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As shown by Marunovic and Murkovic [Classical Quantum Gravity 31, 045010 (2014)], nonminimal
d-stars, composite structures consisting of a boson star and a global monopole nonminimally coupled to
the general relativistic field, can have extremely high gravitational compactness. In a previous paper we
demonstrated that these ground-state stationary solutions are sometimes additionally characterized by
shells of bosonic matter located far from the center of symmetry [Phys. Rev. D 93, 044022 (2016)].
In order to investigate the question of stability posed by Marunovic and Murkovic, we investigate
the stability of several families of d-stars using both numerical simulations and linear perturbation
theory. For all families investigated, we find that the most highly compact solutions, along with
those solutions exhibiting shells of bosonic matter, are unstable to radial perturbations and are therefore
poor candidates for astrophysically relevant black hole mimickers or other highly compact stable
objects.

DOI: 10.1103/PhysRevD.109.024008

I. BACKGROUND

Attempts to create stable solitonic solutions in the
context of general relativity go back to Wheeler in 1955
with the development of geons–solitonic objects comprised
of various fundamental fields coupled to gravity [1].
AlthoughWheeler’s geons proved to be unstable in general,
further work by Kaup [2] and Ruffini and Bonazzola [3],
lead to the discovery of the stable massive solitons today
known as boson stars [4].
Over the intervening years, boson stars and their descend-

ants have been invoked for a large variety of processes and
models including black hole mimickers [5,6], models of
neutron stars [5,7–10], binary systems [9], sources of dark
matter [11–16] and sources of gravitational waves [9,11].
Though boson stars are not known to exist in nature, the
simplicity of their matter model makes them a valuable tool
for qualitative analysis and for providing a simple first step
and test bed for more complex matter models [4,9].
Studies have demonstrated that boson stars are stable to

perturbations provided that the central density of the star
is sufficiently small [4,11,17–19]. However, without a
self-interaction term in the potential, the mass of the star
scales as 1

2
m2

p=m (where mp is the Planck mass and m is
the boson mass). For reasonable particle masses, this
results in stars with masses far below the usual
Chandrasekhar limit for fluid stars [4,20,21]. Thus, these
so-called mini-boson stars are useful primarily as a test
bed with their more specialized cousins (having, for
example, additional terms in the potential) being adapted
to various astrophysical situations [4].

Whereas boson stars gain their stability through a
conserved charge and the interplay between pressure and
gravity, global monopoles are topologically stable [22–24].
Along with other topological defects such as textures,
domain walls, and strings, monopoles are expected to form
fairly generically when underlying field symmetries are
broken through early universe phase transitions which are
mediated by expansion and cooling [24].
In the case of the monopole, the simplest class of defect

consists of a scalar field triplet with a global Oð3Þ
symmetry which is spontaneously broken to Uð1Þ on a
noncontractible 2-surface. If the broken symmetry is local,
the resulting monopole is shielded by the Maxwell field and
has finite energy and extent. Conversely, if the field exhibits
a global symmetry, we find that the resulting energy is
linearly divergent in radius [22–25].
Although this divergence may seem somewhat problem-

atic, there are two important caveats. First, the energy
divergence cuts off upon encountering another monopole or
antimonopole. Second, in the context of general relativity,
the energy divergence has the simple effect of producing a
solid angle deficit spacetime along with a small effective
negative mass core, rather than more exotic features
[22,23,25,26]. As shown by Barriola et al. [22], we would
expect global monopoles and anti-monopoles to annihilate
extremely efficiently due to the fact that the interaction
strength between them is independent of distance.
Although this annihilation is avoided by local monopoles,
we expect a Hubble volume to contain only ≈1 global
monopole at the present time due to the efficiency of this
interaction.
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Putting aside these considerations, when a global
monopole and boson star are combined, the result is a
novel object referred to as a topological-defect boson star or
“d-star.” Previously studied in [5,26–28], it was shown that
through nonminimal coupling and proper choice of inter-
action parameters, d-stars could be made extremely dense,
thereby potentially acting as mimickers of black holes or
other highly compact objects [5]. Subsequent in-depth
investigation of these objects revealed novel interactions
and ground state solutions [26]. When viewed as functions
of the boson star central density, these ground state
solutions are characterized by discontinuous changes in
the global properties of the system (mass, charge, etc.). To
better describe this behavior, we borrow the terminology of
statistical mechanics. In this analogy, the central density of
the boson star takes the place of the temperature, the
asymptotic mass takes the role of the energy and the mass
gap is similar to latent heat.
The discontinuous changes in global properties are

mediated by the appearance or disappearance of shells
of bosonic matter at characteristic radii which can be either
finite or infinite. We use the term asymptotic shell to refer
to any shell of matter which first appears far from the
coordinate origin as ψð0Þ is increased past some critical
value and which subsequently vanishes when ψð0Þ is
further increased past a second critical value. We refer to
those families of solutions with mass gaps (when the mass
is viewed as a function of the central density) as expressing
a first order phase transition. Those with discontinuities in
the derivative of the asymptotic mass or charge express a
second order phase transition. The interested reader is
directed to [26] for an in-depth review.

II. REVIEW OF STATIONARY D-STARS

We have previously solved the equations of motion
assuming stationary solutions, the harmonic ansatz for the
boson field and a hedgehog ansatz for the monopole fields
[26]. The solutions we discovered were characterized by a
series of discrete boson star central amplitudes, ψc

i ð0Þ, about
which the character of the solutions changed discontinuously
in a manner analogous to a phase transition. In what follows,
we will use the same terminology and notation as our
previous paper [26], which is briefly reviewed below.
The parameter space we consider here is six-dimensional,

spanned by the central amplitude of the boson star, ψð0Þ, and
five coupling parameters: the solid angle defect, Δ2, the
quartic global monopole potential parameter, λG, the quartic
boson star potential parameter, λB, the global monopole
nonminimal coupling, ξG, and the boson star nonminimal
coupling, ξB. We fix the mass of the boson star field,m ¼ 1,
and note that this sets the energy scale of the solutions.
Wedefine a family of solutions to be the set of all ground state
solutions with commonΔ, λG, λB, ξG and ξB. As such, within
a given family, solutions can be indexed by the boson star

central amplitude, ψð0Þ, which is the only free parameter of
the family (see Fig. 1).
Due to the large parameter space associated with these

solutions, it was not feasible to perform a comprehensive
parameter space survey. Instead, as in [26], we focus on a
number of families of solutions which appear to capture the
novel behavior associated with the model. In subsequent
sections we deal with eight families of solutions whose
fixed parameters are given in Table I. For simplicity, the
boson star quartic self interaction coupling constant, λB, has
been set to 0 under the assumption that its primary effect
will be to produce more compact objects (while having

FIG. 1. Asymptotic mass as a function of central amplitude for
a hypothetical family consisting of three branches. The first
branch consists of a single region while each of the subsequent
branches consist of two regions, the extent of which are delimited
by their mass turning points. Solid vertical lines denote the extent
of branches while regions within a branch are separated with
vertical dashed lines.

TABLE I. Families of solutions and their associated parame-
ters. Each family consists of a continuum of solutions labeled by
the central amplitude of the boson star. In particular, family h
corresponds to a family in the high compactness regime as
defined in [5]. Due to their relatively simple and illustrative
modal structure, families p1 and p2 are the only ones we explore
with perturbation theory.

