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In this paper, we study polarization modes of gravitational waves in generalized Proca theory in the
homogeneous and isotropic Minkowski background. The results show that the polarizations of
gravitational waves depend on the parameter space of this gravity theory and can be divided into quite
rich cases by parameters. In some parameter space, it only allows two tensor modes, i.e., the þ and ×
modes. In some parameter space, besides tensor modes, it also allows one scalar mode, or two vector
(vector-x and vector-y) modes, or both one scalar mode and two vector modes. The scalar mode is a mixture
mode of a breathing mode and a longitudinal mode, or just a pure breathing mode. Interestingly, it is found
that the amplitude of the vector modes is related to the speed of the tensor modes. This allows us to give the
upper bound of the amplitude of the vector modes by detecting the speed of the tensor modes. Specifically,
if the speed of tensor modes is strictly equal to the speed of light, then the amplitude of vector modes is
zero.
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I. INTRODUCTION

The successful detection of gravitational waves [1–5]
implies the arrival of the gravitational wave astronomy era.
In addition to using electromagnetic waves, we can also
develop astronomy and cosmology by detecting gravita-
tional waves [6–10]. Not only that, gravitational waves can
also help us test various modified gravities and deepen our
understanding of gravity [11,12].
Polarization is an important property of gravitational

waves. In 1973, Eardley et al. pointed out that there are up
to six independent polarization modes of gravitational
waves in the general four-dimensional metric theory
[13]. For a specific modified gravity, due to the field
equations constraining the possible value of the Riemann
tensor, it generally does not allow all six polarization
modes, but rather allows a subset of them. For example, for
general relativity, the vacuum Einstein field equation
requires the Ricci tensor is zero, which results in the
theory having only two polarization modes of gravitational
waves, namely the þ mode and the × mode. Different
theories predict different classes of polarization modes, so
it can be expected that some of them will be excluded from

the detection of polarization modes of gravitational waves
in the future.
In many modified gravities, the polarization modes of

gravitational waves have been studied, like fðRÞ, Horndeski,
Palatini generalized Brans-Dicke, Palatini-Horndeski, tele-
parallel Horndeski, Einstein-aether, tensor-vector-scalar,
Horava, scalar-tensor-vector, fðTÞ, dCS, EdGB, and
Bumblebee theories [14–24]. Additionally, there are also
some studies on the generation of gravitational waves in
modified gravities, for example, Refs. [25–27]. The ground-
based gravitational wave detectors of LIGO, VIRGO, and
KAGRA are located at different locations on the Earth. They
can detect gravitational waves in different two-dimensional
planes. Therefore, different detectors can cooperate to detect
the polarization modes of gravitational waves. In this regard,
some related work has already begun [4,5,28–40]. Polariza-
tion information of gravitational waves can also be detected
using Pulsar Timing Arrays (PTAs) [41]. For example,
in 2021, Huang et al. discovered a tentative indication
for scalar-transverse gravitational waves in NANOGrav
12.5 year data set [42]. Furthermore, one can also expect
to use space gravitational wave detectors such as Lisa, Taiji,
and TianQin [43–46] to detect polarization modes of
gravitational waves in the future.
Adding additional fields is one way to modify gravity.

The additional degrees of freedom may explain inflation
and the accelerated expansion of the Universe [47–50]. If
the additional field is a scalar field, then such a theory is
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called scalar-tensor theory. In the metric formalism, the
most general scalar-tensor theory that can derive second-
order field equations is Horndeski theory [51]. This theory
was first discovered by Horndeski in 1974. Later, it was
realized that extending the scalar Galileon theory [52] to
curved spacetime would lead to the rediscovery of
Horndeski theory [53,54].
The observation of the anisotropy of the cosmic micro-

wave background (CMB) may indicate the existence of a
preferred direction in the Universe [55]. This may be
naturally generated by an additional vector field [50].
Therefore, in addition to adding a scalar field, we can also
add an additional vector field to modify gravity. Such a
theory is called vector-tensor theory. Similar to the scalar
Galileon theory, in 2014, Tasinato constructed a vector
Galileon theory [56]. Heisenberg further gave generaliza-
tion of the Proca action in curved spacetime [57]. This
covariant vector-tensor theory constitutes the Galileon-type
generalization of the Proca action, and it is called gener-
alized Proca theory. When one considers the Lagrangian of
a vector field with derivative self-interactions with a priori
arbitrary coefficients, which does not have ghostlike
pathologies, and extends it to the case of curved spacetime,
generalized Proca theory will be obtained [57]. The field
equations of generalized Proca theory are second order, so
there is no the Ostrogradsky instability in this theory [58].
There has been a lot of research on this theory, such as
cosmology [59–63] and black holes [64–68].
In this paper, we will study polarization modes of

gravitational waves in generalized Proca theory in the
range of a linear analysis. We consider a homogeneous
and isotropic Minkowski background and our goal is to
obtain the linearized field equations and then analyze the
polarization modes of gravitational waves allowed by these

equations. Therefore, in Sec. II, we review the action of
generalized Proca theory. In Sec. III, we obtain the back-
ground equations and linear perturbation equations. In
Sec. IV, we combine the perturbations into some gauge
invariants. These gauge invariants can help us analyze the
linear perturbation equations. In Sec. V, we analyze the
polarization modes of gravitational waves in generalized
Proca theory. In fact, in Refs. [59,60], the authors analyzed
all the permutations and propagating degree of freedom of
generalized Proca theory on top of a Friedmann-Lemaître-
Robertson-Walker background, and the perturbation equa-
tions and wave speed expressions we need can be directly
obtained from these results by taking the Minkowski
background limit.
We will use the natural system of units c ¼ G ¼ 1 and

consider four-dimensional spacetime in this paper. We set
the metric signature as ð−;þ;þ;þÞ. The Latin alphabet
indices ða; b; c; d; eÞ range over spacetime indices (0, 1, 2,
3), and the Latin alphabet indices ði; j; kÞ range over space
indices (1, 2, 3) which point to (þx;þy;þz) directions,
respectively.

