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Recently, a covariant spherically symmetric model of a black hole within the framework of loop quantum
gravity (LQG), characterized by a quantum parameter r0 or λ, has been proposed. To derive constraints on
the LQG-corrected parameter, we explore observational constraints imposed on r0 and λ through
investigations of the light deflection, the Shapiro time delay, the precession of perihelia, and the geodetic
precession test. Among these constraints, the tightest one arises from the Shapiro time delay measured by
the Cassini mission, yielding an upper constraint of approximately 10−5.
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I. INTRODUCTION

A variety of ground- and space-based precision experi-
ments, including those related to the deflection of light,
the Shapiro time delay, and the perihelion advance, have
consistently validated the reliability of general relativity
(GR) in the weak field regime [1]. Recent observations,
such as the detection of gravitational waves (GWs)
resulting from binary system mergers [2–4] and the
imaging of supermassive black holes’ shadows (M87�
and Sgr A�) using the Event Horizon Telescope [5–8], not
only confirm the existence of black holes but also serve as
rigorous tests of the resilience of GR in the strong field
regime.
However, despite these remarkable achievements, GR is

still far from being a flawless theory. From a theoretical
standpoint, developing a consistent quantum gravity theory
that effectively reconciles GR and quantum mechanics
remains the preeminent theoretical challenge in the field of
fundamental physics. Among various approaches to quan-
tum gravity, loop quantum gravity (LQG) distinguishes
itself with its background independence, non-perturbative
nature, and well-defined mathematical framework [9,10]. It
offers a promising avenue for understanding the quantum
behavior of gravity.
Furthermore, by incorporating two key ingredients of

LQG, namely the inverse volume correction and the
holonomy correction, loop quantum cosmology (LQC)
has been successfully formulated [11–18]. The quantum
gravity effects in LQC can be linked to low-energy physics,
offering a solvable cosmological model to explore quantum

gravity phenomena. Interestingly, the quantum gravity
effects in LQC successfully bypass the big bang singularity
in classical GR [11–25], replacing it with a nonsingular big
bounce even at the semiclassical level [26,27].
Building upon the similar idea in LQC [11–18], several

effective black hole (BH) models incorporating LQG
corrections have been developed. Notable examples of
these models can be found in [28–42], along with relevant
references. The replacement of the singularity by a tran-
sition surface that connects a trapped region to an anti-
trapped region, which can be viewed as the inner region of a
black hole and a white hole, is a typical feature of
LQG-BHs.
Currently, the majority of effective LQG-BHs are imple-

mented using the holonomy correction as an input. The
phase space regularization technique known as polymeri-
zation is at the heart of the holonomy correction [43]. As a
result, the polymer BHs are another name for the effective
LQG-BHs with holonomy correction. The basic idea
underlying polymerization involves the substitution of
the conjugate momentum p with its regularized counterpart
sinðλpÞ=λ, where λ represents the polymerization scale, a
parameter associated with the area-gap.
In recent studies conducted by Alonso-Bardaji et al.

[44,45], a covariant model of a spherically symmetric
black hole with holonomy correction is introduced, build-
ing upon the concept of anomaly-free polymerization as
discussed in their previous work [46]. The quantum gravity
effects are controlled by a quantum parameter r0, which is a
combination of the polymerization parameter λ and the
constant of motion M. This results in the formation
of an interior region that is free from singularities, as well
as two outer regions that approach flatness as they extend
toward infinity. Notably, both outer regions possess the
same mass.
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Subsequently, this LQG black hole solution has been
extended by the authors to include charge in the cosmo-
logical background [47]. Additionally, the authors have
also explored this LQG model that coupled to matter
[46,48]. Furthermore, several investigations have already
explored various aspects of this model. For example, the
study of quasinormal modes (QNMs) of this LQG black
hole has been carried out in [49–51]; the feasibility of this
model extension to the Planck scale and a remnant one has
been studied in [52,53]; and gravitational lensing and
optical behaviors have also been discussed in [54–56].
This work aims to investigate the classical tests of the

covariant LQG-corrected black hole in the context of the
solar system. These tests encompass the light deflection,
the Shapiro time delay, the perihelion precession, and the
geodetic precession. Classical detection methods within
the solar system have been employed in numerous
modified gravity models, such as those discussed in
[57–60], and even within the context of five-dimensional
Kaluza-Klein gravity spacetime [61,62]. Significantly,
these classical detection methods in the solar system have
been employed in recent studies to impose constraints on
the LQG-corrected black hole [63,64]. In this study, we
examine how quantum gravity effects modify classical
tests of GR predictions based on the behavior of test
particles within the framework of covariant LQG black
hole spacetime. In each case, we perform a thorough
analysis of our findings by utilizing high-precision
datasets from solar system astronomical observations.
Through this process, we derive numerical upper boun-
daries for the quantum parameters r0 and λ. It is imperative
to acknowledge that the primary emphasis of this article is
only on the static spacetime, with the deliberate omission
of the rotational influence commonly referred to as the
Lense-Thirring effect [65,66].
This paper is structured as follows. In Sec. II, a concise

overview of the covariant LQG black hole model is
presented, along with an examination of the geodesic
motion of a test particle within the framework of this
LQG-corrected black hole. In Sec. III, the modified
formulas of classical tests of GR predictions incorporating
LQG corrections are introduced. The obtained results are
subsequently compared with the latest observational data
from the solar system, leading to numerical constraints on
the quantum parameters r0 and λ. Finally, our findings and
a brief outlook for potential advancements are summarized
in Sec. IV.
Throughout this paper we adopt Planck units, i.e., setting

G ¼ c ¼ ℏ ¼ 1 in theoretical calculations, and utilize the
ð−;þ;þ;þÞ signature for the metric. When comparing with
data from the solar system, we revert to the international
system of units. Latin letters represent abstract index
notation, while Greek indices range over 0,1,2,3. We use
Schwarzschild coordinate system xμ ¼ ðx0; x1; x2; x3Þ≡
ðt; r; θ;ϕÞ.

