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It was shown in previous work that when a gravitational wave (GW) passes through a viscous shell of
matter the magnitude of the GW will be damped and there are astrophysical circumstances in which the
damping is almost complete. The energy transfer from the GWs to the fluid will increase its temperature.
We construct a model for this process and obtain an expression for the temperature distribution inside the
shell in terms of spherical harmonics. Further, it is shown that this effect is astrophysically significant: a
model problem is constructed for which the temperature increase is of order 106 K.
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I. INTRODUCTION

Studies on gravitational waves (GWs) have garnered
significant attention in recent years, primarily due to the
regular direct detections. As GWs propagate from their
source, they interact with matter in various ways, and some
of these interactions can be found in [1–5]. Despite their
interactions, GWs are usually unaffected by matter,
allowing them to traverse cosmological distances without
significant attenuation. It is well-known that when GWs
propagate through a perfect fluid, they do not experience
any absorption or dissipation, and further that when passing
through a viscous fluid, energy is transferred from the GWs
to the fluid [1]. It has been common practice to take the rate
of energy transfer as

dĖGW

dr
¼ 16πηĖGW ð1Þ

in geometric units where η is the viscosity and r is the
distance.
However, recent studies [6,7] have shown that a shell

composed of viscous fluid surrounding a GW event
modifies the magnitude of the GWs according to a formula
that reduces to Eq. (1) when the matter is far from the GW
source, but can be much larger when the matter is at a
distance comparable to the wavelength.
Building upon this concept, we investigate the behavior

of a spherically symmetric viscous shell around a circular
binary source when traversed by GWs. We observed that
GWs cause the shell to heat up, which may lead to the
emission of electromagnetic (EM) waves. To explore the

astrophysical significance of this heating mechanism, we
applied it to a model of a stationary accretion disk.
Accretion disks are a common and widely observed

astrophysical phenomenon, and various models for accre-
tion disks have been proposed. A detailed review on
accretion disk models can be found in [8]. In our work,
we investigated the implications of the GW heating
mechanism by considering a stationary accretion disk
located at a finite distance from the source of GWs. A
similar prediction to ours was made in [9], demonstrating
the brightening of an accretion disk close to a binary black
hole merger when the shell radius is much larger than the
wavelength. This study can be seen as the limiting case
of [7], Eq. (19). However, the current study is more general
as it allows for the variation of the viscous heating effect
with distance from the GW source. We derive an expression
for the temperature rise within the shell, expressed in terms
of spherical harmonics. Importantly, our findings align with
the expression given in [9], Eq. (2) in the limit of being far
from the source.
Previous studies have demonstrated that GW heating

effects can result in an EM burst, as shown in [10–12].
However, it remains uncertain whether this gamma-ray
burst can be observed or detected. Furthermore, it is
reported that the afterglow can be observable as a rapidly
brightening source soon after the merger [11]. Similar to
the case described in [9], it has been argued in [12] that GW
heating luminosities of the accretion disk and stars are low
and may not lead to significant EM flares relative to their
intrinsic luminosity, except in certain cases. Nevertheless,
the GW heating effect is a significant astrophysical phe-
nomena and needs to be considered during astrophysical
observations.
This paper is organized as follows: Section II outlines

previous work, and in Sec. III, we derive expressions, under
different conditions, for the temperature increases in matter
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around a GW source. Next, in Sec. IV, we apply the model
to a specific astrophysical problem to understand the
significance of the effect. Finally, in Sec. V, we provide
a summary and conclusion of our findings. The Appendix
presents the computer scripts used to derive some of the
results in the paper.

II. PREVIOUS WORK

The Bondi-Sachs formalism is a well-known math-
ematical framework used in general relativity [13–15].
Consider the Bondi-Sachs metric representing a general
spacetime [16,17] in null coordinates ðu; r; xAÞ as

ds2 ¼ −ðe2βð1þWcrÞ − r2hABUAUBÞdu2 − 2e2βdudr

− r2hABUBdudxA þ r2hABdxAdxB; ð2Þ

where hABhBC ¼ δAC, detðhABÞ ¼ detðqABÞ, and qAB is the
canonical metric on the unit sphere. Here coordinate u
labels the null outgoing hypersurface, the r coordinate is
the surface area coordinate, and xA ¼ ðθ;ϕÞ are the
spherical polar coordinates. Let qA be a complex dyad
and defined as

qA ¼
�
1;

i
sin θ

�
; qA ¼ ð1; i sin θÞ: ð3Þ

Then the hAB can be represented as

J ¼ hAB
qAqB

2
: ð4Þ

Notice that J ¼ 0 represents the spherically symmetric
spacetime. Let the spin-weighted field U be defined by

