﬂH/w - TaﬂD;hZ
- UADWA) =0, (45)

where it is worth noting that hv* = SL/6¢,. On multi-
plying through by h,”, one may rewrite the conservation
law wholly in term of quantities possessing only Roman
indices as

(D4 T2)(ht°g) = h(04p B cq + (A g
=1, T g — 0 D) = 0. (46)

We next consider invariance of the action under infini-
tesimal local Lorentz rotations characterized by @ (x)
(which we take to correspond to C = 2). In this case, the
functions f%, in the original set of transformation laws (21)
are already manifestly covariant. One may thus insert the
functions f%, and f,, read off from (21) directly into the
general form (15), without employing the Bessel-Hagen
method. On recalling that o,/ = —A" 0,/ — A" 40,/
(since o,," has Weyl weight w = 0) one finds that the final
set of terms on the lhs of (15) vanish when y* corresponds
to ho,*, and one immediately obtains the manifestly
covariant conservation law

1
(gﬁ + 9?)(}1%;:0) + hT[ab] + EhUAZabwA =0. (47)

Finally, we consider invariance of the action under
infinitesimal local dilations characterized by p(x) (which
we take to correspond to C = 3). Once again, the relevant
functions f% in the original set of transformation laws (21)
are already manifestly covariant. One may thus insert f*,
and f,3 read off from (21) directly into the general form
(15), which immediately yields the manifestly covariant
conservation law

(Z5+ T2 hE) = het o+ horwagy = 0. (48)

It is straightforward to verify that the manifestly covar-
iant conservations WGT laws (46)—(47) have the correct
forms [20,21] and match those derived (albeit at con-
siderably greater length) using the standard form of
Noether’s second theorem (8a). Before moving on to con-
sider the further condition (8b) arising from Noether’s
second theorem, in the context of WGT, we note that the
conservation law (47) may be used to simplify the
expression (42) for the second-order variational derivative
with respect to h,* in terms of first-order variational
derivatives. Imposing the condition .77, =0, the con-
servation law (47) becomes

1
072 (h°8 4°) 4 hO% ) + EhOT)AZabqu =0. (49)

If one assumes the matter equations of motion °%* = 0 are
satisfied (or, equivalently, that the Lagrangian L does not
depend on matter fields), the expression (42) can thus be
written in the simpler and manifestly symmetric form

Mty = W% () = 2°D2 (K05 (). (50)

D. Relationship between currents
in Noether’s second theorem in WGT

We conclude this section by considering the relationship in
WGT between the two currents that appear in Noether’s
second theorem (8b). As discussed in Sec. I1I C, this equation
may be rewritten as (Z;, + 7;)[h(_7* — )] = 0, where
h_#¢ for WGT is given by (34) and the expression for 7.7
may be obtained from the general form (16), which on using
the original WGT field variations (21) yields

hIP = h[=& (P, — 0,,P A, — (PB,) + 00,7 + plP].
(51)

It is worth noting that this expression does not depend on the
variational derivatives v* = 6. /6y, with respect to the
matter fields since, as expected, the functions fﬁc vanish in
this case, as can be read off from the field variations (21).
Thus, in order for 4.7 to vanish, it is sufficient that just the
equations of motion of the gauge fields are satisfied.

If one substitutes the original form variations (21) into
the expression (34) for h_¢7?, one finds after a long
calculation,'® which requires careful use of the definition
(22) of the field strength tensors, the contracted Bianchi
identity (26c) and the manifestly covariant expressions
(35b)—(35d) for the variational derivatives with respect to
the gravitational gauge fields, that

(D3 + T3)(h JP) = (D, + T,)[=&"h(zP b4,
- aahpAah/,t - é’pBu)
+ @ ho P + phiP)
= (7, + T3)(hI7), (52)

thereby verifying explicitly the relationship between the two
currents that is implied by Noether’s second theorem (8b).

'The calculation can be somewhat shortened, better organized
and carried out in a largely manifestly covariant manner if one
assumes the local Weyl transformaton parameters in (21) to have
the forms & (x), 0 (x) = @ (x) — A*,& and p(x) = p(x) —
B,&, where &(x), @ (x) and p(x) are arbitrary functions of
position, and considers separately the three cases: (i) @ =0=p;
(ii) & = 0 = p; and (iii) & = 0 = @*. This is a similar approach
to that used in Sec. IV C to derive directly the manifestly
covariant forms of the WGT conservation laws and, in particular,
allows one in case (i) to make use again of the manifestly
covariant form variations (44) derived using the Bessel-Hagen
method.
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Thus, as expected for an action that is invariant under a set
of local symmetries, this relationship contains no further
information, but nonetheless provides a useful check of
the derivation of the expressions (35b)—(35d). Indeed, the
requirement (Z;+.7;)[h(_#*—.#*)]=0 from Noether’s
second theorem can thus be used as an alternative (albeit
rather longer) means of deriving the expressions (35b)—(35d)
for the variational derivatives with respect to the gravitational
gauge fields; it has been demonstrated, however, that this
equivalence between the Noether and Hilbert (variational)
approaches does not hold in general for all modified gravity
theories [38].

V. EXTENDED WEYL GAUGE THEORY

We now move on to consider eWGT [20], which
proposes an ‘extended’ form for the transformation laws
of the rotational and dilational gauge fields under local
dilations. In particular, under infinitesimal local Weyl
transformations consisting of GCTs, rotations of the
local Lorentz frames and dilations, parametrized by
&#(x), @ (x) = -0 (x) and p(x), respectively, a matter
field ¢ of weight w and the gauge fields transform as

1
Sogp = —E0, + <2 Ty, + wp> P (53a)
Soh,t = =& 0,ht + h, 0,8 — (wba +p62)hb”’ (53b)
50Aabﬂ — _é:vayAab Aab a é:zz 2wa Ab]
- 0,0 + 20" ”bbﬂ Lo,p, (53¢)
6B, = =¢§9,B, — B,0,&" — (534d)

where @ is an arbitrary parameter that can take any value. The
proposed form for the transformation law (53c) of the
rotational gauge field is motivated by the observation that
the WGT (and PGT) matter actions for the massless Dirac
field and the electromagnetic field (neither of which depends
on the dilation gauge field) are invariant under local dilations
even if one assumes this ‘extended’ transformation law for
the rotational gauge field. A complementary motivation for
introducing the extended transformation law (53c) is that
under local dilations it places the transformation properties of
the PGT rotational gauge field strength %?, and transla-
tional gauge field strength .7%,. on a more equal footing:
for general values of @, neither 2° ., nor .7, transforms
covariantly, but 27, does transform covariantly and .7¢,,,
transforms inhomogeneously for & = 0, and vice versa for
0 =1. It is also worth noting that the extended trans-
formation law for the rotational gauge field reduces to that
in WGT for @ = 0, whereas the extended transformation law
(53d) for the dilational gauge field reduces to the WGT form
for & = 1; thus there is no value of @ for which both
transformation laws reduce to their WGT forms.

In eWGT, the covariant derivative, denoted by _@Z, has a
somewhat different form to that shown in (20) for WGT. In
particular, one does not adopt the standard approach of
introducing each gauge field as the linear coefficient of the
corresponding generator. Rather, in order to accommodate
our proposed extended transformation law (53c) under
local dilations, one is led to introduce the ‘rotational’ gauge
field A“?, (x) and the ‘dllatlonal’ gauge field B, (x) in a very
d1fferent way, so that!!

