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We consider a static, spherically symmetric space-time with an electric field arising from a quadratic
metric-affine extension of general relativity. Such a space-time is free of singularities in the center of the
black holes, while at large distances it quickly boils down to the usual Reissner-Nordström solution. We
probe this space-time metric, which is uniquely characterized by two length scales, rq and l, using the
astrometric and spectroscopic measurements of the orbital motion of the S2 star around the Galactic Center.
Our analysis constrains rq to be below 2.7M for values l < 120 A.U., strongly favoring a central object
that resembles a Schwarzschild black hole.

DOI: 10.1103/PhysRevD.109.024016

I. INTRODUCTION

Intense research activity over the past three decades has
achieved unprecedented results in black hole physics. Both
technological and theoretical advancements have led to the
long-awaited first gravitational wave detection of a binary
black hole merger event in 2016 by the LIGO/VIRGO
Collaboration [1] and to the challenging direct imaging of
the accreted plasma in the vicinity of the event horizon of
the supermassive black holes M87* (at the center of the
M87 galaxy) in 2019 [2] and Sagittarius A* (SgrA*, in the
Galactic Center of our Galaxy) in 2022 [3] by the Event
Horizon Telescope Collaboration. Along with these direct
observational pieces of evidence, other indirect probes have
been gathered over the years that provide additional support
to the black hole paradigm (i.e., the universality of the Kerr
solution characterized solely by mass and angular momen-
tum to describe every black hole in the Universe) as is
described by general relativity (GR). A remarkable exam-
ple is the observation of the S-star cluster in the Galactic
Center of the Milky Way [4]. Such stars are accelerated at
very high orbital velocities (∼2.5% of the speed of light) by
a pointlike gravitational source located exactly in the
SgrA* region, which provided early evidence of a super-
massive compact object in this region [5,6]. The orbital
tracking of these stars over the past 30 years has allowed us

to derive an increasingly precise estimate of the mass of
SgrA*, M ∼ 4.2 × 106M⊙, and of its distance from us,
D ∼ 8 kpc, and has recently allowed the detection of
relativistic effects on the orbit of the brightest star in the
cluster, S2 [7–9].
The bulk of all the observational evidence that we

nowadays possess in favor of the existence of black holes
is remarkable. With the increasing precision of astronomi-
cal observations, the margin of possible deviations from
the standard general relativistic description of these objects
is getting narrower and narrower. This inevitably clashes
with one of the most outstanding unresolved theoretical
flaws of GR, i.e., the existence of space-time singularities
at the center of black holes, where classical determinism
is lost and the theory itself breaks apart [10]. The existence
of singularities in GR is an unavoidable consequence
whenever there exists a future trapped surface, the matter
energy-momentum tensor satisfies the null energy con-
dition, and global hyperbolicity is fulfilled [11–13].
Singularities are commonly related to the divergence of
geometric invariants (scalars), constructed from the
Riemann tensor, yet the theorems on singularities relate
them instead to the incompleteness of geodesic trajectories
within the space-time [14]. Different avenues have been
investigated to formulate black hole solutions that avoid
generating singularities. A typical avenue is to relax the
null energy condition, introducing exotic forms of matter-
energy sources and leading to both alternative black holes
and horizonless compact objects [15–18]. From a different
perspective, the typical occurrence of the divergence of
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some sets of curvature scalars as the singularity is approached
by some causal trajectoriesmight be interpreted as theneed to
supersede GR at the Planck scale with new gravitational
corrections to make it compatible with quantum mechanics,
i.e., to formulate a quantum theory of gravity. Since the latter
is not yet at hand (if it will ever be), one can resort to the so-
called modified theories of gravity, that is, extensions of GR
via different recipes; see, e.g., [19–21] for some reviews.
In this work, we take the latter path and consider a

spherically symmetric, electrically charged system coupled
to a metric-affine extension of GR. Such an extension adds
quadratic terms in curvature to the Einstein-Hilbert action of
GR and contains families of solutions that are free of
incomplete geodesic trajectories and, in some cases, also
provide finite sets of curvature scalars everywhere [22–26].
The key to these results seems to lie in the metric-affine (or
Palatini) formulation of the theory [27], since it maintains
the second-order character of the field equations without
incurring in the generation of the ghostlike instabilities of its
metric cousin.1 In turn, this formulation brings to exact
analytical solutions, first derived in [22], and which are
characterized by the asymptotic mass of the central object,
M, its charge “length” r2q ¼ 2GNq2, and a new length scale
l, the latter associated to the higher-order curvature
corrections in the gravity Lagrangian.
The main aim of this work is to determine the obser-

vational viability of the family of metric-affine black hole
solutions mentioned above using to this end the motion of
the S2 star in the Galactic Center, taking advantage of
publicly available data to derive constraints on rq and l at
such scales. To do so, we shall analyze timelike geodesics
in these space-times, describing the trajectories of massive
test particles around the central supermassive object of
SgrA*. This work is organized as follows. In Sec. II, we
provide a thorough description of the family of space-times
that we aim to constrain; in Sec. III, we explain in detail our
orbital model, the parameters it involves, and the numerical
procedure that we have developed to derive orbits for S2 in
this model; in Sec. IV, we report details on the public
datasets that we have used and on our statistical analysis; in
Sec. V, we show the results of our Bayesian analysis;
finally, Sec. VI is devoted to conclusions and final remarks.

