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We study linear perturbations against static spherically symmetric background configurations of general
relativity with a real scalar field (SF), which is minimally coupled with gravity; it is nonlinear due to the
presence of the self-action potential. The background solutions have a naked singularity at the center of
the configuration. The focus is on the stability of the background and fundamental frequencies of the
quasinormal modes (QNM) of the axial perturbations in the Regge-Wheeler gauge. The problem is reduced
to one hyperbolic master equation with an effective potential Weff , which turns out to be positive for a
general non-negative SF potential; this ensures the linear stability with respect to this kind of perturbations.
For numerical simulations, the SF potential was chosen in the power-law form VðϕÞ ∼ ϕ2n with
2 < n ≤ 40. We extracted the fundamental frequencies of QNM for different n and various sets of the
background configuration parameters. The results show that even for a small background SF, there is a
significant difference between the fundamental frequencies and ones in case of the Schwarzschild
background. The results are also compared with the case of the Fisher-Janis-Newman-Winicour back-
ground dealing with a massless linear scalar field.
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I. INTRODUCTION

Successful detections of gravitational waves [1,2] and
the emerging prospects for multimessenger astronomy [3]
have opened up new possibilities to test the gravitational
theories in the strong field regime. This stimulated a surge
of attention to damped oscillations of perturbed astrophysi-
cal objects as a source of gravitational radiation. These
oscillations, known as quasinormal modes [4–7] carry
important information about properties of relativistic
objects, which, in particular, can be used, for example,
to distinguish the black holes from the naked singularities
arising in various gravitational theories. In this paper, we
analyze theories with minimally coupled self-interacting
scalar field (SF), which may be considered as simplest
modifications of the general relativity. On the other hand,
self-interacting SF is a workhorse of huge number of
models dealing with the inflation of the Universe, dark
energy etc.
If static spherically symmetric configuration contains

only gravitational and scalar fields satisfying the conditions
of asymptotic flatness, then the appearance of a naked
singularity (NS) is expected in this system. An example is
the well-known Fisher-Janis-Newman-Winicour (FJNW)
solution [8–10]. The existence of NS has been demonstrated

in case of a spherically symmetric static configurationwith a
fairly general SF potential [11,12]. Here we are faced with
the main question: whether there are static configurations
with SF and NS in our Universe at all. The no-hair
theorems [13,14] say that the black hole with a regular
nonzero SF cannot exist; so one can suppose that the scalar
hair must simply dissipate during the collapse into the black
hole. This would be in accordance with the cosmic censor-
ship hypothesis [15]. On the other hand, there exist solutions
in the general relativity and the other theories that describe
NS (see, e.g., [16–20]), though, how they can be formed in
our Universe is still a moot point. In this regard, it is
appropriate to look for observational effects that can dis-
tinguish between normal black holes and their mimickers
that contain NS.
The quasinormal modes (QNM) of the space-time vibra-

tions emerging around relativistic objects can be good probes
of different gravitational theories. Much attention has been
paid to perturbations of the black holes and regular compact
astrophysical objects (see, e.g., reviews [5–7]).QNMnearNS
have been studied in [21–25]; here, most works essentially
deal with spherically symmetric background space-times,
where an analytic representation of a background metric is
available, such as in the Reissner-Nordstrom [21,23] and
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FJNW [24] cases. Obviously, considerations of the linear
perturbations are deeply connected with the stability analysis
(see, e.g., [22,25,26] and references therein).
In the present paper, we study axial perturbations against

the background formed by a isolated static spherically
symmetric configuration of general relativity in presence of
a minimally coupled nonlinear real SF. Our findings extend
the results of [24], which deal with pure FJNW (massless
linear case). In our case, the nonlinearity is introduced
using a general SF-potential VðϕÞ satisfying the condition
ϕV 0ðϕÞ ≥ 0, which grows more slowly than exponent for
jϕj → ∞. In the numerical simulations we are dealing with
the power-law SF potential.
In Sec. I the basic relations for static spherically symmetric

background, are presented. In Sec. II we turn to numerical
methods for the case of the power-law SF potential. We use
the method of backward integration [11,27] to obtain the
solutions of Einsteinþ SF equations for the background. In
Sec. III we use the time-domain integration method [28] to
solve the wave equations for the perturbations. Given these
solutions, we use the Prony method [29] to extract the
frequencies of the fundamental QNM. The final section
summarizes the results.