U ¼ UAqA; ð5Þ

and similarly, we can define the complex differential
operators ð and ð̄ (see Refs. [13,18,19] for a more detailed
explanation).
We make the ansatz of small quadrupolar perturbations

about Minkowski spacetime with the metric quantities
β; U;Wc; J taking the form

β¼ℜðβ½2;2�ðrÞeiνuÞ0Z2;2; U¼ℜðU½2;2�ðrÞeiνuÞ1Z2;2;

Wc ¼ℜðW½2;2�
c ðrÞeiνuÞ0Z2;2; J¼ℜðJ½2;2�ðrÞeiνuÞ2Z2;2:

ð6Þ

The perturbations oscillate in time with frequency ν=ð2πÞ.
The quantities sZl;m are spin-weighted spherical harmonic
basis functions related to the usual sYl;m as specified
in [20,21]. They have the property that 0Zl;m are real,
enabling the description of the metric quantities β;Wc
(which are real) without mode mixing; however, for s ≠ 0,

sZ2;2 is, in general, complex. A general solution may be
constructed by summing over the ðl; mÞ modes. As shown
in previous work [6,20], solving the vacuum Einstein
equations under the condition of no incoming radiation
leads to

β½2;2� ¼ b0;

W½2;2�
c ¼ 4iνb0 − 2ν4C40 − 2ν2C30 þ

4iνC30 − 2b0
r

þ 4iν3C40

r
þ 12ν2C40

r2
−
12iνC40

r3
−
6C40

r4
;

U½2;2� ¼
ffiffiffi
6

p ð−2iνb0 þ ν4C40 þ ν2C30Þ
3

þ 2
ffiffiffi
6

p
b0

r

þ 2
ffiffiffi
6

p
C30

r2
−
4iν

ffiffiffi
6

p
C40

r4
−
3

ffiffiffi
6

p
C40

r4
;

J½2;2� ¼ 2
ffiffiffi
6

p ð2b0 þ iν3C40 þ iνC30Þ
3

þ 2
ffiffiffi
6

p
C30

r

þ 2
ffiffiffi
6

p
C40

r3
; ð7Þ

with constants of integration b0, C30, C40. Denoting
the news for the solution Eq. (7) by N 0, and allow-
ing for the conventions used here, we find N 0 ¼
−

ffiffiffi
6

p
ν3ℜðiC40 expðiνuÞÞ2Z2;2. Thus the constant C40 is

physical and represents the magnitude of the GW source,
while the constants b0 and C30 represent gauge freedoms.
We now consider the case that the GW source is

surrounded by a shell of matter. Due to the GW perturba-
tions, the matter within the shell undergoes motion, and the
velocity field is calculated using the matter conservation
conditions [7]. Having found the velocity field, it is then
straightforward to calculate the shear tensor σab, and it was
shown [7] that

σ00¼σ01¼σ0A¼0;

−σ½2;2�11 ¼hABσ½2;2�AB

¼ℜ

�
12C40

3i−3rν−ir2ν2

νr5
expðiνuÞ

�
Z2;2;

qAσ½2;2�1A ¼ℜ

�
2C40

6i−6νr−3iν2r2þν3r3

νr4
expðiνuÞ

�
1Z2;2;

qAqBσ½2;2�AB ¼ℜ

�
C40

−3−3iνrþ3ν2r2þ2iν3r3−ν4r4

νr4

×expðiνuÞ
�
×2Z2;2: ð8Þ

It is shown in [22] that

∂uEshell

ΔV
¼ 2ησabσ

ab; ð9Þ
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where t ¼ uþ r, Eshell is the energy in an element of the
shell with volume ΔV, and η is the coefficient of (dynamic)
viscosity.