II. MOTION OF A TEST PARTICLE OVER AN
EFFECTIVE COVARIANT LQG BLACK HOLE

In this section, we begin by providing a concise overview
of the novel effective LQG black hole model, which
incorporates holonomy corrections parametrized by a
quantum parameter r0 or λ. And then, we derive the
equations of motion (EOM) for a test particle orbiting
the black hole using the Hamiltonian canonical method.

A. LQG black hole spacetime

The spherically symmetric exterior geometry of this
effective LQG black hole is described as follows [44,45]:

ds2¼−fðrÞdt2þ 1

gðrÞfðrÞdr
2þ r2ðdθ2þ sin2θdϕ2Þ; ð1Þ

fðrÞ ¼ 1 −
2M
r

; gðrÞ ¼ 1 −
r0
r
: ð2Þ

A new length scale r0 is introduced as a result of quantum
gravity effects:

r0 ¼ 2M
λ2

1þ λ2
: ð3Þ

Here, λ is a dimensionless parameter inspired by holo-
nomies, and without loss of generality, we can assume that
λ > 0. It is evident that the quantum parameter r0 defines a
minimum area gap r02. M represents the constant of
motion, which is associated with the ADM mass as:

M̃≡MADM ¼ M þ r0
2
: ð4Þ

The ADMmass will also be identified as the celestial mass.
In the limit λ → 0, yielding r0 ¼ 0, the effective LQG
geometry described by Eq. (1) regresses to the conventional
Schwarzschild geometry of GR.
Before proceeding, we would like to provide some

insights into the interior geometry of this effective LQG
black hole. Upon incorporating the LQG correction, the
interior classical singularity is resolved by a minimal
spacelike hypersurface at r ¼ r0, resulting in a connected
region between a black hole and a white hole. This region
is characterized by two external asymptotically flat areas of
equal mass. In this scenario, the two-sphere bounce surface
characterized by a minimal area of 4πr20 always hide
inside the event horizon, i.e., r0 < 2M. This region is
also referred to as the black bounce over the global
spacetime structure [50]. Notice that as the limit M → 0
is approached, resulting in r0 → 0, the spacetime geometry
reduces to a Minkowski configuration for any value of λ.
For the sake of convenient calculations throughout the

paper, we will express the components of the metric (1)
in terms of the ADM mass M̃ and the dimensionless
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parameter r̃0, which is defined as r̃0 ≡ r0=M̃ ¼
2λ2=ð1þ 2λ2Þ:

fðrÞ ¼ 1 −
2M̃
r

�
1 −

r̃0
2

�
; gðrÞ ¼ 1 −

M̃r̃0
r

: ð5Þ

To be able to reduce to the Newtonian limit, the
gravitational constant in this effective LQG black hole
can be related to the Newtonian gravitational constant
by [67]

GN ¼ G

�
1 −

r̃0
2

�
: ð6Þ

From now on, we will set GN ¼ 1 instead of G ¼ 1, which
is more convenient for subsequent calculations. Further-
more, for the remainder of the paper, we will eliminate the
use of the tilde for the sake of simplicity.

B. Equations of motion for a test particle

We commence by considering the Lagrangian governing
the motion of a test particle over the effective LQG black
hole spacetime:

L ¼ 1

2
mgμνẋμẋν ¼

1

2
mgμν

dxμ

dτ
dxν

dτ
: ð7Þ

Here, m is the mass of the test particle, while τ can be
chosen as the proper time or affine parameter for massive or
massless particles along geodesics, with the overdot indi-
cating derivative with respect to τ. Then the canonical
momentum of the particle can be worked out as:

pμ ¼
∂L
∂ẋμ

¼ mgμνẋν: ð8Þ

Specially, we can explicitly express the four components of
the canonical momentums as follows:

pt ¼ mð−fðrÞÞṫ; ð9Þ

pr ¼ m
1

gðrÞfðrÞ ṙ; ð10Þ

pθ ¼ mr2θ̇; ð11Þ

pϕ ¼ mr2 sin2 θϕ̇: ð12Þ

Given that the Lagrangian does not depend on the variables
t and ϕ, namely, ∂L=∂t ¼ 0 and ∂L=∂ϕ ¼ 0, we have two
Killing vectors, ξa ¼ ð∂=∂tÞa and ηa ¼ ð∂=∂ϕÞa, which are
associated with the energy E and angular momentum l of
the test particle’s motion, respectively. These quantities are
determined by Eqs. (9) and (12):

E ¼ −ptξ
t ¼ mfðrÞṫ; ð13Þ

l ¼ pϕη
ϕ ¼ mr2 sin2 θϕ̇: ð14Þ

By employing the Legendre transformation, we obtain
the Hamiltonian H as follows:

H ¼ pμẋμ − L ¼ 1

2m
gμνpμpν: ð15Þ

Then, we can explicitly derive the EOMs for the system.
These equations are determined by evaluating the Poisson
brackets between the canonical phase space variables and
the Hamiltonian:

ṫ ¼ ft;Hg ¼ −
1

mfðrÞpt; ð16Þ

ṗt ¼ fpt;Hg ¼ 0; ð17Þ

ṙ ¼ fr;Hg ¼ gðrÞfðrÞ
m

pr; ð18Þ

ṗr ¼ fpr;Hg

¼ −
f0ðrÞ

2mf2ðrÞp
2
t −

g0ðrÞfðrÞ þ gðrÞf0ðrÞ
2m

p2
r

þ p2
θ

mr3
þ p2

ϕ

mr3sin2θ
; ð19Þ

θ̇ ¼ fθ;Hg ¼ 1

mr2
pθ; ð20Þ

ṗθ ¼ fpθ;Hg ¼ cos θ
mr2 sin3 θ

p2
ϕ; ð21Þ

ϕ̇ ¼ fϕ;Hg ¼ 1

mr2 sin2 θ
pϕ; ð22Þ

ṗϕ ¼ fpϕ;Hg ¼ 0: ð23Þ

Equations (17) and (23) also indicate the conservation of
energy and angular momentum for the test particle.
Utilizing these two constants of motion, we can express

the reduced Hamiltonian as follows:

H ¼ 1

2m

�
−

E2

fðrÞ þ gðrÞfðrÞp2
r þ

p2
θ

r2
þ l2

r2sin2θ

�
¼ σ

2m
:

ð24Þ

In the above equation, we have utilized the normalization
condition for four-velocity, denoted as gμνpμpν ¼ σ, where
σ takes different values depending on the nature of the
particles involved. To be more specific, for massless
particles, σ ¼ 0, while for massive particles, σ ¼ −m2.
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By employing the variable separation technique, we can
identify a third constant of motion as follows:

K ¼ p2
θ þ

l2

sin2θ
¼ r2σ þ r2E2

fðrÞ − r2gðrÞfðrÞp2
r : ð25Þ

This separation constant K is commonly referred to as the
Carter constant [68].
Next, we derive the equations for r and θ, which are

expressed in terms of the aforementioned three constants of
motion:

�
dθ
dτ

�
2

¼ K̃
r4

−
l̃2

r4sin2θ
; ð26Þ

�
dr
dτ

�
2

¼ −
K̃gðrÞfðrÞ

r2
þ σ̃gðrÞfðrÞ þ Ẽ2gðrÞ: ð27Þ

In the above calculations, we have introduced the variables
per unit mass as: Ẽ ¼ E=m, l̃ ¼ l=m, K̃ ¼ K=m2,
σ̃ ¼ σ=m2. Once again, the tilde is also dropped for
notational simplicity in the following paper. Thus, the
geodesic equations for test particles then yield:

dt
dτ

¼ E
fðrÞ ; ð28Þ

�
dr
dτ

�
2

¼ −
KgðrÞfðrÞ

r2
þ σgðrÞfðrÞ þ E2gðrÞ; ð29Þ

�
dθ
dτ

�
2

¼ K
r4

−
l2

r4 sin2 θ
; ð30Þ

dϕ
dτ

¼ l
r2 sin2 θ

: ð31Þ

Once we have the above equations available, we can delve
deeper into exploring constraints on the quantum parameter
through solar system experiments.

III. CONSTRAINTS ON QUANTUM PARAMETER

This section is dedicated to exploring the constraints
placed on the quantum parameter through solar system
experiments. These experiments include the deflection of
starlight, the Shapiro time delay, the perihelion shift, and
the geodetic precession.

A. Deflection of light

Without loss of generality, we can solely focus on
the evolution of motion is in the equatorial plane, where
θ ¼ π=2, then θ̇ ¼ 0. As a result, the Carter constant in
Eq. (25) simplifies to K ¼ l2.

Let us consider a scenario where a light ray originates
from infinity, gets deflected by the sun, and then escapes
back to infinity. By utilizing Eqs. (29) and (31), we can
determine the trajectory of the light ray as follows:

dϕ
dr

¼ �
�
E2r4gðrÞ

l2
− gðrÞfðrÞr2

�−1
2

: ð32Þ

In this equation, the minus sign corresponds to photons
moving inward with decreasing r, while the plus sign
indicates outward-moving photons with increasing r.
Subsequently, we will introduce the impact parameter b,
which represents the perpendicular distance from the
straight line of motion to the centerline of the sun that is
parallel to it. When the light ray at infinity, i.e., r → ∞ and
ϕ → 0, we get sinϕ ≈ ϕ ¼ b=r. By solving the Eq. (32)
under this scenario, we approximately have:

r ¼ � l
Eϕ

: ð33Þ

It’s easy to infer that b ¼ l=E. When the light ray
approaches the sun and is affected by the gravitational
field, it naturally reaches a turning point known as the
closest approach. This point is located at a distance of s
from the center of the sun, at which the Eq. (32) vanishes;
in other words, ðdr=dϕÞr¼s ¼ 0. This leads to the following
relationship:

b ¼
�

s2

fðsÞ
�1

2

: ð34Þ

Particularly, the magnitude of the total change in the
coordinate interval ϕ is just twice the change in angle from
the turning point r ¼ s to infinity. Therefore, we can
express it in terms of b as follows:

ϕ ¼ 2

Z
∞

s

�
r4gðrÞ
b2

− gðrÞfðrÞr2
�−1

2

dr: ð35Þ

In the absence of the sun, the light ray propagates in a
straight line, where ϕ ¼ π. Consequently, the deflection
angle Δϕ is related to ϕ as: Δϕ ¼ ϕ − π. To proceed, we
introduce a coordinate transformation r ¼ s=x and define
ϵ≡M=s. And then, we can expand the equation of Δϕ in
the weak field approximation as follows:

Δϕ¼2

Z
1

0

�
1ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p þ ½−r0þ2ð1þxþx2Þ�ϵ
ð2−r0Þð1þxÞ

ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p þOðϵ2Þ
�
dx

−π: ð36Þ

Therefore, we can obtain the following approximate
expression for the light deflection angle with the quantum-
corrected term:
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Δϕ ≈
4M
s

