
Dynamical gravastars may evade no-go results for exotic compact objects,
and further analytical and numerical results

for the dynamical gravastar model

Stephen L. Adler *

Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA

(Received 27 June 2023; accepted 22 December 2023; published 16 January 2024)

Using graphs plotted from the Mathematica notebooks posted with our paper “Dynamical Gravastars,”
we show that a dynamical gravastar has no hard surface, and that a second light sphere resides in the deep
interior where there is maximum time dilation. These facts may permit dynamical gravastars to evade no-go
results for exotic compact objects relating to light leakage inside the shadow, and nonlinear instabilities
arising from an interior light sphere. Testing these surmises will require further detailed modeling
calculations, beyond what we commence in this paper, using the numerical dynamical gravastar solution.
We also discuss the effect of replacing the sigmoidal function in the gravastar calculation by a unit step
function, and we analyze why the dynamical gravastar evades the singularities predicted by the Penrose and
Hawking singularity theorems, despite satisfying both the null and strong energy conditions. We then give a
simplified two-step process for tuning the initial value νð0Þ ¼ nuinit to achieve νð∞Þ ¼ 0, and give exact
integrals for the pressure differential equation in terms of νðrÞ in the interior and exterior regions. Finally,
we briefly discuss an extension of the model that includes an external shell of massive particles.
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I. INTRODUCTION

The EHT observations [1] of Sg A* and M87 confirm
the presence of the basic exterior spacetime geometry
expected for a black hole, but leave open the question of
what lies inside the light sphere. Is it a true mathematical
black hole, or a novel type of relativistic star or “exotic
compact object” (ECO), that appears black holelike from
the outside, but has no horizon or interior singularity?
The early ECO literature has been recently reviewed by
Cardoso and Pani [2]. In particular, they note the seminal
“gravastar” papers of Mazur and Mattola [3], which are
based on assuming a pressure jump in the interior equa-
tion of state, from a normal matter equation of state to
the “gravity vacuum” equation of state proposed by
Gliner [4], in which the pressure p is minus the density ρ.
This is the vacuum equation of state associated with a
pure cosmological constant or de Sitter universe, and gives
rise to the name gravastar ¼ gravity vacuum star.
Related ideas were discussed via a condensed matter
analogy in [5–8].
In a recent paper [9] we have presented a theory of

“dynamical gravastars,” based on following the conven-
tional analysis [10] of relativistic stars. Our model differs
from that of Mazur and Mottola and the subsequent
paper of Visser and Wiltshire [11] in several significant
respects. First, we perform our entire analysis from the

Tolman-Oppenheimer-Volkoff (TOV) equations for rela-
tivistic stellar structure. Second, we note that the TOV
equations require that the pressure p must be continuous,
whereas the energy density ρ can have discontinuous
jumps, so we implement the Gliner equation of state by
a jump to negative energy density with positive pressure.1

This of course violates some (but as we shall see, not all)
of the classical energy conditions; however, from a semi-
classical quantum matter point of view, the regula-
rized energy density is known not to obey positivity
conditions [13,14]. Third, we avoid assuming designated
radii at which transitions take place. In our model,
transitions follow dynamically from the equations of
motion and the assumed equations of state, hence the
terminology “dynamical gravastar.”
The TOV equations take the form

dmðrÞ
dr

¼ 4πr2ρðrÞ;
dνðrÞ
dr

¼ NνðrÞ
1 − 2mðrÞ=r ;

dpðrÞ
dr

¼ −
ρðrÞ þ pðrÞ

2

dνðrÞ
dr

;

NνðrÞ ¼ ð2=r2ÞðmðrÞ þ 4πr3pðrÞÞ; ð1Þ
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1For earlier work on gravastars with continuous pressure, but
also continuous equation of state, see [12].
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where p and ρ are the total pressure and density, including
both matter and possible cosmological constant contribu-
tions, and ν ¼ logðg00Þ. These equations become a closed
system when supplemented by an equation of state ρðpÞ
giving the density in terms of the pressure. The TOV
equations assign a special role to an equation of state where
pþ ρ is zero or very small, without invoking a cosmo-
logical vacuum analogy, since pþ ρ ≃ 0 implies a regime
where the pressure evolution with radius vanishes or is
very small. This can play a role in explaining why
astrophysical black holes of very different masses have
basically similar forms.
In the dynamical gravastar model, we assume an