II. ANALYTIC RELATIONS FOR GENERAL
SF POTENTIAL

The action of standard general relativity in the presence
of a minimally coupled real SF ϕ is given by1

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

R
16πG

þ 1

2
∂μϕ∂

μϕ − VðϕÞ
�
: ð1Þ

The background metric describes the static spherically
symmetric space-time in Schwarzschild-like (curvature)
coordinates:

ds2 ¼ eαðrÞdt2 − eβðrÞdr2 − r2dΩ2; ð2Þ

where dΩ2 ¼ dθ2 þ ðsin θÞ2dφ2 and the radial variable
r > 0.
In static spherically symmetric case we deal with two

independent first-order Einstein equations

d
dr

½rðe−β − 1Þ� ¼ −8πr2½e−βϕ02=2þ VðϕÞ�; ð3Þ

re−β
dα
dr

þ e−β − 1 ¼ 8πr2½e−βϕ02=2 − VðϕÞ�; ð4Þ

and one second order equation for SF ϕ ¼ ϕðrÞ

d
dr

�
r2e

α−β
2
dϕ
dr

�
¼ r2e

αþβ
2 V 0ðϕÞ: ð5Þ

Equations (3), (4), (5) define the background solutions
under appropriate asymptotic conditions.
A small perturbation of the background solution will be

considered in the linear approximation. The space-time
metric and SF is then:

gμν ¼ gð0Þμν þ hμν; ϕðxμÞ ¼ ϕ0ðrÞ þ δϕðxμÞ; ð6Þ

where gð0Þμν and ϕ0ðrÞ represent the static spherically
symmetric solution of (3)–(5), while hμν ¼ hμνðxμÞ and
δϕðxμÞ represent the perturbations. There is extensive
literature on the gravitational perturbations against spheri-
cally symmetric background (see, e.g., [6,30]).
The perturbation can be separated into axial and polar

parts,2 which can be treated independently. In this paper, we
focus solely on the axial perturbations. The metrics of the
axial gravitational perturbations hμν in the Regge-Wheeler
gauge [31] take the following form

haxialμν ¼

2
6664

0 0 0 h0ðt; rÞ
0 0 0 h1ðt; rÞ
0 0 0 0

h0ðt; rÞ h1ðt; rÞ 0 0

3
7775
�
sin θ

∂

∂θ

�

× Plðcos θÞ; ð7Þ

where h0ðt; rÞ and h1ðt; rÞ are two unknown functions, and
PlðxÞ is the Legendre polynomial3 with l ≥ 2. After
substitution of (7) to the Einstein-SF equations and retain-
ing only linear terms, we obtain:

− h00ðα0 þ β0Þ þ 2h000 − h0

�
2lðlþ 1Þ

r2
eβ þ 2α00 − α0β0 þ α02

�

þ ḣ1

�
α0 þ β0 −

4

r

�
− 2ḣ01 ¼ 0; ð8Þ

ḣ00 −
2

r
ḣ0 − ḧ1 −

lðlþ 1Þ − 2

r2
eαh1 ¼ 0; ð9Þ

2h01 þ h1ðα0 − β0Þ − 2eβ−αḣ0 ¼ 0: ð10Þ

1Units: c ¼ 1; the metric signature is (þ−−−), Rα
βγδ ¼

−Rα
βδγ ¼ ∂γΓα

βδ − � � � ;Rμν ¼ Rα
μαν. Below we rescale units of

mass, length and SF so as to put G ¼ 1 and to remove a coupling
constant in the SF potential.

2In this case “axial” and “polar” [6,30] corresponds to “odd”
and “even” according to the initial paper [31].