Family Δ2 λB λG ξB ξG

c 0.36 0 1.000 0 0
d 0.81 0 0.010 0 0
e 0.25 0 0.001 3 3
f 0.49 0 0.010 5 0
g 0.09 0 0.010 0 5
h 0.08 0 0.100 −4 5
p1 0.09 0 0.040 0 0
p2 0.25 0 0.040 0 0
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only a minor effect on the low density asymptotic shells
that we find). Those families that were investigated in [26]
were given identical designations.
We define a branch of a family to be the set of all

solutions in the family where the asymptotic mass, M∞,
is C1 as a function of the central amplitude, ψð0Þ. Using
this definition, Fig. 1 provides a mass plot illustrating a
hypothetical family with three branches. We use the term
region to refer to the set of all solutions on a given branch
between extremal values of the asymptotic mass. Using our
previous example, the first branch of Fig. 1 consists of a
single region while the second and third branches each
consist of two regions.
As demonstrated in Fig. 2, which plots the asymptotic

mass, M∞, of a family of solutions, this mass parameter is
not in general a smooth function of the boson star central
amplitude, ψð0Þ, as would be expected for a fluid star. As
we construct families of stationary solutions by varying the
central amplitude of the boson star (keeping all other
parameters fixed) we find that when the central amplitude
is increased or decreased across a critical point ψc

i ð0Þ, a
shell of bosonic matter will either appear or vanish far from
the center of symmetry. As shown in [26], these shells of
matter may either appear suddenly at spatial infinity, or
gradually at a finite radius when the boson star is non-
minimally coupled to gravity.
As discussed in full detail in [26], these families of

solutions have features that are in many ways analogous to
critical points and phase transitions in thermodynamical
systems. When shells appear at infinity with finite mass, we

have a direct analogy with first order phase transitions with
ψð0Þ taking the role of the temperature or pressure and the
mass gap being analogous to the latent heat. When the
transition is gradual, as in the case of nonminimal coupling,
we have a situation more analogous to second order, or
continuous, phase transitions.

III. OVERVIEW

In analyzing the stability of the boson d-star solutions,
we adopt a two pronged approach. First, we consider the
general nonminimally coupled case and perform dynamical
simulations of a number of families which seem to be
representative of the model as a whole. Specifically, from
these families we choose a few solutions from each branch,
perturb the solutions and follow the evolution of the
system, looking for growth of excited modes. Previous
studies have shown that stability transitions are confined to
turning points of the asymptotic mass or charge when these
quantities are viewed as functions of boson star central
amplitude [17–19,29]. We greatly simplify our investiga-
tion by considering only a small number of evolutions per
region and by assuming that the observed stability for these
simulations generalizes across the entire region.
Our second approach involves a detailed analysis of the

mode structure of the d-star solutions via linear perturbation
analysis. Due to the complexity of the resulting equations for
the nonminimally coupled case, we limit ourselves to the
investigation of the minimally coupled configurations.
Through an exhaustive investigation of two families, we
deduce a general mode structurewhich is in broad agreement
with the results of our dynamical simulations.

IV. MATTER MODEL

Following the prescription of Marunovic and Murkovic
[5], the dimensionless Einstein-Hilbert action (c ¼ 1,
G ¼ 1=8π) is given by

SEH ¼
Z

dx4
ffiffiffiffiffiffi
−g

p R
2

ð1Þ

while the actions for the boson star and global monopole are

SB ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∇uΨ�Þð∇uΨÞ − VB

þ ξB
2
RðΨ�ΨÞ

�
; ð2Þ

SG ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
−
Δ2

2
ð∇uϕ

aÞð∇uϕaÞ − VG

þ ξG
2
RΔ2ðϕaϕaÞ

�
: ð3Þ

FIG. 2. Asymptotic mass as a function of central amplitude for
family d. The lower panel shows an expanded view of the upper
plot highlighting the central structure. As demonstrated in [26],
the apparent discontinuities are genuine. These discontinuities
correspond to shells of bosonic matter of finite mass and particle
number appearing or disappearing at spatial infinity.
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Here, Ψ is the complex boson star field, ϕa are scalar field
triplets comprising the monopole, VB and VG are the self
interaction potentials for the boson field andmonopole fields
respectively, R is the Ricci scalar and ξB and ξG are the
nonminimal coupling constants. The stress-energy tensors
associated with the matter actions are

TB
μν ¼

1

2
∇μΨ�∇νΨþ 1

2
∇νΨ�∇μΨ

−
1

2
gμνð∇αΨ∇αΨ� þ 2VBÞ

− ξBðGμν þ gμν∇α∇α −∇μ∇νÞΨΨ�; ð4Þ

TG
μν ¼

Δ2

2
∇μϕ

a∇νϕ
a þ Δ2

2
∇νϕ

a∇μϕ
a

−
1

2
gμνðΔ2∇αϕ

a∇αϕa þ 2VGÞ
− ξGΔ2ðGμν þ gμν∇α∇α −∇μ∇νÞϕaϕa: ð5Þ

We use the standard 3þ1 decomposition where 4D
spacetime is foliated into a sequence of spacelike hyper-
surfaces, Σt, such that each hypersurface of constant t has a
3-metric, γij. Explicitly, the 4-metric takes the form

gμν ¼
�−α2 þ βiβi βj

βi γij

�
: ð6Þ

with a timelike normal, nν, to the foliation, Σt, given by

nν ¼
�
1

α
;−

βi

α

�
: ð7Þ

Here, α and βi are the usual lapse and shift respectively. We
impose spherical symmetry, and adopt polar-areal coordi-
nates such that the line element becomes

ds2 ¼ −αðt; rÞ2dt2 þ aðt; rÞ2dr2
þ r2ðdθ2 þ sin2θdϕ2Þ: ð8Þ

Decomposing the boson field into a real and imaginary
part and taking the hedgehog ansatz for the monopole, the
matter fields and corresponding potentials are

Ψ ¼ ϕR þ iϕI; ð9Þ

ϕa ¼ ϕM
xa

r
; ð10Þ

VG ¼ λG
4
Δ4ðϕ2

M − 1Þ2; ð11Þ

VB ¼ m2

2
ðϕ2

R þ ϕ2
I Þ þ

λB
4
ðϕ2

R þ ϕ2
I Þ2: ð12Þ

Varying the actions with respect to the matter fields gives
the equations of motion for the matter:

∇μ∇μϕR ¼ ϕR∂VϕR
− ξBRϕR; ð13Þ

∇μ∇μϕI ¼ ϕI∂VϕI
− ξBRϕI; ð14Þ

∇μ∇μϕM ¼ ϕ∂VϕM

Δ
þ 2ϕM

r2
− ξGRϕM; ð15Þ

where:

∂VϕR
¼ m2ϕR þ λBðϕ2

R þ ϕ2
I ÞϕR; ð16Þ

∂VϕI
¼ m2ϕI þ λBðϕ2

R þ ϕ2
I ÞϕI; ð17Þ

∂VϕM
¼ λGΔ4ðϕ2

M − 1ÞϕM: ð18Þ

We express the fields ϕA ¼ ðϕR;ϕI;ϕMÞ in terms of their
conjugate momentum and spatial derivatives:

ΠA ¼ a
α
∂tϕA ð19Þ

ΦA ¼ ∂rϕA ð20Þ

Evaluating tensor components and simplifying, the equa-
tions of motion for the matter fields may be expressed as

∂tΠR¼−ðξBϕRTþ∂ϕR
VÞαaþ∂r

�
ΦRα

a

�
þ2ΦRα

ra
; ð21Þ

∂tΠI ¼ −ðξBϕIT þ ∂ϕI
VÞαaþ ∂r

�
ΦIα

a

�
þ 2ΦIα

ra
; ð22Þ

∂tΠM ¼ −
�
ξGϕMT þ ∂ϕM

V

Δ2
þ 2ϕM

r2

�
αaþ ∂r

�
ΦMα

a

�

þ 2ΦMα

ar
: ð23Þ

∂tΠP ¼ ∂r

�
ΦPα

a

�
þ 2ΦPα

ra
: ð24Þ

Here, we have used the contracted Einstein equation
R ¼ −T, and have incorporated a massless scalar field,
ϕP, to facilitate perturbation of the stationary solutions. The
choice of polar-areal coordinates greatly simplifies the
Einstein equations and after a considerable amount of
manipulation we arrive at the form of the equations given
in Appendix A.

A. Boundary conditions

Given the hedgehog ansatz (10), ϕM is the magnitude of
the global monopole fields, ϕa, which are analogous to an
outward pointing vector field. As such, to maintain regu-
larity we must have ϕM ¼ 0, at the center of symmetry.
Further, as r → 0, regularity requires ϕR, ϕI , ϕP, ΠR, ΠI ,
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ΠP, a, and α be even functions of r (with aðt; 0Þ ¼ 1) while
ϕM and ΠM are odd functions of r.
In the limit that r → ∞, the boson star field exponen-

tially approaches zero while the global monopole transi-
tions to its vacuum state (ϕR → 0, ϕI → 0, ϕM → 1þP

i cir
−i). Defining Δ̃ by

Δ̃ ¼ Δ2

1þ ξGΔ2
; ð25Þ

and assuming a series expansion in 1=r, the metric
equations can be integrated to yield the following regularity
conditions as r approaches infinity [5,13]:

ϕR ¼ ϕI ¼ ϕP ¼ 0; ð26Þ

ϕM ¼ 1 −
1

λGΔ2r2ð1þ ξGΔ2Þ ; ð27Þ

ΠR ¼ ΠI ¼ ΠP ¼ ΠM ¼ 0; ð28Þ

a ¼
�
1 − Δ̃ −

2M
r

�
−1=2

; ð29Þ

α ¼
�
1 − Δ̃ −

2M
r

�
1=2

: ð30Þ

Here, M is a constant of integration proportional to the
ADM mass of a solid angle deficit spacetime as defined in
the next section.

