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In this work, we investigate the gravitational quasinormal modes (QNMs) and the gravitational
resonances of a thick brane model. We use the asymptotic iteration and shooting methods to obtain the
quasinormal frequencies (QNFs) of the brane. On the other hand, we investigate the resonances and their
evolution numerically. The results show that the oscillations of the resonances equal (up to numerical error)
the real parts of the QNFs, while the damping rates of the resonances equal the imaginary parts of the
QNFs. The QNMs and resonances—both of them can be regarded as the characteristic modes of the thick
brane—are closely related with each other. In addition, the lifetime of these QNMs could be very long,
although perhaps they might be detected in a future accelerator or gravitational wave detector.
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I. INTRODUCTION

In physics, characteristic modes are extremely important
because they characterize the key features of a physical
system. Investigating them could help us to understand a
system. For a dissipative system, the characteristic modes
are quasinormal modes (QNMs). For example, as the
characteristic modes of a black hole, QNMs have attracted
a lot of attention because they are expected to be able to
carry information of a black hole [1–7]. QNMs also play a
key role in other physical systems. It has been shown that
there may exist a set of discrete modes in the thin and thick
braneworld scenarios, i.e., QNMs of a brane [8–10].
Investigating them would help us to understand the proper-
ties of the branes.
Research on braneworld models has been ongoing for

many years. Braneworld scenarios present a new viewpoint
of spacetime and provide a new mechanism to solve the
hierarchical problem between the Planck and electroweak
scales [11–13]. One of the resolutions of the hierarchy
problem is the Randall-Sundrum-I (RS-I) warped extra
dimension model [13]. It consists of two branes embedded
in a five-dimensional anti–de Sitter spacetime. The RS-I
model was generalized to the RS-II one [14] by pushing
one brane to infinity. In the RS-II model, a remarkable
character is that, even though the extra dimension is
infinite, the four-dimensional Newtonian potential could

be recovered. These brane models have been extensively
investigated in various contexts such as black hole physics,
particle physics, and cosmology [15–22]. In the RS-II thin
brane model, the thicknesses and inner structure of the
brane are neglected, and so the energy density of the brane
is a delta function along the extra dimension. However,
when we are concerned with the inner structure of a brane,
we should investigate a thick brane generated by one or
more matter fields. In fact, combining the domain wall
model without gravity [23,24] and the RS-II model [14],
DeWolfe et al. proposed the thick brane models with
gravity [25–27]. For further information on the develop-
ment of the thick brane models, one can refer to the review
articles [28–30]. Usually, the energy density of a thick
brane is smooth. In previous literature, thick brane sol-
utions in various gravity theories and localization of the
gravitational zero mode and various matter fields on the
branes were studied [31–51]. Besides the zero mode, there
may exist massive Kaluza-Klein (KK) particles on the
branes, which are particles beyond the standard model. If
they are detected, it will open a new window to understand
the nature of spacetime.
Recently, we investigated gravitational QNMs of a thick

brane [10]. We found that there is a set of discrete QNMs in
the thick brane. But the lifetimes of these QNMs are very
short. In this paper, we aim to investigate whether there are
long-lived QNMs in other thick branes, and if so, what are
their properties. It has been known that there are long-lived
massive modes called resonances in some thick brane
models [52–63]. Resonance is an important research topic
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in the investigation of a thick brane. In most models, branes
are dynamically generated by one or more background
scalar fields. To be consistent with the standard model and
the emergence of a four-dimensional Newtonian potential,
it is crucial that zero modes of these matter fields and tensor
fluctuations of gravity should be localized on these branes.
Beyond zero modes, these models predict the existence of
massive KK modes, representing novel particles. When
considering a thick brane situated within a five-dimensional
asymptotic anti–de Sitter spacetime, the effective potential
experienced by KK modes traversing the extra dimension
takes on a volcanolike shape. Consequently, the localiza-
tion of massive KK modes onto the brane becomes
unattainable. However, a finite number of these massive
KK modes can be quasilocalized on the brane, recognized
as resonant KK modes. In this paper, we focus on
gravitational resonant KK modes, which notably contribute
to the four-dimensional Newtonian potential. The spectrum
of resonances can also reflect the structure of a brane.
Moreover, the evolution of resonances is similar to that of
the QNMs [64]. We intuitively conjecture that there should
be some relation between the resonances and the long-lived
QNMs. To test this conjecture, we will investigate QNMs in
the thick brane with inner structure.
The organization of the remaining part of this paper is as