Dipa = ha Do = het (9, + T}
= h, |0, + %AT”bMZab + Wy (Bu - %Tﬂﬂ @4
(54)
where we have introduced the modified A-field
Atab = A 4 2ple B, (55)

in which 4, =h,/B, and T, = b",7,, where T, =
Tt ., is the trace of the PGT torsion.'” It is straightforward
to show that, if ¢ has Weyl weight w, then (54) does indeed
transform covariantly with Weyl weight w — 1, as required.
Unlike the transformation laws for A% u and B s the covariant
derivative (54) does not explicitly contain the parameter 6.
Consequently, it does not reduce to the standard WGT
covariant derivative Z;¢, in either special case 6 = 0 or
6 = 1, while retaining its covariant transformation law for
any value of 6.

The derivative (54) does in fact transform covariantly
under the much wider class of gauge field transformations
in which 60,,p(x) is replaced in (53¢)—(53d) by an arbitrary
vector field Y,(x). Indeed, one finds that the WGT (and
PGT) matter actions for the massless Dirac field and the
electromagnetic field are still invariant under local dilations
after such a replacement, although the discussion above
regarding the transformation properties of Z% ., and .74,
following requires appropriate modification, since neither
transforms covariantly if 69,p(x) is replaced by an arbitrary

vector Y, (x). The covariance of _@ZgoA under this wider
class of transformations allows one to identify a further
gauge symmetry of eWGT, namely under the simultaneous
transformations

""The daggers in the definition of the derivative operator are
intended simply to distinguish it from the usual notation used
[11,20,21] for the covariant derivatives of PGT and WGT, and should
not be confused with the operation of Hermitian conjugation.

It is worth noting that AT“bM is not considered to be a
fundamental field (notwithstanding the variational approach
adopted below), but merely a shorthand for the above com-
bination of the gauge fields 4,* (or its inverse), A% x and B,.

Similarly, T, is merely a shorthand for the corresponding

function of the gauge fields h,* (or its inverse) and A% e
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A, — A% 4 2pla bl B,—>B,-Y, (56)

where %, = h,'Y, and Y, is an arbitrary vector field.
Under this symmetry, both A", and B,

unchanged and thus @Z(p is invariant, as too are the eWGT
field strengths and action discussed below. One may make
use of this symmetry of eWGT to choose a gauge in which
either B, or T, is self-consistently set to zero, which can
considerably simplify subsequent calculations.

It was noted in [20] that the extended transformation laws
(53¢)—(53d) implement Weyl scaling in a novel way that may
be related to gauging of the full conformal group. This is
discussed in more detail in [21], where it is shown that eWGT
does indeed constitute a valid novel gauge theory of the
conformal group. We briefly summarize below the aspects of
eWGT that are relevant to our present discussion, and refer
the reader to [20,21] for further details.

By analogy with WGT, the Lagrangian density in eWGT
has the usual form . = h~'L, where the translational
gauge field i,/ is assigned a Weyl weight w = —1, so that
h = det(h,”) and L are scalar densities both of Weyl
weight w = —4, and hence the action S is invariant under
local scale transformations. The Lagrangian has the func-
tional dependencies

_1 3
3 Tﬂ remain

L=L(pp Dopas Z.g0 T

abc?

A, (57)

where the quantities %’Zbcd, T Zbc, %”Zb are the eWGT
‘rotational’, ‘translational’ and ‘dilational’ gauge field
strengths, respectively, which are defined through the
action of the commutator of two eWGT covariant deriv-

atives on some field ¢ of weight w by
1
95 P p= (ﬂ*abcdzah Wt ﬂm@z) v (58)

The field strengths have the forms %#7* ., = h,*h,*R™"

A = hhHY, and T, = AT, where

R%ahlw — Z(a[ﬂA"rahy] + ﬂchmc[ﬂATdhy]), (59)

. 1
Hj, =2 (a[ﬂBD] -3 a[ﬂrb]) : (60)

T, = 2Dfﬂbay]. (61)
From the transformation laws (53), it is straightforward to
verify that, in accordance with their index structures, the
gauge field strength tensors % ,, ", and T, are
invariant under GCTs, and transform covariantly under
local Lorentz transformations and dilations with Weyl
weights w= -2, w= -2 and w = —1, respectively
[20,21], similarly to their WGT counterparts.

It is worth noting, however, that Z'* _, and .77, differ
in form substantially from those in WGT, and are given in
terms of the PGT field strengths %, and .79,. by

By = R g+ 46, D g B — 45 By B
— 2825188 — 20 T,

2
Tt =% + 55& T 4. (62)
where %’ =%‘%, and 9,= h'D, = h,t (0, +

%A"b uZap) is the PGT covariant derivative operator.
It is particularly important to note that the trace of the
eWGT translational field strength tensor vanishes identi-
cally, namely 7}=7",,=0, so that 77,. is com-
pletely trace-free (contraction on any pair of indices yields
zero). Moreover, using the expression (61) and defining
the quantities ¢*9, Ezhbﬂhcvaﬁﬂb%}, where d) = 9, +
w(B, —1T,), one may show that the fully anholonomic
modified A-field A™®_ = h *AT  can be written as [20]

+ 77

bca

1
o i + i
”Q{ahc - 5 (Cuhc + Chea — Ccab)

(7,

abce

1 +
- 5 - rgcab) .
(63)
As in our discussion of WGT, it is convenient to list
the Bianchi identities satisfied by the gravitational gauge
field strengths %' ,, 77,. and A, in eWGT. These
may again be straightforwardly derived from the Jacobi
identity, but now applied to the eWGT covariant derivative.
One quickly finds the three Bianchi identities [20]

DA e = T R g5 = 0,

(64a)

9?0 9*[11,6] - y-l-e[ab 9%[16]6 - e%ﬂ-d[abc] - ‘%ﬂFabé‘lci] =0,
(64b)

‘@Era%;;c] - y-‘-e[“b%ge =0.
(64c)

By contracting over various indices, one also obtains the
following nontrivial contracted Bianchi identities:

@L@Tuebc _ zg[TbggTe 0= zg’r.fa[b%mec]f _ nghCQTef =0,
(65a)

1 , , 1
(71030 ) T B 4L T4y =0,
(65b)
DoT e + 2R}y =27}, = 0,
(65¢)
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which are somewhat simpler than their WGT counterparts
(26a)—(26¢) on account of the condition .7 = 0.