B. Conserved and diagnostic quantities

The global Uð1Þ invariance of the boson star field gives
rise to a conserved current,

Jμ ¼
i

16π
ðΨ�∇μΨ −Ψ∇μΨ�Þ;

¼ 1

8π
ðϕI∇μϕR − ϕR∇μϕIÞ; ð31Þ

with temporal component,

Jt ¼
α

8πa
ðϕIΠR − ϕRΠIÞ: ð32Þ

Associated with the current is a conserved charge,

N ¼
Z

Jνnν
ffiffiffi
γ

p
dx3; ð33Þ

with spatial gradient,

∂rN ¼ r2

2
ðϕIΠR − ϕRΠIÞ: ð34Þ

Although the energy of the spacetime is linearly diver-
gent in r, it is possible to use the prescription of Nucamendi
et al. [25] to define an ADM-like mass, MADM, for a solid
angle deficit spacetime as

MADM ¼ 1

16πð1 − Δ̃Þ
Z
∂Σt

ðγ̄acγ̄bd − γ̄abγ̄cdÞ

· D̄bðγcdÞdSa:
ð35Þ

Here γ̄ab is a metric which is flat everywhere save a deficit
solid angle, and which is induced on all constant time
hypersurfaces, Σt. D̄b is the associated connection and dSa
is the surface area element [25].
Evaluation of (35) using the asymptotic forms of the

metric functions (29)–(30) under the coordinate changes
prescribed by Nucamendi, yields

MADM ¼ Mð1 − Δ̃Þ−3=2; ð36Þ

where M is defined as in (29). We further define a mass
function as

Mðt; rÞ ¼ r
2
ð1 − aðt; rÞ−2 − Δ̃Þ; ð37Þ

M∞ ≡ lim
r→∞

Mðt; rÞ; ð38Þ

and use it to monitor energy conservation of the system. We
also use the above definition ofMðt; rÞ to define ameasure of
the compactness of the system. Specifically, following
Marunovic and Murkovic [5], we define the compactness as

Cðt; rÞ≡ 2Mðt; rÞ
rð1 − Δ̃Þ ; ð39Þ

such that Cðt; r0Þ → 1 indicates the development of an
apparent horizon at areal radius r0. Correspondingly, we
define the quantity Cmax as

Cmax ≡maxðCðt; rÞÞ: ð40Þ

For any given configuration of matter, then, Cmax measures
the maximum compactness of the configuration.

V. DYNAMICAL SIMULATION

This section provides an overview of our evolution
scheme and associated numerics. Section VA details the
initialization of the metric and matter fields, while Sec. V B
introduces the finite difference discretizations used to solve
the equations of motion and describes the evolution
procedure. Section V C specifies the tests used to ensure
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convergence of our scheme. Finally, Sec. V D describes our
method of extracting stable and unstable perturbative
modes from the dynamical simulations.

A. Initial data

To initialize an evolution, the boson star fields, ϕR and ϕI ,
global monopole field, ϕM, and metric fields, a and α, are
interpolated to the evolution grid from a stationary solution
(computed using the methodology described in [26]) using a
high order interpolation scheme. Subsequently, we add a
small perturbation consisting of either aGaussian pulse in the
massless scalar field, ϕP, or a rescaling of the matter fields.
Finally, the Hamiltonian and momentum constraints are re-
integrated to account for the perturbation and the system is
ready for evolution.
Specifically, when considering a case where the excited

modes are observed to grow slowly compared to the light-
crossing time of the star, the perturbation is set using a time-
symmetric massless scalar field pulse of the form

ϕPð0; rÞ ¼ a0 exp

�
−
ðr − r0Þ2

σ20

�
; ð41Þ

where a0, σ0, and r0 determine the location and intensity of
the pulse at t ¼ 0. A portion of this time symmetric pulse
implodes inward and excites perturbative modes in the
boson d-star before dispersing to infinity.
When the growth rate of the perturbative modes are large

compared to the scale of the star, this approach fails to
produce good results (e.g. the perturbations evolve into the
nonlinear regime before the perturbing pulse is able to
disperse). In this case, the truncation error induced by
restricting the stationary solutions to the evolution grid
(which is quite coarse compared to the one used to
determine the time-independent solutions) induces growth
modes over which we have very little control. These modes
quickly become the dominant source of perturbation and
hamper the extraction of useful information from the
simulations. To overcome this, we introduce a perturbation
by rescaling the matter fields as,

ϕiðxÞ → ϕiðð1þ λÞxÞ; ð42Þ

where λ is taken to be a small number, typically on the order
of 10−5, and reintegrating the Hamiltonian and polar slicing
condition. Here, x, is a compactified spatial coordinate as
will be discussed shortly. Although this form of perturba-
tion works well, it is decidedly less natural than perturbing
with an external matter field and we stick to the former
approach whenever possible.

B. Evolution scheme

Weevolve thematter field quantities using (19)–(24) and a
second order finite difference schemewith Crank-Nicholson

differencing. To damp high frequency solution components
we add fourth order, temporally centered, Kreiss-Oliger
dissipation. Due to the global nature of the monopole field,
the need to evolve the simulations for many dynamical
timescales, and the fact that it helps in implementing the
r → ∞ boundary conditions, we adopt compactified coor-
dinates defined by:

r ¼ λx
1 − x

; 0 ≤ x ≤ 1; ð43Þ

where λ is a positive real number that typically satisfies
1 ≤ λ ≤ 100. Specifically, λ is chosen so that all solution
features are well resolved with our choice of mesh spacing.
Since x compactifies the entire domain of r, this coordinate
change works in conjunction with our numeric dissipation
operators to suppress wave like oscillations far from r ¼ 0.
This in turn permits us to forgo crafting outgoing boundary
conditions for our fields and instead impose trivial boundary
conditions corresponding to (26)–(30) at the x ¼ 1 limit of
our domain. Care must be taken, however, to ensure that the
parity of functions at the origin is treated according to their
behavior in r rather than x.
As noted in Appendix A, it is possible to find an

expression for ∂ra independent of α. As such, we may
consider the equation for the metric as two initial value
problems rather than a coupled boundary value problem. In
practice, we find the most effective method of solving for
the metric functions is to integrate ∂ra from x ¼ 0 to x ¼ 1,
initialize α ¼ 1=a at x ¼ 1, and integrate ∂rα back to x ¼ 0.
Although our overall evolution scheme is well suited to

the evolution of highly dynamical simulations, its utility for
investigating nearly stationary solutions and the growth of
perturbations is limited by the use of second order finite
difference operators. In particular, there are significant
restrictions on the period of time for which a simulation
may be run before dispersion becomes the dominant factor
limiting solution accuracy. The scheme was chosen for ease
of implementation, but fourth order finite difference or
spectral schemes would be far superior for the purpose of
resolving modes with very slow growth rates.