II. GENERALIZED PROCA THEORY

Generalized Proca theory is a vector-tensor theory. In
addition to being related to the metric gab, the action also
depends on a vector field Aa.
The action of generalized Proca theory is [57,59,69]

Sðgab;AaÞ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLFþL2þL3þL4þL5Þ; ð1Þ

where

LF ¼ −
1

4
FabFab; ð2Þ

L2 ¼ G2ðXÞ; ð3Þ

L3 ¼ G3ðXÞ∇aAa; ð4Þ

L4 ¼ G4ðXÞRþ G4;XðXÞ½ð∇aAaÞ2 þ c2∇aAb∇aAb − ð1þ c2Þ∇aAb∇bAa�; ð5Þ

L5 ¼ G5ðXÞ
�
Rab −

1

2
gabR

�
∇aAb

−
1

6
G5;XðXÞ½ð∇aAaÞ3 − 3d2∇aAa∇bAc∇bAc − 3ð1 − d2Þ∇aAa∇bAc∇cAb

þ ð2 − 3d2Þ∇aAb∇cAa∇bAc þ 3d2∇aAb∇cAa∇cAb�: ð6Þ
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Here, Fab ¼ ∇aAb −∇bAa, Rab is the Ricci tensor and R is
the Ricci scalar, c2, d2 are constants,G2,G3,G4, andG5 are
arbitrary functions of the variable X ¼ − 1

2
gabAaAb. In

addition, Gn;X ¼ dGn=dX (n ¼ 2, 3, 4, 5). The remaining
derivatives are still represented by this notation. For
example, G2;XX represents the second-order derivative of
G2 with respect to the variable X. In the action of
generalized Proca theory, L3, L4, and L5 correspond to
the first, second, and third power terms of the derivative
interaction of the vector field, respectively. And G4ðXÞR
and G5ðXÞðRab − 1

2
gabRÞ∇aAb are the nonminimal cou-

plings between the vector field and curvature that must be
introduced in order for the field equation to be second
order. It can be seen that unlike Einstein-aether theory [70],
the action of generalized Proca theory does not have a
Lagrangian multiplier for an a priori fixed norm of the
vector field.
The first term of L4 can be equivalently written as

ð16πÞ−1Rþ ½G4ðXÞ − ð16πÞ−1�R. Therefore, it is easy to
see that this theory includes the Einstein-Hilbert action. We
hope that generalized Proca theory can retain the contri-
bution of the Einstein-Hilbert term, so it requires

G4ðXÞ ≠ 0: ð7Þ

III. BACKGROUND EQUATIONS AND LINEAR
PERTURBATION EQUATIONS

Now consider a homogeneous and isotropic Minkowski
background

gab ¼ ηab; Aa ¼ Åa ¼ ðA; 0; 0; 0Þ; ð8Þ

where Åa is a constant vector and ηab is the Minkowski
metric. Due to spatial isotropy, the vector Åa only has one
nonvanishing temporal component A, and its spatial com-
ponents are all zero.
By substituting the assumption (8) into the field equa-

tions derived from the variation of the action (1) with
respect to the metric tensor gab and the vector field Aa,
respectively, we can determine that Åa should satisfy the
following background equations:

−
1

2
G̊2ηab þ

1

2
G̊2;XÅaÅb ¼ 0; ð9Þ

−G̊2;XÅa ¼ 0: ð10Þ

Here and below, the notation “∘” above the letter means
that the corresponding function takes the value of
X ¼ − 1

2
ηabÅ

aÅb. Using the background equations (9) and
(10), we can divide the background solution (8) into two
cases:

Case A∶ G̊2 ¼ 0; G̊2;X ≠ 0; A ¼ 0;

Case B∶ G̊2 ¼ 0; G̊2;X ¼ 0; A ¼ constant:

To describe gravitationalwaves, we investigate perturbations
of the background

gab ¼ ηab þ hab; Aa ¼ Åa þ Ba;

jhabj ≪ 1; jBaj ≪ jÅaj: ð11Þ

In the following, we use ηab and ηab to lower and raise the
spacetime index and define h ¼ ηabhab.
By substituting the perturbations (11) into the field

equations derived from the variation of the action (1),
and writing the first-order terms of the perturbations, we
can obtain two linear-perturbation equations that describe
gravitational waves.
Substituting the perturbations into the field equation

derived from the variation of vector Aa, we obtain the first
linear-perturbation equation

Va ¼ 0: ð12Þ

Here, the specific expression of Va is very lengthy, and we
place it in the Appendix.
Substituting the perturbations into the field equation

derived from the variation of tensor gab, we have the second
linear-perturbation equation

T ab ¼ 0: ð13Þ

Here, we also list the expression of T ab in the Appendix.
It should be noted that for the case of A ¼ 0, i.e., Åa ¼ 0,

it is easy to analyze polarization modes of gravitational
waves. In this case, Eq. (13) becomes

− 2G̊2hab − 2G̊4ð∂a∂bh − ∂a∂chcb − ∂b∂chca

þ□hab þ ηab∂c∂dhcd − ηab□hÞ ¼ 0: ð14Þ

On the other hand, we always have G̊2 ¼ 0 for the
background solution (8). In addition, since G4ðXÞ ≠ 0,
Eq. (14) can be further written as