II. THEORETICAL BACKGROUND

A. The theory of gravity and matter

In the standard metric formulation of classical gravita-
tion, the metric is the sole character, while the connection is
regarded as a secondary object and set as the Levi-Civita

one; namely, it is given by the Christoffel symbols of the
metric. As opposed to that, in the metric-affine (Palatini)
formulation, metric and connection are independent
entities, to be determined via variations of the action of
the theory with respect to each of them [27]. For a large
class of such metric-affine theories which include in their
definitions only contractions with the symmetric part of
the Ricci tensor (dubbed as Ricci-based gravities [28]),
the field equations turn out to be second order and no
ghostlike propagating degrees of freedom are present (for a
detailed explanation of the reason why, see Ref. [29]). For
the sake of this work, we shall consider a quadratic
extension of GR coupled to a sourceless electric field,
described by the action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ l2ðaR2 þ RμνRμνÞ�

−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν: ð1Þ

Here, κ2 ≡ 8πG is the usual GR gravitational constant,
a is a dimensionless constant, g is the determinant of
the space-time metric gμν, and l (with dimensions of a
length) modulates the higher-curvature corrections in the
Lagrangian. The quantities R ¼ gμνRμνðΓÞ and RμνðΓÞ are,
respectively, the Ricci scalar and the Ricci tensor related to
the affine connection Γ≡ Γλ

μν, which we recall is inde-
pendent of the space-time metric gμν. As for the matter
fields, we have introduced the Maxwell tensor Fμν ¼
∂μAν − ∂νAμ related to the four-vector potential Aμ.
The choice of the action (1) is justified on the grounds of

results from the theory of quantized fields in curved space-
times [30], which requires the introduction of higher-order
curvature corrections suppressed by a (length-squared)
scale, the latter typically associated to Planck-scale effects.
In this work, however, we shall take l as a free parameter,
to be observationally constrained.

B. The family of solutions

In this context, exact analytical solutions for the space-
time metric associated with such a theory have been derived
in the literature and analyzed in detail (see [22–24] for more
details2). In ingoing Eddington-Finkelstein coordinates and
considering geometrized units GN ¼ c ¼ 1, the corre-
sponding line element can be written as

ds2 ¼ −AðxÞdv2 þ 2

σþ
dvdxþ r2ðxÞdΩ2; ð2Þ

1In the Riemannian (metric) formalism, the connection is
metric compatible a priori; i.e., it is given by the Christoffel
symbols of the metric. In the Palatini formalism, on the other
hand, this assumption is relaxed, and the affine connection is
determined through the field equations, which have, thus, a fixed
second order.

2It is worth mentioning that, due to a happy coincidence
explained in [31], these are also solutions of another metric-affine
theory of gravity, the so-called Eddington-inspired Born-Infeld
one [32].
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with the following definitions:

AðxÞ ¼ 1

σþ

�
1 −

rs
r
ð1þ δ1GðrÞÞ

σ1=2−

�
; ð3Þ

δ1 ¼
1

2rs

ffiffiffiffiffi
r3q
l

s
; ð4Þ

σ� ¼ 1� r4c
r4ðxÞ ; ð5Þ

r2ðxÞ ¼ x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 4r4c

p
2

: ð6Þ

Here, rs ¼ 2M is the Schwarzschild radius of the central
object, with M its mass as seen from an asymptotic
observer; the quantity rc ¼

ffiffiffiffiffiffiffi
lrq

p
is a combination of

the characteristic length l of the theory and of the charge-
related length r2q ¼ 2GNq2. As for the function GðzÞ
characterizing the metric function, with z ¼ r=rc a dimen-
sionless radial coordinate, it is given by

GðzÞ ¼ −
1

δc
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
z4 − 1

p
½f3=4ðzÞ þ f7=4ðzÞ�; ð7Þ

where δc ≈ 0.572069 is a constant and fλðzÞ ¼
2F1½12 ; λ; 32 ; 1 − z4� with 2F1ða; b; c; zÞ the Gaussian hyper-
geometric function.
The above line element is a generalization of the

Reissner-Nordstöm (RN) geometry of GR. Indeed, for
large values of z (corresponding to the limit r ≫ rc), the
function GðzÞ in Eq. (7) tends to GðzÞ ∼ −1=z. In the same
limit, σ� → 1, bringing the two radial coordinates to
approach each other, r2ðxÞ → x2, and then in such a limit
the metric function boils down to

