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In this work we analyze the motion of charged particles in the background of the Kiselev geometry,
which is considered here as an exact solution in the context of power-Maxwell electrodynamics. As it is
well known, one can use either an electric ansatz or a magnetic one for the nonlinear electromagnetic field.
We study the motion of an electrically charged particle for an electrically charged black hole and also for a
magnetically charged black hole. In the second case the motion is restricted to Poincaré cones of various
angles, as expected.
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I. INTRODUCTION

There is compelling evidence that the Universe is cur-
rently undergoing a period of accelerated expansion [1–5].
What causes this mysterious expansion is still unknown
and it is usually designated by the term dark energy. As
such, the study of dark energy is an important topic of
research in both astrophysics and modern cosmology. Dark
energy is distinguished from ordinary matter by the fact that
it has negative pressure. This negative pressure leads to the
accelerated expansion of the Universe by counteracting the
attractive gravitational force.
The simplest explanation of dark energy was advanced

by Einstein [6] in 1917 in the form of a cosmological
constant, which should correspond to the energy associated
with the vacuum (see the review [7] and references therein).
To characterize the accelerated expansion one often uses an
equation of state of the form w ¼ P

ρ, where P is an isotropic
pressure and ρ is the energy density of dark energy. Then, a
cosmological constant would simply correspond to an
equation of state with w ¼ −1 while the energy density
is constant.
There is also the possibility that the accelerated expan-

sion is driven by a dynamical field, such as quint-
essence [8,9] (see also [10,11]): a canonical scalar field
coupled to gravity and whose potential is decreasing as the
field increases. A slowly varying scalar field ϕ with an

appropriate scalar potential VðϕÞ can lead to the accelerated
expansion of the Universe [12].
Twenty years ago, a spherically symmetric static solution

of Einstein equations, describing black holes surrounded
by “quintessence”-like fluids was found by Kiselev [13]. It
was later understood that the dark energy fluid in the
Kiselev geometry is actually anisotropic [14] and that it is
characterized by a radial pressure pr ¼ −ρ0 and two
tangential pressures pt. If one defines the isotropic pressure
P ¼ prþ2pt

3
then the equation of state becomes P ¼ wρ0,

where w is a constant parameter named as the quintessence
parameter in this context. If the fluid behaves like dark
energy then the quintessence parameter should have values
in the interval −1 < w < − 1

3
.

More recently, the Kiselev geometry has been reinter-
preted in the context of nonlinear electrodynamics [15].
The study of nonlinear electrodynamics theories has a long
history, as they were introduced initially in order to cure
the infinite electric field and the infinite self-energy for
pointlike charged particles [16] and as effective classical
modifications from QED [17]. Nowadays, the nonlinear
electrodynamics theories are an active area of research and
they provided us with various interesting classes of black
hole solutions in four and higher dimensions (for a review
and more references see [18] and [19]).
In [15] the study was confined to the so-called power-

Maxwell theory [20–28]. Instead of the usual Maxwell
Lagrangian L ¼ −F in this case one considers a more
general theory of the form L ¼ −αFq, where q is a general
parameter while the coupling constant α has to be intro-
duced to assure a positive energy density for the nonlinear
electromagnetic field. This class of theories belongs to a
restricted class of nonlinear electrodynamics theories for
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which the Lagrangian L ¼ LðFÞ depends only on the first
electromagnetic invariant, F ¼ FμνFμν and not on the
second invariant Fμνð⋆FÞμν. This greatly simplifies the
field equations of the nonlinear electromagnetic field.
The Kiselev solution in power-Maxwell theory [15] cor-
responds then to a black hole in the power-Maxwell theory;
however, for the nonlinear electromagnetic field to act
effectively as a dark energy fluid one has to restrict the
values of the parameters accordingly. In particular, the
Kiselev geometry can have two horizons, one black hole
horizon and one “cosmological”-like horizon, just as it
happens in the Schwarzschild–de Sitter geometry. The
static patch of the Kiselev geometry is then restricted to
lie in between these two horizons.
The purpose of this paper is to study the trajectories of

charged massive particles moving around a Kiselev black
hole in the power-Maxwell theory.1 Note that this geometry
can be sourced by a nonlinear electromagnetic field using
either an electric ansatz (in which case the black hole is
electrically charged) or a magnetic monopole ansatz (in
which case the black hole carries a magnetic charge). The
motion of the charged particles will obviously have differ-
ent characteristics in each case. For the electrically charged
case, due to the spherical symmetry of the system the
charged particle motion is planar and can be studied in the
equatorial plane θ ¼ π

2
. In the magnetic case the motion will

be confined to the Poincaré cones of various angles. This is
in fact to be expected due to the SOð3Þ symmetry of the
system and it has been long noticed since the works of
Poincaré [30] (see [31,32] and references there).
The structure of this paper is as follows: in the next

section we introduce the Kiselev geometry as a solution of
the power-Maxwell theory and discuss some of its proper-
ties that will be useful later. In Sec. III we discuss the
trajectories of the charged particles moving in the back-
ground of an electrically charged Kiselev black hole. In
Sec. IV we address the motion of charged particles in the
background of the magnetically charged Kiselev black
hole. The last section is dedicated to conclusions and
avenues for further work.