�
1þ r0

4 − 2r0

�
¼ ΔϕGR

�
1þ r0

4 − 2r0

�
: ð37Þ

Here, ΔϕGR represents the deflection value in GR. Notice
that in the above calculation, we have reverted ϵ back
to M=s.
When the light ray just grazes the sun, we assume that

the closest approach s is equal to the radius of the sun R⊙,
and M is the solar mass M⊙. In this scenario, the para-
meterized post-Newtonian (PPN) formalism equation for
light deflection is given as follows [69]:

Δϕ ≃ 1.7500
�
1þ γ

2

�
; ð38Þ

where γ is the PPN deflection parameter [70,71]. According
to the astrometric observationmeasuring γ by the Very Long
Baseline Array (VLBA) [72], we compare Eq. (37) with
Eq. (38). Consequently, the constraint on the quantum-
corrected parameter r0 can be immediately determined as
follows:

0 < r0 < 2.0 × 10−4: ð39Þ

This leads to corresponding constraints on λ where

0 < λ < 1.0 × 10−2: ð40Þ

B. Shapiro time delay

In this subsection, we will analyze the constraints on the
LQG-corrected parameter through the study of the Shapiro
time delay. Specially, we will consider a simplified scenario
in which a radar signal is transmitted from a transmitter
located on earth, denoted as r ¼ A, then it passes through
the closest approach to the sun at the turning point r ¼ s,
and finally returns to earth by reflection from a spacecraft-
mounted reflector, denoted as r ¼ B.
By combining Eqs. (28) and (29), we can derive the

differential equation for massless particles between t and r:

dt
dr

¼ � r

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞðr2 − b2fðrÞÞ

p ; ð41Þ

where the plus sign and the minus sign correspond to the
outgoing and incoming radar waves, respectively.
Then, we can determine the travel time of the radar wave

propagating from the transmitter at point A to the turning
point at point s:

ΔtA ¼ −
Z

s

A

r

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞðr2 − b2fðrÞÞ

p dr: ð42Þ

To evaluate the integral ΔtA, we once again use the
coordinate transformation r ¼ s=x and expand the integral
using the small quantity ϵ≡M=s. By integrating to the
subleading order, we obtain:

ΔtA ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − s2

p
þM

ffiffiffiffiffiffiffiffiffiffiffi
A − s
Aþ s

r

þM

�
4 − r0
2 − r0

�
tanh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

s2

A2

r !
: ð43Þ

Similarly, the time it takes for the radar wave to travel
between the turning point at s and the reflector at B can be
determined in the same manner, and we will refer to it
as ΔtB.
Based on the position of the spacecraft carrying

the reflector, we usually classify it into two scenarios:
inferior conjunction and superior conjunction when calcu-
lating the gravitational time delay. In the case of inferior
conjunction, the spacecraft is situated between the earth
and the sun. In the absence of gravitational effects, the
total roundtrip time of the radar signal can be expressed
as ΔtI−S ¼ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − s2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − s2

p
Þ. When considering

gravitational effects with LQG corrections, the roundtrip
time delay is calculated as follows:

ΔtI−r0 ≈4M

�
4−r0
4−2r0

�
ln

�
A
B

�
¼ΔtI−GR

�
4−r0
4−2r0

�
; ð44Þ

where ΔtI−GR represents the Shapiro time delay in GR. It is
evident that the roundtrip time delay receives the LQG
corrections.
In the case of superior conjunction, the spacecraft is

located at the opposite side of the earth with respect to
the sun. Therefore, in the absence of gravitational effects,
the total roundtrip time for the radar wave to travel is
ΔtS−S ¼ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − s2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − s2

p
Þ. Then, the roundtrip

time delay with LQG corrections is calculated as
follows:

ΔtS−r0 ≈ 4M

�
1þ

�
1þ r0

4 − 2r0

�
ln

�
4AB
s2

��
: ð45Þ

In fact, the above equation is reformulated in the PPN-like
formalism of the Shapiro time delay, which is [69,73]:

Δt ≃ 4M

�
1þ

�
1þ γ

2

�
ln

�
4AB
s2

��
: ð46Þ

It is equivalent to the relation between r0 and γ given in
Sec. III A.
Next, we will use the Cassini solar conjunction mission

in 2002 [74,75] to constrain LQG-corrected parameter.
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By utilizing a multifrequency link in the X and Ka
bands to minimize the influence of solar corona noise,
significant improvements have been achieved, resulting in
γ ¼ 1þ ð2.1� 2.3Þ × 10−5 [59,62,75,76]. Then we can
give rise to the upper constraint on r0 as:

0 < r0 < 8.80 × 10−5: ð47Þ

The corresponding constraint on λ is as follows:

0 < λ < 6.63 × 10−3: ð48Þ

On the other hand, we can also constrain the LQG
parameter using the Doppler tracking of the Cassini space-
craft [77,78]. In contrast to the Shapiro time delay, which
measures the time delay, the Doppler tracking directly
measures the relative frequency variation. To achieve this,
we differentiate Eq. (45) with respect to time t, leading to
the fractional frequency shift for the radar signal [62,76]:

dΔtS−r0
dt

≡ δν ¼ νðtÞ − ν0
ν0

≈
�
−
8M
s

−
4Mr0

ð2 − r0Þs
�
dsðtÞ
dt

≈ δνGR −
4Mr0

ð2 − r0Þs
ν⊕; ð49Þ

where ν0 and νðtÞ are the emitted and received frequencies,
respectively, and dsðtÞ=dt is approximately equivalent
to the average orbit velocity of earth, denoted as ν⊕.
Therefore, the frequency shift caused by the quantum
correction parameter r0 can be expressed as [59,63,64]:

jδνS−r0 j≈
4Mr0

ð2−r0Þs
ν⊕¼ 4M⊙r0

ð2−r0ÞR⊙

16

27
ν⊕<10−14; ð50Þ

where M⊙ and R⊙ respectively denote the mass and radius
of the sun. By taking these conditions into account, we
obtain an upper constraint on r0 within the range of
0 < r0 < 4.0 × 10−5, along with corresponding constraints
on λ falling in the range of 0 < λ < 4.47 × 10−3.
It is evident that both the Shapiro time delay and the
Doppler tracking of the Cassini spacecraft yield consistent
results.