equation of state with continuous pressure p ≥ 0, and a
jump in the density ρ from an external relativistic matter
state with ρ ¼ 3p to an interior state with pþ ρ ¼ β, where
0 < β ≪ 1. We presented results in [9] and in online
supplementary material in the form of Mathematica note-
books [15] for the cases β ¼ 0.1, 0.01, 0.001, respectively
labeled TOV.1, TOV.01, TOV.001. In [9], we included in
the analysis a cosmological constant contribution, but
concluded that it had a very small effect on the results
of the notebooks, and so could be dropped in studies
relating to astrophysical applications. Consequently, we
omitted the cosmological constant terms in p, ρ in an
annotated notebook which is posted online on the Wolfram
community [16].
Our purpose here is to present additional plots obtained

from the notebooks TOV.01 and TOV.001 to address
objections that have been raised to interpreting the EHT
observations as indicating anything other than a true black
hole. The analyses in the following sections show that these
objections may be evaded by the internal structure of
dynamical gravastars. Further confirmation will require
detailed simulations and computations beyond what can be
inferred from the Mathematica notebooks [15] alone. We
give in the subsequent sections additional observations
about the dynamical gravastar equations and numerical
methods that we found after posting [9], several of which
will simplify and expedite further gravastar calculations.

II. LIGHT LEAKAGE INSIDE THE SHADOW

The first objection that has been raised against an exotic
compact object mimicking the galactic center black hole
Sg A*, or the extragalactic hole M87, concerns the dark
space within the imaged ring, i.e., the lack of observed
emission inside the shadow. If a postulated exotic object
has a surface, then as suggested in [17], reviewed in [18],
and simulated in detail in the EHT analysis Paper VI [19],
the energy of a hot accretion inward flow striking the
surface will be thermalized, giving a surface luminosity as
viewed from large distances that would violate bounds set
by the EHT observations.
However, this argument does not directly apply to the

dynamical gravastar analyzed in [9]. In Fig. 1 we plot the

density ρðrÞ from the TOV.01 notebook versus radius r,
and in Fig. 2 we give the similar plot from the TOV.001
notebook. In both cases we see that there is no sharply
defined surface at which the density jumps to its maxi-
mum value. Instead, the density increases smoothly as r
decreases from the vicinity of the nominal boundary,
approaching its maximum value in both cases at a radius
of about 0.82 times the nominal boundary radius. Thus,
energy from an accretion flow will be dissipated over a
range of radii, and the thermalization and resulting external
luminosity may be significantly less than when calculated
assuming a sharp surface. Detailed simulations based on
the dynamical gravastar density profile will be needed to
assess whether the objections raised in the case of a sharp
surface still apply.

III. COLLAPSE RESULTING FROM AN INTERIOR
SECOND LIGHT SPHERE

The second objection that has been raised against an
exotic compact object mimicking Sg A* or M87 concerns
the existence of a second, interior light sphere and possible

FIG. 1. Plot of the density ρðrÞ for the TOV.01 notebook. The
nominal boundary is 2M ≃ 33.

FIG. 2. Plot of the density ρðrÞ for the TOV.001 notebook. The
nominal boundary is 2M ≃ 55,200.
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associated nonlinear instabilities. The argument, developed
in the papers [20–25], shows that on topological grounds
one in general expects an even number of light spheres
around a spherically symmetric exotic compact object.
The outer one is the usual one, which is unstable in the
sense that light near this sphere moves away from it, either
inwards or outwards. But the general topological argument
shows that there is also an inner light sphere which is stable
in the sense that light moves towards it, from inside and
outside. This leads to possible nonlinear instabilities of
the exotic compact object, associated with the nonlinear
growth of null geodesic modes. If the relevant timescale for
instability growth is not cosmological in magnitude, this
can lead to collapse or explosion of the object on observ-
able timescales.
Writing the metric as

ds2 ¼ BðrÞdt2 − AðrÞdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

the photon sphere radius is determined [26] by solution(s)
of the equation

d
dr

�
r2

BðrÞ
�

¼ 0; ð3Þ

which can be expanded as

QðrÞ≡ 2 −
r

BðrÞ
dBðrÞ
dr

¼ 0: ð4Þ

Writing BðrÞ ¼ eνðrÞ as in [9], this becomes

QðrÞ≡ 2 − r
dνðrÞ
dr

¼ 0: ð5Þ

This can be rewritten by substituting the TOV equations
Eq. (1), giving after algebraic rearrangement

QðrÞ ¼ 3 −
1þ 8πr2pðrÞ
1 − 2mðrÞ=r : ð6Þ

Since r2pðrÞ and mðrÞ=r both vanish at r ¼ 0 and at
r ¼ ∞, one hasQð0Þ ¼ Qð∞Þ ¼ 2. This implies thatQðrÞ
must have an even number of zeros (this is the radial
version of the more general topological argument of
[20,21]) and so in addition to the usual light sphere at
r ≃ 3M there must be a second light sphere. In Fig. 3 we
plot QðrÞ as calculated in the TOV.01 notebook, and we
see that in addition to the external light sphere at r ≃ 49.5
there is a second zero crossing of QðrÞ, indicating another
light sphere, at the interior point r ≃ 3.5. A similar plot of
QðrÞ from the TOV.001 notebook is given in Fig. 7, in
which the exterior light sphere is far-off scale to the right,
and the second zero crossing can be seen at r ≃ 11.5.