C. Convergence

To validate the stability of the evolution scheme and to
ensure that mass and charge are approximately conserved
for dynamic configurations, we choose initial data consist-
ing of a stationary solution perturbed by a large-amplitude
massless scalar field pulse at the origin. The mass energy of
the massless scalar field is a significant fraction of the total
mass energy of the system, so the system as a whole is
highly perturbed from stationarity. Specifically, the monop-
ole is nonstationary far from the origin due to its coupling
to the modified metric functions.
We demonstrate the convergence of our algorithm via the

evolution of slightly subcritical (i.e. slightly stronger initial
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perturbations would result in black hole formation), non-
minimally coupled, initial data. In verifying the validity of
our evolutionary scheme, we make use of the technique of
independent residual evaluators. This involves creating
alternative discretizations of the equations of motion
(EOM) which are then applied to solutions computed
via our evolutionary scheme. More explicitly, our evolu-
tionary scheme solves the difference equations,

D̃ðuhÞ − fh ¼ 0; ð44Þ

where D̃ is some nonlinear difference operator and uh and
fh are our discretized fields with grid spacing h. The
technique of independent residual evaluation involves
finding an alternative discretization, D̃0, application of
which to our precomputed solution, uh, yields,

D̃0ðuhÞ − fh ¼ r̃h: ð45Þ

If r̃h is observed to converge at order Oðh2Þ, it implies that
both D̃ and D̃0 match to order Oðh2Þ and provides
confidence—far beyond what can be achieved with stan-
dard convergence tests—that we are solving the correct
EOM. Figure 3 shows representative independent residual
convergence of strong field initial data for a range of grid
spacings while Figs. 4 and 5 plot conserved quantity
violations for the same solutions. From these plots, it
can be seen that the solution algorithm is convergent in the
strong field limit.

D. Extraction of growth modes

The basic mechanics of a perturbation theory analysis
suggest an obvious means by which the stability of a
solution may be tested. By monitoring the growth rate of a
quantity which would remain constant were the solution
unperturbed, we can make a direct measurement of the
eigenvalue of the dominant mode. In the case of instability,
we expect to see exponential growth in the norm of the
perturbation. In contrast, the norm of a perturbed quantity

FIG. 3. Convergence of the l2-norm of independent residuals
for the trace of the Einstein field equations (T þ R ¼ 0) in the
case of a very strongly perturbed d-star. The residuals of the
higher resolution simulations are scaled by 16 and 256, respec-
tively such that overlap of the curves implies second order
convergence. This figure encompasses approximately 50 light-
crossing times or 20 periods of the central boson star
oscillation, τBS.

FIG. 4. Convergence of charge conservation for strong field
data where the residuals of the higher resolution simulations have
been scaled such that overlap of the curves implies second order
convergence. The oscillation period of the unperturbed central
boson star is denoted τBS.

FIG. 5. Convergence of mass conservation for strong field data
where the residuals of the higher resolution simulations have been
scaled such that overlap of the curves implies second order
convergence.
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which is stable should oscillate in time. In both cases, the
growth rate or period, respectively, may be determined by
appropriate fits to the perturbed quantity.
A note of caution is, however, warranted: the method

described above is only capable of determining a lower
bound for the instability of the system. It is entirely possible
for this method to miss unstable modes with eigenvalues
much smaller than those of the excited stable modes (in
which case the growth rate of the former is masked by
oscillations of the latter). In an effort to counter this
problem, we evolve the perturbed solutions for many
dynamical timescales as given by the lowest frequency
stable mode. This typically translates to hundreds of light-
crossing times and thousands of boson star oscillations.
Although we can never state with absolutely certainty that a
solution is stable, we will nonetheless use that terminology
when no growing modes are detected over such timescales.
Previous stability studies [17–19,29] have shown that

boson stars, like fluid stars, undergo stability transitions
only at solutions corresponding to extrema of the asymp-
totic mass, M∞, as is predicted by catastrophe theory. We
therefore work under the assumption that all sets of
stationary solutions in the same region (bounded by
extrema of M∞) exhibit similar stability properties. The
results of Sec. VII B serve to validate this assumption for
the minimally coupled case. The results presented in
Sec. VII A are therefore derived from a small number of
simulations chosen to be representative of each region in a
given family. Typically, we perform between two and three
simulations for each region.
In our analysis we make extensive use of the Noether

charge as a stability diagnostic rather than using matter
fields or metric functions. Given (33), we see that the
Noether charge is a derived quantity, tied tightly to both the
metric functions and bosonic matter fields. As such, any
changes to those fields are immediately reflected in the
Noether charge, making it an ideal quantity for monitoring
stability and for comparing the form of excited modes to
those predicted by perturbation theory.

VI. LINEAR PERTURBATION THEORY

Proceeding in standard fashion, we decompose the
perturbed solution, fðt; rÞ, into a stationary component
and an integral over Fourier modes:

fðt; rÞ ¼ f0ðrÞ þ
Z

∞

−∞
f̂ðr; βÞeiβtdβ: ð46Þ

We substitute fðt; rÞ ¼ f0ðrÞ þ ϵδfðrÞeiβt into the equa-
tions of motion and expand to linear order order in ϵ. By
doing so, we reduce our system of PDEs to a system of
ODEs that represents the growth rate of various modes and
that constitutes an eigenvalue problem in β2. In general, this
system cannot be solved for all values of β2 while retaining
conservation of our conserved quantities; for most values of

β2, the solution obtained implies that the integral of the
various conserved quantities is time dependent. For those
countable number of modes that do satisfy the requisite
boundary conditions for the conserved quantities, those
with β2 > 0 will be stable while those with β2 < 0 will be
unstable.
Following Gleiser and Watkins [18], we transform to a

set of variables ðμðt; rÞ, νðt; rÞ, ψRðt; rÞ, ψ Iðt; rÞ, ϕðt; rÞÞ
defined by:

a ¼ eμ=2; ð47Þ
α ¼ eν=2; ð48Þ
Ψ ¼ e−iωtðψR þ iψ IÞ; ð49Þ

ϕM ¼ ϕ: ð50Þ
The derivation and final form of the perturbation equations
have been relegated to Appendix B due to their significant
complexity.

A. Solution procedure

Even in the minimally coupled case, finding solutions to
(B13)–(B18) proves to be quite challenging. Examination
of the regularity conditions at the origin reveals that the
appropriate degrees of freedom in the problem are given by
β2, δψRðrÞjr¼0, δψ IðrÞjr¼0 and ∂rδϕðrÞjr¼0. Due to the
linearity of the problem, we are free to set δψRðrÞjr¼0 ¼ 1
and the equations therefore constitute an eigenvalue-
boundary value problem in the remaining degrees of
freedom. In general, for inexactly chosen boundary values
and β2, the matter and metric functions may only be
integrated to a finite distance from the origin before the
solution becomes pathological. As such, we cannot use, for
example, gradient descent techniques to tune these param-
eters and instead turn to an iterative shooting method [26].
We expect that each successive mode of solutions to

(B13)–(B18) will develop an additional node in each of the
field variables. Correspondingly, we choose a trial value of
β2 (manually due to the difficulty encountered automating
the process) and set δϕðrÞ ¼ 0. Once the fields have been
initialized, we shoot on δψ IðrÞjr¼0 for δψR and δψ I holding
δϕ fixed until the bosonic fields are well behaved far from
the origin. We then fit a decaying tail to δψR and δψ I , and
shoot on ∂rðδϕÞjr¼0 holding the bosonic fields fixed. This
shooting procedure is repeated several times until approxi-
mate convergence is achieved. Finally, we examine δN∞
and adjust β2, repeating the entire shooting procedure until
a solution is found with δN∞ ≈ 0 to within tolerance
(typically 0.05 of the maximum value of δNðrÞ is suffi-
cient). This process of determining initial data in compac-
tified coordinates x is summarized in Algorithm 1.
Upon achieving the desired tolerance, the approximate

solution is used as an initial guess for a boundary value
problem solver based on the collocation library TWPBVPC
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[30]. If the initial guess is sufficiently close to the true
solution, the solver converges quickly, resulting in a solution
which is accurate to within tolerance (typically 10−12 or
better). By slowly adjusting the central amplitude, ψð0Þ, of
the stationary solution and using the previous solution to the
perturbative equations as an initial guess, we can use the
process of continuation to investigate the development of
the mode throughout a branch of a family. [31].
As discussed in Sec. V, we only perform 2 or 3

evolutions per region to assess dynamical stability. In
contrast, the process of continuation gives a much more
comprehensive view of the mode structure within a region.
By repeating this procedure on every branch and near every
extremal point of M∞ (including discontinuities), we can
achieve an accurate picture of the mode structure of the
family under investigation.
Note also that, due to the presence of asymptotic shells of

matter which are present in some of these solutions,
traditional shooting techniques may fail to adequately
resolve the perturbed boson fields. The inability of double
precision shooting to provide an adequate initial guess to
the TWPBVPC based solver may be resolved, to some
degree, through the use of extended precision integrators or
through the use of our multiprecision shooting method
[26]. Even then, we find that perturbative solutions in the
presence of an asymptotic shell are quite difficult to find
without the aid of continuation.