AðxÞ ≈ 1 −
rs
r
þ r2q
2r2

; ð8Þ

which is the usual RN geometry of GR expressed in terms
of our variables.
Redefining the time coordinate in Eq. (2) according to

dv ¼ dtþ dx=ðAσþÞ yields a different expression for the
line element that resembles more closely the RN solution
in GR:

ds2 ¼ −AðxÞdt2 þ 1

BðxÞ dx
2 þ r2ðxÞdΩ2; ð9Þ

where BðxÞ ¼ AðxÞσ2þ. To preserve the simple representa-
tion of r2ðxÞ introduced in Eq. (6), we avoid absorbing the
factor σþ into a redefinition of the coordinate x. Such a
radial coordinate, x, is defined on the whole real line, i.e.,
x∈ � −∞;þ∞½, which brings the quantity rðxÞ to have a

minimum rc in correspondence with x ¼ 0. This fact
implies that the surface area of hypersurfaces of constant
t and x [which has the geometry of a two-sphere with radius
rðxÞ], given by S ¼ 4πr2ðxÞ, possesses a minimum for
x ¼ 0. This distinctive feature, i.e., a bounce in the (radial
coordinate of the) geometry, indicates a nontrivial topo-
logical structure in the form of a wormhole [33], with
r ¼ rc identified as its throat. Moreover, since dx2 ¼
σ2þdr2=σ−, at x¼ 0 (i.e., at r ¼ rc), one finds dr=dx ¼ 0

there. This readily implies that a coordinate transformation
from x to rðxÞ is ill defined at the throat. For this reason, if
one wishes to use r as the radial coordinate, one has to
restrict intervals in which rðxÞ is a monotonic function [34].
This requires splitting the domain of r into two regions,
x > 0 and x < 0; however, the transition from one region to
the other is smooth and allows the completion of all
geodesic trajectories across x ¼ 0 [25]. Furthermore, the
presence of potential curvature divergences has been shown
in [35] to not exert any utterly destructive process upon
extended (timelike) observers. These features allow one to
consistently interpret these solutions as regular black holes
and naked geometries, depending on the interplay of
parameters (see below). Nonetheless, for the sake of this
work, we find it more convenient to use x > 0 as the radial
coordinate, since we are interested in only the geometry of
that side of the throat.

C. The classes of configurations

A characterization of the causal structure of the geometry
in terms of the values of the free parameters that appear in
Eq. (2) is possible by considering that close to the central
object, i.e., for r → rc (or, equivalently, x → 0), important
departures from the RN solution are present. If we now
consider a power series expansion of AðrðxÞÞ around x ¼ 0,
we get

lim
r→rc

AðxÞ ≈ Nq

4Nc

ðδ1 − δcÞ
δ1δc

ffiffiffiffiffiffiffiffiffiffiffiffi
rc

r − rc

r
þ Nc − Nq

2Nc

þOð ffiffiffiffiffiffiffiffiffiffiffiffi
r − rc

p Þ; ð10Þ

where we have defined the number of charges as Nq ¼ q=e

(e being the electron charge) and Nc ≡
ffiffiffiffiffiffiffiffi
2=α

p
≈ 16.55

(α being the fine structure constant). One can then show
that the causal structure of the space-time in Eq. (9)
depends on the value of the charge-to-mass ratio δ1 with
respect to the critical value δc [22–24]. Namely:

(i) For δ1 < δc, an event horizon always exists on both
sides of the throat, regardless of the value of Nq.
Because of the existence of the horizons, this can be
regarded as a black hole solution, close to the
Schwarzschild one, from the viewpoint of observers
located on either side of the throat, outside the
respective horizon.
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(ii) For δ1 > δc, on the other hand, the space-time causal
structure is more complicated and presents either
two (nondegenerate) horizons, a degenerate one, or
no horizons at all, on each side of the throat,
depending on the value of Nq (see [22] for a
thorough analysis of the horizons and causal struc-
ture in this case). In all cases, however, the geometry
of space-time toward the centre exhibits drastic
changes with respect to its GR counterpart.

(iii) In the extremal case δ1 ¼ δc, we have three subcases
depending on the value of Nq. In particular, if
Nq >Nc, there are two horizons symmetrically lo-
cated with respect to the throat; in the case Nq ¼ Nc,
the two horizons coincide at the throat, r ¼ rc (or
x ¼ 0); finally, if Nq < Nc, the horizons disappear,
bringing a sort of black hole remnant that can be
regarded as the end point of Hawking evaporation or
might be generated by large density fluctuations in the
primordial Universe [36]. For all these configurations,
curvature scalars are everywhere finite [35].