3Due to the spherical symmetry of the background configu-
ration, more general case that involves Ylm, leads to the same
master equation and the same QNM frequencies. The perturba-
tions with l ¼ 1 can be removed by gauge transformation [32].
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Here α, β correspond to the background solution. In
agreement with [33], the perturbed part of SF equals to zero

δϕ ¼ 0: ð11Þ

Equation (8) is redundant, because for perturbations ∼e−iωt
it can be obtained from (9), (10).
After substitution

h1ðt; rÞ ¼ reðβ−αÞ=2Ψðt; rÞ; ð12Þ

and introducing the “tortoise” coordinate r�

dr�

dr
¼ eðβ−αÞ=2; r�ð0Þ ¼ 0; ð13Þ

we can combine (9), (10) into a single master equation

�
∂
2

∂t2
−

∂
2

∂r�2

�
Ψðt; r�Þ þWeffðr; lÞΨðt; r�Þ ¼ 0; ð14Þ

where

Weffðr;lÞ¼ eα−β
�
β0−α0

2r
þeβ

ðl−1Þðlþ2Þ
r2

þ 2

r2

�
; ð15Þ

will be referred to as the “wave potential.”
Using Eqs. (3), (4), we can rewrite (15) as

Weffðr�Þ≡Weffðr; lÞ

¼ eα
�
8πVðϕ0ðrÞÞ þ

ðl − 1Þðlþ 2Þ − 1

r2

�

þ 3

r2
eα−β; ð16Þ

where r ¼ rðr�Þ is defined by (13).
Further we fix l ≥ 2; then ∀ r:Weffðr�Þ > 0 in case of an

arbitrary non-negative SF potential. This leads to the absence
of bound states and stability of solutions of Eq. (14).
Under the condition of convergence of the integrals

involved and for

lim
r�→0þ0

�
∂Ψðt; r�Þ

∂t
∂Ψðt; r�Þ

∂r�

�
¼ 0 and

lim
r�→∞

�
∂Ψðt; r�Þ

∂t
∂Ψðt; r�Þ

∂r�

�
¼ 0; ð17Þ

we have a conserved quantity

Eðt;ΨÞ ¼
Z

∞

0

dr�
��

∂Ψ
∂t

�
2

þ
�
∂Ψ
∂r�

�
2

þWeffðr�ÞΨ2

�
:

ð18Þ
So far, we have formally dealt with arbitrary VðϕÞ.

Now, we need more detailed information concerning the

properties of the system near the singular center. To do so,
we impose the conditions [11]

Vð0Þ¼ 0; ϕV0ðϕÞ≥ 0; jV 0ðϕÞj≤CexpðκjϕjpÞ; ð19Þ

where C, κ, p are positive constants, and p < 1. Under the
latter condition, the terms with VðϕÞ in (3), (4), (5) do not
directly contribute into the first two orders of the asymp-
totic expansion of ϕ, α, β for r → 0 yielding

ϕðrÞ ¼ −ξ ln
�
r
rg

�
þ ϕ0 þOðrηþ1Þ; ð20Þ

αðrÞ ¼ ðη − 1Þ ln
�
r
rg

�
þ α0 þOðrηþ1Þ;

βðrÞ ¼ ðηþ 1Þ ln
�
r
rg

�
þ β0 þOðrηþ1Þ; ð21Þ

where η ¼ 4πξ2 > 0, and the constants ξ, η, α0, β0, and ϕ0,
which depend on Q, M, n, have been used to substantiate
the asymptotic ofWeffðr�Þ below. The numerical values can
be determined for the explicit form of VðϕÞ. Note that the
conditions imposed on V are satisfied in case of the power-
law potential considered below.
Taking into account (20), (21), we get asymptotic

relations near the singularity ðr → 0; l ≥ 2Þ

r� ¼ r2

2rg
eðβ0−α0Þ=2½1þOðrηþ1Þ�;

Weffðr; lÞ ¼
3eα0−β0r2g

r4
½1þOðrηÞ�;