B. Convergence

As with the dynamical evolutions, we verify the con-
vergence of our perturbative solutions via an independent
residual convergence test. In this case, as in [26], care must
be taken when computing these residuals due to the method
by which TWPBVPC determines solutions. By default,

TWPBVPC attempts to minimize solution error with a
deferred error correction scheme that uses a combination of
high order discretizations and allocation of additional grid
points in the vicinity of poorly resolved features. Although
these properties are invaluable for producing high quality
solutions, they serve to increase the effective resolution and
convergence order of a solution, making independent
residual convergence difficult to verify. Consequently,
Fig. 6 demonstrates the convergence of our collocation
code with deferred error correction disabled.

VII. RESULTS

Section VII A presents the results of our dynamic
simulations and summarizes the regions of stability found
for the families of Table I. Section VII B summarizes the
results of our perturbation theory analysis for families p1

and p2. We derive a more complete picture of the modal
structure for these families and provide important insight
into the stability of other families of initial data. Finally,
Sec. VII C compares the results from dynamical simula-
tions and perturbation theory for family p1, demonstrating
the broad equivalence of the two methods.

A. Dynamical simulations

Using slightly perturbed stationary solutions as initial
data, 2 or 3 long time simulations for each region of each
family in Table I were performed and the growth of
perturbations in N, ΨΨ�, ΦM, a, and α were monitored.
Simulations exhibiting collapse, dispersal or nonstationary

Algorithm 1. Iterated Shooting Procedure.

initialize background fields on the compactified grid x
initialize δϕðxÞ to 0
initialize δψRðxÞ and δψ IðxÞ to 0
while δN∞ ≫ 0 do
choose β2

while solution non-convergent do
hold δϕðxÞ fixed
shoot for δψRðxÞ and δψ IðxÞ
fit tail to δψRðxÞ and δψ IðxÞ
integrate δνðxÞ, δμðxÞ and δN to
asymptotic region

hold δψRðxÞ and δψ I fixed
shoot for δϕðxÞ
fit tail to δϕðxÞ
integrate δνðxÞ, δμðxÞ and δN to
asymptotic region

end while
end while

FIG. 6. Convergence of independent residuals for δλ from
family p1 for a stable mode corresponding to ψð0Þ ¼ 0.030 and
β2 ≈ 3.21 × 10−6. Here we plot the scaled residuals of the metric
function evaluated on grids of 2049, 1025 and 513 points using a
second order finite difference scheme for the independent
residual evaluator. With the scaling given in the figure, overlap
of the curves implies second order convergence.
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remnants were deemed unstable. Conversely, those show-
ing oscillation about the stationary solutions with an
oscillation magnitude set by the size of the initial pertur-
bation were deemed stable. Again, we assume that the
stability properties of all configurations in a given region
are the same but perform a minimal validation of this
assumption by performing at least 2-3 simulations per
region.
In the interest of minimizing errors originating from our

use of a dissipative second order code, these representative
simulations were performed only near the centers of
regions, fairly distant in parameter space from turning
points of the mass and from branch jumps. In the case of
regions with asymptotic shells, we concentrated our sim-
ulation efforts on areas where the d-stars were reasonably
compact. In doing so, it was possible to uniformly excite
modes and ensure that the light-crossing times for the
compact objects were much less than the simulation time.
Figures 7–15 are composite plots showing both the

asymptotic mass, M∞, and maximum compactness, Cmax
as a function of boson star central amplitude for the families
listed in Table I. Regions highlighted in gray are stable under
small radial perturbations while regions outside the gray
shading are unstable. The data points plotted here are drawn
from our calculations of stationary solutions, not the much
more sparsely sampled dynamical simulations. As noted
above, the stability of each region was determined using far
fewer simulations than there are points on the graph.
Special attention should be paid to Fig. 7 which shows

the asymptotic mass, maximum compactness and regions
of stability for the case of the mini-boson star. For mini-
boson stars themselves, it is the region before the first

turning point in the mass that is stable [18,19]. In all d-stars
investigated, the stable region, when it exists, corresponds
to the region immediately before the first turning point on
the final branch (where ψð0Þ assumes its largest values).
Since we have previously shown that this final branch has
no shells of bosonic matter far from the origin [26], we find
that, for all families of d-stars so far investigated, regions of

FIG. 7. Combined asymptotic mass and maximum compact-
ness plot for the family of mini-boson stars (minimally coupled
boson stars in the absence of a global monopole). The region of
stability is denoted in gray. Dashed lines show turning points of
the mass.

FIG. 8. Combined asymptotic mass and maximum compact-
ness plot for family c (Δ2 ¼ 0.36, λG ¼ 1.000, ξB ¼ 0, ξG ¼ 0).
The region of stability is denoted in gray. Dashed lines show
turning points of the mass.

FIG. 9. Combined asymptotic mass and maximum compact-
ness plot for family d (Δ2 ¼ 0.81, λG ¼ 0.010, ξB ¼ 0, ξG ¼ 0).
No region of stability is found. Dashed vertical lines show turning
points of the mass while solid vertical lines denote boundaries of
solution branches. Here and in the next two plots the bottom
panel shows a zoomed-in view of a portion of the data in the
top panel.
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stability are confined to boson-starlike branches without
asymptotic shells.

B. Linear perturbation theory

In performing our perturbation theory analysis, we have
restricted our investigation of d-stars to two minimally
coupled families of solutions designated as p1 and p2 in
Table I. These families were chosen for two primary
reasons. First, they have relatively simple branching

structures (shown in Figs. 14 and 15) and this simplifies
the perturbation analysis. Second, the two families are very
close to one another in parameter space, yet have different
numbers of solution branches. Correspondingly, their
analysis yields clues as to how the modal structure changes
as we vary parameters other than the family parameter,
ψð0Þ. For comparison purposes, we also include the results
of perturbation theory applied to the case of minimally
coupled mini-boson stars.

FIG. 10. Combined asymptotic mass and maximum compact-
ness plot for family e (Δ2 ¼ 0.25, λG ¼ 0.001, ξB ¼ 3, ξG ¼ 3).
The region of stability is shown in gray. Dashed vertical lines
show turning points of the mass while solid vertical lines denote
boundaries of solution branches.

FIG. 11. Combined asymptotic mass and maximum compact-
ness plot for family f (Δ2 ¼ 0.49, λG ¼ 0.010, ξB ¼ 5, ξG ¼ 0).
The region of stability is shown in gray. Dashed vertical lines
show turning points of the mass while solid vertical lines denote
boundaries of solution branches.

FIG. 12. Combined asymptotic mass and maximum compact-
ness plot for family g (Δ2 ¼ 0.09, λG ¼ 0.010, ξB ¼ 0, ξG ¼ 5).
No region of stability is found. Dashed vertical lines show turning
points of the mass while solid vertical lines denote boundaries of
solution branches.

FIG. 13. Combined asymptotic mass and maximum compact-
ness plot for family h (Δ2 ¼ 0.08, λG ¼ 0.10, ξB ¼ −4, ξG ¼ 5).
No region of stability is found. Dashed vertical lines show turning
points of the mass.
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Plots displaying the modal structure for families p1 and
p2 as well as for mini-boson stars are shown in Figs. 16–20,
which plot eigenvalues, β2, as a function of the boson star
central amplitude, ψð0Þ. Stable regions have only modes
with β2 > 0 while unstable regions have modes both with
β2 > 0 and β2 < 0. Note that the complete spectral struc-
tures are not shown. Rather, only the first few modes (the
least stable) are displayed in each case.