To assess the stability of the interior light sphere, we
follow the analysis of [24], which shows that stability
(instability) corresponds to a negative (positive) value of
the second derivative of the potential V 00, which [omitting a
positive factor L2=ðAðrÞr4Þ, with L the angular momen-
tum] is given by

V 00ðrÞ ¼ 2 − r2B00ðrÞ=BðrÞ: ð7Þ

This can be rewritten in terms of quantities appearing in the
TOV equations as

V 00ðrÞ ¼ 2 − r2ðν00ðrÞ þ ν0ðrÞ2Þ;

ν0ðrÞ ¼ NνðrÞ
ð1 − 2mðrÞ=rÞ ;

dNνðrÞ=dr ¼ −ð4=r3ÞðmðrÞ þ 4πr3pðrÞÞ
þ ð2=r2ÞðdmðrÞ=drþ 12πr2pðrÞ
þ 4πr3dpðrÞ=drÞ;

ν00ðrÞ ¼ dNνðrÞ=dr
1 − 2mðrÞ=r

þ 2NνðrÞðr−1dmðrÞ=dr −mðrÞ=r2Þ
ð1 − 2mðrÞ=rÞ2 : ð8Þ

In Fig. 4 we plot V 00ðrÞ for the TOV.01 notebook, showing
that it is positive at the outer light sphere radius of r ≃ 49.5,
indicating instability, and may be negative at the inner
light sphere radius of r ≃ 3.5. In Fig. 5 we repeat this
plot with a much finer vertical scale, showing that V 00ðrÞ
is negative, indicating stability, at the inner light sphere
radius of r ≃ 3.5. In Fig. 8, we plot V 00ðrÞ for the TOV.001
notebook, showing that it is negative, again indicating
stability, at the inner light sphere radius r ≃ 11.5.
Stability of the inner light sphere raises the possibility of

a pileup of null geodesics at that radius, leading to a
possible dynamical instability that, on a sufficiently long

FIG. 3. Plot of QðrÞ for the TOV.01 notebook. The exterior
light sphere is the zero at r ¼ 3M ≃ 49.5; there is an interior
second light sphere at r ≃ 3.5.
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timescale, could blow up or collapse an exotic compact
object [22,27–29]. Simulations for two models of bosonic
compact objects in [22] suggests that for these models this
instability occurs on physically accessible timescales,
ruling out these compact objects as candidates for black
hole mimickers. However, for dynamical gravastars the
situation can differ, and this objection may be evaded. In
Fig. 6 we plot νðrÞ ¼ logBðrÞ ¼ log g00ðrÞ for the TOV.01
notebook, which shows that the inner-light sphere radius
corresponds to an exponentially small νðrÞ, and therefore
an exponentially large time dilation. In Fig. 9 we give a
similar plot for the TOV.001 notebook, showing that the
smallness of νðrÞ at the inner-light sphere radius is even
more extreme, and the trend shows that as β approaches
zero, the trend of νðrÞ at the inner-light sphere radius is to
even smaller values than shown in Figs. 6 and 9. This
means that for parameters giving physically realistic
gravastars, as discussed further in Sec. VIII, the timescale
for instability development at the inner-light sphere can be

FIG. 5. The quantity V 00 of Eq. (36) of Cardoso et al. [27] for
the TOV.01 notebook, with the positive factors L2=r4 factored
out, plotted with a much finer vertical scale than used in Fig. 4.
One sees that V 00 is negative at r ≃ 3.5.

FIG. 6. Plot of νðrÞ for the TOV.01 notebook. The large
negative value at r ≃ 3.5 corresponds to a large time dilation.

FIG. 7. Plot of QðrÞ for the TOV.001 notebook. The exterior
light sphere is a zero at r ¼ 3M ≃ 82,800, far off scale to the
right; there is an interior second light sphere at r ≃ 11.5.