C. Precession of perihelia

In this subsection, we investigate the constraints on the
LQG-corrected parameter through the study of perihelion
precession. To do so, we analyze the motion of a massive
particle ðσ ¼ −1Þ orbiting the sun.
First, by combining Eqs (29) and (31), we can derive the

equation describing the orbit precession of the massive
particle as follows:

�
dx
dϕ

�
2

¼
�
s2

l2

�
1−f

�
s
x

��
þ s2

b2
−f

�
s
x

�
x2
�
g

�
s
x

�
; ð51Þ

where we have also introduced the coordinate transforma-
tion r ¼ s=x as previously utilized in Sec. III A. In
addition, the impact parameter relates both l and E as
b ¼ l=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
in the case of massive particle.

When we differentiate the equation above with respect to
ϕ and then expand the formula within the weak field limit,
defined in terms of the small parameter ϵ where ϵ≡M=s,
we obtain an approximate description of the revolution of
the orbits, given by:

d2x
dϕ2

þ x −
M2

l2ϵ

≈ 3ϵx2 þ r0½b2ϵ2x2l2ð3 − 8ϵxÞ −M2ðl2 þ 4b2ϵxÞ�
b2l2ð2 − r0Þϵ

: ð52Þ

We can clearly observe that the LQG effect is distinctly
manifested in the second term on the right-hand side of
Eq. (52). In what follows, we will solve the above differ-
ential equation using the perturbation methods.
To do this, we begin by expressing xðϕÞ as xðϕÞ ¼

x0ðϕÞ þ x1ðϕÞ, with the condition that x1ðϕÞ ≪ x0ðϕÞ.
When the left-hand side of Eq. (52) equals zero, the
situation reverts to the Newtonian gravity theory. In this
case, the solution reads

x0ðϕÞ ¼
M2

l2ϵ
ð1þ e cosϕÞ; ð53Þ

which is the unperturbed part and is commonly
known as the conic section formula with eccentricity e
involved.
Next, we will determine the perturbation part x1ðϕÞ. To

this end, we substitute the expression xðϕÞ ¼ x0ðϕÞ þ
x1ðϕÞ, with x0ðxÞ obtained in Eq. (53), into Eq. (52),
while considering the initial conditions x1ð0Þ ¼ 0,
dx1ð0Þ=dϕ ¼ 0. This yields the following equation:

d2x1
dϕ2

þ x1 ¼
X3
i¼0

χicosiϕ; ð54Þ

where

χ0 ¼
b2½−8M6r0 þ 2l2M4ð3 − 2r0Þ� − l6M2r0

b2l6ð2 − r0Þϵ
; ð55Þ

χ1 ¼
4M4e½l2ð3 − r0Þ − 6M2r0�

l6ð2 − r0Þϵ
; ð56Þ

χ2 ¼
6M4e2ðl2 − 4M2r0Þ

l6ð2 − r0Þϵ
; ð57Þ

χ3 ¼ −
8M6e3r0
l6ð2 − r0Þϵ

: ð58Þ
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We can therefore obtain the solution:

x1ðϕÞ ¼ χ0 þ
χ2
2
− χ0 cosϕ −

χ2
3
cosϕþ χ3

32
cosϕ

−
χ2
6
cos ð2ϕÞ − χ3

32
cos ð3ϕÞ

þ χ1
2
ϕ sinϕþ 3χ3

8
ϕ sinϕ: ð59Þ

Regarding the perihelion precession, when the terms
involving ϕ sinϕ in Eq. (59) are absent, the test particle
remains on a closed orbit without deflection. As time
progresses, the cumulative effect makes the perihelion
precession of planetary orbits observable. Therefore, in this
scenario, the remaining terms in Eq. (59) can be omitted.
Finally, we obtain the approximate solution to Eq. (52) as
follows:

xðϕÞ ≈Ms
l2

ð1þ e cosϕÞ þ
�
χ1
2
þ 3χ3

8

�
ϕ sinϕ

≈
Ms
l2

ð1þ e cos ðϕ − ϕ0ÞÞ; ð60Þ

where we have transformed ϵ back into M=s, and now we
can relate the precession angle δϕ0 using the expression
ϕ0 ¼ ðδϕ0=2πÞϕ as follows:

δϕ0 ≈
4πM2

l2

�
3 − r0
2 − r0

�
: ð61Þ

In particular, the radial distance r attains its minimum value
at perihelia, where the condition ϕ − ϕ0 ¼ 0 yields the
equation s=r− ¼ Msð1þ eÞ=l2. On the other hand, the
radial distance achieves its maximum value at aphelia,
where the condition ϕ − ϕ0 ¼ π results in the equation
s=rþ ¼ Msð1 − eÞ=l2. While for any bound orbit, we can
determine the semimajor axisa using the following formula:

a ¼ r− þ rþ
2

¼ l2

Mð1 − e2Þ : ð62Þ

Combining Eqs. (61) and (62), we obtain the angle of
perihelion precession per revolution deviated from the GR
prediction:

Δϕ¼ δϕ0 ≈
6πM

að1− e2Þ
�
6− 2r0
6− 3r0

�
¼ ΔϕGR

�
1þ r0

6− 3r0

�
:

ð63Þ

Additionally, we can express the ΔϕGR in terms of the solar
mass M⊙ as ΔϕGR ¼ 6πM⊙=½að1 − e2Þ�.
For the observation of Mercury’s anomalous perihelion

advance, the MESSENGER mission provided highly
accurate measurements [65], yielding a value of Δϕ ¼
ð42.9799� 0.0009Þ00 per century. Using this measured

data, we can establish upper bounds on the parameters
r0 and λ, resulting in the following constraints:

0 < r0 < 1.26 × 10−4; 0 < λ < 7.93 × 10−3: ð64Þ

This result aligns with the expectations that the contribution
from LQG effect is less than the observational error
0.000900 per century. In Appendix A, we provide further
discussions on this topic using the PPN method.
It should be noted that Eq. (63) only considers the

gravitoelectric perihelion shift resulting from the influence
of the solar mass M⊙, whereas the gravitomagnetic
component, commonly referred to as the Lense-Thirring
effect, is not taken into account within in this equation [79].
Based on the summary provided in [65], it is observed that
the level of uncertainty associated with the total precession
rate is comparatively smaller than the estimated contribu-
tions attributed to the Lense-Thirring effect over a century.
Consequently, the measurement of the Lense-Thirring
effect has not yet attained a commensurate level of
precision. As a result, for the purposes of this paper, it
is deemed appropriate to disregard this effect and consider
the central object as nonrotating.
Hence, the LAGEOS satellites are taken into consid-

eration due to their ability to yield precise outcomes
through the measurement of the relativistic precession of
LAGEOS II’s pericenter within the earth’s orbit [66].
Based on the analysis of tracking data spanning a period
of 13 years, the PPN level factor ϵω is estimated to be
ϵω ¼ 1þ ð0.28� 2.14Þ × 10−3. When ϵω ¼ 1, the situa-
tion reverts back to the case of GR. When compared to the
excessive coefficient in Eq. (63), it results in the constraints
on r0 and λ as follows:

0 < r0 < 1.44 × 10−2; 0 < λ < 8.55 × 10−2: ð65Þ

Additionally, the observations of star S2 orbit around Sgr
A�, the closest massive black hole candidate at the centre of
the Milky Way, provide an alternative means of testing the
Schwarzchild precession (SP) [80]. GR predicts a preces-
sion advance angle ofΔϕGR ¼ 12.10 per orbital period. The
data analysis by the GRAVITY collaboration yields a PPN-
like parameter fSP. In the context of GR, it is anticipated
that this parameter would have a value of 1. Nevertheless, a
fiducial value with uncertainty fSP ¼ 1.10� 0.19 was
determined. Comparing these results with Eq. (63), the
corresponding upper bounds on r0 and λ are as follows:

0 < r0 < 0.93; 0 < λ < 2.59: ð66Þ

This is in agree with the result given in [56], where
λ∈ ½0; 2.65� is obtained by using the Sgr A� shadow’s
angular diameter.
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D. Geodetic precession

In this subsection, our attention turns to another test of
GR known as geodetic precession. This test serves the
purpose of probing the spacetime geometry and place
constraints on the LQG parameter.
We commence by studying the motion of the spin of a

point test particle in free fall [81,82]. We assume that the
test particle moves along a timelike geodesic, whose four-
velocity vectors uμ ¼ ẋμ ¼ dxμ=dτ, governed by the geo-
desic equation:

duμ

dτ
þ Γμ

ναuνuα ¼ 0; ð67Þ

where Γμ
να represents the four-dimensional Christoffel

symbol. The evolution of its spin four-vector Sμ along
the geodesic is described as follows:

dSμ

dτ
þ Γμ

ναSνuα ¼ 0: ð68Þ

This equation is commonly referred to as the gyroscope
equation or parallel transport equation [83–85]. In addition,
we will use the orthogonality and normalization conditions,
which are expressed as:

uμSμ ¼ 0; ð69Þ

SμSμ ¼ 1: ð70Þ
To simplify the calculation, we assume that the trajectory

of the test particle follows a circular orbit and is confined to
the equatorial plane, where θ ¼ π=2. Here, we introduce
the effective potential Vep to analyze the stability of the test
particle’s orbit. From Eq. (29), we can derive:

ṙ2 þ Vep ¼ E2; ð71Þ
where the effective potential is

Vep ¼ E2 −
�
−1þ E2

fðrÞ −
l2

r2

�
fðrÞgðrÞ: ð72Þ

To have a stable circular orbit in the equatorial plane,
both the radial velocity and radial acceleration need
to be zero simultaneously, which means Vep ¼ E2 and
dVep=dr ¼ 0. These conditions yield:

E¼
�

2f2ðrÞ
2fðrÞ−f0ðrÞr

�1
2

; l¼
�

r3f0ðrÞ
2fðrÞ−f0ðrÞr

�1
2

: ð73Þ

Hence, the related four-velocity vectors can be recast as:

ut ¼
�

2

2fðrÞ− f0ðrÞr
�1

2

; uϕ ¼
�

f0ðrÞ
2rfðrÞ− f0ðrÞr2

�1
2

:

ð74Þ

By definition, we find that:

Ω≡ dϕ
dt

¼ uϕ

ut
¼
�
f0ðrÞ
2r

�1
2

; ð75Þ

where Ω is the orbital angular velocity of the test particle.
Based on these results, we can form the parallel transport

equations as follows:

dSt

dτ
þ 1

2

f0ðrÞ
fðrÞ S

rut ¼ 0; ð76Þ

dSr

dτ
þ 1

2
fðrÞgðrÞf0ðrÞStut − rfðrÞgðrÞSϕuϕ ¼ 0; ð77Þ

dSθ

dτ
¼ 0; ð78Þ

dSϕ

dτ
þ 1

r
Sruϕ ¼ 0: ð79Þ

For convenience, we substitute the derivatives with
respect to coordinate time t for derivatives with respect
to proper time τ. It is worth noting that dτ ¼ dt=ut, and this
leads to the following expressions for the spin vectors:

StðtÞ ¼ −
f0ðrÞ
2ω

ffiffiffiffiffiffiffiffiffi
gðrÞ
fðrÞ

s
sin ðωtÞ; ð80Þ

SrðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

p
cos ðωtÞ; ð81Þ

SθðtÞ ¼ 0; ð82Þ

SϕðtÞ ¼ −
Ω
rω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

p
sin ðωtÞ; ð83Þ

where

ω ¼ Ω
�
fðrÞgðrÞ − r

2
gðrÞf0ðrÞ

�1
2

; ð84Þ

is the angular velocity of the spin vector. Here we have
assumed that the spin vector is radial directed at t ¼ 0, i.e.
Stð0Þ ¼ Sθð0Þ ¼ Sϕð0Þ ¼ 0. The coefficients can be gained
by the conditions (69) and (70). Hence, we can utilize the
discrepancy between Ω and ω to detect the geodetic effect.
Upon completing one orbit, where ϕ changes from 0 to

2π, the corresponding coordinate time is δt ¼ 2π=Ω.
Consequently, the geodetic precession angle per revolution
can be expressed as:

ΔΦgeo ¼ 2π − ωδt ¼ 2π

�
1 −

ω

Ω

�
: ð85Þ
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To obtain experimental constraints, substituting Eq. (84)
into Eq. (85) and expanding it as power series in terms of
M=r up to first order gives:

ΔΦgeo ≈
3πM
r

�
1þ 2r0

6 − 3r0

�
¼ ΔΦGR

�
1þ 2r0

6 − 3r0

�
:

ð86Þ

We can conclude that the geodetic precession angle
increases with the LQG parameter when r0 > 0.
Detecting such phenomena can be quite challenging.

Fortunately, the Gravity Probe B (GP-B) mission, equipped
with four nearly perfect spherical gyroscopes and a star-
tracking telescope, operates on a polar orbit around earth at
an altitude of 642 km [86]. GP-B measures the geodetic
drift rate in the north-south direction, with the GR pre-
diction being −6066.1 milliarcseconds per year. The
analysis of data from the four gyroscopes reveals a geodetic
drift rate of ΔΦ ¼ ð−6066.8� 18.3Þ milliarcseconds per
year. This measurement provides bounds for r0 and λ:

0 < r0 < 6.34 × 10−3; 0 < λ < 5.65 × 10−2: ð87Þ

Additionally, lunar laser ranging (LLR) has proven to be
one of the most powerful tools for rigorously testing GR
theory with high level of precision [87]. The Earth-
Moon system can be deemed as a gyroscope moving
around the sun, the geodetic precession is manifested
through the change of the lunar orbit which has already
reach a level that can be observed by laser ranging.
Thus, by measuring the lunar orbit within the Earth-
Moon system’s dynamic in the weak field of the sun,
LLR provides a relative deviation of geodetic precession
from GR value, yielding Kgp ¼ −0.0019� 0.0064. Based
on this result, we therefore obtain upper limits for the
parameter r0 and λ as:

0 < r0 < 1.34 × 10−2; 0 < λ < 8.24 × 10−2: ð88Þ

IV. CONCLUSION

LQG is one of the candidates of quantum gravity
theories. It offers a solution to the singularity problem,
whether in cosmology or black hole physics. By
introducing the concept of polymerization approach,
spacetime is quantized, replacing singularities with a
minimum area gap, which results in a spacelike transition
surface to exterior space. In this work, we investigate the
classical tests of a LQG-corrected black hole within an
effective LQG framework. These tests encompass the light
deflection, the Shapiro time delay, the perihelion preces-
sion, and the geodetic precession. Utilizing these classical
observations, we calculate the impact of the LQG-
corrected parameters, namely, r0 and λ, and derive con-
straints on these parameters by incorporating the latest
astronomical observations within the solar system. The
corresponding results of this analysis are summarized in
Table I.
We find it interesting that the LQG correction terms

always put positive impacts on modified classical tests of
GR, it may reflect the connection between the quantum scale
effects and the macroscopic effects. As shown in Table I,
it is exciting to note that the Cassini solar conjunction
experiment gives the most stringent upper bound on the
parameter r0 as 8.80 × 10−5. Note that the Doppler tracking
method of the Cassini spacecraft also yields consistent
results. In addition, the VLBI and MESSENGER ranging
data also provide nice constraints as 0 < r0 < 2.0 × 10−4

and 0 < r0 < 1.26 × 10−4 respectively.
We can estimate the scale of the quantum parameter.

Reminder that the parameter here r0 is rescaled by the
mass of the central celestial object, rendering it a dimen-
sionless quantity. The original dimensionful quantum
parameter r0 is a Planck scale quantity. Considering
the central celestial object as the sun, we can easily
estimate the dimensionless quantum parameter, finding
that r0 ∼ 10−38 and λ ∼ 10−20. Consequently, our theo-
retical estimation of the quantum parameter is well below
the current observational bounds from solar system tests.

TABLE I. Summary of estimates for upper bounds of the quantum parameters r0 and λ in the covariant LQG black hole model from
several astronomical observations.