G
ð1Þ

ab ¼ −
1

2
ð∂a∂bh − ∂a∂chcb − ∂b∂chca þ□hab

þ ηab∂c∂dhcd − ηab□hÞ ¼ 0: ð15Þ

Here, Gab is the Einstein tensor, and the notation “(1)”
above the letterGmeans that only the first-order term of the
perturbations is taken here. It can be seen that under linear
approximation, Eq. (15) is no different from Einstein’s field
equation. Therefore, just like general relativity, there are
only two tensor modes (þ and ×) propagating at the speed
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of light for the case of A ¼ 0. It should be pointed out that
this does not mean that when A ¼ 0 general Proca theory
will return to general relativity. When we consider not only
linear-order but also the full nonlinear field equation, we
will find that the field equations of generalized Proca theory
contain higher-order terms of vector-field perturbations.
One may ask whether another linear-perturbation equa-

tion (12) further constrains the tensor-mode gravitational
waves. The answer is no. Note that only the transverse-
traceless part hTTij of the metric perturbation hab contributes
to the tensor-mode gravitational waves, and Eq. (12) is a
vector type equation with a single index. We can know that
this equation does not constrain the value of hTTij , and
therefore does not constrain the tensor mode gravitational
waves.
Through the above analysis, we find that when the

background solution (8) belongs to Case A, it only allows
two tensor (þ and ×) modes propagating at the speed of
light. The result is the same for Case B with A ¼ 0.
Therefore, in the following sections, we only need to
analyze the case where the background solution (8) meets
the following conditions:

G̊2 ¼ 0; G̊2;X ¼ 0; A ≠ 0: ð16Þ

IV. GAUGE INVARIANTS

In this section, we will introduce a method for simplify-
ing linear perturbation equations. After using this method,
the linear perturbation equations can be decomposed into
independent tensor, vector, and scalar equations. These
equations can be represented by some gauge invariants
combined with perturbations.
Under spatial rotation transformation, hij is transformed

like a second-order tensor, h0i and Bi are transformed like
vectors, and h00 and B0 are transformed like scalars. We can
uniquely decompose the perturbations as follows [24,71,72]:

B0 ¼ B0;

Bi ¼ ∂
iωþ μi;

h00 ¼ h00;

h0i ¼ ∂iγ þ βi;

hij ¼ hTTij þ ∂iϵj þ ∂jϵi þ
1

3
δijH þ

�
∂i∂j −

1

3
δijΔ

�
ζ:

ð17Þ

Here,

∂iμ
i ¼ ∂iβ

i ¼ ∂iϵ
i ¼ 0; ð18Þ

δijhTTij ¼ ∂
ihTTij ¼ 0: ð19Þ

Here andbelow,weuseδij and δij to lower and raise the space
index. As can be seen, Eq. (17) uniquely decomposes a
spatial vector into a scalar part and a transverse vector part,
and uniquely decomposes a spatial tensor into two scalar
parts, a transverse vector part, and a transverse-traceless
tensor part.
Considering that the left sides of Eqs. (12) and (13) are

actually a vector and a tensor, respectively, we can also
apply this decomposition method to the linear-perturbation
equations. Due to the uniqueness of the decomposition,
requiring the equations to be zero is equivalent to requiring
that each decomposed part of the linear-perturbation equa-
tions be zero, sowe can obtain a series of independent tensor,
vector, and scalar equations. Due to the spatial homogeneous
and isotropic of the background solution (8), by substituting
(17) into Eqs. (12) and (13), we can see that these decom-
posed scalar, vector. and tensor equations only rely on tensor,
vector, and scalar perturbations, respectively [73]. Therefore,
the linear perturbation equations are decoupled.
We can also continue to combine the perturbations in

these equations into gauge invariants. Under linear approxi-
mation, the gauge transformations of the metric and the
vector field are [74]

hab → hab − ∂aξb − ∂bξa; ð20Þ

Ba → Ba þ Åb
∂bξ

a: ð21Þ

Here, ξa is an arbitrary function of spacetime coordinates.
Under the above gauge transformations, the spatial

tensor

hTTij ; ð22Þ

the two spatial vectors

Ξi ¼ βi − ∂0ϵi;

Σi ¼ μi þ A∂0ϵi; ð23Þ

and the four spatial scalars

ϕ ¼ −
1

2
h00 þ ∂0γ −

1

2
∂0∂0ζ;

Θ ¼ 1

3
ðH − ΔζÞ;

Ω ¼ B0 − A∂0γ þ
1

2
A∂0∂0ζ;

Ψ ¼ ωþ 1

2
A∂0ζ; ð24Þ

are gauge invariant [24,72]. In the next section, wewill check
that the scalar, vector, and tensor equations decomposed from
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Eqs. (12) and (13) can be represented by the gauge invariants
(22)–(24) combined with perturbations.

V. POLARIZATION MODES
OF GRAVITATIONAL WAVES

In this section, we analyze the polarization modes of
gravitational waves in generalized Proca theory in Case B.
We detect gravitational waves by detecting the relative

displacement of free particles [75]. In this paper, similar to
Ref. [13], we assume that the matter field only has minimal
coupling with the metric gab, while the vector field Aa is not
directly coupled with the matter field. So, the action
describing the motion of a free particle is

S ¼
Z

ds ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgabdxadxbj
q

; ð25Þ

the relative motion between two adjacent free-test particles
used to detect the polarization modes of gravitational waves
satisfies the equation of geodesic deviation [75],

d2ηi
dt2

¼ −R
ð1Þ

i0j0η
j: ð26Þ

Here, ηi is the relative displacement of the two test particles
and Ri0j0 is the ði0j0Þ component of the Riemannian
tensor. The notation “(1)” above the letter R means that
only the first-order term of the perturbations is taken here. It
can be seen from Eq. (26) that Ri0j0 will completely
determine the motion behavior of the free test particles
under the gravitational waves, and the polarization modes
of gravitational waves are defined by different values of
Ri0j0 [75].