Weffðr�Þ ¼
3

4r�2
½1þOðr�η=2Þ�: ð22Þ

In the presence of a naked singularity the space-time is
not globally hyperbolic and evolution governed by (14)
may be nonunique. However, it was shown [34,35] (see
also [26,36,37]) that we immediately can have a well-
defined dynamic, if there is a unique self-adjoint extension
AE of the spatial part of the wave operator (14). Using this,
one can specify the boundary conditions at the singularity.
We shall show that this is just the case of Eq. (14).
Equation (14) can be written as

∂
2Ψ
∂t2

¼−AΨ; A¼−
d2

dr�2
þWeffðr�Þ; r�∈ð0;∞Þ: ð23Þ

Following [34,35], we consider a positive symmetric
operator A defined on C∞

0 ð0;∞Þ functions (with a compact
support). Then we consider a self-adjoint extension AE to
have a well-defined dynamics governed by (14) leading to
boundary conditions corresponding to AE [34,35]. To check
the essential self-adjointness we can use the Weyl's limit
point-limit circle theorem [38].
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A continuous functionWeffðr�Þ, r� ∈ ð0;∞Þ, is said to be
in the in the limit point case at zero (or infinity) [38], if for
some λ, equation

−
d2Ψ
dr�2

þWeffðr�ÞΨ ¼ −λ2Ψ; ð24Þ

has at least one solution near zero (or infinity), which is not
square integrable.
Now we assume that Vðϕðrðr�ÞÞÞ in (16) decays faster

than r�−3 for r� → ∞. Then

Weffðr�Þ ¼
lðlþ 1Þ
r�2

�
1þO

�
ln r�

r�

��
: ð25Þ

Note that this is fulfilled in the case of the power-law
potential considered in the next section. Then we have
asymptotic solutions to (24)

Ψðr�Þ≃
ffiffiffiffiffi
r�

p
ðC1Jlþ1

2
ðλr�ÞþC2Ylþ1

2
ðλr�ÞÞ; r�→∞; ð26Þ

which obviously is not square-integrable if we choose λ
with Imλ ≠ 0; i.e. Weffðr�Þ is in the limit point case at
r → ∞.
Also, near the singularity we have

Ψðr�Þ ≃ C1r�
3
2 þ C2r�−

1
2; r� → 0; ð27Þ

where the solution withC2 ≠ 0 is not square integrable. Thus
Weffðr�Þ is in the limit point case for r� → 0 as well.
According to the Weyl limit point—limit circle theorem
[38] operator A defined is essentially self-adjoint
on C∞

0 ð0;∞Þ.
Now A can be extended to a domain S, where S ⊂ L2 is a

set of functions fðr�Þ, such that (i) fð0Þ ¼ 0, (ii) jfðr�Þj
and jdf=dr�j decay fast enough as r� → ∞, so that the
integral

R∞
0 ðjf0ðxÞj2 þWeffðxÞjfðxÞj2Þdx < ∞. The con-

dition at x ¼ 0 is sufficient to extract the unique solution
of (27) with C2 ¼ 0 and to justify the null Dirichlet
boundary condition at the center used in the numerical
scheme used in Sec. IV.
It should be emphasized that this result is valid for a wide

class of self-interaction potentials, which satisfy (19), and
of course, includes the power-law potentials.

III. POWER-LAW POTENTIAL

Scalar field self-interation in the form of the power-law
potential is considered:

VðϕÞ ¼ V0jϕj2n; ð28Þ

where V0 > 0 and n > 2 (not necessarily an integer). The
latter condition means that we restrict ourselves to the case
of the massless SF with the Coulomb behavior at spatial
infinity, which requires n > 2 [11,27]; otherwise the

asymptotic condition for ϕ will be different. Because the
solution ϕðrÞ of (5) has no zeros [11], we can choose the
sign by setting ϕðrÞ > 0. From now on the units are set to
G ¼ c ¼ 1 and the constant V0 can be ruled out by
rescaling r and ϕ.
We are interested in isolated configurations with spa-