Experiments/observations r0 λ Datasets

Light deflection 2.0 × 10−4 1.0 × 10−2 VLBI observation of quasars

Shapiro time delay
8.80 × 10−5 6.63 × 10−3 Cassini mission
4.0 × 10−5 4.47 × 10−3 Doppler tracking of Cassini

Perihelion advance
1.26 × 10−4 7.93 × 10−3 MESSENGER mission
1.44 × 10−2 8.55 × 10−2 LAGEOS II satellites

0.93 2.59 Observation of the S2-Sgr A� orbit

Geodetic precession
6.34 × 10−3 5.65 × 10−2 Gravity probe B
1.34 × 10−2 8.24 × 10−2 Lunar laser ranging

Strong equivalence principle test 5.93 × 10−4 1.72 × 10−2 Lunar laser ranging
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It seems unlikely that such a value could be observatio-
nally tested in the solar system in the near future.
Nevertheless, given the significant role of quantum
gravity effects in the strong field regime, we anticipate
the detection of quantum gravity effects in tests involving
central celestial objects like BHs, especially in the
observation of gravitational waves.
We also calculate the upper bounds for the polymeriza-

tion parameter in the self-dual spacetime within LQG. The
results are detailed in Appendix B. The upper bounds for
the polymerization parameter δ in the self-dual black hole
model, as constrained by solar system experiments, are
roughly one order of magnitude higher than the upper
bounds for the polymerization parameter λ in our current
model. Consequently, we can draw a similar conclusion to
that of our current model.
We notice that the magnitude of upper bound on r0 from

S2 star orbit observations around Sgr A� is much larger. As
pointed out that in [80], it may be limited by experimental
accuracy. For the future optical observations, astrometric
missions such as GAIA will push the accuracy to the
microarcsecond level, thus the measure of light deflection
due to the sun and the PPN parameter γ will be hopefully
reach the order of 10−6 or even better [88,89]. Besides, the
BepiColombo mission was launched on 20 October 2018
for the exploration of Mercury, which will give a
higher precise of constraint on the value of γ in the near
future [90]. We look forward that with these missions the
accuracy of constraints on quantum parameters in LQGwill
be improved.
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APPENDIX A: PPN APPROACH

In Sec. III, we have mentioned the PPN formalism in
experimental data to analyze the LQG theoretical calcu-
lation results of classical tests and obtain the constraints on
r0. PPN formalism contains all post-Newtonian theory,
which is a good approximation in the weak field regime,
especially in the solar system, and slow motion [69,85].
The PPN limit of the Schwarzschild metric in isotropic

coordinates provided by the standard form [71]:

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ðA1Þ

In this metric, the coefficients AðrÞ and BðrÞ can be
expanded as power series in terms of the small quantity
M=r, as given by [70]:

AðrÞ ¼ 1 −
2M
r

þ 2ðβ − γÞM
2

r2
þ � � � ; ðA2Þ

BðrÞ ¼ 1þ 2γ
M
r
þ � � � : ðA3Þ

The PPN parameter γ provides a rough description of the
amount of space-curvature produced by unit rest mass,
while β gives a rough indication of the nonlinearity in the
superposition of gravity, as described in [67]. According to
Einstein’s theory, both parameters are predicted to have
strict values of γ ¼ β ¼ 1.
Expanding the coefficients of dt and dr components in

metric (1) yield:

fðrÞ ¼ 1 −
2M
r

; ðA4Þ

1

gðrÞfðrÞ ¼ 1þ 2

�
2

2 − r0

�
M
r
þO

�
M
r

�
2

: ðA5Þ

By comparison, we see that β ¼ γ ¼ 2=ð2 − r0Þ matches
the related expression in Sec. III. This method allows us to
test whether the calculations are consistent with the
situation under the weak field limit.
For instance, the PPN correction factor in the perihelion

advance is combined with β and γ forms [1,65,69]:

Δϕ ¼ 6πM⊙

að1 − e2Þ
�
2 − β þ 2γ

3

�
¼ 6πM⊙

að1 − e2Þ
�
6 − 2r0
6 − 3r0

�
:

ðA6Þ

which is equivalent to the LQG correction in Eq. (63).
Another application involves the LLR strong equiva-

lence principle (SEP) test [87]. In this context, the PPN
coefficient η ¼ 4β − γ − 3, characterizes the strength of
violations of the Einstein equivalence principle (EEP). This
test provides upper constraints on the parameters r0 and λ,
yielding:

0 < r0 < 5.93 × 10−4; 0 < λ < 1.72 × 10−2: ðA7Þ
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APPENDIX B: UPPER BOUNDS OF THE
POLYMERIZATION PARAMETER IN THE

SELF-DUAL SPACETIME IN LQG

Currently, numerous LQG-corrected BH models have
been proposed [28–37].Most of these BHs are characterized
by the polymerization parameter from LQG, denoted as λ in
this paper. We anticipated that the fundamental polymeri-
zation parameter shares the same scale. Consequently, it is
intriguing to compare the constraints on the polymerization
parameter from solar system tests among different LQG-
corrected black hole models. This appendix provides a
comparison of the constraints on the polymerization param-
eter from solar system tests between our current model and
the self-dual spacetime in LQG.
InRef. [63], the authors have studied the observational tests

of the self-dual spacetime in LQG within the solar system
context. However, it is crucial to emphasize that, to recover
the Newtonian limit, we establish a relationship between the
effective gravitational parameter and Newton’s gravitational

constant as GN ¼ Gð1 − PÞ2=ð1þ PÞ2 [91,92]. Through
this transformation, we reevaluate the constraints on the
polymerization parameter in the self-dual spacetime in
LQG. The results are presented in Table II.1

Comparing Table II with Table I, we observe that the
upper bounds of the polymerization parameter δ in the self-
dual black hole model, constrained by solar system experi-
ments, are approximately one order ofmagnitude larger than
the upper bounds of the polymerization parameter λ in our
presentmodel. Similar to the discussion in this paper, we can
find that the theoretical estimation of the polymerization
parameter falls well below the current observational bounds
from solar system tests. We anticipate that increasingly
precise experiments will provide a more thorough elucida-
tion of the shared characteristics among LQG black holes.
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