Using Eqs. (17), and (22)–(24), we can write Ri0j0 as

R
ð1Þ

i0j0 ¼ −
1

2
∂0∂0hTTij þ 1

2
∂0∂iΞj þ

1

2
∂0∂jΞi

þ ∂i∂jϕ −
1

2
δij∂0∂0Θ: ð27Þ

It can be seen that among several gauge invariants, only
hTTij ;Ξi;ϕ;Θ contribute to gravitational waves, while
Σi;Ω;Ψ do not cause the relative displacement of the test
particles.
Now, taking the propagation direction of gravitational

waves as þz direction we mark the components of Ri0j0 as
[13,21]

Ri0j0 ¼

0
BB@

P4 þ P6 P5 P2

P5 −P4 þ P6 P3

P2 P3 P1

1
CCA: ð28Þ

We can define six independent polarization modes of
gravitationalwavesP1;…; P6. Any plane gravitational wave
can bewritten as a linear combination of these sixmodes.We
show the relative motions of the test particles under these six
polarization modes in Fig. 1.
Combining Eqs. (27) and (28), we can obtain the

expressions of the six polarization modes

P1 ¼ ∂3∂3ϕ −
1

2
∂0∂0Θ; P2 ¼

1

2
∂0∂3Ξ1;

P3 ¼
1

2
∂0∂3Ξ2; P4 ¼ −

1

2
∂0∂0hTT11 ;

P5 ¼ −
1

2
∂0∂0hTT12 ; P6 ¼ −

1

2
∂0∂0Θ: ð29Þ

FIG. 1. Six polarization modes of gravitational waves [13]. We have assumed that the gravitational waves propagate in the þz
direction. The solid and dotted lines are the cases of a circle of test particles when the phases of waves are 0 and π, respectively. There is
no relative motion between test particles in the direction of the third axis that is not drawn.
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It should be pointed out that in this calculation, we assume
that the propagation direction of gravitational waves is in
the þz direction. Therefore, when we consider wave
solutions, hTTij ;Ξi;ϕ;Θ are functions of only t and z.
This will result in, for example, hTT22 ¼ −hTT11 and
∂1∂1ϕ ¼ 0. It can be seen that hTTij only contributes to
tensor (þ and ×) modes, Ξi only contributes to vector
(vector-x and vector-y) modes, ϕ only contributes to
longitudinal mode, and Θ contributes to both breathing
mode and longitudinal mode.
Now, we will use the method introduced in Sec. IV to

simplify the linear perturbation equations (12) and (13) and
analyze the polarization modes of gravitational waves in
generalized Proca theory in case (16).

A. Tensor mode

The equation describing the tensor mode gravitational
waves can be derived from the transverse traceless tensor
part of the ij component in Eq. (13), which is

ðG̊4 − G̊4;XA2Þ∂0∂0hTTij − G̊4ΔhTTij ¼ 0: ð30Þ

This equation is consistent with the result of taking
Minkowski limit in Refs. [59,60]. In order for generalized
Proca theory to have tensor mode (þ and ×) gravitational
waves, combining Eqs. (7) and (30), we should have the
condition

G̊4 − G̊4;XA2 ≠ 0: ð31Þ

If the condition (31) is not satisfied, then Eq. (30) will
become ΔhTTij ¼ 0. It indicates that hTTij has no wave
solution, so this is not what we expected.
With the condition (31), we can obtain from Eq. (30) that

the speed of the tensor mode gravitational waves cT is

cT2 ¼
G̊4

G̊4 − G̊4;XA2
: ð32Þ

If cT2 < 0, the solution will exponentially diverge, and then
it is linearly unstable. To ensure the linear stability of the
solution, we require cT2 > 0.
GW170817 and GRB170817A require the speed of

tensor mode gravitational waves cT to meet [76,77]

−3 × 10−15 ≤ cT − 1 ≤ 7 × 10−16: ð33Þ

This result will constrain the values of the theoretical
parameters. Considering that Eq. (33) requires cT not to
deviate significantly from the speed of light. Using
Eq. (32), it shows that

jG̊4;XA2j ≪ jG̊4j: ð34Þ

Therefore, we can expand c2T as

c2T ≈ 1þ G̊4;XA2

G̊4

: ð35Þ

Accordingly, cT has an approximation of

cT ≈ 1þ G̊4;XA2

2G̊4

: ð36Þ

Therefore, it can be seen that the constrain (33) requires

���� G̊4;XA2

G̊4

����≲ 10−15: ð37Þ

In particular, when the speed of tensor mode gravitational
waves is strictly equal to the speed of light, we have
G̊4;X ¼ 0.

B. Vector mode

We can derive three equations describing vector mode
gravitational waves from the linear perturbation equa-
tions (12) and (13).
The first equation can be derived from the transverse

vector part of the i component of Eq. (12), which is

ð1 − 2c2G̊4;XÞ□ðΣi þ AΞiÞ − G̊4;XAΔΞi ¼ 0: ð38Þ

The second and third equations can be derived respectively
from the transverse vector parts of the ij and 0i components
of Eq. (13),

G̊4Ξi þ G̊4;XAΣi ¼ 0; ð39Þ

ð1 − 2c2G̊4;XÞA□ðΣi þ AΞiÞ − G̊4ΔΞi

− G̊4;XAΔðΣi þ AΞiÞ ¼ 0: ð40Þ

These equations are consistent with the results of taking
Minkowski limit in Refs. [59,60]. Perhaps one would ask
why there are only two variables Ξi, Σi but three equations
here. In fact, these three equations are not independent of
each other. We can easily find that Eq. (40) can be obtained
using Eqs. (38) and (39). Therefore, we only need to
consider the first two.
Using Eq. (39), we have