In Figs. 17–20 we follow the convention of the previous
sections and display the locations of branch transitions
(corresponding to discontinuities in the mass and Noether
charge) as black vertical lines while extrema of the mass are
given as black dashed vertical lines. We observe that
stability transitions within a branch occur at these extremal
points as predicted by catastrophe theory [19,29].
Near the branch transitions, the eigenvalues of many

modes appear to become degenerate, and neither our
collocation or evolutionary codes are capable of investigat-
ing these regions in much detail. What is obvious, however,
is that there is a well resolved unstable mode which persists
across all but the final branch of families p1 and p2. The
presence of this unstable mode indicates that stable
solutions exist only on the final branch, in perfect agree-
ment with our dynamical simulations.
The lack of resolution resulting from the eigenvalue

degeneracies in the vicinity of the branch transitions
somewhat complicates the interpretation. We thus present
a heuristic argument to build up a generic picture of the
mode transitions. Recall from [26] that each branch
transition before the mass turning point corresponds to
the formation of a bosonic shell at infinity. This shell then
migrates inward as the family parameter, ψð0Þ, is increased.
Each branch transition after the mass extrema then corre-
sponds to the disappearance of a bosonic shell at infinity
after it migrates outward.

FIG. 14. Combined asymptotic mass and maximum compact-
ness plot for family p1 (Δ2 ¼ 0.09, λG ¼ 0.04, ξB ¼ 0, ξG ¼ 0).
The region of stability is shown in gray. Dashed vertical lines
show turning points of the mass while solid vertical lines denote
boundaries of solution branches.

FIG. 15. Combined asymptotic mass and maximum compact-
ness plot for family p2 (Δ2 ¼ 0.25, λG ¼ 0.04, ξB ¼ 0, ξG ¼ 0).
The region of stability is shown in gray. Dashed vertical lines
show turning points of the mass while solid vertical lines denote
boundaries of solution branches.

FIG. 16. Eigenvalues for the family of mini-boson stars. The
modal structure shown here contrasts with behavior presented in
Figs. 17–19 for minimally coupled d-stars. Note that at each
turning point of the mass (vertical black dashed lines), a stable
mode transitions to unstable. Here, and in subsequent plots,
eigenvalues, β2, are shown as functions of sinh ðλβ2Þ to better
display the overall modal structure: the magnitude of β2 varies
greatly so λ is chosen on a plot-by-plot basis to more clearly show
the overall behavior of the eigenvalues.
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FIG. 18. A more detailed view of the central region of Fig. 17
for family p1. Interestingly, the central branch is composed of
four regions (rather than two), with the first and last correspond-
ing to shells very far from the origin. Unfortunately, the
eigenvalue degeneracy prevents us from investigating these
regions in detail, but it is regardless evident that the unstable
modes persist through these regions (with the potential exception
of the very last region where we were unable to resolve any
perturbations).

FIG. 19. Eigenvalues of family p2 as a function of the boson
star central amplitude, ψð0Þ. The additional two branch tran-
sitions have split the second branch of family p1 into three
distinct regions (see Fig. 17). Note that the region after the final
branch transition is qualitatively very similar to that of mini-
boson stars as shown in Fig. 16. As for family p1, it can be seen
that the central branches exhibit turning points in the mass
corresponding to shells very far from the origin.

FIG. 20. Expanded view of Fig. 19 showcasing details that
were poorly resolved in the original plot. Our simulation data is
consistent with the eigenvalues of the poorly resolved modes
approaching 0. As for family p1, it can be seen that the central
branches exhibit turning points in the mass corresponding to
shells very far from the origin. Unfortunately, the extreme length
scales in these solutions, coupled with the eigenvalue degeneracy
of the stable modes, prevents us from examining these regions in
more detail.

FIG. 17. Eigenvalues of family p1 as a function of the boson
star central amplitude, ψð0Þ. Note the apparent discontinuities in
the eigenvalues near branch transitions. In these regions, the
eigenvalues become near-degenerate and our solutions are no
longer convergent. Our observations, however, are consistent
with the stable eigenvalues approaching β2 ¼ 0 at the branch
transitions. Note also that there are an infinite number of
stable modes in each region; here we have plotted only the first
three.
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In the case of families p1 and p2, the first and final
transitions can be identified with the appearance and
disappearance of the first shell of matter. For family p2,
the second and third transitions can likewise be identified
with the appearance and disappearance of a second shell of
matter. As noted above, family p1 is very close to
developing additional branch transitions similarly to family
p2. For a marginally larger value of Δ2, family p1 would
have a degenerate transition corresponding to a shell of
matter which appears suddenly at infinity and then immedi-
ately vanishes as the family parameter, ψð0Þ, is increased.
We can, in fact, see evidence of this behavior in Fig. 17 and
idealized in Fig. 21 where the eigenvalues of the stable
modes dip down toward 0 near the mass extrema.
This degenerate transition would split the transitioning

mode into a stable and unstable region as shown in Fig. 22.
As Δ2 is increased further, the degeneracy is resolved, and
we gain a new unstable mode corresponding to the new
shell of matter as shown in Fig. 23. Given that there is still a
mass extrema between the branch transitions, we will
additionally have a new transitioning mode which changes
from stable to unstable in accordance to catastrophe theory
[19,29]. The final picture is then a series of stable
eigenvalues between each branch transition joined via
unstable modes in the manner depicted in Fig. 23.

C. Comparison of methods

Using the method of Sec. VII A, we extract the eigen-
values of the most unstable modes of the dynamical
simulations for family p1 and plot them against the results

predicted by perturbation theory in the previous section. In
Fig. 24, eigenvalues from individual dynamical simulations
are shown as blue circles while the eigenvalues from
perturbation theory are shown in red.
Examining Fig. 24, we can see that the perturbation

theory and the dynamical simulation are in agreement for
the majority of the parameter space. An interesting issue,
however, arises just before the final branch. In this region,
the dynamical simulations suggest the existence of a stable

FIG. 21. Idealized plot of eigenvalues highlighting the under-
lying structure of family p1. Here we plot stable modes in black,
unstable modes in blue and modes which undergo a stability
transition within a branch in orange. Note in particular how in a
family “close” to developing an additional branch transition, the
eigenvalues “near” where the transition would develop become
increasingly degenerate.

FIG. 22. Idealized plot of eigenvalues in the case of a
degenerate branch transition. The transitioning mode has been
split into a stable and unstable branch. As before, we plot stable
modes in black, unstable modes in blue and modes which
undergo a stability transition within a branch in orange.

FIG. 23. Idealized plot of eigenvalues highlighting the under-
lying structure of family p2. As Δ2 is increased further relative to
p1, the degeneracy of Fig. 22 is resolved, and we gain a new
branch of stable and unstable modes corresponding to the new
shell of matter.
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oscillatory mode and the absence of the unstable mode
found through perturbation theory.
This discrepancy is likely the result of two confounding

factors. The first is that, in the region under consideration,
the growth rate of the modes is extremely small
(jβ2j≲ 1 × 10−8) so that the presence of an excited oscil-
latory mode could easily overwhelm the signal. If we were
to integrate these solutions for a sufficiently long period of
time, it seems likely that it would be possible to resolve the
unstable eigenvalues. Unfortunately, the limited nature of
our second order finite-difference based dynamical code
makes maintaining temporal coherence for sufficiently long
periods of time impractical. The second factor is that the
oscillatory modes observed in this region are not purely
oscillatory and instead decay slightly with time. As shown
in Appendix B, however, the Hermitian character of this
system requires that perturbations are either purely oscil-
latory or exponential in character. It seems likely that the
oscillatory signals in these regions correspond to perturba-
tions qualitatively close to those on the final branch which
only nearly satisfy (B13)–(B18).
In addition to comparing the eigenvalues β2, it is possible

to compare the profiles of the perturbations directly. Recall
that for perturbations near the stationary solutions [for a
given stationary field fðt; rÞ] we have

fðt; rÞ ¼ f0ðrÞ þ δfðrÞe−βt; ð51Þ
∂tf ∝ δf: ð52Þ

As such, we may find an approximation to the Noether
charge perturbation by taking the time derivative of the
Noether charge. Doing so for families p1 and p2, we find
quite good agreement even for solutions with fairly distant
bosonic shells.