A. Manifestly covariant variational derivatives
in eWGT

As in WGT, we begin by considering directly the
variation of the action. In particular, by analogy with
(27), one may immediately write

oL oL
héyL = £5ofﬂA + W%(%m)
oL 0
So %, A ———
a‘@jlbcd O abed

oL
+— Y S0, — b, Loh,". (66)

Tt 50 yabc

abc

In eWGT, however, there is an additional subtlety compared
with WGT: although the dynamical energy-momentum
tensor ¢, = 6.%/5h," derived from the total Lagrangian
density is covariant, this does not necessarily hold for the
corresponding quantities obtained from subsets of the terms
in L, even if they transform covariantly with weight w = —4
[20]. This leads one to the construct an alternative quantity
for which this more general covariance property does hold.
This may be arrived at more directly from an alternative
variational principle, in which one makes a change of field
variables from the set g, iy, A% , and B, to the new set ¢,
ha, AT and B,,. Itis worth noting that one is simply making
achange of field variables here, rather than considering A" u
to be an independent field variable; in other words, one still
considers A", to be given in terms of %, A*,, B, by its
defining relationship (55), rather than an independent quan-
tity whose relationship to the other variables would be
determined from the variational principle. Moreover, as

|

oL oL ) oL oL

—Bopp + ———00(Dips) = —Sopa + ————
P 0PA 6(92¢A) 0( (PA) E 0PA 0(92¢A)

3

1
[93(504%) + 8oha Dipa + (—

shown in [20], the eWGT covariant derivative can be
expressed wholly in terms of the fields A% (or its inverse)
and AT, and thus so too can the eWGT field strengths. In
particular, if one deﬁnes the (noncovariant) derivative

operator Z4p = h,* Djp = h*(9, + LA™, )¢ and the
quantities .71, = 2hb”hC”D€Mb“y], then one may easily

show that Z}p = (2, — w7 %)¢. Consequently, in the
new set of field variables, the Lagrangian L in (57) has no
explicit dependence on B,,.

Following the general procedure used for WGT, one
must now determine how the variations in (66) depend on
the variations the new set of fields ¢,, i% and A", them-
selves. This is easily achieved using the definition of the
eWGT covariant derivative and the expressions (59)—(61)
for the field strengths. By analogy with the approach
adopted for WGT, one must also make use of the fact that
for any coordinate vector V¥ of weight w = 0 (i.e., invariant
under local scale transformations, like the Lagrangian
density .#’), one may show that 9,V* = h‘192(hb””V")
or, equivalently, for any local Lorentz vector 7"“ having
Weyl weight w = —3 one has [20]

P57 = ho,(h~" h V), (67)

which is somewhat simpler than its WGT counterpart (67)

because of the condition .7 ,L = 0. Expressions of the
form (67) on the rhs of (66) therefore contribute only
surface terms to the variation of the action in (9), but we
will retain them nonetheless, as they are required for our
later discussion.

We begin by considering together the first two terms on
the rhs of (66), for which one obtains (after a rather lengthy
calculation)

1 “he
D) haﬂzbc + gWAna[chb]ﬂ> (pA&OA'bLﬂ

2 1 .
+*WA(pA <h[aﬂ@[t] +2hcﬂghab> 50bhﬂ:| s

oL oL oL 2 oL
7% ]5 + [71)T +Zwa b, 5. D (7 )}5 h*
quA o Zion)| T o Glga) A T3 T A gl )
oL ( 1 .
hitZpe +Watlachy ) PadoA™
T T \2 o ‘
N oL 2 oL
+ Za {—v%m i wapab” 5011;,"}, (68)
(D apa) 30(@[ ®a) g
where both terms in square brackets in the last line are readily shown to have Weyl weight w = —3, with the second one

having no analog in the corresponding expression (29) in WGT. Analyzing the further terms containing derivatives on the
rhs of (66) in a similar manner, one finds (again after lengthy calculations in each case)

024022-15



HOBSON, LASENBY, and BARKER PHYS. REV. D 109, 024022 (2024)

oL . oL
g =2—F Soht + h KDL (8,A
d%zbcd 0% abed d@;ha] [ abud®0 d ( 0 ahu)]
oL oL oL
=2———R"  Soht + (h T g+ 20 D, <7)5 2@*[ h 8yA ] 69
a‘@;bcd ab[ﬂd] ’ ( ‘ ) Zbcd o a‘%abcd oo ( )
oL T oL v v T
ﬁ&oyabc - 2—T [ijyhc 50,11)’“ + hC 9;(50ba1/) + hb”(soAacﬂ
abc abc
1 ; i
a 5’7’” (nb[phq]”‘SOA rpq” + Zh[q”%t](%bqﬂ) + hp”glqu‘sObqﬂ)]’
oL . oL
=2 yT [(szyhc”ég - 5 yldbcba >50hdﬂ + hbﬂéoAgcﬂ] - ng ( )b 50]’12,”
abc abc

2 : N[ oL oL
- g?’]uc [(bp”@b - 5£bqﬂ9q> <F> 50}1,,” + F”h[phq]ﬂﬁoAquy]
abc abc

[/ oL 2 oL
+ ch |:( y,‘_ baﬂ - gﬂpq Wbb]ﬂ)éohbﬂ} s (70)

abc

oL oL 1
S0, H hy soht + hy' T, <5By—5Ty)],
a% 0 a%uh|: uv'ttp €0 b 0 30

oL A 2 a 1 te c o)t oL
- ZWH”yhb 50]/1“# +§b [l“@c] |:(9r Pq + 25[,9(1) <W)]5Ohaﬂ
q

f
ab

P
2 1 oL

+ 2 Mefahi)” <5” D+ = Tt >< )5 Atab
3 P 2 rq %;q

2 oL
—@i{[ T b +25[C@T< )b“] }éoha”}- (71)
37\ o, ey, !

|
In the above expressions it is again assumed that the  into (66), which may itself subsequently be substituted into
appropriate antisymmetrizations, arising from the sym-  (9) to obtain an expression of the general form (12) for
metries of the field strength tensors, are performed when  Noether’s first theorem. This may be written as
the rhs are evaluated. It is also easily shown that the quantity

in brackets in each of the last terms in (69)—(71) has Weyl 58 — / [0A8opa + 719, Sohy + 6o SoAT®
. . 0PA 1001 ab’ 00 "
weight w = =3, so according to (67) each such term
contributes a surface term to the variation of the action (9). +p! _@; (h_gP)] d'x =0, (72)

Following an analogous approach to that adopted for
WGT, one may then substitute the expressions (68)—(71) where the current h_¢7 is given by
|

oL

h gV =————00¢pa
0(91)(0/4)
1 oL oL 2 oL 1 oL .
F 2|z wapab®, + —— by, — L v bblﬂ—— g‘HP,SbbJ,,— P@*( )b”]}éohb”
30(9[,,%) 0T upp 69 3047 0}
oL .
—2———h/"6pA,y, + b7, E'L, (73)
abcp
and we have defined the variational derivative” v = (6% /é(pA) =062/6¢p, with respect to the matter field
@a, and the total modified dynamical energy-momentum t'%, = (5.2/5h, #); and spin-angular-momentum

"We denote the variational derivative of £ with respect to any one of the fields y in the new set of variables by (6L /dy)s t
distinguish it from the variational derivative 6.Z/8y in the original set.
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ot = (8L [5AT ), = 5.4 /5A

u"

of both the matter and gravitational gauge fields. It is also worth noting that the

(identically vanishing) dilation current (' = (6.£/6B,,); in the new set of variables is related to that in the original set by

(=g —2h,F6,, so that the latter is given simply by ¢# =

2h,*6“?,. Manifestly covariant forms for the variational

derivatives may then be read off from the expressions (68)—(71). Converting all Greek indices to roman and defining the