III. THE HEATING EFFECT

We now investigate the GW heating effect on a shell of
matter surrounding a source that comprises a circular
binary. As was shown previously [23], the perturbative
quantities of Eq. (6) are amended to

J ¼ ℜðJ½2;2�ðrÞeiνuÞ2Z2;2 −ℜðiJ½2;2�ðrÞeiνuÞ2Z2;−2; ð10Þ

with similar expressions for β; U;Wc, and also for the shear
expressions of Eq. (8). In all cases, the coefficients of sZ2;2

and sZ2;−2 have the same r-behavior but are out of phase in
time u.
The computer algebra evaluates σabσab in Eq. (9), and

the resulting expression is lengthy. However, it is greatly
simplified if time-averaging is applied; i.e., we evaluate

�
∂uEshell

ΔV

�
¼ h2ησabσabi ¼

ν

2π

Z
2π=ν

0

2ησabσ
abdu; ð11Þ

note that time-averaging means that the results to be
obtained apply only on a timescale that is greater than
the averaging period of 2π=ν. We find

�
∂uEshell

ΔV

�
¼ 15C2

40η

8πν2r10
½ðν8r8 − 18ν6r6 þ 159ν4r4

þ 315ν2r2þ 405Þcos4θþð6ν8r8 − 12ν6r6

− 198ν4r4 − 702ν2r2 − 1890Þcos2θ
þ ν8r8þ 14ν6r6 þ 63ν4r4þ 315ν2r2 þ 1557�;

ð12Þ

which is then decomposed into axisymmetric spherical
harmonics Yl;0

�
∂uEshell

ΔV

�
¼ ηC2

40ν
8ðD0Y0;0þD2Y2;0þD4Y4;0Þ;

D0¼
12ðν8r8þ2ν6r6þ9ν4r4þ45ν2r2þ315Þffiffiffi

π
p

ν10r10
;

D2¼
24

ffiffiffi
5

p ðν8r8−4ν6r6−9ν4r4−63ν2r2−225Þ
7

ffiffiffi
π

p
ν10r10

;

D4¼
2ðν8r8−18ν6r6þ159ν4r4þ315ν2r2þ405Þ

7
ffiffiffi
π

p
ν10r10

:

ð13Þ

Previous work established a relation betweenC40 and the
rate of energy emission as GWs ∂uEGW ¼ 3ν2C2

40=ð2πÞ.
That expression was for the case that the GW comprises a

2Z2;2 component only, and here there is also a 2Z2;−2
component, so we have

C2
40 ¼

π

3ν6
∂uEGW: ð14Þ

Combining Eqs. (13) and (14) gives

∂uEshell

ΔV
¼ π

3
ν2η∂uEGWðD0Y0;0 þD2Y2;0 þD4Y4;0Þ: ð15Þ

The above expression (15) can be rewritten as

∂uEshell ¼
πη

3ρ
ν2Δm∂uEGWðD0Y0;0 þD2Y2;0 þD4Y4;0Þ;

ð16Þ

where Δm is the mass of a fluid element and ρ denotes its
density. We now need to convert Eq. (16) to SI units, which
means that it must be multiplied by powers of G and c so
thatΔmν2η=ρ become dimensionless. Therefore in SI units,
Eq. (16) becomes

∂uEshell ¼
πGη
3c5ρ

ν2Δm∂uEGWðD0Y0;0 þD2Y2;0 þD4Y4;0Þ;

ð17Þ

and in the formulas for Di in Eq. (13), rν → rν=c2.
Next, we note that ∂uEshell ¼ ΔmC∂uT, where C is the

specific heat capacity and T is the temperature at an event in
the shell, so that

∂uT ¼ πGη
3c5Cρ

ν2∂uEGWðD0Y0;0 þD2Y2;0 þD4Y4;0Þ: ð18Þ

We proceed further by considering two different cases
(A) heat flow within the shell and constant GW frequency,
and (B) GWs with variable frequency and no heat flow
within the shell. Actually, both effects can be included and
a solution obtained that can be written as a sum of integrals,
but doing so makes the formulas less transparent.

A. Heat flow within the shell

Allowing for heat flow within the shell gives

∂uT ¼ α∇2T þ πGη
3c5Cρ

ν2∂uEGW

× ðD0Y0;0 þD2Y2;0 þD4Y4;0Þ; ð19Þ
where α is the thermal diffusivity of the matter in the shell.
Then assuming T ¼ T0 at t ¼ 0 and using the abbreviation

A¼Bν2∂uEGW; with B¼ πGη
3c5Cρ

; ð20Þ

we obtain
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T ¼ T0 þ uAD0Y0;0 þ
AD2Y2;0r2

6α

�
1 − e−6αu=r

2
�

þ AD4Y4;0r2

20α

�
1 − e−20αu=r

2
�
: ð21Þ

Equation (21) above represents the temperature distribution
inside the shell expressed in terms of spherical harmonics.
The effect is driven by the flow of GWs through the shell,
∂uEGW; and the form of the temperature distribution is
determined by the wave frequency ν, as well as by the
physical properties of the viscous shell, specifically the
specific heat C, the thermal diffusivity α, the viscosity η,
and the density ρ.
It is instructive to consider two special cases of Eq. (21).