VIII. SUMMARY

We have addressed the question of boson d-star stability
and suitability as black hole mimickers proposed by
Marunovic and Murkovic in [5]. Through simulations of
a diverse families of initial data, we have demonstrated that
regions of stability, where they exist, are confined to the
boson-starlike final branch of a given family in both the
minimally coupled and nonminimally coupled case.
We have verified this result in the case of minimally

coupled families through a fairly comprehensive mode
analysis of two families of initial data (p1 and p2) which are
close to one another in phase space. This analysis supports
the results of our dynamical simulations with both pertur-
bation theory and direct simulation being in broad agree-
ment. The only exception to this is in regions where the
magnitude of the unstable eigenvalues are small. Our
evolutionary code is ill suited to investigate these regions.
We observed how the number of branches and asymp-

totic shells change as the solid angle deficit, Δ2, is changed
between these two families. By analysing the differences in
mode structure between families p1 and p2 we propose a
mechanism by which the mode structure changes in
response to the appearance or disappearance of an asymp-
totic shell of bosonic matter.
Overall, our results are consistent with the interpretation

that the highly compact solutions discovered in [5] are
unstable. As a result, these solutions are likely poor
candidates for astrophysically relevant compact objects.
Finally, we observe that the novel solutions with shells of
bosonic matter far from the origin discovered in [26] are
likewise unstable.
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APPENDIX A: EQUATIONS OF MOTION

We start with the 3þ1 equations in polar-areal coor-
dinates and take Tμν to be the combination Tμν ¼ TB

μν þ
TG
μν as defined in (4)–(5). In this gauge, the evolution of the

metric function, a, is governed by

∂ta ¼ Ttrar
2

; ðA1Þ

the Hamiltonian constraint is

FIG. 24. Mass and mode structure for family p1. The asymp-
totic mass and eigenvalues measured via perturbation theory are
shown in black and red as in Fig. 17. Eigenvalues measured
directly from dynamical simulation are shown as blue diamonds.
In the second branch, the blue diamonds indicating the existence
of an oscillatory mode with β2 > 0 do not correspond to any
perturbative mode that we were able to identify.
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2r∂ra
a

¼ 1 − a2 þ a2r2Ttt

α2
; ðA2Þ

and the slicing condition takes the form

2r∂rα¼ 2rα∂ra
a

þ
�
αTrr −

a2Ttt

α

�
r2 þ 2αða2 − 1Þ: ðA3Þ

Note that (A1) is redundant but provides a useful nontrivial
consistency test for the system. In both the evolutionary and
stationary cases, the Hamiltonian constraint and polar-areal
slicing condition may be arranged to give explicit expres-
sions for ∂ra and ∂rα, respectively. In this form, the
Hamiltonian constraint is completely independent of α,
and the constraints may be independently integrated.
Moreover, since the constraints are first order in r, no
boundary value solver is needed.
To simplify the resulting equations, we define the

following quantities:

ζ ¼ 1

1þ ξBϕ
2
R þ ξBϕ

2
I þ ξGΔ2ϕ2

M
; ðA4Þ

Λr ¼ ðϕRΦR þ ϕIΦIÞξB þ ξGΔ2ϕMΦM; ðA5Þ

Λt ¼ ðϕRΠR þ ϕIΠIÞξB þ ξGΔ2ϕMΠM; ðA6Þ

δ ¼ 2þ 2Λrrζ: ðA7Þ

Upon substitution of (A4)–(A7) into (A1)–(A3), we find
the following equations for a and α:

∂ta¼
2ξGΔ2ζrαðϕM∂rΠMþΠMΦMÞ

δ

þ2ξBζrαðΠRΦRþΠIΦIþϕR∂rΠRþϕI∂rΠIÞ
δ

−
2ζrαðξGΔ2ϕMΠMþξBðϕRΠRþϕIΠIÞÞ∂ra

δa

þζrαðΠRΦRþΠIΦIþΔ2ΠMΦMþΠPΦPÞ
δ

; ðA8Þ

4∂ra
ra3

¼ −
2

r2
þ 2

r2a2
−
�
−2V −

2Δ2ϕM
2

r2

þ 1

a2

�
−ðΦ2

R þΦ2
I þ Π2

R þ Π2
I þΦ2

P þ Π2
P

þΔ2½Φ2
M þ Π2

M�Þ − 4ðϕR∂rΦR þ ϕI∂rΦI

þΦ2
R þΦ2

I ÞξB − 4ðϕM∂rΦM þΦ2
MÞΔ2ξG

−
8Λr

r
þ 4Λt∂ta

α
þ 4Λr∂ra

a3

��
ζ; ðA9Þ

∂rα

a2r
¼ α∂ra

a3r
þ α

r2
−

α

a2r2
þ
�
−αV −

αΔ2ϕ2
M

r2

þ ðϕR∂tΠR þ ϕI∂tΠIÞξB þ Δ2ξGϕM∂tΠM

a

þ αξBð−ϕR∂rΦR þ Π2
R −Φ2

RÞ
a2

þ αξBð−ϕI∂rΦI þ Π2
I −Φ2

I Þ
a2

þ αξGΔ2ð−ϕM∂rΦM þ Π2
M −Φ2

MÞ
a2

−
4Λrα

a2r
−
Λr

a
∂r

�
α

a

��
ζ: ðA10Þ

APPENDIX B: LINEAR PERTURBATION
THEORY EQUATIONS

Following the decomposition of Sec. VI, we write the
boson star field, Ψ, as

Ψ ¼ e−iωtðψR þ iψ IÞ ¼ ϕR þ iϕI; ðB1Þ
ϕRðr; tÞ ¼ cos ðωtÞψRðr; tÞ þ sin ðωtÞψ Iðr; tÞ; ðB2Þ
ϕIðr; tÞ ¼ cos ðωtÞψ Iðr; tÞ − sin ðωtÞψRðr; tÞ; ðB3Þ

and perturb about the stationary solutions μ0ðrÞ, ν0ðrÞ,
ψ0ðrÞ and ϕ0ðrÞ:

μðr; tÞ ¼ μ0ðrÞ þ ϵδμðrÞeiβt; ðB4Þ
νðr; tÞ ¼ ν0ðrÞ þ ϵδνðrÞeiβt; ðB5Þ

ψRðr; tÞ ¼ ψ0ðrÞ þ ϵδψRðrÞeiβt; ðB6Þ

ψ Iðr; tÞ ¼
ϵ

iβ
δψ IðrÞeiβt; ðB7Þ

ϕMðr; tÞ ¼ ϕ0ðrÞ þ ϵδϕðrÞeiβt: ðB8Þ

Expanding the equations of motion to first order in ϵ, we
find a complicated set of equations for linearized non-
minimally coupled perturbations. To reduce the complexity
of these equations, we restrict ourselves to the minimally
coupled case (ξB ¼ ξG ¼ 0) whereby the stationary sol-
utions satisfy:

∂rμ0 ¼
��

λBψ
4
0

4
þ
�
m2

2
þ ω2

2eν0

�
ψ2
0

þ λGΔ4ðϕ2
0 − 1Þ2
4

�
eμ0 þ Δ2ð∂rϕ0Þ2

2

þ ð∂rψ0Þ2
2

�
rþ 1þ ðΔ2ϕ2

0 − 1Þeμ0
r

; ðB9Þ
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∂rν0 ¼
��

−λBψ4
0

4
−
�
m2

2
−

ω2

2eν0

�
ψ2
0

−
λGΔ4ðϕ2

0 − 1Þ2
4

�
eμ0 þ Δ2ð∂rϕ0Þ2

2

þ ð∂rψ0Þ2
2

�
r −

1þ ðΔ2ϕ2
0 − 1Þeμ0
r

; ðB10Þ

∂
2
rψ0 ¼

�
λBψ

3
0 þ

�
m2 −

ω2

eν0

�
ψ0

�
eμ0

þ
�
∂rμ0
2

−
∂rν0
2

−
2

r

�
∂rψ0; ðB11Þ

∂
2
rϕ0 ¼ λGΔ2ðϕ3

0 − ϕ0Þeμ0 þ
2ϕ0eμ0

r2

þ
�
∂rμ0
2

−
∂rν0
2

−
2

r

�
∂rϕ0; ðB12Þ

and the equations for the perturbed quantities reduce to the
following:

∂rδN ¼ r2e
1
2
ðμ0−ν0Þ

�ðδμ − δνÞωψ2
0

4
þ
�
ωδψR −

δψ I

2

�
ψ0

�
:

ðB13Þ

∂rδμ ¼
��

λGΔ4ðϕ3
0 − ϕ0Þ þ

2Δ2ϕ0

r2

�
δϕ

þ
�
λBψ

4
0

4
þ
�
m2

2
þ ω2

2eν0

�
ψ2
0 þ

Δ2ϕ2
0 − 1

r2

þ λGΔ4ðϕ2
0 − 1Þ2
4

�
δμþ λBψ

3
0δψR −

ω2ψ2
0δν

2eν0

þ
��

m2 þ ω2

eν0

�
δψR −

ωδψ I

eν0

�
ψ0

�
eμ0r

þ rΔ2ð∂rϕ0Þð∂rδϕÞ þ rð∂rψ0Þð∂rδψRÞ; ðB14Þ

∂rδν ¼
��

2λGΔ4ðϕ0 − ϕ3
0Þ −

4Δ2ϕ0

r2

�
δϕ

−
1

2

�
λGΔ4ðϕ2

0 − 1Þ2 þ 4ðΔ2ϕ2
0 − 1Þ

r2

þ2m2ψ2
0 þ λBψ

4
0

�
δμ − 2ðλBψ3

0

þm2ψ0ÞδψR

�
eμ0rþ ∂rδμ; ðB15Þ

∂
2
rδψR ¼ 1

2

�
∂rμ0 − ∂rν0 −

4

r

�
∂rδψR

þ ð∂rδμ − ∂rδνÞ∂rψ0

2
þ
�ðδν − δμÞω2ψ0

eν0

þðm2 þ 3λBψ
2
0ÞδψR þ ðm2ψ0 þ λBψ

3
0Þδμ

þ 2ωδψ I − ðω2 þ β2ÞδψR

eν0

�
eμ0 ; ðB16Þ

∂
2
rδψ I ¼

1

2

�
∂rμ0 − ∂rν0 −

4

r

�
∂rδψ I

þ
��

m2 þ λBψ
2
0 −

ðω2 þ β2Þ
eν0

�
δψ I

þωβ2ðδμ − δνÞψ0

2eν0
þ 2ωβ2δψR

eν0

�
eμ0 ; ðB17Þ

∂
2
rδϕ ¼ 1

2

�
∂rμ0 − ∂rν0 −

4

r

�
∂rδϕ

þ
��

λGΔ2ð3ϕ2
0 − 1Þ þ 2

r2

�
δϕ

þ
�
λGΔ2ðϕ3

0 − ϕ0Þ þ
2ϕ0

r2

�
δμ

−
β2δϕ

eν0

�
eμ0 þ ð∂rδμ − ∂rδνÞ∂rϕ0

2
; ðB18Þ

Given that the deviations from the stationary solutions
given by (B13)–(B18) involve perturbations of three
dynamic fields (with the metric perturbations having no
dynamic freedom of their own), it is not immediately
obvious that the perturbations should be purely exponential
or oscillatory in time. For example, one could imagine
perturbations involving under or over damped oscillations
corresponding to complex β2. Here, we follow the work of
Jetzer [32], and demonstrate that a set of equations
equivalent to (B13)–(B18) may be written in the following
form,

Lijfj ¼ −β2eμ0−ν0Gijfj; ðB19Þ

where Lij is a Hermitian differential operator, fj is the
solution vector and Gij is a diagonal matrix. It then follows
that the eigenvalues of the above pulsation equation (for β2)
are purely real. As before we expand our fields about the
stationary solutions, but do not yet enforce exponential
time dependence:

μðt; rÞ ¼ μ0ðrÞ þ ϵδμðt; rÞ; ðB20Þ
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νðt; rÞ ¼ ν0ðrÞ þ ϵδνðt; rÞ; ðB21Þ

ψRðt; rÞ ¼ ψ0ðrÞ þ ϵδψRðt; rÞ; ðB22Þ

ψ Iðt; rÞ ¼ ϵψ0ðrÞδψ Iðt; rÞ; ðB23Þ

ϕðt; rÞ ¼ ϕ0ðrÞ þ ϵδϕðt; rÞ: ðB24Þ

Substituting these expressions into the equations of
motion for the fields and metric and truncating to linear
order in the perturbation, we find a coupled system of
perturbation equations. In particular, the equation Grt ¼
Trt produces the following simple expression for δμ:

∂tδμ ¼ rðΔ2ð∂tδϕÞð∂rϕ0Þ − ð∂rδψ IÞψ2
0ω

þð∂rψ0Þð∂tψRÞÞ: ðB25Þ
With the substitution

δψ I ¼ ∂tδψ̃ I; ðB26Þ
(B25) becomes a total derivative with respect to time and
may be integrated to give,

δμ ¼ rðΔ2ðδϕÞð∂rϕ0Þ þ ðδψRÞð∂rψ0Þ
−ðωψ2

0Þ∂rδψ̃ IÞ:
ðB27Þ

We may also obtain an expression for δν by solving the
perturbed Gtt ¼ Ttt equation for δν and substituting the
relevant expressions for δψ I, δμ, ∂2rψ0, ∂2rϕ0, ∂rμ0, and ∂rν0:

δν ¼ −
reν0λGΔ4ðϕ2

0 − 1Þ2∂rδψ̃ I

2ω
−
2∂2t δψ̃ I

ω

þ Δ2

�
δϕð∂rϕ0Þr −

2ϕ2
0e

ν0ð∂rδψ̃ IÞ
rω

�

þ eν0
�

2

rω
−
ðλBψ4

0 þ 2m2ψ2
0Þr

2ω

�
∂rδψ̃ I

− rωψ2
0ð∂rδψ̃ IÞ þ

�
r∂rψ0 þ

4

ψ0

�
δψR

þ 2

��
2∂rψ0

ψ0

þ 1

r

�
∂rδψ̃ I þ ∂

2
rδψ̃ I

�
eν0

ωeμ0
: ðB28Þ

With the perturbed metric functions now defined solely
in terms of the stationary solution and perturbed matter
fields, we find expressions for ∂

2
rδψR, ∂

3
rδψ̃ I and ∂

2
rδϕ

through substitution. At this stage, the perturbation equa-
tions consist of three second order expression in fj ¼
ðδψR; ∂rδψ̃ I; δϕÞ with all time derivatives appearing as
second order expressions. Substituting:

δψ̃ Iðr; tÞ ¼ δψ̃ IðrÞeiβt; ðB29Þ

δψRðr; tÞ ¼ δψRðrÞeiβt; ðB30Þ

δϕðr; tÞ ¼ δϕðrÞeiβt; ðB31Þ

we may write our coupled perturbation expressions as,

L̃ijfj ¼ −β2eμ0−ν0fj; ðB32Þ

where L̃ij is a second order, non-Hermitian operator of the
following form:

2
6664

∂
2

∂r2 þ a1 ∂

∂r þ b1 c1 ∂

∂r þ d1 e1

c2 ∂

∂r þ d2 ∂
2

∂r2 þ a2 ∂

∂r þ b2 h2

e3 h3
∂
2

∂r2 þ a3
∂

∂r þ b3

3
7775:

ðB33Þ

Here, all subscripted quantities should be understood to be
functions of r. The goal is now to find a diagonal matrix,Mij,
such that Lij ¼ MikL̃kj is a Hermitian operator of the form

2
6664

∂

∂rM1
∂

∂r þ B1 − ∂

∂r C1 þD1 E1

C1
∂

∂r þD1
∂

∂rM2
∂

∂r þ B2 H1

E1 H1
∂

∂rM3
∂

∂r þ B3

3
7775; ðB34Þ

and

Mij ¼

2
64
M1 0 0

0 M2 0

0 0 M3

3
75: ðB35Þ

Fortunately, this turns out to be a well-defined problem and
the Mi’s and C1 take the form:

M1 ¼ r2e
1
2
ðν0−μ0Þ; ðB36Þ

M2 ¼ r2e
3
2
ðν0−μ0Þψ2

0; ðB37Þ
M3 ¼ r2Δ2e

1
2
ðν0−μ0Þ; ðB38Þ

C1 ¼ 2ωr2ψ0e
1
2
ðν0−μ0Þ; ðB39Þ

while the remaining terms are sufficiently cumbersome that
it is not particularly enlightening to write them out
explicitly. One could, of course, use the equations just
derived to solve the perturbation problem rather than
(B13)–(B18). Unfortunately, as is often the case with such
matters, by the time we verified that the equations permit-
ted only real eigenvalues, the previous formalism had
already been adopted and investigated. Due to the signifi-
cant reduction in complexity these equations represent, we
would highly recommend future work to follow this
approach rather than the more direct method we adopted.
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