tially flat asymptotics, which satisfy the conditions

lim
r→∞

½rðeα − 1Þ� ¼ lim
r→∞

½rðe−β − 1Þ� ¼ −rg;

lim
r→∞

½rϕðrÞ� ¼ Q; ð29Þ

where rg ¼ 2M and M > 0 is the configuration mass, Q is
the “scalar charge.” The global and asymptotic properties of
the solutions satisfying (29) have been studied in [11,27].
For fixed n > 2 the solution of system (3)–(5) is uniquely
defined by parameters M and Q [27]. There exists the
naked singularity at the center (r ¼ 0); the asymptotic
behavior of the functions αðrÞ, βðrÞ and ϕðrÞ is (20), (21).
We use the backward integration starting from a sufficiently
large initial radius rin to smaller r up to the origin. The
“initial” conditions at rin were specified using the asymp-
totic relations [11,27] for r → ∞, n > 2 that can be inferred
from (29):

eα ¼
�
1 −

rg
r

��
1þO

�
μðrÞ
r2

��
;

e−β ¼
�
1 −

rg
r

��
1þ 4πQ2

r2
þO

�
μðrÞ
r2

��
; ð30Þ

ϕðrÞ ¼ Q
r

�
1þ rg

2r
þ njQj2n−2
ðn − 2Þð2n − 3Þr2n−4 þO

�
μðrÞ
r2

��
:

ð31Þ

where μðrÞ ¼ 1=r for n ≥ 3 and μðrÞ ¼ 1=r2n−4 for
2 < n < 3. This yields for r → ∞

r� ¼ rþ rg lnðr=rgÞ þO

�
1

r

�
;

WeffðrÞ ¼
lðlþ 1Þ

r2
þO

�
1

r3

�
;

Weffðr�Þ ¼
lðlþ 1Þ
r�2

�
1þO

�
ln r�

r�

��
: ð32Þ

In our numerical calculations we have considered
rin ¼ 105. Examples of the qualitative behavior of the
solutions are shown in Fig. 1 for some values of Q. The
scalar field ϕðrÞ decreases monotonically for all possible
values of M, Q, n. As for the metric coefficients, eαðrÞ

increases monotonically from zero, whereas eβðrÞ increases
form zero to some maximum and then decreases to 1. For
large Q the maximum of eβðrÞ is almost invisible, but for
small Q → 0 the maximum of eβ increases indefinitely.
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Also, forQ → 0 the metric in the region r > rg tends to the
Schwarzschild values, so all physical effects occurring in
the this region will be indistinguishable from those of the
Schwarzschild black hole. On the other hand, in the inner
region (r < rg), there is a cardinal difference from the
Schwarzschild black hole even for small Q. This gives us a
motivation to look for observational effects associated with
the inner region, that may arise in the analysis of pertur-
bations. The latter relation corresponds to (25).

IV. NUMERICAL SOLUTIONS TO THE MASTER
EQUATION AND FREQUENCIES OF

FUNDAMENTAL QNM

Our aim is to extract the fundamental QNM frequencies4

of the axial space-time perturbations governed by (14). To
do this, we solve this equation keeping in mind that the
QNM frequencies reflect the internal properties of the
background configuration; they do not depend on the form
of the initial perturbation, which can be chosen with a large
degree of arbitrariness.
The background configuration manifests itself by means

of the wave potential in (14), which depends on the
configuration parameters. Typical behavior of Weff is
shown in Fig. 2 for different Q, M and n, in panels (a),
(b), (c), respectively. For a certain set of parameters, the
effective potential can have a local maximum, which can
disappears with increasing Q or decreasing M.
In order to integrate the master equation (14) and analyze

the QNMs spectrum we use the time-domain integration
method [7].
It is convenient to rewrite the wave equation (14) in terms

of the null coordinates u ¼ t − r�, v ¼ tþ r�:

4
∂
2

∂u∂v
Ψðu; vÞ þWeffðu; v; lÞΨðu; vÞ ¼ 0: ð33Þ

Taking into account the remarks at the end of Sec. II in
connection with asymptotic relations (22), following [34],
we impose the null Dirichlet condition at r� ¼ 0:

Ψðu ¼ v; vÞ ¼ 0: ð34Þ

Assuming that the ringtone frequencies are not sensitive to
the form of the initial perturbation we chose a condition on
characteristic u ¼ 0 corresponding to the Gaussian wave
packet:

Ψðu ¼ 0; vÞ ¼ exp

�
−
ðv − vcÞ2

2σ2

�
; ð35Þ

centered at v ¼ vc ¼ 50, the width σ ¼ 1.
To obtain numerical solutions, we use a second-order

discretization schemeproposed byChirenti andRezzolla [28].

ΨN ¼ ðΨW þ ΨEÞ
16 − Δ2WeffðSÞ
16þ Δ2WeffðSÞ

−ΨS þOðΔ4Þ; ð36Þ

where the indices ðN;W;E; SÞ correspond to the points of
the space-time triangular grid and as follows: N ¼
ðuþΔ; vþΔÞ, W ¼ ðuþΔ;vÞ, E¼ðu;vþΔÞ, S¼ðu;vÞ;
Δ is the spacing between the grid points.
To extract fundamental frequencies ω ¼ ωR þ iωI , we

fitted the time-domain profiles for a sufficiently large times
and fixed r� by a sum of complex exponentials ΨðtÞ ≃Pp

j¼1 Aje−iωjt using the Prony method [29].
Some typical examples of numerical solutions of (33) are

presented on Fig. 3. The left panel (a) of this figure shows
situation with smallQ, when there is a series of echoes. The
ringdown profile of damped QNM can be retrieved at a later
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FIG. 1. Typical behavior of the background solutions of Einstein–SF equations. The examples are given for M ¼ 1, n ¼ 3 and
(a) Q ¼ 0.5; (b) Q ¼ 0.3, (c) Q ¼ 0.2. For smaller Q, the metric gets closer to the abscissa near the origin and approach the
Schwarzschild values for r > rg. Right panel shows how jrdϕ=drj tends to asymptotic value ξ of (20).

4Here the fundamental ω is that of QNM with the least
damping, that is with the minimal value ωI ¼ ImðωÞ.
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time when the echo contribution is negligible. The series of
the ringdown oscillations is followed by a power-law
damping.
The derived fundamental QNM frequencies are pre-

sented in Tables I–II. We plotted the trajectories of these
frequencies in the complex ω-plane as functions of one of
the parameters M, Q, n with other parameters fixed
(Figs. 5–8). As can be seen from Figs. 4 and 5, for smaller
Q the fundamental frequencies get closer the FJNW values
for all fixed n and M. Analogously, Figs. 6, 7 show how ω
tend to the FJNW value as M grows.
As n grows, it seems that the fundamental frequencies

approach FJNWones (see Fig. 8). However, for large n we
found a small feature shown in the inserts in Fig. 8. To be
sure that this is not an artefact of calculations, we have
checked the occurrence of analogous features for different
choices of the parameters. We explain these features by an
influence of the region near the singularity. In fact, the

QNM are formed mainly far from the center; in this region,
for large n the wave potential (14) is almost zero, as in the
FJNW case. On the other hand, the effect of the region
where jϕðrÞj > 1, becomes more tangible as n grows, but it
is suppressed due to the null boundary condition (34); that
is why these features are almost imperceptible.

V. DISCUSSION

We have studied axial linear perturbations against static
spherically symmetric asymptotically flat background
described by the Einstein–SF equations with the power-
law SF potential. The background solutions necessarily
have NS at the origin. The characteristic behavior of the
perturbations induced by an initial pulse, has three main
stages: (i) possible domination of echo signals, (ii) the
ringdown stage followed by (iii) monotonous decay.
The role and duration of these stages differ depending

FIG. 3. Typical behavior of jΨðt; r� ¼ 200Þj for l ¼ 2, n ¼ 3, M ¼ 1. The left panel shows QNM signal with echo noise due to the
existence of the potential peak. For Q ¼ 0.15 (blue graph) the echo dominates for t≲ 500; then the ringdown dominates. The blue and
yellow curves on panel (b) show, how after the ringdown time we have typical power-law tails. The panel (c) also illustrates that for
larger values of Q, the values of ωR and ωI becomes smaller and then, after finishing oscillations we have power-law tails.