When particularizing the above condition on δ1 for a
supermassive black hole of mass M ∼ 4.2 × 106M⊙ like
SgrA* at the center of the Milky Way, one gets the limit
Nq ¼ Nc for an extremely low value of rq ¼ 3.2315×
10−35 m, when compared to scales of the astrophysical
objects that we are dealing in this work. Hence, we will
discard the cases Nq ≤ Nc. In Fig. 1, we show where the
separation between the cases δ1 > δc and δ1 < δc lies on
the (l, rq) plane.

III. NUMERICAL INTEGRATION OF THE
GEODESIC EQUATIONS

Our goal is to study whether the Galactic Center star S2
can impose constraints on the space-time metric in Eq. (9).

The dynamics of massive test particles undergoing free fall
is described by the geodesic equations found upon deri-
vation of Eq. (9). In particular, the world-line components
ftðτÞ; xðτÞ; θðτÞ;ϕðτÞg of a massive test particle trajectory
in space-time satisfy the system of second-order ordinary
differential equations given by

̈t ¼ −
ṫ ẋ A0ðxÞ
AðxÞ ; ð11Þ

ẍ ¼ ϕ̇2BðxÞrðxÞ sin2ðθÞr0ðxÞ − ṫ2BðxÞA0ðxÞ
2

þ θ̇2BðxÞrðxÞr0ðxÞ þ ẋ2B0ðxÞ
2BðxÞ ; ð12Þ

θ̈ ¼ ϕ̇2 sinðθÞ cosðθÞ − 2θ̇ ẋ r0ðxÞ
rðxÞ ; ð13Þ

ϕ̈ ¼ −
2ϕ̇ θ̇ cosðθÞ

sinðθÞ −
2ϕ̇ ẋ r0ðxÞ

rðxÞ ; ð14Þ

where dots represent derivatives with respect to the proper
time τ of the particle and primes represent derivatives with
respect to the space-time radial coordinate x. In particular,
by indicating with fṫðτÞ; ẋðτÞ; θ̇ðτÞ; ϕ̇ðτÞg the components
of the particle 4-velocity (i.e., the tangent four-vector to the
geodesic), the normalization condition gμνẋμẋν ¼ −1 holds
for timelike particles. Since the norm of the 4-velocity is
unaltered by the parallel transport on the geodesic itself, we
can assign this normalization condition at a given initial τ0,
and we are assured that it will hold for the entire evolution.
This practically helps in assigning initial data for the
geodesic, since we can assign an initial position in
space-time ftðτ0Þ; xðτ0Þ; θðτ0Þ;ϕðτ0Þg [a further simplifi-
cation is given by the fact that we can choose tðτ0Þ
arbitrarily owing to the stationarity of the metric consid-
ered] and the initial value for three out of the four
components of the initial 4-velocity and automatically
deriving the fourth one from the normalization condition
[in our case, we express ṫð0Þ as a function of ẋð0Þ, θ̇ð0Þ, and
ϕ̇ð0Þ]. The space-time trajectory is, thus, characterized by
6 degrees of freedom representing the spatial position and
velocity at the initial time. In celestial mechanics, it is a
common choice to recast these six initial data into a set of
geometrical and physical quantities, usually referred to as
Keplerian orbital elements—namely, the time of passage at
pericenter Tp, the semimajor axis of the orbit a, its
eccentricity e, the orbital inclination i, the angle of the
line of nodes Ω, and the argument of the pericenter ω.
The first three parameters fix the in-orbital plane motion of
the test particle, while the three angular parameters define
its orientation with respect to the sky plane of a distant
observer.

FIG. 1. The (l, rq) parameters separated by the extremal case
(dotted line) δ1 ¼ δc.
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A further simplification, arising from the spherical
symmetry of the problem at hand, is given by the fact
that, as it results from Eq. (13), a geodesic with θ ¼ π=2
and θ̇ ¼ 0 will have θ̈ ¼ 0, identically. This means that
geodesics are planar, and we can integrate the geodesic on
the equatorial plane and only later perform a rotation in the
distant observer reference frame. Importantly, in classical
Newtonian celestial mechanics, the Keplerian orbital ele-
ments uniquely identify a closed elliptical orbit that is
periodically traveled by the freely falling particle (assuming
that no external perturbation is present so that its dynamics
is totally regulated by the Newtonian central potential
∼1=r2 of the massive source of the gravitational field).
In GR (and extensions), this is no longer valid, as the
effective gravitational potential felt by the orbiting body
presents higher-order terms [e.g., terms of the order of
Oð1=r3Þ or higher] that make the massive particle follow a
preceding orbital path that has the peculiar shape of a
rosette [37]. This leads to a dynamical evolution of the
Keplerian orbital elements over time that is encoded in the
geodesic equations (11)–(14) that can be computed per-
turbatively [38]. Hence, for all practical purposes, the
Keplerian elements at a given time, e.g., at the initial time,
identify the osculating conic curve to the actual GR
trajectory of the particle.
In this work, we compute numerically the fully relativistic

sky-projected mock trajectory for S2 by directly integrating
Eqs. (11)–(14) given a set of orbital elements. For more
details, we refer to past works on the subject [39–43], while
here only the main steps of our integration procedure are
reported for the sake of completeness. Our orbital model is
based on the following orbital parameters:

θ ¼
�M; rq;l; Tp; a; e; i;Ω;ω;

α0; δ0; D; v0α; v0δ; v
0
LOS

�
: ð15Þ

The first three, namely, the massM of the central object and
the scale lengths rq andl, uniquely fix the space-timemetric
in Eq. (9) and the free parameters in the geodesic equa-
tions (11)–(14). Then, we have the already-mentioned
Keplerian elements ðTp; a; e; i;Ω;ωÞ that are converted in
the initial position and velocity in the reference frame of the
gravitational source. This is done by considering thata and e
identify two radial turning points, namely, the radius of
pericenter xp ¼ að1 − eÞ and of apocenter xa ¼ að1þ eÞ.
These, in turn, correspond to the root of the effective
potential felt by the freely falling test particle. So, fixing
a and e uniquely fixes the specific energy and angular
momentumof the geodesic that can be converted to an initial
radial velocity ẋðτ0Þ and angular velocity ϕ̇ðτ0Þ on the
equatorial plane. This further requires fixing the position in
space fromwhich the integration is started, which is done by
fixing the initial time from the last pericenter passage Tp. In
our case,without loss of generality, the initial time is taken to

be the last apocenter passage, tðτ0Þ ¼ Ta ¼ Tp − T=2 ∼
2010.35 (T being the orbital period). This completely fixes
the initial position and velocity of the particle on the black
hole equatorial plane, fromwhich the geodesic equations are
integrated numerically via an adaptive-step-size 4(5)Runge-
Kutta integrator, both forward and backward in time (to
cover the period for which observations are available).
The integrated orbits are subsequently converted into

the physical quantities that are experimentally observed,
namely, the relative right ascension (α) and declination (δ)
of the star, its line of sight apparent velocity (vLOS), and the
ratio of the rate of orbital precession (OP) with respect to
the one predicted in GR, i.e.,

fOP ¼
Δω

ΔωGR
; ð16Þ

where

ΔωGR ¼ 6πGM
c2að1 − e2Þ : ð17Þ

During this procedure, the additional parameters consid-
ered in Eq. (15) make their appearance in our orbital model.
The transformation between the black hole reference frame
to the one of the distant observer is made by a rotation by
the angles i, Ω, and ω (encoded in Thiele-Innes elements)
followed by a translation by the distance D of the Galactic
Center from an Earth-based of observatory along the line of
sight (LOS). In doing such transformation, the classical
Rømer effect is computed and an additional time-dependent
translation is considered in the direction perpendicular to
the LOS (i.e., directly on the observer’s sky plane) to
account for possible offset and drift of the zero point of the
astrometric of the reference frame. This systematic obser-
vational effect is encoded in the parameters ðα0; δ0; v0α; v0δÞ.
The LOS velocity computation requires additional care,
due to the emergence of relativistic effects. In particular, to
compute a realistic value for vLOS, we first consider the
kinematic velocity of the star projected along the LOS
direction. Such kinematic velocity is then converted into a
classical longitudinal Doppler effect which accounts for
much of the observed shift. Additional redshift contribu-
tions arising from 1PN relativistic effects are taken into
account, namely, the special and general relativistic time
dilation effects (related to the high kinematic velocity
∼7700 km=s and gravitational potentialΦ=c2¼GM=rc2∼
3×10−4 of S2 at its pericenter) produce an additional
redshift (∼200 km=s more in the reconstructed LOS
velocity around pericenter) that has been experimentally
confirmed [8,44]. We estimate the additional redshift
contribution from the time component of integrated
4-velocity, ṫ ¼ dt=dτ. Finally, a possible drift of the
LOS velocity v0LOS due to the conversion to the local
standard of rest is taken into account (here, classical
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composition of velocities is taken into account instead of a
Lorentz boost due to the intrinsic smallness of such a
systematic effect). The last experimental observable,
namely, the rate of orbital precession Δω, is computed
by deriving from the numerically integrated orbit the angle
Δϕ spanned by the massive test particle on the black hole
equatorial plane between two consecutive radial turning
points, given by definition by 2π þ Δω.
A few S2-like example trajectories from our orbital