Define μ ¼ r2=ðαuÞ, and consider μ ≫ 1 and μ ≪ 1,
corresponding to low and high thermal diffusivity, respec-
tively. For μ ≫ 1,

T ¼ T0 þ uAðD0Y0;0 þD2Y2;0 þD4Y4;0Þ; ð22Þ

and for μ ≪ 1

T ¼ T0 þ uAðD0Y0;0 þ μðD2Y2;0 þD4Y4;0ÞÞ: ð23Þ

In the case of high thermal diffusivity, the temperature
variation over the sphere is small, and in all cases the order
of magnitude of the temperature change is

ðT − T0Þ ∼ uAD0: ð24Þ

In the formulas above the frequency ν is treated as
constant, and the temperature change is very sensitive to the
value of rν. If the frequency varies, and in order to avoid
overestimating/underestimating the effect, ν should be
chosen toward the top/bottom, respectively, of the fre-
quency range.

B. Variable frequency

In this case, the quantitiesD0,D2,D4 depend on ν and so
also vary. The solution to Eq. (18) can be written

Tðu2Þ ¼ Tðu1Þ þB
Z

u2

u1

ν2ðuÞ∂uEGWðuÞ

× ðD0ðuÞY0;0 þD2ðuÞY2;0ðθÞ þD4ðuÞY4;0ðθÞÞdu;
ð25Þ

where Bwas defined in Eq. (20) and, in general, the integral
would need to be evaluated numerically.

C. Equal mass circular binary

In the case of two equal mass binaries, we have

∂uEGW ¼ 2M2r40ν
6

5
; ð26Þ

where r0 is the orbital radius (see, e.g., [23], but note that
the formulas appear to be different because the reference
uses ν as the orbital frequency rather than the wave
frequency). Hence Eq. (20) becomes

A ¼ 8πGM2r40ν
8η

15c5Cρ
; ð27Þ

and this form of A is used in Eq. (21) to determine the
temperature distribution in the shell.

IV. RELEVANCE TO ASTROPHYSICS

A key question is whether there are astrophysical
circumstances such that the temperature increase would
be large enough to be significant. Here, we describe one
scenario in which that would be the case, so motivating the
astrophysical importance of the GW heating effect. We
consider the merger of two black holes, and note the
observed parameters from GW150914 [24]

ΔEGW ¼ 3M⊙ ¼ 5.36× 1047J; f¼ 132 Hz;

Mf ¼ 62M⊙; ð∂uEGWÞpeak ¼ 200M⊙=s; ð28Þ

where f is the frequency at merger and in the formulas
above ν ¼ 2πf; and Mf is the final mass. The energy loss
ΔEGW is for the whole inspiral. Using a waveform from a
best-fit model [25], we find that 2M⊙ was radiated away
during the 17.6 ms between u ¼ 0.4069 and u ¼ 0.4245;
during this period, the frequency increased from 90 Hz
through peak emission at 132 Hz and increased toward
220 Hz as merger gave way to ringdown. The heating effect
was estimated using the variable frequency expression (25);
note that the use of (22) with a fixed frequency of 155 Hz
(i.e., in the middle of the frequency range) led to very
similar results.
It is further supposed that matter is present in the system,

and we use parameters of a stationary accretion model, as
outlined in [8,26,27]: at the innermost stable circular orbit
(ISCO), the dynamical viscosity η is approximated as
3.5 × 109 J sec =m3, the density as ρ as 4 kg=m3, and
the specific heat as 1.43 × 104 J=kg=K. The radius of
the ISCO is taken as r ¼ 549 km, being the value for a
Schwarzschild black hole of mass Mf.
The magnitude of the heating effect was evaluated for

values of r in the range 275 km (i.e., half of rISCO) to
3000 km, and for θ ¼ 0 (on the polar axis) and θ ¼ π=2
(in the equatorial plane). The GW heating effect is very
sensitive to the value of r and also depends on θ. While we
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would expect an accretion disk to have θ ≈ π=2, we also
evaluate the effect for matter on the polar axes (θ ¼ 0; π).
Results are shown in Fig. 1. It is noteworthy that for small r
the effect is much larger on the equator than at θ ¼ 0.
However, the situation is reversed for larger r, and we have
checked that as r → ∞ the heating effect at θ ¼ 0 is 8 times
that at θ ¼ π=2, as expected for the angular distribution of
GW power of an orbiting binary.
Energy may be radiated away, so limiting the temper-

ature increase. Modeling the accretion disk as a disk of
thickness 2h with h ≈ 100 km, and denoting Stefan’s
constant as σ ¼ 5.67 × 10−8 W=m2=K4, it follows that
the temperature increase would be limited to