Ξi ¼ −
G̊4;XA

G̊4

Σi: ð41Þ

It can be seen that when G̊4;X ¼ 0, we have Ξi ¼ 0.
However, from Eq. (27), it can be seen that the gauge
invariant vector that contributes to gravitational waves is
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only Ξi. Therefore, in this case, generalized Proca theory
does not allow vector mode gravitational waves.
When G̊4;X ≠ 0, we can substitute Eq. (41) into Eq. (38),

and obtain

M∂0∂0Σi −NΔΣi ¼ 0; ð42Þ

where

M ¼ ð1 − 2c2G̊4;XÞðG̊4 − G̊4;XA2Þ; ð43Þ

N ¼ Mþ G̊2
4;XA2: ð44Þ

This is an equation for the variable Σi. When we solve the
wave solution of Σi from Eq. (42), we can obtain Ξi with
Eq. (41), and then obtain the wave solution of vector mode
gravitational waves. We already have the condition (31), so
when considering G̊4;X ≠ 0, we can study this equation in
the following three cases:

Case 1: When 1 − 2c2G̊4;X ¼ 0, Eq. (42) becomes
ΔΣi ¼ 0. It indicates that Σi has no wave solution,
so we have Ξi ¼ Σi ¼ 0. This case does not allow
vector mode gravitational waves.

Case 2: When ð1−2c2G̊4;XÞðG̊4−G̊4;XA2ÞþG̊2
4;XA2¼0,

Eq. (42) becomes ∂0∂0Σi ¼ 0. It also indicates that Σi
has no wave solution, so we have Ξi ¼ Σi ¼ 0. This
case also does not allow vector mode gravitational
waves.

Case 3: When 1 − 2c2G̊4;X ≠ 0 and ð1 − 2c2G̊4;XÞ×
ðG̊4 − G̊4;XA2Þ þ G̊2

4;XA2 ≠ 0, Eq. (42) will have wave
solutions of Σi. In this case, generalized Proca theory
allows two vector (vector-x and vector-y) modes.
Using Eq. (42), we obtain the speed of vector mode
gravitational waves cV :

c2V ¼ 1þ G̊2
4;XA2

ð1 − 2c2G̊4;XÞðG̊4 − G̊4;XA2Þ : ð45Þ

Similar to the previous analysis of tensor modes, in
order for the solution to have linear stability, we
require c2V > 0. It can be seen that in Case 3, vector
mode gravitational waves do not propagate at the
speed of light, i.e., cV ≠ 1.

Based on the above research, we find that the existence
of vector mode gravitational waves in generalized Proca
theory depends on the parameter space. We summarize the
results in Table I.
Finally, note that Ξi in Eq. (41) depends on G̊4;X, which

allows us to use the speed of tensor mode gravitational
waves to constrain the upper limit of the amplitude of
vector-mode gravitational waves.
First, all the perturbations are weak relative to the

background,

jhabj ≪ 1; jBaj ≪ jÅaj: ð46Þ

Then with Eqs. (17) and (23), we have

jΣij ≪ jAj: ð47Þ

Therefore, using Eqs. (35) and (41), the condition (47)
implies

jΞij ¼
���� G̊4;XA

G̊4

Σi

���� ≪
���� G̊4;XA2

G̊4

���� ≈ jc2T − 1j: ð48Þ

The above inequality gives the relationship between the
vector mode amplitude and the tensor mode speed. Then,
considering GW170817 and combining with the condition
(37), we have from Eq. (48) that

jΞij ≪ 10−15: ð49Þ

Using Eqs. (17) and (23), the above constrain indicates that
the metric perturbation (abbreviated as h) corresponding to
the vector gravitational waves satisfy jhj ≪ 10−15. If we
further require the speed of tensor modes to be the speed of
light, i.e., cT ¼ 1, then according to Eq. (48), we have
Ξi ¼ 0. At this point, the amplitude of the vector modes is
zero, and we cannot detect the vector gravitational waves.

C. Scalar mode

We can derive six equations describing scalar mode
gravitational waves from the linear perturbation equa-
tions (12) and (13).

TABLE I. The number of vector mode gravitational waves under various cases. The numbers in the rightmost
column of the table represent the degrees of freedom of the vector mode gravitational waves in the corresponding
case.

Cases Conditions Vector degrees of freedom

Case 0 G̊4;X ¼ 0. 0
Case 1 G̊4;X ≠ 0; 1 − 2c2G̊4;X ¼ 0. 0
Case 2 G̊4;X ≠ 0; ð1 − 2c2G̊4;XÞðG̊4 − G̊4;XA2Þ þ G̊2

4;XA2 ¼ 0. 0
Case 3 G̊4;X ≠ 0; 1 − 2c2G̊4;X ≠ 0; ð1 − 2c2G̊4;XÞðG̊4 − G̊4;XA2Þ þ G̊2

4;XA2 ≠ 0. 2
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The first and second equations can be derived from the 0
component and the scalar part of the i component of
Eq. (12), respectively, which are given by

− 2ð1 − 2c2G̊4;XÞΔðΩþ 2Aϕþ ∂0ΨÞ
þ G̊3;XAð2ΔΨþ 3A∂0ΘÞ
− 4G̊4;XAΔΘþ 2G̊2;XXA2ðΩþ AϕÞ ¼ 0; ð50Þ

− ð1 − 2c2G̊4;XÞ∂0ðΩþ 2Aϕþ ∂0ΨÞ
− G̊3;XAðΩþ AϕÞ − 2G̊4;XA∂0Θ ¼ 0: ð51Þ

The third and fourth ones can be obtained respectively from
the trace part and the ∂i∂j part of the ij components of
Eq. (13),