follows. In Sec. II, we review the thick brane model and the
linear metric tensor perturbation of the brane system. In
Sec. III, we solve the quasinormal frequencies (QNFs) of
the thick brane by two semianalytical methods. In Sec. IV,
we study the gravitational resonances of the thick brane and
their evolution. And we compare the resonances and the
QNMs of the brane. Finally, the conclusions and discus-
sions are shown in Sec. V.

II. REVIEW OF THICK BRANE MODEL

In this section, we will review the thick brane model in
five-dimensional general relativity. Generally speaking, a
thick brane could be generated by various matter fields
[41–51,60]. The action is

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2κ25
R − Lm

�
; ð1Þ

where the five-dimensional gravitational constant κ5 is set
to κ5 ¼ 1 in this paper for convenience and Lm is the
Lagrangian of the matter fields. The dynamical equation is

RMN −
1

2
RgMN ¼ TMN: ð2Þ

In this paper, capital Latin letters M;N;… ¼ 0, 1, 2, 3, 5
label the five-dimensional indices, Greek letters μ; ν;… ¼ 0,
1, 2, 3 label the four-dimensional ones, and Latin letters

i; j;… ¼ 1, 2, 3 label the three-dimensional space ones.
The metric of the static flat brane is given by [25–27]

ds2 ¼ e2AðyÞημνdxμdxν þ dy2; ð3Þ

where e2AðyÞ is the warp factor and ημν ¼ diagð−1; 1; 1; 1Þ is
the four-dimensional Minkowski metric. The linear trans-
verse-traceless tensor perturbation of the metric is given by

gMN ¼
�
e2AðyÞðημν þ hμνÞ 0

0 1

�
: ð4Þ

Here, hμν satisfies the transverse-traceless conditions

∂μhμν ¼ 0 ¼ ημνhμν: ð5Þ

Combining theperturbedmetric (4) and the fieldequation (2),
the linear equation of the tensor perturbation is given by

ðe−2A□ð4Þhμν þ h00μν þ 4A0h0μνÞ ¼ 0; ð6Þ

where □
ð4Þ ¼ ηαβ∂α∂β. Transforming to conformally flat

coordinates could simplify thiswave equation. To this endwe
introduce the coordinate transformation dz ¼ e−Ady and
obtain the following metric:

ds2 ¼ e2AðzÞðημνdxμdxν þ dz2Þ: ð7Þ

Now, the wave equation (6) reads

½∂2z þ 3ð∂zAÞ∂z þ□
ð4Þ�hμν ¼ 0: ð8Þ

Making the following ansatz [9]:

hμν ¼ e−
3
2
AðzÞΦðt; zÞe−iajxjϵμν; ϵμν ¼ const; ð9Þ

we can rewrite Eq. (6) as

−∂2tΦþ ∂
2
zΦ −UðzÞΦ − a2Φ ¼ 0; ð10Þ

where

UðzÞ ¼ 3

2
∂
2
zAþ 9

4
ð∂zAÞ2 ð11Þ

is the effective potential and the parameter a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijaiaj

q
is

the constant of separation of variables. Further decomposing
the function Φðt; zÞ as

Φðt; zÞ ¼ e−iωtϕðzÞ; ð12Þ

we can obtain a Schrödinger-like equation

−∂2zϕðzÞ þ UðzÞϕðzÞ ¼ m2ϕðzÞ; ð13Þ
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where

m2 ¼ ω2 − a2 ð14Þ

is the mass of the KK mode. The Schrödinger-like equa-
tion (13) can be factorized as