model are reported in Fig. 2, where we show the results of
our numerical integration on the equatorial plane of the
black hole (i.e., before performing the sky-plane projec-
tion), for different combinations of the theory parameters.
In particular, in these plots we have fixed all the orbital
parameters to their known values in the literature [45] and
changed only the parameters rq and l within their range of
interest. A noticeable effect on the orbit results from the
modifications of the space-time metric, which accounts for
a rate of orbital precession fOP different from unity and
that, depending on the combination of parameters, can
become negative (implying retrograde precession) or
largely greater than one. In more detail, in Fig. 3, we
report the ratio of the orbital precession in metric-affine
gravity with respect to the value in GR, fOP in Eq. (16) as a
function of l for several different values of rq. The
horizontal pink stripe represents the confidence interval
for the rate of orbital precession derived experimentally by
the Gravity Collaboration after the last pericenter passage
of S2 in 2018 [46]. As it appears, for specific combinations
of the parameters rq and l, departures from the general
relativistic precession rate may range from a factor ∼ − 4,
hence implying retrograde (instead of the prograde) orbital

precession, to factors greater than 10, whereas the exper-
imentally measured value of fOP is bound with ∼10%
precision around 1. These sometimes huge departures tell
us qualitatively that orbital data for S2 should be able to
constrain those two extra parameters despite any degen-
erations with the orbital parameters. Moreover, for values
of l ∼ 1400M ∼ 60 A.U. (coincidentally corresponding
with the semidistance of S2 from SgrA* at its pericenter
passage), the orbital precession in metric-affine gravity
is always coincident with the value in GR (fOP ¼ 1),
regardless of the value of rq, thus implying a compensation
of effects in the orbital dynamics, even for underlying
geometries that depart greatly from that of a Schwarzschild
black hole.

FIG. 2. Numerically integrated orbits on the equatorial plane of the space-time in Eq. (9) for different values of the parameters rq and l
and for the orbital parameters of the S2 star. In particular, dashed lines report the orbits for l ¼ 0 and the value of rq reported above the
plot, while solid lines show the orbit obtained for the same value of rq and a big value of l ¼ 7000M. The text labels in the figure
corners report the value of the computed rate of orbital precession fOP with respect to the corresponding value in the Schwarzschild
space-time. A negative value of fOP corresponds to a geodesic in retrograde precession.

FIG. 3. Ratio of the rate of OP with respect to the one predicted
in GR, fOP ¼ Δω=ΔωGR, computed for several values of the
charge-related length scale rq as a function of the curvature length
scale l.
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IV. DATA AND DATA ANALYSIS

The S2 star orbits the radio source SgrA* in the center of
the Milky Way with an orbital period of ∼16 yr, a
semimajor axis of ∼1000 A.U., and a high eccentricity
of ∼0.88 [47]. At periastron, the distance from SgrA*
reduces to about ∼120 A.U., meaning that the star is barely
1400 gravitational radii away from the central compact
object. Moreover, during the passage to the pericenter, the
orbital velocity reaches ∼7700 km=s (which is ∼2.5% of
the speed of light in vacuum). For these reasons, the
S2 pericenter passage has proven to be a crucial test bench
for relativistic effects in the local Universe [8,44,48].
Correspondingly, the tight constraints imposed by the
S2 orbit on the validity of relativistic predictions have
been translated into bounds on possible modifications to
the underlying theory of gravity or alternatives to the
standard black hole paradigm [39–41,43,47,49].
We use publicly available data for the S2 star to derive

constraints on the orbital model introduced in Sec. III
related to the metric in Eq. (9). In particular, while the
entire set of parameters in Eq. (15) is fitted for by our
analysis, we focus on the parameters rq and l that encode
metric deviations from the standard Schwarzschild
black hole.
Our dataset is composed of three distinct kinds of

measurements.
(i) Astrometric positions. Right ascension (α) and

declination (δ) recorded at 145 epochs between
∼1992 and ∼2016 at European Southern Observa-
tory facilities, with ≈400 μas of average experimen-
tal uncertainty. Positions are reported relative to the
“GC radio-to-infrared reference system” [50], i.e.,
relative to the point on the sky where radio obser-
vations pinpoint the position of SgrA*. Uncertainty
on this estimate is accounted for in the parameters
ðα0; δ0; v0α; v0δÞ introduced in Eq. (15) to consider a
possible offset and drift of the zero point of the
astrometric reference frame [45,50,51]. These data
are publicly available in [45].

(ii) Line-of-sight velocities (vLOS). The measured line-
of-sight velocity of the S2 (assumed positive during
the approaching phase and negative during the
recession) over a total of 44 epochs in the same
period as the astrometric positions. The correction
offset of these observations to the local standard
of rest is accounted for by the parameter v0LOS
in Eq. (15).