G̊4ð−4Δϕ−2ΔΘþ6∂0∂0ΘÞ−3G̊3;XA2
∂0ðΩþAϕÞ

−4G̊4;XAΔðΩþAϕþ∂0ΨÞ−6G̊4;XA2
∂0∂0Θ¼ 0; ð52Þ

G̊4ð2ϕþ ΘÞ þ 2G̊4;XAðΩþ Aϕþ ∂0ΨÞ ¼ 0: ð53Þ

Finally, the fifth and sixth equations can be derived
respectively from the scalar part of the 0i component
and the 00 component of Eq. (13):

ð1 − 2c2G̊4;XÞAðΩþ 2Aϕþ ∂0ΨÞ þ 2G̊4Θ ¼ 0; ð54Þ

4ð1 − 2c2G̊4;XÞAΔðΩþ 2Aϕþ ∂0ΨÞ
þ 4G̊4ΔΘþ 4G̊4;XA2ΔΘ − G̊3;XA2

× ð2ΔΨþ 3A∂0ΘÞ − 2G̊2;XXA3ðΩþ AϕÞ ¼ 0: ð55Þ

These equations are consistent with the results of taking
Minkowski limit in Refs. [59,60]. The above six equations
are not independent of each other. Equation (55) can be
obtained from Eqs. (50) and (54), and Eq. (51) from
Eqs. (52)–(54). Therefore, only Eqs. (50) and (52)–(54)
are independent. Now, we have four equations and four
variables ϕ;Θ;Ψ;Ω.
We can use Eqs. (52) and (53) to obtain the following

equation:

2ðG̊4 − G̊4;XA2Þ∂0Θ − G̊3;XA2ðΩþ AϕÞ ¼ 0: ð56Þ

This equation can replace Eq. (52), and we can solve scalar-
mode gravitational waves with Eqs. (50), (53), (54),
and (56).
Now, we study scalar mode gravitational waves in the

following four cases:

Case 1: G̊3;X ¼ 1–2c2G̊4;X ¼ 0. In this case, using
Eq. (31), we find that Eq. (56) requires Θ ¼ 0. Thus,
Eq. (54) becomes

ð1 − 2c2G̊4;XÞAðΩþ 2Aϕþ ∂0ΨÞ ¼ 0: ð57Þ

It can be seen that the equation is an identity. We now
have only two equations [(50) and (53)] left to
constrain the three variables ϕ;Ψ;Ω, which indicates
that these variables cannot be determined. So we do
not consider this case.

Case 2: G̊3;X ¼ 0; 1 − 2c2G̊4;X ≠ 0. In this case, using
Eqs. (31) and (56) also requires Θ ¼ 0, while Eq. (54)
requires

Ωþ 2Aϕþ ∂0Ψ ¼ 0: ð58Þ

Then, from (53) we have

ðG̊4 − G̊4;XA2Þϕ ¼ 0: ð59Þ

Using Eq. (31), requires ϕ ¼ 0. Since Θ ¼ ϕ ¼ 0,
Eq. (27) indicates that scalar mode gravitational waves
are not allowed in this case.

Case 3: G̊3;X ≠ 0; 1 − 2c2G̊4;X ¼ 0. In this case, using
Eq. (54), we have Θ ¼ 0. Then, Eq. (56) requires
Ωþ Aϕ ¼ 0. Using the above conditions, Eq. (50)
will require Ψ ¼ 0. Finally, from Eq. (53), it can be
seen that ϕ ¼ 0. Since Θ ¼ ϕ ¼ 0, scalar mode
gravitational waves are not allowed in this case.

Case 4: G̊3;X ≠ 0; 1 − 2c2G̊4;X ≠ 0. In this case, from
Eqs. (56) and (54), we have

Ωþ Aϕ ¼ 2ðG̊4 − G̊4;XA2Þ
G̊3;XA2

∂0Θ; ð60Þ

Ωþ 2Aϕþ ∂0Ψ ¼ −
2G̊4

Að1 − 2c2G̊4;XÞ
Θ: ð61Þ

Substituting Eq. (60) into Eq. (61) yields

Aϕþ∂0Ψ¼−
2G̊4

Að1−2c2G̊4;XÞ
Θ−

2ðG̊4− G̊4;XA2Þ
G̊3;XA2

∂0Θ:

ð62Þ

By substituting Eqs. (60) and (61) into Eq. (50), we
obtain
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ΔΨ¼−
2ðG̊4− G̊4;XA2Þ

G̊3;XA2
ΔΘ

−
3G̊3;X

2A2þ4G̊2;XXðG̊4− G̊4;XA2Þ
2G̊3;X

2A
∂0Θ: ð63Þ

From Eqs. (62) and (63), it can be derived that

Δϕ ¼ 3G̊2
3;XA2 þ 4G̊2;XXðG̊4 − G̊4;XA2Þ

2G̊3;X
2A2

∂0∂0Θ

−
2G̊4

A2ð1 − 2c2G̊4;XÞ
ΔΘ; ð64Þ

which gives the relationship between the amplitudes
of the two scalar perturbations Θ and ϕ that affect
scalar-mode gravitational waves. Finally, with
Eqs. (61) and (64), we obtain the equation for the
variable Θ from Eq. (53),

P∂0∂0Θ −QΔΘ ¼ 0; ð65Þ

where

P ¼ ð1 − 2c2G̊4;XÞðG̊4 − G̊4;XA2ÞC1; ð66Þ

Q ¼ G̊2
3;XG̊4C2; ð67Þ

C1 ¼ 3G̊2
3;XA2 þ 4G̊2;XXðG̊4 − G̊4;XA2Þ; ð68Þ

C2 ¼ 4G̊4 − ð1 − 2c2G̊4;XÞA2: ð69Þ

We can further divide Case 4 into following cases:

Case 4.1: C1 ¼ 0; C2 ¼ 0. In this case, we have

Ψ ¼ −
2ðG̊4 − G̊4;XA2Þ

G̊3;XA2
Θ; ð70Þ

ϕ ¼ 1

2
Θ: ð71Þ

We also have P ¼ Q ¼ 0 and so we cannot solve the
function Θ with Eq. (65). Therefore, we do not
consider this nonphysical case.