FIG. 4. The quantity V 00 of Eq. (36) of Cardoso et al. [27] for
the TOV.01 notebook, with the positive factors L2=r4 scaled out.
One sees that V 00 is positive at r ≃ 49.5, and may be negative
at r ≃ 3.5.

FIG. 8. The quantity V 00 of Eq. (36) of Cardoso et al. [27] for
the TOV.001 notebook, with the positive factors L2=r4 factored
out. One sees that V 00 is negative at r ≃ 11.5.
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very large on a cosmological timescale. Detailed dynamical
gravastar simulations will be needed to assess whether the
objections raised in [22] are relevant.

IV. RESULTS WHEN A SIGMOIDAL JUMP
IS REPLACED BY A UNIT STEP JUMP

The calculations of the previous sections based on the
Mathematica notebooks associated with [9] were all done
with a density jump smoothed by a sigmoidal function

θϵðxÞ ¼
1

1þ e−x=ϵ
; ð9Þ

with ϵ ¼ 0.001. By changing one line of Mathematica
code, θϵðxÞ can be replaced by a Heaviside step function
θðxÞ, represented by the Mathematica function UnitStep
[x]. When this is done in the TOV.01 notebook, the initial
value of the metric exponent νðxÞ, denoted by nuinit in the
program, has to be retuned from nuinit = −21.255 to nuinit
= −23.628 in order to achieve the boundary condition

νð∞Þ ¼ 0. This results in a substantial change in the
nominal boundary from 2M ≃ 33 to 2M ≃ 60, but the
qualitative features of the solution are not altered. In
Figs. 10–12 we give the results obtained in the unit step
jump case that are analogous to those shown in Figs. 1, 3,
and 5 obtained respectively from the sigmoidal function
case. The conclusions reached above are unchanged.
Similar results to those for the unit step are obtained from
a sigmoidal density jump when one takes ϵ ¼ 0.00001 in
place of ϵ ¼ 0.001.

V. ENERGY CONDITIONS AND BLACK HOLE
SINGULARITY THEOREMS

The gravastar solutions developed in [9] do not have
central singularities. So why do the classic singularity
theorems of general relativity fail to apply? One might
think that this is because of the negative interior energy
density ρ < 0 which violates both the “weak energy

FIG. 9. Plot of νðrÞ for the TOV.001 notebook. The large
negative value at r ≃ 11.5 corresponds to a large time dilation.

FIG. 10. Plot of the density ρðrÞ for the TOV.01 notebook when
the sigmoidal jump used in Fig. 1 is replaced by a unit step jump.
The nominal boundary is now 2M ≃ 60.

FIG. 11. Plot of QðrÞ for the TOV.01 notebook when the
sigmoidal jump used in Fig. 3 is replaced by a unit step jump. The
exterior light sphere is the zero at r ¼ 3M ≃ 90; there is an
interior second light sphere at r ≃ 3.7.

FIG. 12. The quantity V 00 of Eq. (36) of Cardoso et al. [27] for
the TOV.01 notebook when the sigmoidal jump used in Fig. 5 is
replaced by a unit step jump, with the positive factors L2=r4

factored out. One sees that V 00 is negative at r ≃ 3.7.
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condition” ρ ≥ 0; ρþ p ≥ 0 and the “dominant energy
condition” ρ ≥ jpj. However, the seminal Penrose singu-
larity theorem [30] uses the “null energy condition”

ρþ p ≥ 0; ð10Þ

which is obeyed by the assumption ρþ p ¼ β > 0, and the
subsequent Hawking theorem [31] uses the “strong energy
condition”

ρþ p ≥ 0; ρþ 3p ≥ 0; ð11Þ

which is also obeyed by ρþ p ¼ β > 0; p > 0. So the
failure of these theorems to apply is not a result of the
breakdown of an energy condition assumption.
However, as emphasized in the retrospective [32] on the

Penrose theorem and its successors, an “initial/boundary
condition is absolutely essential in the theorems.” For
example, the Penrose theorem assumes the presence of a
closed, future-trapped surface, but because the dynamical
gravastar solution has BðrÞ > 0 and AðrÞ−1 ¼ 1–2mðrÞ=
r > 0, as shown in the graphs of [9], there is no trapped
surface, corresponding to the fact that there is neither an
event horizon nor an apparent horizon [33]. Hence, despite
obeying the null energy condition, the dynamical gravastar
does not satisfy the conditions needed for the Penrose
singularity theorem. Similarly, the Hawking theorem
requires a negative extrinsic curvature relative to the
positive time axis over some spacelike surface, and this
is not present in the gravastar because there are no horizons.
Thus, despite obeying the strong energy condition, the
dynamical gravastar does not satisfy the conditions needed
for the Hawking singularity theorem. We believe these
results are significant, because the strong and null energy
conditions are the natural relativistic generalization of the
intuitive nonrelativistic notion that matter should have a
nonnegative energy density.
The null and strong energy conditions have a direct