11 Ta — ~1a C — c
quantities 7, = 77, by and 6, = 6,4, b,

oL

, one then makes the following identifications:

ht = — - Pf ————, (74a)
()(pA (ga(/’A)
oL L oL dL
ht'ty = ——— Do) +2—— R, +2 A, +2 Ty = (T, + 280D ) ——
= i) g T 2 2 The Vo7,
— UL — 29! (h6°)), (74b)
oL oL JL
hout =2————% T, + 259! -2 hé 4. 74
Oab 26(91(%4) abPa T ( rs T 205 )d@mb” aﬂﬂ’”’]c + Noup ( C)
where for convenience we have also defined the quantity
1 JaL 2 oL 1 + OL
h6 ¢ = =8 Ny, ———W + =n,0° — =Sy (T 280D ——. 75
b= 3% AZion) APA T 3 MprOablq 0T by 3 [a'Tb] (T g p q)a%;q (75)

Once again, it is assumed that the appropriate antisymmet-
rizations, arising from the symmetries of the field strength
tensors, are performed when the rhs are evaluated. As
mentioned above, {T* =0 since .Z does not explicitly
depend on B u in the new set of variables; the dilation current
in the original set of variables is thus given by {¢ = 26%%,. As
anticipated, the expressions (74a)—(74c) are manifestly
covariant (and hence so too are the equations of motion
obtained by setting each rhs to zero) and straightforward to
evaluate, requiring one only to differentiate the Lagrangian L
with respect to the matter fields, their covariant derivatives
and the field strengths. One may easily confirm that the above
expressions lead to precisely the same variational derivatives
as those obtained by using the standard (but much longer)
approach of evaluating (5a) for each field.

It is worth comparing the expressions (74a)—(74c) with
their counterparts (35a)—(35¢) in WGT. One sees that the
eWGT expression for /v, is obtained simply by ‘replacing
asterisks with daggers’ and recalling that .7}, = 0, but the
expressions in eWGT for hz™¢;, and he,,° each contain an
additional final term beyond those obtained by performing
the same process on their WGT counterparts (35b)—(35c¢).
In particular, one sees that the final terms in (74b) and (74c¢)
each depend on the quantity (75) and have no analog in
WGT. It is a noteworthy feature of eWGT that the addi-
tional term in the expression for hz', is given by the
covariant derivative of the additional term (with permuted
indices) in the expression for ho,,¢, and this has some
novel consequences. First, one notes that for a Lagrangian
L that does not contain the gauge field strength tensors, but
depends only on the matter fields and their covariant
derivatives, the variational derivatives with respect to the

|
gauge fields do not reduce to the covariant canonical
currents [11,21] of the matter fields. Indeed, there exist
additional terms proportional to the dilational generator A =
wyl for the matter fields ¢4, so that any matter field with
nonzero Weyl weight w, contributes additionally both to the
modified energy-momentum tensor and to the spin-angular-
momentum tensor, irrespective of its spin. Second, for
Lagrangians that do depend on the gauge field strengths,
there are additional terms capable of producing a depend-
ence on the covariant derivatives of the field strength tensors,
and in each case these terms depend on the covariant
derivatives of field strength tensors for different gauge fields
than those with respect to which the variational derivative is
taken. Moreover, the final term on the rhs of (74b) contains
second covariant derivatives of 0L /07, i

From (60), it appears at first sight that Jf i 4 18 linear in
second-order derivatives of 4, and first-order derivatives
of h,* and AT, (and hence of A“?, and B,). In that case, if

the Lagrangian contains a term proportional to #", 71
(which has the required Weyl weight w = —4 to be scale-
invariant) it would follow that the final term on the rhs of
(74b) is linear in fourth-order derivatives of /,* and third-
order derivatives of all three gauge fields h,*, A%® yand B,
Similarly, the final term in (74c) would be linear in third-
order derivatives of h,*. Moreover, if the Lagrangian
contains a term proportional to %[Tah] 7% the final term
on the rhs of (74b) would be linear in third-order deriva-
tives of h,t, A% 4 and B,. These considerations would
seem to indicate that eWGTSs containing either term in the
Lagrangian suffer from Ostrogradsky’s instability [39,40].
As noted in [20], however, this conclusion is not clear cut,
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since in applying such theories to particular physical
systems or in the general linearized case, one finds that
the resulting field equations always organize themselves
into combinations of coupled second-order equations in the
gauge fields [20]. Specifically, one finds the terms con-
taining higher-order derivatives correspond to the deriva-
tive of already known expressions, and so contain no new
information. Having now identified the gauge symmetry
(56) and obtained the general expressions (74b) and (74c)
for the variational derivatives, one may indeed show that
this always occurs in the general nonlinear case. First, one
may use the gauge transformation (56) to set T, = 0, so
that .77 (sz is merely linear in first-order derivatives of B,,.
Nonetheless, if the Lagrangian contains a term proportional
to A, 7, the final term in (74b), specifically the part
that arises from the final term in (75), still contains third-
order derivatives of B,. This is unproblematic, however,
since this term is the covariant derivative of an expression
that is already known from the field equation ko ,,¢ = 0.
Hence, in the final field equations one encounters field
derivatives of only second-order or lower, thereby avoiding
Ostrogradsky’s instability.

It is also worth pointing out that, as for WGT, we have
not assumed the equations of motion to be satisfied in
deriving (74a)—(74c). Thus, one may calculate the corre-
sponding variational derivatives for any subset of terms in
L that is a scalar density of weight w = —4. Individually,
however, such quantities do not vanish, in general. Rather,
each equation of motion requires only the vanishing of the
sum of such quantities, when derived from disjoint subsets
that exhaust the total Lagrangian L.

B. Relationship between first- and second-order
variational principles in eWGT

first- and second-order variational derivatives. We again
focus on the example of the variational derivatives obtained
by setting the (eWGT) torsion to zero after the variation is
performed (first-order approach) with those obtained by
setting the torsion to zero in the action before carrying out
the variation (second-order approach). As mentioned in the
Introduction, however, in eWGT one faces an additional
complication relative to WGT, since setting the torsion to
zero does not lead to an explicit expression for the rota-
tional gauge field in terms the other gauge fields, but
instead an implicit constraint relating all the gauge fields.

We again begin by considering the simpler case of the first-
order approach, where one merely sets .7 ¢, . = 0 (which is
a properly eWGT-covariant condition) in the expressions
(74a)—(74c). In eWGT, however, the condition .77, =0
results in an implicit constraint between the gauge fields 4,/
A , and B,,. Once again, it proves useful in eWGT to work in
terms of the modified rotational gauge field, or rather its
‘reduced’ form in the case .77¢,, = 0 [20,21]. From (63),
this is given by OALb = b e}

14
aber Where

1 1
O”Q{th 5 (Cabc + Chea — ccab) + Nac (‘%)b - g 917)

1
_”bc<<@a_§<7a>'

In an analogous manner to WGT, under a local extended
Weyl transformation, the quantities "A™", transform in

(76)

the same way as AT, and so one may construct the

”?
‘reduced” eWGT covariant derivative °Z;p = h,*°Dp =
h*(0, + %A 3, +wB,)p, which transforms in the
same way as @Zq). Thus, the corresponding quantities
to (74a)—(74c) are obtained simply by evaluating the rhs

As we did for WGT, we now demonstrate how the  with 779, set to zero, which also implies Z) — °Z].
approach outlined above is well suited to comparing  This yields
|
oL dL
Boph = 2= | _ogi - ’ (77a)
994lo o Zaga)lo
oL daL
horte, = ————| 997, 42 72— +209f———| —8PL|, —2°Z}(h%<2,),  (77b
0Ty " a%;qm O b A e )
1 oL oL aL
065 2P + 26909 — -2 + 1% ,,°, 77c
’ 26(-@C¢A) e a‘%labrs 0 ay?[ab]c 0 ’ ( )
where by analogy with (75) we have defined the quantity
1 daL 2 oL 2 oL
H08a = 30 M| WaPa + 38 Mgp~——| =3 0oy Pi | - (78)
37 O(QI(pA) [ a aypqr 0 3T d%”;f,q 0

"It is important to note that there is a fundamental difference with WGT here, since 9AT4>  depends on the rotational gauge field A*?,
through the terms containing .7, and hence cannot be written entirely in terms of the other gauge fields i,/ and B,,.
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Once again, it is worth noting that we have not assumed
any equations of motion to be satisfied in deriving the
quantities (77a)—(77c). Thus, one may derive corresponding
quantities for any subset of terms in L that are a scalar density
with weight w = —4, and these quantities do not vanish,
in general.