(iii) Orbital precession (fSP). The determination of the
rate of orbital precession fOP made possible by the
measurement, during and after the 2018 pericenter
passage of the S2 star, of astrometric positions with
unprecedented accuracy by the Gravity Collabora-
tion [9] using the GRAVITY interferometer at very
large telescope (VLT). Such an astrometric dataset is
not publicly available, so we introduce the measured

rate of orbital precession3 fSP ¼ 1.10� 0.19 as an
additional data point to our dataset. Such a meas-
urement excludes Newtonian gravity (which would
imply fOP ¼ 0) at 5σ and shows perfect agreement
with the GR prediction for a Schwarzschild black
hole. In Fig. 3, we have already compared our
predicted rate of precession, fOP, for different
combinations of the parameters rq and l with the
Schwarzschild one, fSP, measured by the Gravity
Collaboration.

We carry out a Markov chain Monte Carlo (MCMC)
analysis to explore the parameter space in Eq. (15) for our
orbital model. In particular, we use the EMCEE [52]
Bayesian sampler, by assigning flat priors for the
Keplerian orbital elements of S2 centered on the best-fit
values from [45] and spanning a range 10 times larger than
the uncertainty estimated in the same analysis. For the
parameters related to systematic effects on the reference
frame, we assign Gaussian priors with central values and
amplitudes taken from the independent analysis in [50].
Finally, for the parameters of interest of our analysis,
namely, rq and l, we set the uniform priors rq ∈ ½0; 7�M
and l∈ ½0; 5000�M, that have been chosen heuristically.
For each extracted set of parameters, we quantify the
agreement between the observational data and our orbital
model by the following likelihood:

logL ¼ −
1

2

"X145
i

�
αiðθÞ − αobsiffiffiffi

2
p

σα;i

�
2

þ
X145
i

�
δiðθÞ − δobsiffiffiffi

2
p

σδ;i

�
2

þ
X44
i

�
vLOS;iðθÞ − vobsLOS;iffiffiffi

2
p

σvLOS;i

�
2

þ
�
fOPðθÞ − fSPffiffiffi

2
p

σfSP

�
2
#
: ð18Þ

The labels obs indicate observed quantities from [45] at
the ith epoch (with i spanning from 1 to 145 for the
astrometric positions and from 1 to 45 for the line-of-sight
velocities), while unlabeled quantities indicate the predic-
tion from our orbital model for a given set of parameters θ.
The σ’s in the denominators are the corresponding uncer-
tainties. Since the measurement of the rate of orbital
precession fSP by [9] involves the same dataset used here
by [45] (plus the more accurate observations at and after the
pericenter passage in 2018), we conservatively added the

3Here, we use the notation fSP to refer to the measurement by
the Gravity Collaboration of fOP in Eq. (16). The “SP” conven-
tionally stands for Schwarzschild precession, as what has been
measured is the accordance of observed position for S2 to what a
Schwarzschild model for the central black hole would predict.
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ffiffiffi
2

p
in the denominators in Eq. (18), to avoid double

counting data [39].

V. RESULTS

In this section, we present the results of our Bayesian
analysis. In Table I, we report the median-centered
68% confidence intervals on the orbital and reference

frame parameters of our orbital model retrieved by the
sampled posterior distribution. The effectiveness of our
analysis can be easily noted in Fig. 4, where we show, in a
corner plot, all the marginalized posterior distributions of
our parameter space along the diagonal and the 2D contours
for all possible couples of parameters depicting the 68%,
95%, and 99.7% credible regions. All the parameters are
bound and the confidence intervals are compatible with

FIG. 4. Full 15-dimensional posterior distribution from our MCMC analysis. On the diagonal, we report marginalized 1D posterior
distributions for each parameter in our orbital model for S2 in metric-affine gravity, while for each pair of parameters, we report 2D
contour plots embracing (from darker to lighter) the 68%, 95%, and 99.7% of the posterior samples in the off-diagonal plots. Red marks
report the best-fitting value for the orbital parameters of S2 from the Newtonian analysis in [45] with the corresponding 1σ uncertainties.
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those of previous analyses [45], as shown by the red square
points, with their corresponding error bars, indicating their
best-fitting values. This confirms the validity of our
analysis in recovering the appropriate set of orbital param-
eters for S2.
The confidence regions for our parameters of interest for

the metric-affine space-time solution in Eq. (9) are also
shown in Fig. 5. Here, in the contour plot, we show the
interesting allowed regions (at 1, 2, and 3σ confidence) for
the parameters rq and l that we have derived as a result of
our analysis, while the marginalized posterior distributions
for the two parameters are reported on the diagonal of the
corner plot. Our orbital model for S2 tends to prefer small
values of rq, generally below 2.7M, for values of l below
the semiradius of the pericenter passage of S2, at around
60 A.U. (reported as a red dotted vertical line in our
contour). For l ¼ 60 A.U., the orbit of S2 appears to be
completely insensible of the particular value of rq, as
already highlighted in our analysis of the orbital precession
as a function of l and rq (see Fig. 3). For l > 60 A.U., the
deviations to the orbital dynamics of S2 are strong even for
very small values of rq, which brings the credible interval
for this parameter to narrow down, with rq < M at
λ ∼ 5000M. Quite remarkably, our analysis constrains rq
and l within the δ1 < δc region, implying that the orbit for
S2 favors a central object that resembles a Schwarzschild
black hole when the gravitational field is described by the
space-time metric in Eq. (9). This excludes, in the range of
the priors that we have considered, the severe modifications
(in terms of their causal structures) to the underlying
geometries predicted for the cases δ1 ≥ δc (highlighted
in violet in the contour plot).