QQ†ϕðzÞ ¼ m2ϕðzÞ; ð15Þ

where Q and Q† are defined as

Q ¼ ∂z þ
3

2
∂zA; Q† ¼ −∂z þ

3

2
∂zA: ð16Þ

Then, the dual equation corresponding to Eq. (15) can be
obtained as

Q†Qϕ̃ðzÞ ¼ ð−∂2z þ UdualðzÞÞϕ̃ðzÞ ¼ m2ϕ̃ðzÞ; ð17Þ

where the dual potential UdualðzÞ of the effective potential
(11) is given by

UdualðzÞ ¼ −
3

2
∂
2
zAþ 9

4
ð∂zAÞ2: ð18Þ

According to the supersymmetric quantum mechanics, the
effective potential and the dual potential will share the same
spectrum of massive excited states [65,66]. This property
greatly facilitates the calculation of QNMs of a thick brane.

III. QUASINORMAL MODES OF THICK BRANE

In this section, we investigate the QNMs of the thick
brane. Since the Schrödinger-like equation (13) was
obtained under the conformally flat metric (8), we focus
on the conformally flat coordinate z to study the QNMs of
the thick brane. We choose the following warp factor [27]:

AðzÞ ¼ −
α

2
ln ðk2z2 þ 1Þ; ð19Þ

where k has mass dimension one. The parameter α is a
dimensionless constant and α > 1

3
to ensure the zero mode

of gravity can be bound on the brane [27]. Substituting the
warp factor (19) into the effective potential (11) and dual
potential (18), we obtain the specific forms of the effective
potential and the dual potential

UðzÞ ¼ 3αk2ðð3αþ 2Þk2z2 − 2Þ
4ðk2z2 þ 1Þ2 ; ð20Þ

UdualðzÞ ¼ 3αk2ðð3α − 2Þk2z2 þ 2Þ
4ðk2z2 þ 1Þ2 : ð21Þ

Plots of the above two potentials are shown in Fig. 1. It can
be seen that the heights of the effective potential and the

dual potential increase with the parameter α. As α increases,
a quasiwell appears in the dual potential, which generally
implies that there might be gravitational resonances. Next,
we use the asymptotic iteration method (AIM) [67–69] and
the shooting method [70] to solve the QNFs of the thick
brane. In the process of using AIM to solve the QNFs, we
find that it is more convenient to use the dual potential than
the effective potential to solve the QNFs of the thick brane.
Moreover, the spectra of the QNMs for the two potentials
are the same [66]. Therefore, the dual potential is used in
this work to solve the QNFs of the brane.
First, we shall briefly review the idea behind the AIM

[67,68]. The AIM is an analytical and approximate method
proposed by Ciftci et al. for solving second-order linear
differential equations, especially the eigenvalue problems
that often appear in theoretical and mathematical physics.
Many eigenvalue problems in relativistic and nonrelativ-
istic quantum mechanics can be solved using the AIM
[71–74]. Since solving QNMs is also an eigenvalue
problem, the AIM can also be used. For a second-order
linear differential equation of the form

y00ðxÞ ¼ λ0ðxÞy0ðxÞ þ s0ðxÞyðxÞ; ð22Þ
we can use the AIM to get its general solution. Here λ0ðxÞ
and s0ðxÞ are C∞ functions with λ0ðxÞ ≠ 0. Differentiating
Eq. (22) with respect to x, we can obtain

y000ðxÞ ¼ λ1ðxÞy0ðxÞ þ s1ðxÞyðxÞ; ð23Þ
where

λ1ðxÞ ¼ λ00 þ s0 þ λ20; ð24Þ

s1ðxÞ ¼ s00 þ s0λ0: ð25Þ

FIG. 1. Plots of the effective potential (20) and the dual
effective potential (21).
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In the AIM, one can use the invariant structure of the right-
hand side of Eq. (22) to find a general solution. In fact, the
(n − 1)th and nth differentiations of Eq. (22) yield

ynþ1ðxÞ ¼ λn−1ðxÞy0ðxÞ þ sn−1ðxÞyðxÞ; ð26Þ

ynþ2ðxÞ ¼ λnðxÞy0ðxÞ þ snðxÞyðxÞ; ð27Þ

where

λnðxÞ ¼ λ0n−1 þ sn−1 þ λ0λn−1; ð28Þ

snðxÞ ¼ s0n−1 þ s0λn−1: ð29Þ

For sufficiently large n, the asymptotic aspect is introduced:

snðxÞ
λnðxÞ

¼ sn−1ðxÞ
λn−1ðxÞ

¼ βðxÞ: ð30Þ

The QNFs can be solved from the “quantization condition”

snðxÞλn−1ðxÞ − sn−1ðxÞλnðxÞ ¼ 0: ð31Þ

But the above quantization condition has an unappealing
feature that for each iteration one must take the derivative of
the sðxÞ and λðxÞ terms of the previous iteration. This is
inconvenient for numerical operations. Cho et al. [69]
developed an improved version of the AIM that greatly
improves the speed and accuracy of numerical calculation.
The basic idea of the improved AIM is to expand sðxÞ and
λðxÞ using Taylor series at a point χ,

λnðxÞ ¼
X∞
i¼0

cinðx − χÞi; ð32Þ

snðxÞ ¼
X∞
i¼0

dinðx − χÞi; ð33Þ

where cin and din are the ith Taylor coefficients of λn and sn,
respectively. Expressions of cin and din are

cin ¼ ðiþ 1Þciþ1
n−1 þ din−1 þ

Xi

k¼0

ck0c
i−k
n−1; ð34Þ

din ¼ ðiþ 1Þdiþ1
n−1 þ

Xi

k¼0

dk0c
i−k
n−1: ð35Þ

Thus, the quantization condition (31) becomes

d0nc0n−1 − d0n−1c
0
n ¼ 0: ð36Þ

Now we have a set of recursion relations, which do not
require derivative operators.

With the choice of the warp factor (19), the Schrödinger-
like equation (17) is

−∂2zϕ̃ðzÞ þ
�
3αk2ðð3α − 2Þk2z2 þ 2Þ

4ðk2z2 þ 1Þ2 −m2

�
ϕ̃ðzÞ ¼ 0:

ð37Þ

For a massive KK mode, the thick brane is a dissipative
system. Therefore, we should impose the maximally
dissipative boundary condition. That is, the wave function
should be purely outgoing at spatial infinity and purely
ingoing at negative spatial infinity, such that

ϕ̃ðzÞ ∼
�
eimz; z → ∞;

e−imz; z → −∞:
ð38Þ

Note that Eq. (37) does not contain a first derivative term,
which means that λ0 must be zero. As a result, the
asymptotic iteration method cannot be applied directly.
To overcome this limitation, we need to perform a
coordinate transformation to obtain an equation that
includes a nonvanishing first derivative term. In addition,
the AIM works better on a finite domain. Thus, we

transform the coordinate z to u with u ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4k2z2þ1

p
−1

2kz .
Then Eq. (37) becomes

�
m2

k2
−
3αðu2 − 1Þ2ð2u4 − 3u2ðα − 2Þ þ 2Þ

4ðu4 − u2 þ 1Þ2
�
ϕ̃ðuÞ

þ ðu2 − 1Þ3ððu4 − 1Þϕ̃00ðuÞ þ 2uðu2 þ 3Þϕ̃0ðuÞÞ
ðu2 þ 1Þ3 ¼ 0;

ð39Þ

where −1 < u < 1. The boundary conditions (38) can be
rewritten as

ϕ̃ðuÞ ∼
�
e−

im=k
2u−2; u → 1;

e
im=k
2uþ2; u → −1:

ð40Þ

Next we define a new function ψðuÞ:

ϕ̃ðuÞ ¼ ψðuÞe−im=k
2u−2e

im=k
2uþ2: ð41Þ

Substituting this expression into Eq. (39) we can obtain the
equation for ψðuÞ

ψ 00ðuÞ ¼ λ0ðuÞψ 0ðxÞ þ s0ðuÞψðuÞ; ð42Þ

where
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λ0ðuÞ ¼ −
2uðu4 þ 2iðu2 þ 1Þ mk þ 2u2 − 3Þ