ðT − T0Þmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔEshell

σΔu
4

r
; ð29Þ

whereΔEshell is the energy input to a volume element of the
shell in the time period Δu. The graph of ðT − T0Þmax is
included in Fig. 1 for the case θ ¼ π=2 (i.e., the equatorial
plane). For r⪆rISCO, radiation loss does not limit the
temperature increase due to volume heating, but it does
do so for r ⪅ rISCO. Thus the temperature increase for
matter at r ¼ rISCO is limited toOð106Þ K, although matter
at r ¼ rISCO=2 could reach 107 K: there may be x-ray
emission but not a gamma-ray burst.
It should also be noted that the temperature increase

T − T0 depends linearly on η=ðρCÞ, and that it is inversely
proportional to Mf, so that the effect would be nearly 4
times larger at the lower limit of observed black hole

mergers (Mf ≈ 16.7M⊙), and would be much smaller for
supermassive black hole mergers.
In an actual black hole merger, it is expected that the

inspiral of the black holes would clear out any matter in
their vicinity, and there has been no astrophysical evidence
of the effects of matter in an observed merger (apart,
perhaps, from the Fermi observation coincident with
GW150914 [28]). Thus, the presence of matter around a
black hole merger is highly unlikely. Further, even if matter
is present, it is known that accretion disks have temper-
atures of the order of 106 K. Thus, if EM emissions are
observed at a GW event corresponding to a black hole
merger, it would be difficult to determine whether or not it
was (partially) caused by GWs. Our purpose in presenting
Fig. 1 is to demonstrate that GW heating may be astro-
physically significant.

V. SUMMARY AND CONCLUSIONS

In this article, we have derived formulas for temperature
increases within a shell of viscous matter through which
GWs propagate. The temperature distribution is expressed
using axisymmetric spherical harmonics Yl;0, with l ¼ 0,
2, and 4, and depends on physical parameters including the
viscosity η, specific heat capacity C, thermal diffusivity α,
and density ρ.
First, we considered the case of constant frequency and

nonzero thermal diffusivity so that there is heat flow within
the shell, and we obtained Eq. (21). Simple approximations
to this result were presented for the cases of low and high
thermal diffusivity, Eqs. (22) and (23), respectively. In both
cases, the order of magnitude of the temperature change
effect is given by Eq. (24).
We next considered the case that the GW frequency

varies with time, but took the thermal diffusivity as
negligible. This case is astrophysically important, since
it applies to GW events caused by an inspiral and merger.
The resulting temperature increase is expressed as a time
integral, Eq. (25).
To understand the physical implications of the temper-

ature rise, we considered the stationary accretion disk
problem in a model that uses data from the binary black
hole merger GW 150914. We found that the temperature
rise inside the disk can be significant, being of order
Oð106Þ K. This result highlights the importance of con-
sidering this effect in astrophysical phenomena and cos-
mology, and in particular that previous results on GW
heating in accretion disks should be revisited using for-
mulas that properly allow for variation of the effect with
distance from the source.
Additionally, we envision that GW heating may be

relevant to core-collapse supernovae as well as to primor-
dial gravitational waves [7]. However, the application of
GW heating to various astrophysical and cosmological
scenarios is beyond the scope of this paper and will be
further addressed in forthcoming work.

FIG. 1. The temperature increase (K on a log10 scale) is plotted
against radius (km) for the cases: GW heating without radiation
loss for matter on the orbital axis (blue curve); GW heating
without radiation loss for matter in the equatorial plane (red
curve); limitation, due to radiation loss, on temperature increase
in the equatorial plane (green curve).
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APPENDIX: COMPUTER SCRIPTS

The computer scripts are written in plain text format
and are available as Supplemental Material [29].

Equations (12) and (13) were derived using the
computer algebra system MAPLE. The file driving the
calculation is GW_Heating.map, which takes input
from gamma.out, initialize.map, lin.map,
and ProcRules.map. The scripts are adapted from
those reported in previous work [7]. The output is in
GW_Heating.out, and may be viewed using a plain
text editor with line-wrapping switched off.
The MATLAB/Octave script TempInc.m performs the

calculations used to produce Fig. 1.
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