We now consider the second-order approach, where one
imposes 7 Zbc = 0 at the level of the action, prior to eva-
luating the variational derivatives. In this case, AT , is again
given by (76), in which case one may show that the following
constraint must be satisfied while performing the variation:

) .
Caby = Aapy =3 ha"OiaA™ 1, — Ay
2
+ 3 hat i Ay, = 0, (79)

where °A , = 5, (Cape + Cpea — Ceap)- It is worth noting
that C,;, depends on all the gauge fields; moreover, since
OAabM depends both on the h-field and its derivatives, the
expression (79) constitutes a nonholonomic constraint. We
therefore consider the augmented total Lagrangian density
L =L +2%1C,,,, where 2% is a field of weight w = 0
with the same symmetries as C,, that acts as a Lagrange
multiplier. Thus, up to terms that are the divergence of a
quantity that vanishes on the boundary of the integration
region, the integrand in the expression (2) for the variation of
the action is given by

5% .
<5—> Soxa = V3804 + T 80hF + 0,4 5pAT,
XA/ +
+ /I“bﬂéocabﬂ + Cabﬂ50/1ab'“, (80)

From (79), one finds after some calculation that

2
50Caby - 50A' b[

abp 3 hqa‘SOAMIb]v - bcﬂ(h[c”()@;}éobay

alu
+ h[a”092]5obby - h[byo-@,t]fsobc»)

2
+ gbcu(ncah[qﬂogz] - ncbh[qer@Z])aOqu (81)

from which one may show that (80) becomes (up to a total
divergence)

5%
<—> Soxa = WSopa + °F ,Soh,t
XA +

2
+ (05.ab;t + Aabﬂ - ghaﬂ/lcbc> 50ATabM
+ 007 (1748, + 15,7
T abc 4 e a
- I1fc5[ea0.@b])(hﬂ bey + 55“092] (hae,)]
X 50he” + Cabﬂéolabﬂ, (82)

E’l}Aéo(pA + lTayéoha” + SabﬂéoATahﬂ + Cubﬂﬁoluhﬂ, (83)

where we have again made use of (67) and °#¢, and °5,,,°
denote quantities analogous to (77b)—(77c¢), respectively, but
without the terms containing 0L /0.7 Z pelo- In the last line, we
have also defined the modified total dynamical energy-
momentum 7@ , and spin-angular momentum s, of both
the matter and gravitational gauge fields, and the matter field
variational derivatives v, in the second-order approach.
From (83), one sees immediately that the equation of
motion for the Lagrange multiplier field 1% is simply
Cupu = 0, which enforces the original constraint (79), as
required. By comparing (82) and (83), and converting all
indices to Roman, one further finds that the second-order
variational derivatives are related to the first-order ones by

hv = h%A, (84)
ht!, = hO%!, + ODL(hAC gy 4 WAy — hAg©)

2 ; 24 4
=1 Ze(hg) + 307 (W), (85)

2
hsabc =h <05abc + ﬂabc + 3nc[aﬂb]dd> . (86)

To proceed further, one must eliminate the dependence
of (85)(86) on the Lagrange multiplier field A,;.. This is
achieved by enforcing the A-field equation of motion, so
that hs,,. = 0, which now merely determinines 4,,,. under
the constraint C,,, = 0. Using the resulting condition

98 spe + Aape + %nc[aﬂb]d‘l = 0, one may now eliminate the
Lagrange multiplier field from (85), and one finally obtains

hot = W%, (87)
ht', = W%, + 998 (1h%6,,c — h05¢ , — h05¢,,).  (88)

As was the case for WGT, the forms of the matter variational
derivatives are identical in the first- and second-order
approaches, and the form for the modified energy-momentum
tensor in the second-order approach is reminiscent of the
Belinfante tensor. Since, one has not used the equations of
motion for the matter fields and the gauge field 2,/ in deriving
the expressions (87)—(88), they remain valid for any subset of
the terms in .Z that are a scalar density of weight w = —4.
If one does consider the total Lagrangian L, however, then
the second-order equations of motion for the matter and
gauge fields are obtained simply by setting the expressions
(87)—(88) to zero. In this case, provided the terms of the form
oL/0T Zbc'() vanish in the first-order equations of motion
obtained by setting (37)—(37d) to zero, then this implies that
the second-order equations of motion obtained by setting
(87)—(88) to zero are also satisfied, but the contrary does not
necessarily hold.
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C. Manifestly covariant conservation laws in eWGT

We now derive the conservation laws for eWGT in a
manner that maintains manifest covariance throughout, by
applying the general method outlined in Sec. IIl in a similar
way to that performed in Sec. IV C for WGT. Once again,
we begin by considering the general form of the con-
servations laws given in (15). As in the previous section, we
work in the new set of variables ¢4, h4, AT, in which
the Lagrangian does not depend explicitly on the gauge
field B,. In this case, under infinitesimal local Weyl
transformations consisting of GCTs, rotations of the local
Lorentz frames and dilations, parametrized by & (x),
@ (x) and p(x), the form variations (53) are replaced by

1
Sop = =& 0,0 + (5 o™, + Wp> ®, (89a)
Soht = —E0,ht + h,r0,& — (b, + pdL)h,¥,  (89b)

50A-[-ab” _ _gvayAhzb” _ A'{'abyaﬂgl/ — za)[acATb]C” — aﬂ(l)ab.
(89¢)

By comparing these transformation laws with the generic
form (6), one may read off the functions f4¢ and f. in
the latter from the coefficients of {A¢} = {A!,4%,23} =
{&%, w®,p} and their partial derivatives, respectively. As
anticipated, one immediately finds that many of the functions
fac and f% . are not covariant quantities. One therefore
again employs the Bessel-Hagen method to obtain new form
variations of the fields in which the functions f%. are
manifestly covariant, as required, although many of the
functions f,. may also be made so. Following the general
methodology outlined in Appendix, we consider separately
the conservation laws that result from the invariance of the
eWGT action under infinitesimal GCTs, local rotations and
local dilations, respectively.