consequence for the TOV equations in the central neigh-
borhood r ≃ 0 when the density ρðrÞ is approximately
constant near the origin, as is the case for our gravastar
models. When ρðrÞ ≃ ρð0Þ for small r, integrating the
differential equation for mðrÞ gives

mðrÞ ≃ 4πr2

3
ρð0Þ ≃ 4πr2

3
ρðrÞ: ð12Þ

Equation (1) then gives for NνðrÞ

NνðrÞ ≃
4πr2

3
ðρðrÞ þ 3pðrÞÞ; ð13Þ

which is non-negative by virtue of the strong energy
condition. This implies that near r ¼ 0, the derivative
dνðrÞ=dr is non-negative, since the denominator
1 − 2mðrÞ=r is very close to unity. Hence, νðrÞ starts from

the origin as a nondecreasing function of radius r. The TOV
equation for dpðrÞ=dr then implies, by virtue of both the
null and strong energy conditions, that pðrÞ starts from
the origin as a nonincreasing function of radius r. This
behavior is seen in our numerical solutions, where νðrÞ is a
monotonic increasing and pðrÞ is a monotonic decreasing
function of r.

VI. A SIMPLE TWO-STEP METHOD
FOR TUNING νð0Þ=nuinit

As noted in [9] and in Sec. I, the effect of including a
cosmological constant in the calculation is extremely small,
so for astrophysical applications of dynamical gravastars it
can be dropped. The TOV equations then take the form
given in Eq. (1), where p and ρ are now the matter pressure
and density.
We see that in Eq. (1), νðrÞ enters only through its

derivative dνðrÞ=dr. Hence, a constant shift in νðrÞ, such as
changing the initial value νð0Þ, only affects νðrÞ itself; the
equations and numerical results for mðrÞ and pðrÞ are
unaffected. Thus, it permits a simple method for tuning the
initial value νð0Þ to achieve the large r boundary condition
νðrmaxÞ ¼ 0, where we have taken rmax as a proxy
for r ¼ ∞.
As noted in Fig. 9 of [9], when nuinit is correctly tuned,

exterior to the nominal horizon at 2M the metric coefficient
g00 ¼ eνðrÞ almost exactly coincides with the Schwarzschild
metric value g00 ¼ 1–2M=r, with M the gravastar mass.
This is a consequence of the fact that the density ρðrÞ
becomes very small beyond 2M, so by the Birkhoff
uniqueness theorem for matter-free spherically symmetric
solutions of the Einstein equations, the metric must take the
Schwarzschild form. A consequence of this, and of the TOV
equation properties under shifts in nuinit, is that with an
arbitrary initial guess for nuinit, the large rvalue of eνðrÞ must
have the form

eνðrÞ ¼ eKð1 − 2M=rÞ; ð14Þ

where K is a constant and the gravastar massM can be read
off from the exterior value ofmðrÞ, sincemðrÞ is not affected
by shifts in nuinit. Thus, reducing the initial guess for nuinit
by K, with

K ¼ νðrÞ − logð1 − 2M=rÞ ≃ νðrmaxÞ
− logð1 − 2mðrmaxÞ=rmaxÞ ð15Þ

gives the correct tuning of nuinit. So the two step procedure
to tune nuinit is (i) first run the program with an initial guess
for nuinit, and calculate K from Eq. (15), and (ii) then
subtract this from the initial guess for nuinit and rerun the
program. We found that this worked well in practice, with
residual values of K after the second step of order 10−9.
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VII. INTEGRATION OF THE EQUATION
FOR pðrÞ IN TERMS OF νðrÞ

Referring again to the TOV equations given in Eq. (1),
we find that for the matter equations of state assumed in [9],
and zero cosmological constant, the differential equation
for pðrÞ can be integrated in closed form in terms of νðrÞ.
For pressures p > pjump, where the equation of state is
assumed to take the form pðrÞ þ ρðrÞ ¼ β, the differential
equation for pðrÞ takes the simple form

dpðrÞ
dr

¼ −
β

2

dνðrÞ
dr

; ð16Þ

which can be integrated, using pð0Þ ¼ 1 and νð0Þ ¼ nuinit,
to give

pðrÞ ¼ 1þ β

2
ðnuinit − νðrÞÞ: ð17Þ

For pressures p < pjump, where the equation of state is
assumed to take the form ρðrÞ ¼ 3pðrÞ, the differential
equation for pðrÞ also takes a simple form