II. THE KISELEV BLACK HOLE IN THE
POWER-MAXWELL THEORY

The full action of the power-Maxwell theory is given
by [20,21]

I ¼ −
1

16πG

Z
V
d4x

ffiffiffiffiffiffi
−g

p ðR − αFqÞ − 1

8πG

Z
∂V

d3x
ffiffiffiffiffiffi
−γ

p
K

þ Ibd; ð1Þ

where we denoted F ¼ FμνFμν and K is the usual Gibbons-
Hawking boundary term, defined on the spacetime boun-
dary ∂V, on which the induced metric is denoted by γab.
The terms Ibd refer to possible countertermlike terms (for
the gravitational and/or electromagnetic fields) needed to
render the full action (1) finite.
The field equations derived from this action can be

written in the following form:

Gμν ¼ Tμν; ð2Þ

∂μ

� ffiffiffiffiffiffi
−g

p
FμνFq−1

� ¼ 0; ð3Þ

where the stress-energy tensor of the nonlinear electro-
magnetic field is defined as

Tμν ¼ 2α

�
qFμρFν

ρFq−1 −
1

4
gμνFq

�
: ð4Þ

The Kiselev black hole is described by the static four-
dimensional line element [15]

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2½dθ2 þ sin2 θdφ2�; ð5Þ

with

fðrÞ ¼ 1 −
2M
r

− krp; ð6Þ

where the arbitrary parameter p can be related to the
equation of state parameter in the original Kiselev solution
by p ¼ −ð3wþ 1Þ.2 Then since w∈ ½−1;− 1

3
Þ one obtains

the range of powers p∈ ð0; 2�. It is only in this regime that
the nonlinear electromagnetic field acts effectively as a dark
energy source. In the power-Maxwell theory the constant p
is actually related to the power q that appears in the power-
Maxwell Lagrangian. However, unlike the usual Maxwell
theory, it turns out that the power q differs considerably in
the electric and the magnetic cases [15]. More specifically,
for the electric case one has q ¼ p−2

2p < 0, while in the

magnetic case one has q ¼ 2−p
4

> 0. In consequence, the
parameter α ¼ ð−1Þ−q in the electric case, while α ¼ 1
when using the magnetic ansatz.
In the original Kiselev geometry [13] the positive

parameter k is related to the quintessence-fluid energy
density ρ0 as

k ¼ −
ρ0
3w

;

however in the power-Maxwell context the parameter kwill
have a different interpretation, as one can see below.1Charged particles trajectories around an electrically charged

Reissner-Nordström black hole with quintessence have been
considered in [29]. In our work the “quintessence” itself is
regarded as a nonlinear electromagnetic field.

2Note that p is a parameter here and should not be confused
with the pressures in the equation of state.
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Now, as the source of the Kiselev geometry (5), one may
consider a nonlinear electric field given by the electro-
magnetic potential component:

At ¼ C1 þ C2rpþ1; ð7Þ
where C1;2 are constants of integration and moreover the
constant C2 is related to the electric charge Qe by [15]

C2 ¼
Q

−p
2

e

2
pþ2
4 ðpþ 1Þ

:

In [15], it was further shown that the positive parameter k
can be related to the electric charge of the nonlinear
electromagnetic field

k ¼ ð2Q2
eÞ

2−p
4

pðpþ 1Þ : ð8Þ

Alternatively, one may consider a magnetic monopole
ansatz which also satisfies the nonlinear Maxwell equa-
tions, with the essential component of the four-potential:

Aφ ¼ Qmð1 − cos θÞ; ð9Þ

where Qm is the magnetic charge [15]. In this particular
case we have

k ¼ ð2Q2
mÞ

2−p
4

2ðpþ 1Þ : ð10Þ

Depending on the values taken by M, p and k one can
have at most two horizons, namely the black hole horizon
rb and an effective cosmological horizon, located at
rc > rb. As the black hole mass parameter, M, is increas-
ing, the black hole horizon rb increases while the cosmo-
logical horizon rc shrinks. For fixed values of Q and p,
there is a maximum value of the mass parameter M3:

Mmax ¼
1

2
pðpþ 1Þ−pþ1

p k−
1
p; ð11Þ

beyond which the spacetime geometry is singular. For this
value of the mass the geometry becomes extremal, with
both the black hole horizon rb and the cosmological
horizon rc being equal.