Considering first the infinitesimal GCTs characterized by
£%(x) (which we take to correspond to C = 1), one may make
use of the invariance of the action under the transformations
(89) for arbitrary functions @™ (x) and p(x) by choosing
them in a way that yields covariant forms for the new
functions f* (and also f4, in this case) in the resulting form
variations. This is achieved by setting @® = —A™* & and
p =—(B, —1T,)& (where the minus signs are included for
later convenience), which yields transformation laws of a
much simpler form than in (89), given by

Sog = —&'Dig. (90a)
Sohyt = —E'Diht + h,b0,&", (90b)
SpATe, = &R (90c)

From these form variations, one may immediately read off
the new forms of the functions f4; and f%,, all of which are
now manifestly covariant. Inserting these expressions into
the general form (15), one directly obtains the manifestly
covariant conservation law

.@I(hf%cy) - h((’ab”Rﬂmm/ - TTaﬂDZhZ - AD};(ﬂA) = O’
(1)

where  hv* = (6L/6p4); = 6L/6¢4. On  multiplying
through by %,*, one may rewrite the conservation law wholly
in term of quantities possessing only Roman indices as

DENT ) = W0 BT g — 77, T g — AQIAPA) =0.
(92)

We next consider invariance of the action under infini-
tesimal local Lorentz rotations characterized by w®(x)
(which we take to correspond to C = 2). In this case,
the functions f%, in the set of transformation laws (89)
are already manifestly covariant. One may thus insert the
functions f%, and f,, read off from (89) directly into
the general form (15), without employing the Bessel-
Hagen method. On recalling that I“;apqﬂ =—A" 50,/ —
A" 50,7 (since 6,,* has Weyl weight w = 0) one finds
that the final set of terms on the lhs of (15) vanish when y*
corresponds to ho,”, and one immediately obtains the
manifestly covariant conservation law

Di(how,) + hly, +%hquab¢A =0.  (93)

Finally, we consider invariance of the action under
infinitesimal local dilations characterized by p(x) (which
we take to correspond to C = 3). Once again, the relevant
functions f’:B in the set of transformation laws (89) are
already manifestly covariant. One may thus insert /%, and
[ a3 read off from (89) directly into the general form (15),
which immediately yields the manifestly covariant alge-
braic conservation law

ht'¢. — hv'w,p, = 0. (94)

It is straightforward to verify that the manifestly covar-
iant conservations WGT laws (92)—(94) have the correct
forms [20,21] and match those derived (albeit at consid-
erably greater length) using the standard form of Noether’s
second theorem (8a).

Before moving on to consider the further condition (8b)
arising from Noether’s second theorem, in the context of
eWGT, we note that the conservation law (93) may be used
to simplify the expression (88) for the second-order varia-
tional derivative with respect to 4,/ in terms of first-order
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variational derivatives. Imposing the condition .7 Zbc =0,
the conservation law (93) becomes

~ e . 1 -
"D NG w) + hOTy + 5 B Sappa = 0. (95)
If one assumes the matter equations of motion %54 = 0 are
satisfied (or, equivalently, that the Lagrangian L does not
depend on matter fields), the expression (88) can thus be
written in the simpler and manifestly symmetric form

hiy, = W07, = 20D (H05 (up).- (96)

D. Relationship between currents in Noether’s
second theorem in eWGT

We conclude this section by considering the relationship
in WGT between the two currents that appear in Noether’s
second theorem (8b). As discussed in Sec. IIIC, this
equation may be rewritten as Z5[h(_#*—.7%)] =0
where h_¢Z“ for eWGT is given by (73) and the expression
for h.7* may be obtained from the general form (16),
which on using the eWGT field variations (89) yields

hs? = h[_éﬂ(ﬂ'[’” - UahpATabﬂ) + wabaabp]' (97)

As was the case for WGT, this expression does not depend
on the variational derivatives v* = 6. /6y, with respect
to the matter fields since, as expected, the functions f% -
vanish in this case, as can be read off from the form
variations (89) of the new set of fields. Thus, in order for
h.P to vanish, it is sufficient that just the equations of
motion of the gauge fields are satisfied. Moreover, in
eWGT, the current (97) also does not depend on the
dilation p(x).

If one substitutes the form variations (89) of the new set
of fields into the expression (73) for 4 _¢7, one finds after a
long calculation of a similar nature to that required in WGT,
which makes careful use of the definition (58) of the field
strength tensors, the contracted Bianchi identity (65c) and
the manifestly covariant expressions (74b)—(74c) for the
variational derivatives with respect to the gravitational
gauge fields, that

9;(]1/]7) = ‘@L[_é:”h(rququ - Uapruhﬂ) + wahhaabp]
= i (h). (98)

thereby verifying explicitly the relationship between the
two currents that is implied by Noether’s second theorem
(8b), as was the case in WGT. Thus, as expected for an
action that is invariant under a set of local symmetries,
this relationship contains no further information, but
nonetheless provides a useful check of the derivation of
the expressions (74b)—(74c). Indeed, in a similar way
to WGT, the requirement Z;[h(_#¢—.7%)] =0 from
Noether’s second theorem can thus be used as an alternative

(albeit rather longer) means of deriving the expressions
(35b)—(35d) for the variational derivatives with respect to
the gravitational gauge fields.

VI. CONCLUSIONS

We have presented a variational principle that maintains
manifest covariance throughout when applied to the actions
of gauge theories of gravity. In particular, it directly yields
field equations and conservation laws that are manifestly
covariant under the symmetries to which the action is
invariant. This is achieved by deriving explicit manifestly
covariant forms for the Euler-Lagrange variational deriv-
atives and Noether’s theorems for a generic action of the
form typically assumed in gauge theories of gravity.

The manifestly covariant form of Noether’s first theorem
and the expressions for the variational derivatives derived
therefrom not only provide a significant calculational
saving relative to the traditional method of evaluation,
but also yield useful insights into their general forms. In
particular, these expressions enable one easily to establish
the relationship between the forms of variational deriva-
tives, and hence the field equations, obtained by applying
first- and second-order variational principles, respectively.
An interesting case is provided by comparing the varia-
tional derivatives obtained by setting the torsion to zero
after the variation is performed (first-order approach) with
those obtained by setting the torsion to zero in the action
before carrying out the variation (second-order approach).

The reexpression of Noether’s second theorem in terms
of manifestly covariant quantities provides further utility
and insights. In particular, one may use it to derive the
conservation laws obeyed by the matter and gravitational
gauge fields in a manifestly covariant manner. This also
relies on being able to express the form variations of these
fields such that at least the coefficient functions of the
derivatives of the parameters of the symmetry transforma-
tions are manifestly covariant. This may be achieved by
generalizing the approach introduced by Bessel-Hagen for
electromagnetism, which is discussed in Appendix. The
reexpression of Noether’s second theorem further allows
one straightforwardly to verify the relationship between the
two currents on which it depends. Indeed, one may use
Noether’s second theorem as an alternative (albeit some-
what longer) means of deriving manifestly covariant forms
for the variational derivatives.

The manifestly covariant variational principle is illus-
trated by application to the scale-invariant WGT and its
recently proposed eWGT version, but can be straightfor-
wardly applied to other gravitational gauge theories with
smaller or larger symmetry groups. For WGT and eWGT,
the fields in the theory consist of a translational gauge field
h, (with inverse b)), a rotational gauge field AP , and a
dilational gauge field B, together with some set of matter
fields ¢4, which may include a scalar compensator field. In
eWGT, however, it is more natural to work in terms of the
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alternative set of variables ¢, i, A", and B,, where the
modified rotational gauge field A7, = A%, + 2ple, 5"
and %, = h,/'B,. Moreover, eWGT may be shown to
be invariant under the simultaneous ‘torsion-scale’ gauge
transformations A“?, — A* , + 2b[“”@h] and B, > B,-Y,,
where %, = h,*Y, and Y, is an arbitrary vector field; this
may be used to set either B, or T, to zero, which can
considerably simplify subsequent calculations. The scale-
invariant actions for WGT and eWGT are further assumed
to depend only on the matter fields, their covariant
derivatives and the field strength tensors of the gravitational
gauge fields. In this case, the eWGT action in the alternative
set of variables does not depend explicitly on B,, hence
reducing by one the number of independent variational
derivatives. As might be expected from the above consid-
erations, one finds a number of similarities between WGT
and eWGT, and also some important and novel differences.