VI. DISCUSSION AND REMARKS

The remarkable precision of astronomical observations
of the S stars at the Galactic Center has been a crucial piece
of evidence toward the identification of SgrA* as a
supermassive black hole residing at the heart of the
Milky Way. Such measurements have led to the first
detection of orbital relativistic effects, and, thus, an
indirect demonstration of the general relativistic geodesic
paradigm for the motion of freely falling test particles,
outside of our Solar System [8,53]. The ability to perform
metric tests of gravity using these observations has
motivated numerous studies that have leveraged such an
opportunity to translate the narrow margins of deviations
from general relativity, naturally encoded in the observa-
tional uncertainties, into exclusion regions for several
modified theories of gravity [39,40,43,54–57], black hole
mimickers [41,49], and dark matter models [42,58,59].
In this work, we have used the publicly available data for

the star S2, the brightest in the cluster, to derive the first
constraints based on such data on quadratic modifications
to the general relativistic action in the metric-affine
formalism, resulting in the space-time geometry reported

TABLE I. Resulting 68% confidence intervals for all the orbital
parameters from our MCMC analysis. All orbital parameters are
bound and consistent within 1σ with their best-fitting values from
other analyses in the literature [45].

Parameter (units) Best fit

M (106M⊙) 4.08� 0.23

D ðkpcÞ 8.07� 0.2
Tp − 2018.37 ðyrÞ −0.007� 0.023

a ðasÞ 0.126� 0.001
e 0.884� 0.0023
i (°) 133.93� 0.48
Ω (°) 227.01� 0.77
ω (°) 65.67þ0.72

−0.71
α0 ðmasÞ 0.32� 0.16
δ0 ðmasÞ −0.07� 0.19

v0α ðmas=yrÞ 0.084� 0.052

v0δ ðmas=yrÞ 0.126� 0.063

v0LOS ðkm=sÞ −2.0� 4.4

FIG. 5. Posterior probability distribution for the parameters of
interest of our analysis, namely, rq and l. In particular, the top and
right panels show the marginalized posterior distributions for the
two parameters, while the bottom-left panel shows the 2D slice of
the full posterior distribution corresponding to the rq − l plane.
The 1σ, 2σ, and 3σ regions are highlighted with increasingly
darker shades. Moreover, the vertical dashed red line corresponds
to a value of l ∼ rp=2. The shaded violet region corresponds to the
class ofmodels with δ1 > δc. Remarkably, our analysis bounds the
parameter space in the region δ1 < δc, showing that the orbit of S2
is sensible to such strong modifications of the space-time metric.
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in Eq. (9). We have developed an orbital model, based on
the numerical integration of the geodesic equations in
Eqs. (11)–(14), that takes into account all relativistic and
systematic effects necessary to model the S2 orbital data
accurately [45,60]. Our analysis, which recovers values for
the orbital parameters within 1σ (as shown in Fig. 4 and
Table I) that agree with past studies, resulted in interesting
constraints on the extra length scales by which this family
of solutions is characterized, namely, a charge-related
length rq and a parameter modulating the higher-curvature
terms in the Lagrangian l, whose results are reported in
Fig. 5. The parameter rq is generally bound below 2.7M,
except when l ∼ 60A.U. (coinciding with the semidistance
of S2 from SgrA* at pericenter passage), in which case the
orbit of S2 appears to be insensible of the particular value of
rq (as also qualitatively seen analyzing the orbital pre-
cession for S2 as a function of l and rq in Fig. 3). This
analysis, which provides the first constraints for the metric
element in Eq. (9) at the scales of the Galactic Center,
provides a remarkable complementary result to past tests on
the same theory [26,61–63] and on the subject of regular
black holes, in general [18,64].

The fact that our results single out the Schwarzschild-
like subfamily of metric-affine black holes (i.e., those with
δ1 < δc) is consistent with the results from the analysis of
other messengers such as gravitational waves and shadow
images out of accretion disks, all of them pinpointing that
hard modifications of the black hole paradigm of GR may
be strongly disfavored by data. At the same time, it also
reinforces the need to cross-test several such messengers to
determine the viability of any alternative to the canonical
black hole paradigm of GR, like the metric-affine one
considered in this work.
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