ðu2 − 1Þ2ðu2 þ 1Þ ; ð43Þ

s0ðuÞ ¼
1

4ðu2 þ 1Þðu6 − 2u4 þ 2u2 − 1Þ2

×

�
6αðu10 − 5u6 − 5u4 þ 1Þ þ 9α2u2ðu2 þ 1Þ3

−
4m
k

ðu4 − u2 þ 1Þ2
�
u2
�
m
k
− 2i

�
þm

k
þ 2i

��
:

ð44Þ

Once the specific forms of λ0 and s0 are obtained, the QNFs
can be solved by performing the improved AIM. Note that
in the improved AIM, we need to give a coordinate point u0
to find the eigenvalue. The choice of coordinate point u0 is
arbitrary in principle, but in practice the choice of different
points will affect the accuracy and speed of calculation
[69]. For obvious symmetry reasons we set u0 ¼ 0. We plot
the effect of the parameter α on the real and imaginary parts
of the QNFs for the thick brane in Fig. 2. It can be seen that
the real parts of the first two QNFs increase with α, while
the imaginary parts of the first three QNFs decrease with α.
This is because the height of the dual potential and the
lowest point of the quasiwell increase with the parameter α.
However, the real part of the third QNF shows a different

behavior: it first increases, then decreases [as can be seen
from the subfigure in Fig. 2(e)], and then increases with α.
This may be related to the structure of the dual potential.
Since the dual potential also has a double peak structure
when the parameter α is large, the result of the AIM may
not be accurate. Therefore, we solve the QNFs by the
shooting method [70] and compare them with the results of
the AIM, which are shown in Table I. We find that the
results of the two methods agree well with each other. This
enhances the credibility of the results. Note that, since there
is a bound zero mode on the thick brane, we denote the
QNM with the longest lifetime as the first overtone, i.e.,
n ¼ 1. This is different from the case of a black hole
system. On the other hand, since the imaginary part of a
QNF relates to the lifetime of a KK mode, for a large
enough α, there might be long-lived KKmodes. In previous
investigations, there are long-lived KK modes called
resonances on some thick branes. We will investigate the
relation between the resonances and the long-lived QNMs
in the next section.

IV. RESONANCES AND QUASINORMAL MODES

Resonance is an important research topic in the study of
a thick brane. In the previous investigations, resonances are
regarded as a specific class of massive KKmodes that could
be quasilocalized on the branes [52–63]. The resonance
spectra vary with different brane configurations. In this
study, we focus on the characterization of gravitational
resonances for the thick brane model. We use the relative
probability method to identify all gravitational resonances.
The relative probability is given by [52]

Pðm2Þ ¼
R
zb
−zb jϕðzÞj2dzR
zmax
−zmax

jϕðzÞj2dz ; ð45Þ

where ϕðzÞ is the solution of Eq. (13), zmax ¼ 10zb, and zb
is approximately the width of the brane. Figure 3 is a

FIG. 2. The relation between the real parts (a, c, and e) and
imaginary parts (b, d, and f) of the first three quasinormal
frequencies and the parameter α. Note that we use a logarithmic
scale for the imaginary parts of the quasinormal frequencies.

TABLE I. Low overtone modes using the AIM and shooting
method.

α n Asymptotic iteration method Shooting method

Reðm=kÞ Imðm=kÞ Reðm=kÞ Imðm=kÞ
1 1 0.99702 −0.526362 0.99702 −0.526365
2 1 1.73769 −0.305138 1.73769 −0.305138
3 1 2.35548 −0.153401 2.35548 −0.153401

2 2.61306 −0.727270 2.61306 −0.727270
4 1 2.90598 −0.060511 2.90598 −0.060511

2 3.36982 −0.500264 3.36982 −0.500264
5 1 3.39797 −0.016113 3.39797 −0.016113

2 4.05532 −0.325381 4.05532 −0.325381
6 1 3.83141 −0.002554 3.83141 −0.002554

2 4.69248 −0.193092 4.69248 −0.193092
3 4.98876 −0.748896 4.98876 −0.748896
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schematic diagram of resonance and nonresonance con-
figurations. It can be observed that the amplitude of a
resonance inside the quasiwell is significantly greater than
the amplitude outside the well. Using the relative proba-
bility method, we can calculate the relative probability of a
KK mode. If the relative probability Pðm2Þ exhibits a peak
aroundm ¼ mn and this peak has a width at half maximum,
it indicates the presence of a resonance with a mass mn.
Through this method, we can find all of the resonances.
As the effective potential is symmetric, the following

boundary conditions can be used for a numerical solution
of the differential equation (13):