dpðrÞ
dr

¼ −2pðrÞ dνðrÞ
dr

; ð18Þ

which can be integrated to give

pðrÞ ¼ pjump e2ðνðrjumpÞ−νðrÞÞ; ð19Þ

where rjump is the radius value at which the density jump is
dynamically determined to occur by the TOV equations.
For example, for the plots shown in Figs. 10–12, the density
jump at pjump ¼ .95 is found to occur at rjump ¼ 48.895.
We have verified that plots of pðrÞ using these exact
solutions agree with plots of pðrÞ obtained from numerical
integration of the TOV equations.

VIII. PARAMETERVALUES ANDQUANTITATIVE
RESULTS FOR TIME DELAYS

In this section we present further computational results
obtained from the notebooks TOV.01 and TOV.001, with
the cosmological constant set equal to zero, permitting the
simple two-step procedure for tuning the initial value νð0Þ
discussed in Sec. VI. We retain the sigmoidal smoothed
step function used in these notebooks, since this has no
bearing on the initialization procedure. We also continue
to assume that the pressure at the origin of coordinates
is initialized to pð0Þ ¼ 1, which is always possible by
rescaling the radial coordinate and is discussed in detail
in [9]. This leaves two essential physical parameters of the
dynamical gravastar model, the numerically small constant
β in the interior equation of state pþ ρ ¼ β, and the
pressure value pjump at which the equation of state

switches to the exterior relativistic matter equation of
state ρ ¼ 3p.
What are reasonable physical ranges for these two

parameters? Presumably, the central pressure pð0Þ ¼ 1
corresponds to a Planck energy-scale pressure in our
geometrized units, and then the value of pjump is the
fractional value of this pressure at which the equation of
state jumps. Since all the values of pjump for which we
were able to obtain numerical results were above 0.85 for
the TOV.01 notebook, and above 0.9773 for the TOV.001
notebook, these also correspond to pressures within a
decade of a Planck energy-scale pressure. The possible
range for the parameter β is potentially much larger, and
less clear. Since pressure p and energy density ρ scale with
length as the inverse of length squared, corrections to the
equation of state of hypothesized quantum matter in the
Planckian regime could come from anywhere between
just below the Planck scale, corresponding to β ∼ :01, to
the electroweak symmetry breaking scale where particles
get their masses, corresponding to β ∼ ð10−17Þ2 ¼ 10−34.
In practice, we could not get the Mathematica notebooks
to perform well at β values much lower than the value
β ¼ 0.001 computed in the TOV.001 notebook.
Because of the radial rescaling covariance of the model,

only ratios of quantities with the same dimensionality have
a physical significance. Since in geometrized units the
velocity of light is unity, the coordinate time delay ΔT for a
particle to traverse from the exterior to the center of a
gravastar, and the corresponding coordinate radius of the
effective “horizon” R ¼ 2M, withM the effective gravastar
mass, both have dimensions of length. So the ratio (the
normalized time delay)

D≡ ΔT
2M

ð20Þ

has a physical significance, and we proceed to compute
tables of D versus pjump for β ¼ :01 and β ¼ :001, using
the notebooks TOV.01 and TOV.001 respectively. As in
Sec. VI, the gravastar mass M is read off from the exterior
value ofmðrÞ, clearly visible in the plots as the value where
the mðrÞ curve levels off.
To calculate the coordinate time delay ΔT, we use the

text of Weinberg [34], which conveniently computes test
particle motion in the general spherically metric of Eq. (2).
The radial part of the equation of motion is given by

AðrÞ
B2ðrÞ

�
dr
dt

�
2

þ J2

r2
−

1

BðrÞ ¼ −E; ð21Þ

with the constants of motion energy per unit mass E and
angular momentum per unit mass J given in terms of the
test particle velocity V at infinity and impact parameter b by

J ¼ bV; E ¼ 1 − V2: ð22Þ

DYNAMICAL GRAVASTARS MAY EVADE NO-GO RESULTS FOR … PHYS. REV. D 109, 024020 (2024)

024020-7



From these we get

ΔT ¼
Z

R

r�
dr

dt
dr

¼
Z

R

r�
dr

�
AðrÞ
BðrÞ

�
1=2

=½1−BðrÞð1−V2 þ b2V2=r2Þ�1=2;

ð23Þ

with r� the inner radius at which the denominator in
Eq. (23) vanishes, and with BðrÞ and AðrÞ given in terms
of quantities appearing in the TOV equations of Eq. (1) by