Considering first the manifestly covariant expressions
for the variational derivatives in WGT, one finds that these
reduce to the corresponding covariant canonical currents of
the matter fields if the Lagrangian does not depend on the
gravitational gauge field strengths. For Lagrangians that do
depend on the gauge field strengths, one finds that the only
terms that contain the covariant derivative of a field strength
tensor depend on the field strength tensor of the gauge field
with respect to which the variational derivative is taken. By
contrast, in eWGT one finds that the variational derivatives
with respect to the translational and modified rotational
gauge fields contain additional terms beyond those
obtained by ‘replacing asterisks with daggers’ in their
WGT counterparts. Moreover, the additional terms in the
translational variational derivative are given by the covar-
iant derivative of the additional terms (with permuted
indices) in the expression for the rotational variational
derivative; this has some novel consequences. First, for a
Lagrangian that depends only on the matter fields and
their covariant derivatives, the variational derivatives with
respect to the gauge fields do not reduce to the covariant
canonical currents of the matter fields, but comtain addi-
tional terms proportional to the dilational generator
A = wyl for the matter fields ¢,. Thus, any matter field
with nonzero Weyl weight w, contributes additionally both
to the modified energy-momentum tensor and to the
spin-angular-momentum tensor, irrespective of its spin.
Second, for Lagrangians L that depend on the gauge field
strengths, there are additional terms capable of producing a
dependence on the covariant derivatives of the field
strength tensors, and in each case these terms depend on
the covariant derivatives of field strength tensors for
different gauge fields than those with respect to which
the variational derivative is taken. Moreover, there exist
terms containing covariant derivatives of dL/ &%”jlb. By
using the ‘torsion-scale’ gauge symmetry and the mani-
festly covariant forms of the variational derivatives,

however, one may show that the final eWGT field equa-
tions contain field derivatives of only second-order or
lower, thereby avoiding Ostrogradsky’s instability.

On comparing the variational derivatives obtained by
setting the torsion to zero after the variation is performed
(first-order approach) with those obtained by setting the
torsion to zero in the action before carrying out the variation
(second-order approach), one finds important differences
between WGT and eWGT. In both cases, the rotational
gauge field is no longer an independent field, but in WGT
it may be written explicitly in terms of the other gauge
fields, whereas in eWGT there exists an implicit constraint
relating all the gauge fields. In both cases, however, one
may arrive at simple expressions for the variational deriv-
atives in the second-order approach in terms of those from
the first-order approach. In particular, the translational
variational derivative in the second-order approach for
WGT and eWGT is the gauge theory equivalent of the
Belinfante tensor. Moreover, in WGT the second-order
dilational variational derivative may be considered to define
an associated Belinfante dilation current, which is clearly
related to the ‘field virial’ that is relevant to the invariance
of an action under special conformal transformations.

Turning to the re-expression of Noether’s second theorem,
the resulting derivations of manifestly covariant forms of
the conservation laws satisfied by the fields in WGT
and eWGT, yield similar forms in both cases for the laws
corresponding to invariance under local translations and
rotations, respectively. For invariance under local dilations,
however, one finds the resulting conservation law is dif-
ferential in WGT, but algebraic in eWGT. In both WGT and
eWGT, one may also use the re-expression of Noether’s
second theorem to verify the relationship between the two
currents on which it depends, although in both cases this
verification requires a calculation of considerable length.
Alternatively, in each case, one may use Noether’s second
theorem as an alternative (albeit considerably longer) means
of deriving manifestly covariant forms for the variational
derivatives.

Whilst this paper has focussed heavily on the Lagrangian
prescription of field theory, and the associated field equations
and conservation laws, we note that the techniques developed
here may impart even stronger benefits in the Hamiltonian
formulation. Hamiltonian gauge field theory is characterized
by the presence of field-valued constraints, which encode not
only the gauge symmetries but also the whole nonlinear
dynamics, as elucidated by the consistency algorithm of Dirac
and Bergmann [41-43]. The fundamental currency of the
consistency algorithm is the Poisson bracket,"” which is a
bilinear in functional variations with respect to dynamical
fields. In the context of gravitational gauge fields, the
Hamiltonian formulation is typically realized using the

SMore sophisticated Dirac brackets [44] also arise; these are
equally relevant to our discussion.
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so-called 3 + 1 or Arnowitt-Deser-Misner (ADM) technique,
whereby manifest diffeomorphism covariance is preserved
despite the imposition of a spacelike foliation. Accordingly,
the ADM Poisson bracket presents a clear opportunity for
manifestly covariant variational methods, such as those
expressed in Egs. (35) and (74). The Hamiltonian demand
is, if anything, more pronounced than the Lagrangian
demand. In the latter case, a countably small collection of
field equations (not including indices) must be obtained (e.g.,
one set of Einstein equations). In the former case and for a
gravitational gauge theory, all Poisson brackets between all
constraints must be evaluated in order to classify the gauge
symmetries: this can in practice correspond to tens or
hundreds of brackets [45-49]. Separately, the variations of
a constraint can be more challenging than those of an action
because: (i) the constraints are typically indexed and always
(quasi-) local, necessitating the use of smearing functions;
(i1) they may contain more terms in ADM form than the
original Lagrangian; and crucially (iii) they are of unlimited'®
order in spatial gradients [50] even when the Lagrangian is
second order as assumed in (1). The extension of the
techniques discussed here to the higher-order, ADM varia-
tional derivative, is left to future work.
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APPENDIX: BESSEL-HAGEN METHOD
FOR ELECTROMAGNETISM

For classical electromagnetism (EM) in Minkowski
spacetime .# labeled using Cartesian inertial coordi-
nates x*, the action is given by S = [.Z d*x, where the
Lagrangian density . = —;{F wF" and the (Faraday)
field strength tensor F,, =d,A, —d,A,, in which A, is
the electromagnetic 4-potential (which is not to be confused
with the rotational gravitational gauge field A% 4 appearing
throughout the main text of the paper). As is well-known,
the most general infinitesimal global coordinate trans-
formations under which the EM action is invariant are
the conformal transformations”; these have the form
X = x# + & (x), where

F(x) = a" + ' x¥ + pxt + cHx* = 2c-xx*,  (Al)

in which the 15 infinitesimal parameters a*, @ = —@**, p
and c* are constants, and we use the shorthand notation

"“This is due to cumulative derivatives arising in the course of
the Dirac algorithm.

The action is also invariant under finite global conformal
coordinate transformations [51-53]; these include conformal
inversions x* = x# /x2 for x% # 0, which are not connected to
the identity and so are not considered here.