ϕoddð0Þ ¼ 0; ∂zϕoddð0Þ ¼ 1; ð46aÞ

ϕevenð0Þ ¼ 1; ∂zϕevenð0Þ ¼ 0; ð46bÞ

where ϕodd and ϕeven denote the odd and even modes of
ϕðzÞ, respectively. Then we can numerically solve the
gravitational resonances of the thick brane. We do not find
any resonance for the case of α ¼ 1. In fact, only for
α≳ 2.8, are there resonances. We plot the relative prob-
ability Pðm2Þ of gravitational KK modes for α ¼ 5, 7, 9 in
Fig. 4. It can be seen that the mass m1 and relative
probability Pðm2

1Þ of the first resonance increase with

the parameter α. Treating these gravitational resonances
as the initial data, we can study the evolution of gravita-
tional resonances on the brane [64]. We use fourth-order
finite differences in space and third-order Runge-Kutta
integrators in time to solve the evolution equation (10).
Since the thick brane is a dissipative system for the massive
KK modes, i.e., the massive KK modes will escape to
infinity of the extra dimension, we impose the maximally
dissipative boundary condition [75]:

�
∂tϕ ¼ −∂zϕ; z → ∞;

∂tϕ ¼ ∂zϕ; z → −∞:
ð47Þ

Note that we only consider the case of a ¼ 0 in this paper. It
means that the KK graviton propagates along the extra
dimension at the speed of light, while the velocity compo-
nent on the brane is zero. The boundary conditions of
numerical evolution are easy to satisfy in this case. We
analyze the results of the simulations by extracting a time
series for the gravitational resonance amplitude at a fixed
point kzext ¼ 1. In addition, we perform the discrete Fourier
transformation to identify the oscillation frequencies of
gravitational resonances. The discrete Fourier transform
can be represented as follows:

F½ϕðtÞ�ðfÞ ≔
����A
X
p

ϕðtp; zjÞ expð−2πiftpÞ
����; ð48Þ

where A is a normalization constant and tp represents
discrete time values. The result can be seen from Fig. 5. We
can see that the amplitude of resonance decreases with
evolutionary time. This is reasonable, because the energy
escapes to infinity. The decay rate of resonance decreases
with the parameter α. This means that the lifetime of the
resonance increases with α. After the discrete Fourier
transformation of the evolution of resonance, the KK mass
of the resonance corresponds to the peak value of the
spectra. This means that the KK mass of the resonance is
the oscillation frequency of the resonance, which can be
seen from Eq. (14) and a ¼ 0.
In addition, we perform the discrete Fourier transforma-

tion for a nonresonance, which can be seen from Fig. 6. It
can be seen that there are two peaks in the frequency
domain which correspond to the KK masses of the first two
odd resonances. In other words, nonresonances evolve as
combinations of resonances after some time. This seems to
indicate that resonances are the characteristic modes of the
thick brane. In fact, the oscillations of the resonances are
equal (up to numerical error) to the real parts of the QNFs
of the thick brane, while the decay rates of the resonances
are equal to the imaginary parts of such ones, which can be
seen from Fig. 7. Recall that the amplitudes of the
resonances in the quasiwell are much larger than those
outside the quasiwell. The long-lived QNMs are metastable
states which are quasilocalized on the brane. Thus we

FIG. 3. The configurations of the resonance and nonresonance.