Case 4.2: C1 ≠ 0; C2 ¼ 0. In this case, Eq. (65) becomes
∂0∂0Θ ¼ 0. This requiresΘ ¼ 0, and then by Eq. (64),
ϕ is also zero. Thus, generalized Proca theory does not
allow scalar-mode gravitational waves in this case.

Case 4.3: C1 ¼ 0; C2 ≠ 0. In this case, we have P ¼ 0
and Q ≠ 0, which indicates that Eq. (65) becomes
ΔΘ ¼ 0. This requires Θ ¼ 0, and then by Eq. (64), ϕ
is also zero. Therefore, generalized Proca theory does
not allow scalar-mode gravitational waves in this case
either.

Case 4.4: C1 ≠ 0; C2 ≠ 0. In this case, Eq. (65) is a wave
equation and generalized Proca theory allows scalar-
mode gravitational waves with one degree of freedom.
The speed of the scalar mode gravitational waves cS is

c2S ¼
Q
P
: ð72Þ

To ensure the linear stability of the solution, we
require c2S > 0.

Finally, we consider a plane wave solution of Θ
satisfying Eq. (65) with a propagation direction of þz,

Θ ¼ Θ0eikx;
k0

k3
¼ cS: ð73Þ

By substituting (73) into Eq. (64), we obtain

TABLE II. The number of scalar mode gravitational waves in various parameter spaces. The number in the
rightmost column of the table represents the degrees of freedom of the scalar mode gravitational waves in the
corresponding case. The notation “� � �” indicates that the parameter space is not physical.

Cases Conditions Scalar DoF

Case 1 G̊3;X ¼ 1–2c2G̊4;X ¼ 0. � � �
Case 2 G̊3;X ¼ 0; 1 − 2c2G̊4;X ≠ 0. 0
Case 3 G̊3;X ≠ 0; 1 − 2c2G̊4;X ¼ 0. 0
Case 4.1 G̊3;X ≠ 0; 1 − 2c2G̊4;X ≠ 0; C1 ¼ 0; C2 ¼ 0. � � �
Case 4.2 G̊3;X ≠ 0; 1 − 2c2G̊4;X ≠ 0; C1 ≠ 0; C2 ¼ 0. 0
Case 4.3 G̊3;X ≠ 0; 1 − 2c2G̊4;X ≠ 0; C1 ¼ 0; C2 ≠ 0. 0
Case 4.4 G̊3;X ≠ 0; 1 − 2c2G̊4;X ≠ 0; C ≠ 0; C2 ≠ 0. 1
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Δϕ ¼
�
−

C1
2G̊2

3;XA2
k20 þ

2G̊4

A2ð1 − 2c2G̊4;XÞ
k23

�
Θ0eikx: ð74Þ

Therefore, ϕ has a plane wave solution ϕ ¼ ϕ0eikx with

ϕ0 ¼
�

C1
2G̊2

3;XA2
c2S −

2G̊4

A2ð1 − 2c2G̊4;XÞ

�
Θ0: ð75Þ

Using Eq. (29), we have

P1¼
�
G̊2

3;XA2−C1
2G̊2

3;XA2
k20þ

2G̊4

A2ð1−2c2G̊4;XÞ
k23

�
Θ0eikx; ð76Þ

P6 ¼
1

2
k20Θ0eikx: ð77Þ

So the amplitude ratio R of the longitudinal mode to the
breathing mode is

R ¼
����P1

P6

���� ¼
���� G̊

2
3;XA2 − C1
G̊2

3;XA2
þ 4G̊4

A2ð1 − 2c2G̊4;XÞcS2
����: ð78Þ

It can be seen that the scalar mode of generalized Proca
theory is generally a mixture mode of the breathing and
longitudinal modes. However, whenR ¼ 0, the scalar mode
is just a pure breathing mode. It should be pointed out thatR
only depends on theoretical parameters. Therefore, once we
provide the specific forms of G2, G3, G4, G5, c2, d2 in the
action and the background vector field, we can uniquely
determine the value of R. Whether it is 0 clearly tells us
whether the scalar mode gravitational wave is a breathing
mode or amixture of the longitudinalmode and the breathing
mode. Furthermore, it should be pointed out that the
condition R ¼ 0 is not equivalent to cS ¼ 1.
Based on the above research, we find that the existence

of scalar-mode gravitational waves in generalized Proca
theory depends on the parameter spaces. We summarize the
results in Table II.

VI. CONCLUSION

In this paper, under the background of the homogeneous
and isotropic Minkowski spacetime, we study the polari-
zation modes of gravitational waves in generalized Proca
theory under linearized perturbations. We first obtained the
background equations and the linear perturbation equa-
tions. Then we analyzed the polarization modes of gravi-
tational waves and discussed their linear stability.
We found that the polarization modes of gravitational

waves in generalized Proca theory depend on the parameter
spaces. There are different vector and scalar polarization
modes in different parameter spaces. The specific results
have been summarized in Tables I and II, respectively.
Generalized Proca theory allows at most two tensor modes,
two vector modes and one scalar mode. The scalar mode is

typically a mixture mode of the breathing and longitudinal
modes. However, when R in Eq. (78) is zero, the scalar
mode is just a pure breathing mode.
We also found that the amplitude of vector-mode