BðrÞ ¼ eνðrÞ;

AðrÞ ¼ 1=½1 − 2mðrÞ=r�: ð24Þ

In using Eq. (23) in computations with the TOV.01 and
TOV.001 notebooks, it turns out that BðrÞ is so small in the
gravastar interior that the denominator ½1 − BðrÞð1 − V2 þ
b2V2=r2Þ�1=2 is approximately equal to unity for relevant
values of V ≤ 1 and 0 ≤ b=ð2MÞ ≤ 1. Hence, to one tenth
of one percent accuracy or better for all entries in the
Tables, the formula for ΔT can be simplified to2

ΔT ¼
Z

R

rmin

dr

�
AðrÞ
BðrÞ

�
1=2

; ð25Þ

with rmin the inner radius cutoff of 10−7 used in the
notebooks. This simplification has the important conse-
quence that the time delays for an infalling object are
essentially independent of its impact parameter, and are the
same as would be computed for the case of an incoming

photon on a radial trajectory with V ¼ 1 and b ¼ 0. In
Tables I and II we tabulate values of D, M, and the rmax
used in each calculation, for a range of values of pjump. We
see that as pjump decreases to the smallest value for which
the notebooks give stable results, the magnitude of D
increases up to a maximum of 1.43 × 107 for β ¼ 0.01, and
1.54 × 107 for β ¼ 0.001. The fact that these limits are so
similar suggests that they relate to the computational
accuracy of the Mathematica utility, and do not reflect a
systematic trend versus β from which one could attempt to
extrapolate to smaller β values.
To scale up these numbers to astrophysical black holes,

we start from the light transit time across the Schwarzschild
radius 2M⊙ of a solar mass black hole, which is 3 km=
ð3 × 105 km=sÞ ≃ 10−5 s ¼ 0.3 × 10−12 yr. For this size
gravastar, the maximum time delay D calculated in
Tables I and II gives a transit time from the nominal
horizon to the center of 1.5 × 107 × 0.3 × 10−12 yr ≃
0.5 × 10−5 yr. The corresponding transit times for a 4 ×
106M⊙ gravastar and a 108M⊙ mass gravastar are 20 years
and 500 years, respectively. Thus, the transit time delays
for supermassive black holes in the gravastar model can
accommodate the time delays reported by Cendes et al.
[35] for delayed radio emission following optical obser-
vation of tidal disruption events in a sampling of super-
massive black holes.
From the above calculations, we get some general

observations about time delays arising from the very small
value of BðrÞ in gravastars: (i) Assuming astrophysical
black holes of different masses have homologous struc-
tures, differing only by a rescaling of the central pressure,
then time delays scale proportionally to the mass of the
black hole. The proportionality constant is a function of
the parameters β and pjump of the gravastar model, as is
clear from comparing the different lines in the tables, and
so cannot be predicted a priori; (ii) Time delays can easily
range from minutes to centuries depending on the mass
of the hole; and (iii) For impact parameters less than or
equal to the nominal Schwarzschild radius, the time delay is

TABLE I. Normalized time delay D defined in Eq. (20) and
hole mass M, versus pjump and maximum radius rmax used in
the calculation, all for β ¼ 0.01.

pjump D M rmax

0.95 680 16.5 60
0.94 1840 44.4 200
0.93 4980 120 600
0.92 13,500 322 1,000
0.90 98,800 2,330 8,000
0.88 723,000 16,900 80,000
0.86 5.29 × 106 122,000 400,000
0.85 1.43 × 107 329,000 800,000

TABLE II. Normalized time delay D defined in Eq. (20) and
hole mass M, versus pjump and maximum radius rmax used in
the calculation, all for β ¼ 0.001.

pjump D M rmax

0.98 1.04 × 106 25,500 90,000
0.9795 1.71 × 106 42,000 200,000
0.9793 2.09 × 106 51,300 200,000
0.9791 2.55 × 106 62,600 200,000
0.9790 2.82 × 106 69,200 200,000
0.9785 4.64 × 106 114,000 250,000
0.9780 7.66 × 106 188,000 500,000
0.9775 1.26 × 107 310,000 900,000
0.9773 1.54 × 107 379,000 900,000