III. CHARGED PARTICLES MOVING IN THE
BACKGROUND OF THE ELECTRICALLY

CHARGED KISELEV BLACK HOLE

In Kiselev geometry, the timelike trajectories of an
uncharged particle moving around the black hole described

by the metric (5) can be obtained starting with the
Lagrangian L ¼ 1

2
gμνẋμẋν, where ẋμ ¼ dxμ

dτ while the proper
time τ is defined using

−dτ2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdφ2Þ: ð12Þ

Due to the spherical symmetry the motion is planar and it
can be confined to the equatorial plane θ ¼ π

2
. Since t and φ

are cyclic coordinates they lead to two constants of motion:
the energy and the angular momentum. If one replaces the
conserved energy and angular momentum per unit mass,
E ¼ fðrÞṫ and L ¼ r2φ̇ in (12) one finds, for θ ¼ π=2, the
relation

ṙ2 ¼ E2 − fðrÞ
�
1þ L2

r2

�
; ð13Þ

which leads to the effective potential for the uncharged
particles:

Veff ¼ fðrÞ
�
1þ L2

r2

�
¼

�
1 −

2M
r

− krp
��

1þ L2

r2

�
: ð14Þ

If one considers now a charged particle moving in the
electric field generated by the electromagnetic potential (7),
then the motion will be described by the Lagrangian:

L ¼ 1

2
gμνẋμẋν þ εAμẋμ; ð15Þ

where ε ¼ e=m is the specific charge of the test particle
with charge e and mass m. Since t and φ are still cyclical
coordinates they still lead to conserved quantities. How-
ever, while the expression for the angular momentum
remains the same, the expression of the energy must be
replaced by

E ¼ fðrÞṫþ εAt:

Thus, Eq. (13) is modified in the form

ṙ2 ¼ ðE − εAtÞ2 − fðrÞ
�
1þ L2

r2

�
¼ ðE − VþÞðE − V−Þ; ð16Þ

where we defined4

V� ¼ εAt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
1þ L2

r2

�s
: ð17Þ

3Note that there are some typos in the corresponding formula
in [15].

4For the corresponding analysis in the Reissner-Nordström
case see [33,34].
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Note that V� correspond to those values of the energy
per unit mass E that make r into a turning point, where the
value of the kinetic energy of the test particle vanishes
ṙ2 ¼ 0. At the horizons, the effective potentials Vþ and V−

become equal to Vðr�Þ ¼ ε½C1 þ C2r
pþ1
� �.

While the C2 > 0 constant is related to the black hole
electric charge Qe > 0, the value of the C1 constant is not
fixed a priori. While during the studies of the motion of
charged test particles in the usual Reissner-Nordström
geometry [33,33,34] its value is set to zero, in our case,
we have chosen to use it to set the value of the effective
potential (17) to be zero on the black hole horizon r ¼ r−,
that is C1 ¼ −C2rpþ1

− . With this choice one obtains At ¼
C1 þ C2rpþ1 ¼ C2ðrpþ1 − rpþ1

− Þ > 0 since r > r− outside
the black hole horizon. Therefore, the sign of the first term
εAt in (17) is controlled by the sign of ε.
Note that Vþðε; L; rÞ ≥ V−ðε; L; rÞ and one also has

Vþðε; L; rÞ ¼ −V−ð−ε; L; rÞ. Moreover, for ε ¼ 0 the
potential Vþ reduces to the effective potential for
uncharged test particles (14).
In the followings, for future-directed orbits for the

charged particles, we shall use the effective potential Vþ
to study the bound motion of the charged timelike particles,
for different ranges of the model’s parameters.

A. Circular orbits

In order to have a circular motion, in the region between
the two horizons, one has to impose the conditions

Vþ ¼ E;
dVþ
dr

¼ 0: ð18Þ

Following the approach developed in [33], one could solve
the second equation in the relation above to find the angular
momentum L of the charged particle on the circular orbit of
radius r ¼ Rc. The corresponding energy E can be found
by substituting this value of the angular momentum in the
first equation in (18). However, unlike the case correspond-
ing to the uncharged particle which has been discussed
in [15], the situation here is much more complicated due
to the additional term e

m At.
For example, for p ¼ 1, the potential takes the form

Vþ ¼ ε½C1 þ C2r2� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
1þ L2

r2

�s
; ð19Þ

where the constants C2 and k are related to the electric
charge by C2 ¼ 2−7=4=

ffiffiffiffiffiffi
Qe

p
and k ¼ 2−3=4

ffiffiffiffiffiffi
Qe

p
. The met-

ric function becomes

fðrÞ ¼ 1 −
2M
r

− kr; ð20Þ

pointing out the existence of the two horizons:

r� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8kM

p

2k
; ð21Þ

for 8kM < 1.
The relation V 0þ ¼ 0 is leading to the following equation

for the conserved momentum per unit mass

Σ2L4 − 2r2
�
ð2M − kr2ÞΣþ ε2

r6f
4k2

�
L2

þ r4
�
ð2M − kr2Þ2 − ε2

r6f
2k2

�
¼ 0 ð22Þ

with the notation

Σ ¼ −kr2 þ 2r − 6M: ð23Þ

The solutions of (22) are

L2 ¼ r2ð2M − kr2Þ
Σ

þ ε2r8f
4k2Σ2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16k2Σ

ε2r5

s �
ð24Þ

and one has to impose that the energy and angular
momentum are both real and finite, in order for the circular
motion of the test particle to be possible. To first order in
k2=ε2, one may use for L2 the positive expression:

L2 ≈
r2

Σ
½2r − 2M − 3kr2� þ ε2r8f

2k2Σ2
:

The region where one has a circular motion has as
boundaries the solutions of Σ ¼ 0. We consider the root
which is in between the two horizons, i.e.

r� ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6kM

p

k
ð25Þ

and, together with the condition fðrÞ > 0, one finds the
allowed range of the circular motion radius:

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6kM

p

k
< Rc <

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8kM

p

2k
: ð26Þ

For neutral particles (ε ¼ 0), the angular momentum has
the simple form

L2 ¼ r2ð2M − kr2Þ
Σ

; ð27Þ

which is positive for r < r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2M=k

p
, where the special

(maximum) radius r0 is in between the two horizons. The
neutral particle with zero momentum is moving on the
circular orbit with radius r ¼ r0, with the energy

DARIESCU, LUNGU, DARIESCU, and STELEA PHYS. REV. D 109, 024021 (2024)

024021-4



E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffi
8kM

pq
:

In Fig. 1, the blue plot represents the effective potential
(19) while the particle’s energy is represented by the
horizontal line. For the imposed numerical values: M ¼ 1,
ε ¼ 0.7, L ¼ 12 and k ¼ 0.01, the other parameters are
C2 ¼ k=2 ¼ 0.005 and C1 ¼ −C2r2− ¼ −0.02 and the two
horizons are situated at r− ¼ 2.04 and rþ ¼ 97.95. This
potential leads to three turning points given by the inter-
section of the horizontal line with the potential and they are
denoted here by r1 < r2 < r3. For E ¼ Vmin, the particle is
following a stable circular trajectory, while for E ¼ Vmax,
the particle has an unstable circular motion. The particle
with the Vmin < E < Vmax, which starts its journey
between the two turning points r2 and r3 has the bounded
periodic motion represented in the Fig. 2. The trajectory is
between the two horizons, the black hole horizon and the
cosmological-like horizon.
Note that the main characteristics of the effective

potential in Fig. 1 and the bounded motion in Fig. 2 do
not change if the test particle is extremely charged ε ¼ 1, or
if it is overcharged ε > 1.

IV. CHARGED PARTICLES IN THE
BACKGROUND OF THE KISELEV

GEOMETRY SOURCED BY
A MAGNETIC MONOPOLE

In the case of a charged particle moving in a magnetic
field sourced by the potential component Aφ defined in (9),
we start with the following Lagrangian:

L ¼ 1

2

�
−fðrÞṫ2 þ 1

fðrÞ ṙ
2 þ r2

�
θ̇2 þ sin2θφ̇2

��
þ εQmφ̇ð1 − cos θÞ; ð28Þ

together with the normalization condition coming from
gμνẋμẋν ¼ −1 for timelike particles:

1

fðrÞ ṙ
2 þ r2θ̇2 þ r2 sin2 θφ̇2 − fðrÞṫ2 ¼ −1; ð29Þ

where dot means the derivatives with respect to the proper
time τ. With dimensionless quantities (as they were
rescaled against rS ¼ 2M), one can work out the corre-
sponding Euler-Lagrange equations. Thus, for conserved
energy and angular momentum, one finds the relations

dt
dτ

¼ E
f
⇒

dt
dγ

¼ r2
E
f

ð30Þ

and

dφ
dτ

¼ 1

r2sin2θ
½L − εQmð1 − cos θÞ� ⇒ dφ

dγ

¼ 1

sin2θ
½L − εQmð1 − cos θÞ�; ð31Þ

where we have used the Mino time γ [35], introduced here
by the relation dτ ¼ r2dγ. Note that the Mino time is not an
affine parameter.
Using the Carter constant defined as [36]

K ¼ r4θ̇2 þ r4sin2θφ̇2 ¼ r4θ̇2 þ ½L − εQmð1 − cos θÞ�2
sin2θ

;