FIG. 2. Typical behavior of the effective potentialWeffðr; l ¼ 2Þ: (a)M ¼ 1, n ¼ 3 for different Q; (b) Q ¼ 0.25,M ¼ 1, different n;
(c) Q ¼ 1, n ¼ 3, different M.
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the Schwarzschild case.
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on the configuration parameters affecting the wave poten-
tial (16); for example, sometimes the stage (i) may be
substantially absent. We were mostly interested in stage (ii)
of the QNM domination yielding the fundamental frequen-
cies of these modes. The results of the numerical simu-
lations are presented in Tables I and II; they are used in
Figs. 4–8 for different sets of the background configuration
parameters.
We also draw attention to the analytic result described by

Eqs. (14), (16) that have been used for the general SF
potential VðϕÞ ≥ 0 to study stability issues. In particular,
we used this in case of the rather general VðϕÞ, when the
background solutions have an appropriate asymptotic near
the naked singularity. Of course, this does not yet solve
the entire problem of the stability of the NS, since we
have limited ourselves to axial perturbations. The polar
perturbations deserve a separate study and we plan to
consider this issue elsewhere.

The presence of the nonzero SF potential manifests itself
in the values ω of the fundamental QNM frequencies that
are different for different background configuration param-
eters. There is also a considerable difference from the
FJNW values. However, the qualitative behavior of tra-
jectories in the ω-plane is rather similar to the FJNW
curves. For fixed M, the ω-trajectories get closer to the
FJNW curves in the intervals of smaller Q (Figs. 4–5).
Therefore, for smaller SF the influence of the power-law
potential decreases. A similar trend is also observed for a
fixed Q, when M gets larger (Figs. 6–7). For large n,
the wave potential and ω-trajectories can be well approxi-
mated by the FJNW curves; nevertheless the nonlinear
effects manifest themselves though the small features
that are almost imperceptible. On the whole, the FJNW
case satisfactory describes the qualitative behavior of
ω-trajectories. Of course, this cannot be said about the
numerical values of the fundamental QNM frequencies.
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FIG. 7. The same as on Fig. 6 for Q ¼ 1, l ¼ 3.
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If SF is small enough, its influence in the outer region
(r > rg) is becomes negligible. In particular, this concerns
the effects in motion of particles and photons, structure of
accretion disks etc. On the other hand, it is important to
note that in the region r < rg, the significant differences
from the Schwarzschild case persist even for smallQ. This
can be explained by different boundary conditions: the
Dirichlet condition at the naked singularity in presence of
SF versus the in-going wave condition at the black hole
horizon in the Schwarzschild case. The boundary con-
dition at the origin feels the difference of NS from the
black hole even when SF is arbitrarily small. Thus, the
fundamental frequencies of the configuration considered,

differ qualitatively and numerically from those in case of
the Schwarzschild solution even for a small scalar field.
One can suggest that this is a fairly general property of
static systems with the scalar field leading to the occur-
rence of naked singularity.
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APPENDIX: TABLES

TABLE I. The fundamental quasinormal mode Mω of the NS with nonlinear SF [M ¼ 1, n ¼ ð2.1; 3Þ] and FJNW for various values
of Q. The first line corresponds to the Schwarzschild black hole.