2Similar reasoning can be used to strongly bound the change in
azimuthal angle Δϕ of an infalling object inside the gravastar.
The differential equation obeyed by ϕ is [34] dϕ=dt ¼ JBðrÞ=r2,
and so the change with radius is Δϕ ¼ R

drðdt=drÞdϕ=dt. This
leads to the bound jΔϕj ≤ R

R
rmin

½AðrÞBðrÞ�1=2ð2M=r2Þ, which
evaluated for the final line of Table II gives jΔϕj ≤ 2 × 10−11.
This shows that test bodies move inside the gravastar on nearly
radial trajectories.
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independent of both impact parameter b and the velocity at
infinity V of an infalling object.
Finally, we return to the discussion of Sec. III and

calculate the normalized time delay over the inner light
sphere, which for all pjump values in Table II has a radius
of 11.5. Defining Dinner by

Dinner ¼
Z

11.5

rmin

dr

�
AðrÞ
BðrÞ

�
1=2

=11.5; ð26Þ

we find that for pjump ¼ 0.9773, the lowest line in Table II,
Dinner ≃ 1012, five orders of magnitude larger than the
normalized delay from the gravastar surface to center.
This gives quantitative support to the discussion given
in Sec. III of possible evasion in the gravastar model of
conjectured instabilities associated with the inner light
sphere.

IX. EXTENSION OF THE MODEL TO INCLUDE
AN EXTERNAL LAYER WITH NONZERO

PARTICLE MASSES

The model of [9] assumes an exactly massless equation of
state ρðpÞ ¼ 3p in the region external to the density jump
at pressure pjump. A more realistic model would be to
included an outer shell in which particle masses are taken
into account, most simply through a “dust” equation of state
ρðpÞ ¼ ρ0 ¼ constant for pressure p below a chosen value
pext. We find that for ρ0 ¼ pext ¼ 10−8 or smaller, the
results are very similar to the original model. Another
method to approximate the effects of a matter layer is to
replace the pressure p in the exterior region equation of state
by ðp2 þ ρ20Þ1=2, with ρ0 ¼ 10−8 or smaller, again giving
results very similar to the original model. To get an idea of a
realistic physical range for the two new parameters, we note
that the dimensions of energy density and pressure are both
length−2 in the geometrized units we are using. Let us
assume that the density jump at pressure pjump occurs in the
regime between the grand unification scale and the Planck
scale, that is in the range 1016 GeV to 1019 GeV, while the
jump at pext ≃ρ0 occurs at the electroweak symmetry
breaking scale of order 160 GeV. Then the corresponding
ratio pext/pjump will be of order ð160=1016Þ2 ∼ 10−28 or
smaller, far below the level of ∼10−8 at which the model
already shows no significant change from including a
massive external layer or an equivalent modification to
the way pressure enters the equation of state.

X. DISCUSSION

The preceding sections give a number of results that
substantially extend our initial paper [9]. They group into
three principal categories:

The first category is an examination, in the context of
dynamical gravastars, of objections that have been raised
against the possibility that anECO iswhat is being seen in the
EHT observations, rather than a mathematical black hole
with a horizon. Based on our gravastar Mathematica note-
books, we give graphs showing that a dynamical gravastar
has no hard surface, and that a second light sphere resides in
the deep interior where there can be exponentially large time
dilation, for which we give quantitative estimates. These
computed results are at variance with the assumptions made
in the papers that claim to falsify an ECO interpetation of
observed astrophysical black holes. A definitive statement
will require a much extended investigation and computa-
tions, but stating themotivation for such an investigation is in
important initial step.
The second category are some interesting general theo-

retical features of the gravastar model. We note that the
Penrose and Hawking singularity theorems are evaded in
this model, even though it accurately mimics the external
geometry of a black hole, and despite the fact that the null
energy condition and the strong energy condition are
obeyed, because a trapped surface never forms. We also
show, through computation, that a physically realistic exter-
nal massive shell can be harmlessly added to the model,
which is a significant extension of the results in our posted
Mathematica notebooks.
The third category are several simplifications of the

TOV equations of the model that will streamline further
exploration. First, we note that the model is qualitatively
unchanged if the cosmological constant is set to zero, and if
the smoothed sigmoidal jump is replaced by a unit step jump.
This eliminates two extraneous parameters of the original
model, and thus significantly reduces the dimensionality of
the model parameter space. Additionally, when the cosmo-
logical constant is set to zero the TOVequations, as supple-
mented with with the matter equations of state assumed in
[9], can be partially integrated to give closed form expres-
sions for the pressure pðrÞ in terms of the metric exponent
νðrÞ (and by inversion, vice versa). And again when there is
no cosmological constant, the procedure for “tuning” the initial
value nuinit ¼ νð0Þ is greatly simplified. We have substanti-
ated the value of these simplifications in new work [36] that
explores the residual parameter space of the dynamical
gravastarmodel, and also use them in the quantitative estimates
of time delays given in Sec. VIII of this paper.
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