FIG. 4. The influence of the parameter α on the relative
probability Pðm2Þ.
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intuitively deem that these QNMs are localized near the
thick brane (in the quasiwell). That is to say, the amplitudes
of the long-lived QNMs in the quasiwell are also much
larger than those outside ones, and this corresponds to the
situation of the resonances.
Finally, we investigate the half-life of the long-lived

QNMs. For α ¼ 10, the frequency of the first QNM is
m1=k ¼ 5.18327 − 3.97621 × 10−8i. If k ¼ 10−3 eV, the
half-life t1=2 of the first QNM is about 10−5 s. This situation
is quite different from the case of the RS-II brane. For the

RS-II brane, the half-life of the first QNM is about 10−13 s
when k ¼ 10−3 eV [8]. From Fig. 2 we can see that the
imaginary part of the first QNF decreases with α. This
means that the lifetime of the first QNM increases with α.
Thus, for a large enough α, the first QNM has a very long
lifetime. We expect that the long-lived modes will be
detected in the future [76,77]. In addition, recent work
by Teukolsky et al. on black hole QNMs indicates that
overtone modes of black holes are more significant than
previously thought [78]. These overtone modes can

FIG. 5. Left panel: time evolution of the first gravitational resonance with α ¼ 5 (a), α ¼ 7 (c), and α ¼ 9 (e) at kzext ¼ 1. Right panel:
the corresponding spectra in the frequency domain obtained by the discrete Fourier transformation. The dotted blue line corresponds to
the KK mass of the first resonance.
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dominate at the early stage of the ringdown. Consequently,
the nature of overtone modes in thick branes is also worthy
of further investigation. We will explore the characteristics
of overtone modes in thick branes in our future research.

V. CONCLUSION AND DISCUSSION

In this paper, we studied the QNMs and the resonances
of the thick brane model. We found that the oscillations of
the resonances equal the real parts of the QNFs of the thick
brane, while the decay rates of the resonances equal the
imaginary parts of those QNFs. These QNMs can exist for a
very long time on the brane, perhaps even on the cosmo-
logical timescale. They might be viewed as a candidate for
dark matter and might be detected as a stochastic gravi-
tational wave background [79].
At the beginning of this paper, we reviewed the thick brane

model in the five-dimensional spacetime. By studying the
linear transverse-traceless tensor fluctuation (4), we obtained
the evolution equation (10) and the Schrödinger-like equa-
tion (13). Thenweused the asymptotic iteration and shooting
methods to solve the QNFs of the thick brane. From Table I,
we can see that the results of the two methods are consistent
with each other in the low overtones. By investigating the

effect of the parameterα on theQNMsof the brane, we found
that the real parts of the first twoQNFs increasewith α, while
the imaginary parts of the first three QNFs decrease with α,
which can be seen from Fig. 2. Since the imaginary parts of
the QNFs correspond to the damping rates of the QNMs,
these KK modes could become long-lived modes when the
parameter α is large enough.
On the other hand, the resonances will appear when α is

large. Thus we suspect that the long-lived QNMs are
related to the resonances. To verify this, we investigated
the resonances of this brane by the relative probability
method. Then, we investigated the evolution of these
resonances, which can be seen from Figs. 4, 5, and 7.
The results show that the oscillations of the resonances
equal the real parts of the QNFs of the thick brane, while
the damping rates of the resonances equal the imaginary
parts of the QNFs. Finally, we investigated the half-life of
the long-lived QNMs. For a very large α, these QNMs
could exist for a very long time on the brane, perhaps even
on the cosmological timescale.
There is a lot to be improved in this paper. For example,

the QNMs and the evolution of other test fields could be
investigated. The effect of these long-lived KK modes on
the stochastic gravitational wave background is also worth
investigating.
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FIG. 6. (a) Time evolution of the nonresonance with m2

k2 ¼ 70 for α ¼ 12. (b) Corresponding spectrum in the frequency domain
obtained by the discrete Fourier transformation. The dotted blue lines correspond to the KK mass of the first two odd resonances.

FIG. 7. (a) The real parts of the first overtone QNFs which are
obtained by the AIM and the KK mass of the first resonance.
(b) The imaginary parts of the first overtone QNFs which are
obtained by the AIM and the decay rate of the first resonance.
Note that they are plotted on a logarithmic scale.
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