n ¼ 2.1 n ¼ 3 FJNW

Q l ¼ 2 l ¼ 3 l ¼ 2 l ¼ 3 l ¼ 2 l ¼ 3

0 0.3730 − 0.0891i 0.5993 − 0.0927i 0.3730 − 0.0891i 0.5993 − 0.0927i 0.3730 − 0.0891i 0.5993 − 0.0927i
0.2 0.4303 − 0.2425i 0.6917 − 0.2536i 0.3815 − 0.0077i 0.489 − 0.0002i 0.3683 − 0.0052i 0.4643 − 0.00009i
0.25 0.2172 − 0.2558i 0.4005 − 0.322i 0.4639 − 0.048i 0.6413 − 0.01445i 0.45481 − 0.0381i 0.6196 − 0.0084i
0.3 0.0874 − 0.1371i 0.1731 − 0.1748i 0.5051 − 0.112i 0.7293 − 0.0701i 0.5042 − 0.09739i 0.7179 − 0.0534i
0.35 0.0346 − 0.0573i 0.0692 − 0.0712i 0.5131 − 0.1799i 0.7703 − 0.1484i 0.5214 − 0.166i 0.7723 − 0.1268i
0.45 0.0066 − 0.0112i 0.01323 − 0.0137i 0.4682 − 0.2874i 0.7567 − 0.2992i 0.4888 − 0.2839i 0.7824 − 0.286i
0.55 0.00194 − 0.0034i 0.0039 − 0.0041i 0.3933 − 0.3449i 0.6803 − 0.3998i 0.4161 − 0.3558i 0.7172 − 0.4067i
0.65 0.00081 − 0.0014i 0.0016 − 0.0017i 0.3203 − 0.3653i 0.5898 − 0.4512i 0.3388 − 0.388i 0.6269 − 0.4791i

TABLE II. The fundamental quasinormal mode Mω of the NS with nonlinear SF [M ¼ 1, Q ¼ ð0.15; 0.3; 0.45Þ] and FJNW for
various values of n. The first and second lines correspond to the Schwarzschild black hole and FJNW solutions, respectively.

Q ¼ 0.15 Q ¼ 0.3 Q ¼ 0.45

n l ¼ 2 l ¼ 3 l ¼ 2 l ¼ 3 l ¼ 2 l ¼ 3

Schw 0.3730 − 0.0891i 0.5993 − 0.0927i 0.3730 − 0.0891i 0.5993 − 0.0927i 0.3730 − 0.0891i 0.5993 − 0.0927i
FJNW 0.2436 − 0.00006i 0.2796 − 6 × 10−8i 0.5042 − 0.0974i 0.7183 − 0.0535i 0.4888 − 0.2839i 0.7824 − 0.286i
2.05 0.467 − 0.1918i 0.721 − 0.1773i 0.0073 − 0.0123i 0.0146 − 0.0151i 0.0006 − 0.001i 0.0012 − 0.0013i
2.1 0.4517 − 0.0484i 0.6305 − 0.0158i 0.0876 − 0.1369i 0.173 − 0.1748i 0.0066 − 0.0112i 0.01324 − 0.0137i
2.3 0.3178 − 0.0012i 0.3861 − 6 × 10−6i 0.4698 − 0.2222i 0.7352 − 0.2153i 0.2654 − 0.2943i 0.4839 − 0.3661i
2.5 0.2802 − 0.00029i 0.33 − 6 × 10−7i 0.5016 − 0.1558i 0.7475 − 0.1226i 0.3952 − 0.306i 0.6675 − 0.3476i
3 0.2532 − 0.00009i � � � 0.5052 − 0.112i 0.7293 − 0.0701i 0.4682 − 0.2874i 0.7567 − 0.2992i
4 0.245 − 0.00007i � � � 0.5044 − 0.0995i 0.7201 − 0.056i 0.4867 − 0.2837i 0.7793 − 0.2869i
5 0.2439 − 0.0000633i � � � 0.50427 − 0.0979i 0.7188 − 0.0541i 0.4885 − 0.2839i 0.7819 − 0.2862i
7 0.2436 − 0.0000625i � � � 0.50426 − 0.0976i 0.7184 − 0.0536i 0.48882 − 0.28394i 0.7824 − 0.2861i
10 0.2436 − 0.0000624i � � � 0.50426 − 0.0975i 0.7184 − 0.0535i 0.48886 − 0.28395i 0.7825 − 0.2861i
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