X2 = Nux'x” and ¢ - x = 5, c*x". If the four parameters ¥
defining the so-called special conformal transformation
(SCT) vanish, then (A1) reduces to an infinitesimal global
Weyl transformation. Moreover, if the parameter p defining
the dilation (or scale transformation) also vanishes, then
(A1) further reduces to an infinitesimal global Poincaré
transformation, consisting of a restricted Lorentz rotation
defined by the six parameters w** and a spacetime trans-
lation defined by the four parameters a*.

Under the action of any infinitesimal coordinate trans-
formation x'* = x* + & (x), the 4-potential has the form
variation

55A, = 69A, — 0,4, = —A,0,& — &0,A,, (A2)
where we have explicitly denoted the form and total
variations as being induced by the infinitesimal coordinate
transformation. Thus, the corresponding Noether current
(5b) has the form

0L o
JH = 5A 1P
000,4,) ° ° +4é

1
= Flw<Azzao'§D =+ évayA”) - ZfﬂFpaF/)a' (AS)

Using the expression (Al) for an infinitesimal global
conformal coordinate transformation, one finds that (A3)
may be written as
1
JH = —a"t, + Ew"ﬂMﬂaﬂ + pD# + c*K*,, (A4)
where the coefficients of the parameters of the conformal
transformation are defined by

#o= %aat“a - 0L = —F"0,A, + %%FMF,M,
(ASa)
MF o = xot" 5 — xpt* o + 5, (A5b)
Df = —x"t", + ¥, (A5c)
Kty = (208 = )ty + 208 (s o5 — apj*), (ASd)

which are the canonical energy momentum, angular
momentum, dilation current and special conformal current,
respectively, of the 4-potential A,,. We have also defined the
quantities

0L
s = s (B Ay = 2Py, (A6
JH= iWAU = Fr°A,, (A6b)

9(0,A,)

which are the canonical spin angular momentum and
intrinsic dilation current of the 4-potential; here (X.5),” =

277(,[(,&2] are the generators of the vector representation
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of the Lorentz group and w = —1 is the Weyl weight
of A,.

If the field equations 6.2°/6A, = d,F** = 0 are satisfied,
then invariance of the action implies the conservation law
d,J* = 0. Since the parameters of the global conformal
coordinate transformation in (A4) are constants, one thus
obtains separate conservation laws given by

9, =0, (A7a)

6ﬂs"aﬁ + 2t[aﬂ] = 0, <A7b)
3 =1, =0, (ATc)
sﬂ{m - ja = 0’ (A7d)

which hold up to a total divergence of any quantity that
vanishes on the boundary of the integration region of the
action. Itis worth noting that the first condition has been used
to derive the second and third conditions, and the first three
conditions have all been used to derive the final condition.
The conservation laws (A7) may be easily verified directly
using the expressions (A5a) and (A6) for #,, s*,5 and j*,
respectively, and the EM equations of motion. It is worth
noting that the conservation law (A6), which results from
invariance of the action under special conformal transforma-
tions, requires the ‘field virial’ to vanish [37].

In addition to being invariant under infinitesimal global
conformal coordinate transformations of the form (Al),
however, the EM action is also well-known to be invariant
under the gauge transformation A, — A, = A, + 9,a,
where a(x) is an arbitrary function of spacetime position.
Since our considerations thus far have not taken this into
account, it is perhaps unsurprising that the canonical
quantities #,, s* 5 and j* are not invariant under the gauge
transformation, as is easily demonstrated. Moreover, it is
immediately apparent that the overall Noether current J#
in (A3) is also not gauge invariant. All these problems

originate from the form variation 5(()5)A,, in (A2) itself not
being gauge invariant. The lack of gauge invariance of the
canonical expressions is a severe shortcoming, which means
that these quantities must be unphysical. The situation is
usually remedied, at least for the energy-momentum tensor in
electromagnetism, by using the Belinfante method [36] of
adding ad hoc terms, which do not follow from Noether’s
theorem, to the canonical energy momentum in order to
construct a ‘modified’ energy-momentum tensor, which
is gauge invariant (and symmetric) and can be further
‘improved’” to be traceless also [54]. One should note,
however, that these methods are not guaranteed to yield a
gauge-invariant energy-momentum tensor for general gauge
field theories when matter fields are coupled to a gauge field
[55], although this deficiency is addressed in [56].

An alternative approach, which makes direct use of
the gauge invariance of the EM action and Noether’s
theorem, was first proposed in 1921 by Bessel-Hagen

(who acknowledges Noether for suggesting the idea) [33].
This work is not widely known, however, and similar
approaches have since been proposed by other authors
[57-60], although Bessel-Hagen’s original method arguably
remains the most straightforward and intuitive [38]. The key
to the method is to recognize that the form variations dyy 4 of
the fields appearing in the general expression (5b) for the
Noether current J# may correspond to any transformation
that leaves the action invariant. Indeed, it is advantageous to
consider the most general such transformation. Applying this
notion to EM, one should thus replace the form variation (A2)
induced solely by the infinitesimal global conformal coor-
dinate transformation by the general form

8oA, =89A, +0,a—E0,A, =—A,0,& +0d,a—E0,A,.
(A8)

which also includes the contribution induced by the EM
gauge transformation. Since the form variation (AS8) leaves
the EM action invariant for &“(x) given by (Al) and for
arbitrary a(x), one may choose the latter to be as convenient
as possible. Given that our goal is to arrive at a gauge-
invariant form for the Noether current J#, one should
therefore choose a(x) such that the form variation (A8) is
itself gauge-invariant; this is the central idea underlying the
Bessel-Hagen method.

One may easily obtain a gauge-invariant form variation
by setting a = A, &", which immediately yields §yA, =& F,.
Consequently, the Noether current (A3) is replaced by the
new form

0L 1
JH=——=0)A Y = E| FHOF, — -8 F°F
6(0”140) 0 + 5 ‘S < vo 4 pa)
=&, (A9)

where in the final equality we have identified the standard
physical energy-momentum tensor ¥, = —(FF°F,; —
%5’;F”"F o) of the EM field, which is immediately seen
to be gauge invariant, symmetric and traceless. Substituting
the form (A1) for & into (A9), one finds that the expres-
sion (A4) for the Noether current is replaced by the much
simpler form

1
I = =a" Dy + S0 (3T — xy7e) — pxtT

+ ¢*(2x,xP — 5§x2)1”ﬂ, (A10)
from which one can further identify new forms for the
angular momentum, dilation current and special conformal
current of the EM field, all of which are gauge invariant. If
one again assumes the EM field equations to hold and uses
the fact that the parameters of the global conformal coor-
dinate transformation are constants, one obtains separate
conservation laws that replace those in (A7) and are given by
the succinct forms
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0,7 =0, (Alla)
T[ap) =0, (Allb)
o, =0, (Allc)

where, in this case, the conservation law derived from the
coefficient of the SCT parameters c* is satisfied automati-
cally given the other three conservation laws above, all of
which may be easily verified directly.

Finally, one should also determine the further conserva-
tion law that results solely from invariance of the action
under EM gauge transformations. This is easily achieved by

setting & = 0, which is equivalent to all of the constant
parameters in (A1) vanishing. In this case, (A8) becomes
simply dpA, = d,a and the Noether current is immediately
given by

0.7
J=—""_5)A, = —F"09,a.
9(0,A,)

(A12)
Assuming the EM field equations to hold, the resulting
conservation law d,J# = 0 may be written as F*°d,0,a = 0,

which is satisfied identically because of the antisymmetry
of Fre.
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