ð32Þ

one obtains the relation

5 10 15

0.0

0.5

1.0

1.5

2.0

2.5

r

V

FIG. 1. The blue plot corresponds to the effective potential (19)
with the metric function (20). The numerical values of the para-
meters are M ¼ 1, ε ¼ 0.7, L ¼ 12, k ¼ 0.01, C2 ¼ 0.005 and
C1 ¼ −0.02. The horizontal line represents the particle’s energy. � 20 � 10 0 10 20

� 20

� 10

0

10

20

x

y

FIG. 2. Parametric plot of the bounded trajectory of the charged
particle trapped by the potential (19). The red circle represents the
black hole horizon. The numerical values of the parameters are
the same as for the Fig. 1.
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�
dθ
dτ

�
2

¼ 1

r4

�
κ −

½L − εQmð1 − cos θÞ�2
sin2θ

�
⇒

�
dθ
dγ

�
2

¼ κ −
½L − εQmð1 − cos θÞ�2

sin2θ
; ð33Þ

where κ ¼ K=ð4M2Þ is the rescaled Carter constant.
By replacing the above results in the normalization

condition (29), one obtains the equation describing the
radial motion,

�
dr
dγ

�
2

¼ r4
�
E2 − f

�
1þ κ

r2

��
: ð34Þ

A. A note on the Poincaré cones

As we have mentioned in the Introduction, the motion of
an electrically charged particle in the field of magnetic
monopole should be confined on the so-called Poincaré
cones. Generically, these cones arise from the SOð3Þ
symmetry of the system (even if the Lagrangian L does
not exhibit this symmetry), which leads to various con-
served quantities which can be used to show that the
trajectories lie on cones.
To this end one should note that the electrically charged

particle has an angular momentum S⃗ with constant magni-
tude proportional to −εQm, which is directed along the
radial direction. On the other hand, the orbital angular
momentum L⃗ is orthogonal to the radial direction and its
magnitude jL⃗j is also conserved (being related to the Carter
constant, as we shall see below), while its direction changes
along the trajectory. However, the total angular momentum
J⃗ ¼ S⃗þ L⃗ is conserved along the trajectory. This means
that the trajectory of the charged particle in the field of a
magnetic monopole will be confined to a cone around the

direction of J⃗ defined by the constant angle cosα ¼ jS⃗j
jJ⃗j.

To see how this is working in practice, let us notice that
the Kiselev geometry (5) admits four Killing vectors: one
timelike ξμðtÞ ¼ ð1; 0; 0; 0Þ and three spacelike Killing

vectors adapted to the spherical symmetry of the system:

ξμð1Þ ¼ ð0; 0;− sinφ;− cos φ cot θÞ;
ξμð2Þ ¼ ð0; 0; cos φ;− sin φ cot θÞ;
ξμð3Þ ¼ ð0; 0; 0; 1Þ: ð35Þ

If the motion of the particle were geodesic then these
Killing vectors will all lead to conserved quantities along
the motion; however, this is not the case here due to the
electromagnetic Lorentz forces. In fact, these Killing
vectors can be used to define the components of the orbital
angular momentum along the charged particle’s trajectory:

Lx ¼ −r2 sin φ θ̇ − r2 sin θ cos θ cos φ φ̇;

Ly ¼ r2 cos φ θ̇ − r2 sin θ cos θ sin φ φ̇;

Lz ¼ r2sin2 θ φ̇: ð36Þ

If one defines the components of the angular momentum
S⃗ ¼ −εQmêr as

Sx ¼ −εQm sin θ cos φ;

Sy ¼ −εQm sin θ sin φ;

Sz ¼ −εQm cos θ; ð37Þ

then the total angular momentum of the system is now
defined as

J⃗ ¼ S⃗þ L⃗; ð38Þ

and it can be checked that it is a constant throughout the

charged particle motion: dJ⃗
dτ ¼ 0⃗. Note that the constant of

motion L derived using the Euler-Lagrange equation in
(31) can be related to the z component Jz of the total
angular momentum J⃗ as Jz ¼ L − εQm; hence Jz is a
constant of motion. To check that the other components

satisfy dJx
dτ ¼ dJy

dτ ¼ 0 one has to use the following Euler-
Lagrange equations for the coordinates θ and φ, namely

r2θ̈ þ 2rṙ θ̇−r2 sin θ cos θφ̇2 − εQm sin θφ̇ ¼ 0; ð39Þ

respectively,

r2 sin θφ̈þ 2r sin θṙ φ̇þ2r2 cos θθ̇ φ̇þεQmθ̇ ¼ 0: ð40Þ

Squaring the total angular momentum one finds

J2 ¼ jL⃗j2 þ ðεQmÞ2; ð41Þ

which means that the magnitude of the orbital angular
momentum is also conserved jL⃗j ¼ const. The angle
between the direction of J⃗ and the radial direction êr is
constant:

cos α ¼ −
εQm

J
; ð42Þ

which means that the charged particle trajectory is confined
on a Poincaré cone around the direction of J⃗.
Note that even if the components of the orbital angular

momentum are not conserved along the trajectory of the
charged particle, if one considers the magnitude of the
angular momentum vector L⃗:

jL⃗j2 ¼ L2
x þ L2

y þ L2
z ¼ r4θ̇2 þ r4 sin2 θ φ̇2 ð43Þ
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one can notice that its magnitude equals precisely the value
of the Carter constant (32). This is no accident, since for
spherically symmetric geometries of the form (5) there
exists one quadratic Killing vector (besides the trivial
Killing tensor given by the metric Kμν ¼ gμν) of the form

Kμν ¼ ξμð1Þξ
ν
ð1Þ þ ξμð2Þξ

ν
ð2Þ þ ξμð3Þξ

ν
ð3Þ ð44Þ

and it corresponds directly to the Carter constant K in (32).
As a consequence, one can write J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ ðεQmÞ2

p
.

Finally, the angle between the cone axis and the Oz axis is

cos ψ ¼ Jz
J
¼ L − εQmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K þ ðεQmÞ2
p : ð45Þ

B. The θ motion and the allowed range of L values

By inspecting the relation (33), one can notice that the
right-hand side of the equation should be a positive
quantity. For κ > 0, one has the following inequality:

½κ þ ðεQmÞ2� cos2θ þ 2εQmðL − εQmÞ cos θ
þ ðL − εQmÞ2 − κ ≤ 0: ð46Þ

For θ ¼ 0, the relation (46) is satisfied only for L ¼ 0,
while for θ ¼ π, the corresponding angular momentum
is L ¼ −2εQm.
One has to impose the discriminant Δ ≥ 0 and cos θ in

between the two real roots:

cos θ1;2 ¼
−εQmðL − εQmÞ �

ffiffiffiffi
Δ

p

κ þ ðεQmÞ2
ð47Þ

with

Δ ¼ κ½κ − LðL − 2εQmÞ�: ð48Þ

The analytical solution of the differential equation (33)
can be easily obtained. With the change of function
cos θ ¼ x and the values (47) denoted by cos θ1 ≡ a and
cos θ2 ≡ b, the relation (33) can be written as

−
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðx − aÞðx − bÞp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

q
dγ

and leads, by integration, to

θðγÞ ¼ arccos

�
aþ b
2

þ a− b
2

cos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κþ ðεQmÞ2
q

ðγ − γ0Þ
i�
;

¼ arccos

�
−εQmðL− εQmÞ

κþ ðεQmÞ2
−

ffiffiffiffi
Δ

p

κþ ðεQmÞ2

× cos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κþ ðεQmÞ2
q

ðγ − γ0Þ
i�
: ð49Þ

By integrating from cos θ1 ¼ a to cos θ2 ¼ b, we obtain
the periodicity

Δγ ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

p :

In Fig. 3, we have plotted the temporal evolution of
the θ coordinate given in (49). For specific values of the
parameters, this is oscillating between θ1 ¼ 0.755 and θ2 ¼
2.77 and is periodically passing the θ ¼ π=2 line.
Keeping the same notations, one can derive from the

Eqs. (31) and (33), the following solution of the φ equation:

φðγÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ þ ðεQmÞ2
p Z ½L − εQmð1 − xÞ�dx

ð1 − x2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðx − aÞðx − bÞp ;

¼ φ0 þ arctan

� ffiffiffiffiffiffiffiffiffiffiffi
1þ b
1þ a

r ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − x

r �

− arctan

� ffiffiffiffiffiffiffiffiffiffiffi
1 − b
1 − a

r ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − x

r �
: ð50Þ

Note that for x ¼ a or x ¼ b one has φ ¼ φ0 ¼ constant,
which means that the motion is purely radial on a cone.
Going back to the relations (47) and (48), one can notice

that the physical conditionsΔ ≥ 0 and cos θ1;2 ∈ ½−1; 1� are
leading to the range of the angular momentum:

L∈
h
εQm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

q
; εQm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

q i
: ð51Þ

Depending on the signs of εQm and the one in front of
ffiffiffiffi
Δ

p
in (47), the particle can cross the equatorial plane. The
values

L� ¼ εQm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

q

�6 �4 �2 0 2 4 6

1.0

1.5

2.0

2.5

FIG. 3. The temporal evolution of θðγÞ given in (49). The
numerical values of the dimensionless parameters are M ¼ 1,
εQm ¼ 0.4, κ ¼ 4, L ¼ 1.5. The horizontal line corresponds
to θ ¼ π

2
.
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correspond to Δ ¼ 0. For L ¼ Lþ which is positive for
both εQm > 0 and εQm < 0, the only possible value of θ is
given by

cos θþ ¼ −
εQmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ þ ðεQmÞ2
p :

Depending on the sign of εQm, the angle θþ can be either
θþ ∈ ð0; π

2
Þ or θþ ∈ ðπ

2
; πÞ.