gravitational waves satisfies the condition (48). This allows
us to give the upper limit of the amplitude of vector mode
gravitational waves by detecting the speed of tensor mode
gravitational waves. Combining the results of GW170817,
we found that the amplitude of vector gravitational waves
has an upper bound of jhj ≪ 10−15. It should be noted that
as the speed of tensor gravitational waves approaches the
speed of light, the upper bound of the amplitude of vector
gravitational waves decreases. Specifically, if the speed of
tensor modes is strictly equal to the speed of light, then the
amplitude of vector modes is zero. The relationship
between the amplitude of vector modes and the speed of
tensor modes is an interesting phenomenon. Does this
phenomenon also exist in other vector-tensor gravity?
Could we find a physical explanation for this phenomenon?
This requires further research.
Finally, we need to point out that we only considered the

case of the homogeneous and isotropic Minkowski back-
ground. At this point, the background vector Åa has only a
nonvanishing temporal component. In the case of a small
anisotropic background, the background vector Åa also has
nonvanishing small spatial components. In this case, the
background vector is timelike. We can always use a Lorentz
transformation to make the background vector have only
nonvanishing temporal component without losing general-
ity. It can be seen that the polarization modes of gravita-
tional waves in the anisotropic case can be directly obtained
by using the Lorentz transformation on the polarization
modes of gravitational waves in the isotropic case we have
studied. For a general discussion of the transformation law
of the polarization modes of gravitational waves under the
Lorentz transformation, one can refer to Ref. [78].
The polarization modes of gravitational waves in gen-

eralized Proca theory can be divided into quite rich cases by
parameter spaces. The appropriate parameter spaces can be
expected to be selected in the detection of gravitational
wave polarization modes by Lisa, Taiji and TianQin
[43,44,46] in the future.
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APPENDIX: LINEAR PERTURBATION EQUATION

For Eq. (12), the specific expression of Va is given by

Va ¼ 2□Ba − 2Åb
∂a∂chcb þ 2Åb

□hab − 2G̊2;XBa − 2G̊2;XÅ
bhab

þ 2G̊3;XÅ
b
∂aBb þ G̊3;XÅ

bÅc
∂ahbc − 2G̊3;XÅa∂bBb − G̊3;XÅaÅ

b
∂bh

− 4G̊4;X∂a∂bBb − 2G̊4;XÅ
b
∂a∂bh − 4c2G̊4;X□Ba þ 2G̊4;XÅ

b
∂a∂chbc

þ 4c2G̊4;XÅ
b
∂a∂chbc þ 2G̊4;XÅ

b
∂b∂chac − 2G̊4;XÅa∂b∂chbc − 2G̊4;XÅ

b
□hab

− 4c2G̊4;XÅ
b
□hab þ 2G̊4;XÅa□hþ ½−2þ 4ð1þ c2ÞG̊4;X�∂a∂bBb

þ 2G̊2;XXÅaÅ
bBb þ G̊2;XXÅaÅ

bÅchbc: ðA1Þ

For Eq. (13), the specific expression of T ab is

T ab ¼ −2G̊2hab − 2Åb□Ba − 2Åa□Bb þ 2Åb∂a∂cBc þ 2Åa∂b∂cBc

þ 2ÅbÅ
c
∂a∂dhcd þ 2ÅaÅ

c
∂b∂dhcd − 2ÅbÅ

c
□hac − 2ÅaÅ

c
□hbc

− 2G̊4ð∂a∂bh − ∂a∂chcb − ∂b∂chca þ□hab þ ηab∂c∂dhcd − ηab□hÞ
þ 2G̊2;XÅbBa þ 2G̊2;XÅaBb þ 2G̊2;XηabÅ

cBc þ 2G̊2;XÅbÅ
chac

þ 2G̊2;XÅaÅ
chbc þ G̊2;XηabÅ

cÅdhcd þ 2G̊3;XÅaÅb∂cBc

þ G̊3;XÅaÅbÅ
c
∂ch − 2G̊3;XηabÅ

cÅd
∂dBc − G̊3;XηabÅ

cÅdÅe
∂ehcd

þ 2G̊4;XÅ
c
∂a∂bBc þ G̊4;XÅ

cÅd
∂a∂bhcd þ 2G̊4;XÅ

c
∂a∂bBc

þ G̊4;XÅ
cÅd

∂a∂bhcd − 2G̊4;XÅ
c
∂c∂aBb − 2G̊4;XÅb∂a∂cBc

− 4c2G̊4;XÅb∂a∂cBc − 2G̊4;XÅ
c
∂c∂bBa − 2G̊4;XÅa∂b∂cBc

− 4c2G̊4;XÅa∂b∂cBc þ 2G̊4;XÅb□Ba þ 4c2G̊4;XÅb□Ba

þ 2G̊4;XÅa□Bb þ 4c2G̊4;XÅa□Bb þ 4G̊4;XηabÅ
c
∂c∂dBd

− 2G̊4;XÅbÅ
c
∂a∂dhcd − 4c2G̊4;XÅbÅ

c
∂a∂dhcd − 2G̊4;XÅaÅ

c
∂b∂dhcd

− 4c2G̊4;XÅaÅ
c
∂b∂dhcd − 2G̊4;XÅ

cÅd
∂c∂dhab þ 2G̊4;XÅaÅb∂c∂dhcd

þ 2G̊4;XηabÅ
cÅd

∂c∂dh − 4G4;XηabÅ
c
□Bc þ 2G̊4;XÅbÅ

c
□hac

þ 4c2G̊4;XÅbÅ
c
□hac þ 2G̊4;XÅaÅ

c
□hbc þ 4c2G̊4;XÅaÅ

c
□hbc

− 2G̊4;XÅaÅb□h − 2G̊4;XηabÅ
cÅd

□hcd − 2G̊2;XXÅaÅbÅ
cBc

− G̊2;XXÅaÅbÅ
cÅdhcd: ðA2Þ
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