For L ¼ L−, which is a negative quantity, the value
of θ is

cos θ− ¼ εQmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

p :

The θ motion can then be classified according to the
range of the angular momentum L. Let us consider
εQm > 0, but similar conclusions can be drawn for
εQm < 0. For the negative range

εQm −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

q
< L < εQm −

ffiffiffi
κ

p ð52Þ

the particle is above the equatorial plane, i.e. θ∈ ð0; π
2
Þ. For

εQm −
ffiffiffi
κ

p
< L < εQm þ ffiffiffi

κ
p ð53Þ

the values cos θ1;2 in (47) have opposite signs and the
particle crosses the equatorial plane. Finally, for

εQm þ ffiffiffi
κ

p
< L < εQm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

q
ð54Þ

the particle is below the equatorial plane, i.e. θ∈ ðπ
2
; πÞ.

The particle with L ¼ εQm þ ffiffiffi
κ

p
moves on the equatorial

plane.
For L outside the range (51), i.e. L < εQm −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

p
or L > εQm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ ðεQmÞ2

p
, the inequality

)46 ) is not satisfied and the motion is not possible.

C. The radial motion and circular trajectories

Turning now our attention to the radial motion, one has
to impose that the right-hand side of the relation (34) is
positive, i.e.

kr4 þ ðE2 − 1Þr3 þ ð1þ kκÞr2 − κrþ κ ≥ 0;

where everything is expressed in units of 2M.
The regions for which the above condition is satisfied are

bounded by the zeros of the fourth degree polynomial. The
number and the nature of zeros are depending on the
particle’s energy and on the values of parameters k and κ.
One may notice that for p ¼ 1 the relation (34) is leading

to the effective potential

V ¼
�
1 −

1

r
− kr

��
1þ κ

r2

�
; ð55Þ

where we used rescaled quantities. This is vanishing on the
two horizons present in the Kiselev geometry:

r� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k

p

2k

and is positive in between. For k ≪ 1, the values of r� can
be approximated to r− ≈ 1 and rþ ≈ 1=k.
Depending on the values of k and κ, the effective

potential allows attracting orbits, escape orbits, bound
orbits, stable and unstable circular orbits. These are the
same as for the uncharged test particles with L2 ¼ κ and
have been categorized in [37,38].
There is at least a maximum of the potential that

corresponds to an unstable circular orbit. The conditions

V ¼ E2; V 0
eff ¼ 0

lead to a system of two equations of fourth order:

kr4 þ ðE2 − 1Þr3 þ ð1þ kκÞr2 − κrþ κ ¼ 0;

kr4 − ð1þ kκÞr2 þ 2κr − 3κ ¼ 0: ð56Þ

With

κ ¼ R2ð1 − kR2Þ
2R − 3 − kR2

one may write the expression of the energy of particle on
the inclined circular orbit of radius R as being

E2 ¼ 2ðR − 1 − kR2Þ2
Rð2R − 3 − kR2Þ ¼

2RfðRÞ2
ΣðRÞ : ð57Þ

By imposing that E2 and κ are positive quantities, one may
find the range of the circular radius R as being

r− <
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3k

p

k
< R <

ffiffiffi
1

k

r
< rþ:

Thus, the physical range for the circular orbit is depend-
ing on the parameter k and it shrinks as k increases. Also,
the condition V 00ðRÞ ≥ 0, corresponding to a stable circular
orbit, leads to a relation between k and κ, i.e.

κ ≥
2

3 − 2k
:

In order to plot the trajectory of a bound particle whose
orbital momentum is in the allowed range, one has to use
the system of Euler-Lagrange equations derived from the
Lagrangian (28), i.e.
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̈r ¼ ṙ2f0

2f
−
f0E2

2f
þ rfθ̇2 þ f½L − εQmð1 − cos θÞ�2

r3sin2θ
;

θ̈ ¼ −
2ṙ θ̇
r

þ cos θ½L − εQmð1 − cos θÞ�2
r4sin3θ

þ εQm½L − εQmð1 − cos θÞ�
r4 sin θ

; ð58Þ

where ˙ðÞ and ðÞ0 are the derivatives with respect to τ and r,
respectively.
As an example, let us consider the potential (55)

represented in Fig. 4, for values of r=ð2MÞ in the range
which allows the particle’s bound orbits. There are two
unstable circular orbits corresponding to the two maxima of
the potential and one stable minimum.
The first unstable circular orbit corresponds to the energy

value E2
1 ¼ 0.9988, while the second unstable circular

orbit has E2
2 ¼ 0.9666. Finally, the stable circular orbit has

the energy E2
3 ¼ 0.9239. As such, if the charged particle

has energy greater than E1 then it either falls into the black
hole or escapes towards the cosmological horizon, depend-
ing on the chosen initial conditions. In Fig. 5, in the left
panel we plot the first unstable circular orbit, with the
charged particle escaping towards the cosmological hori-
zon. In the right panel we show the trajectory of a charged
particle orbiting the stable circular orbit.
In Fig. 6 we show two bounded trajectories for a particle

with energies between E3 < E < E2.
Note that the motion is confined to Poincaré cones of

various angles and inclinations.

V. CONCLUSIONS

In recent years, Kiselev’s solution has received increased
interest in connection to the properties of the anisotropic
fluid sourcing this geometry, properties that mimic a dark
energy source. In the present work we use a reinterpretation
of the Kiselev geometry in the context of nonlinear electro-
dynamics theories. More specifically, we focused on the
solution presented in [15]. This solution can be sourced
either by an electric charge or by a magnetic charge, in the
power-Maxwell theory. The power-Maxwell theory was
usually studied in the asymptotically flat regime, when the
power p is negative. In our work we pushed this regime to
extreme, by realizing that a geometry like that of Kiselev
(or like the de Sitter geometry) can also be sourced by
nonlinear electromagnetic fields in the power-Maxwell
theory. However, when a nonlinear Maxwell field sources
these geometries there are some issues with the photon
propagation in these backgrounds, since in this case the
photons will not move on null geodesics of the original
geometry. Instead, they will move on an effective geometry
as discussed in [15] and the problem arises here since that

FIG. 4. The effective potential (55) for k ¼ 4 and κ ¼ 0.0003.
The horizontal lines correspond to various energies of the charged
particle.

FIG. 5. Left panel: the first unstable circular orbit for a charged
particle with εQm ¼ 3, L ¼ 1.6 and energy E2

1 ¼ 0.9988. The
particle escapes towards the cosmological horizon. Right panel:
the second unstable circular orbit for a particle with εQm ¼ 3,
L ¼ 0.5 and energy E2

3 ¼ 0.9666. The particle moves into a
bound orbit around the black hole.

FIG. 6. Left panel: the bounded trajectory of a charged particle
with εQm ¼ 3, L ¼ −0.5 and energy E2 ¼ 0.95. Right panel: the
bounded trajectory for a particle with εQm ¼ 3, L ¼ 1 and
energy E2 ¼ 0.93.
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effective geometry has the wrong signature. Therefore, an
easy point to confront the theory with experimental data is
not available: there is no easy way to construct black hole
images in this theory, which might signal a pathology of
some sort.
The purpose of this paper was to present a detailed

characterization of the possible motions of electrically
charged test particles in these backgrounds. In Sec. III
we investigated the influence of the nonlinear electric field
on the motion of a electrically charged particle. As it turns
out, the value of the charge Qe has a deep influence on the
shape of the effective potential and also on the location of
the horizons, which tend to approach each other as Qe is
increasing. As it can be noticed in Fig. 1, the motion of
particles with Vmin < E < Vmax can be bounded outside the
black hole horizon.
In Sec. IV we investigated the motion of electrically

charged particles around a magnetically charged Kiselev
black hole in the power-Maxwell theory. In this case the
motion is confined on Poincaré cones of various angles.
As avenues for further work, it might be interesting to

investigate the effects of nonlinear power-Maxwell fields in
constructing compact objects in general relativity. In the
usual Maxwell theory such solutions were generated for

instance in [39,40] and it might be fruitful to further
investigate this matter in the more general context of
nonlinear electrodynamics.
Another interesting issue is the study of the behavior of

charged scalar and spinorial fields in the background of the
reinterpreted Kiselev geometry in the nonlinear electrody-
namics. Following similar analysis performed in [41–43], it
is quite possible that for particular values of the parameter
p the solutions can be expressed analytically by means of
the Heun functions [44]. It might also prove fruitful to
rewrite the Kiselev geometry using inflationary coordinates
as in [45] and look for multiblack holes in this context or in
the Kaluza-Klein geometries in five dimensions [46].
Another interesting work might be related to treating the
power-Maxwell electromagntic field as a dark matter/
energy field, besides the usual Maxwell field, along the
work done in [47]. Work on these issues is in progress and
it will be reported elsewhere.
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