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A new form of quasiclassical space-time dynamics for constrained systems reveals how quantum effects
can be derived systematically from canonical quantization of gravitational systems. These quasiclassical
methods lead to additional fields, representing quantum fluctuations and higher moments, that are coupled
to the classical metric components. The new fields describe nonadiabatic quantum dynamics and can be
interpreted as implicit formulations of nonlocal quantum corrections in a field theory. This field-theory
aspect is studied here for the first time, applied to a gravitational system for which a tractable model is
constructed. Static solutions for the relevant fields can be obtained in almost closed form. They reveal new
properties of potential near-horizon and asymptotic effects in canonical quantum gravity and demonstrate
the overall consistency of the formalism.
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I. INTRODUCTION

For some time now, black holes have presented a popular
testing ground for possible implications of quantum grav-
ity. Examples include quantum corrections to Newton’s
law, modified horizon dynamics, implications for Hawking
radiation, tools to address the information loss problem,
potential resolutions of the central singularity, or spec-
ulations about the postsingular life of a black hole. A large
variety of methods have been applied, ranging from
effective field theory [1–3] to proposed nonperturbative
ingredients of approaches such as string theory or loop
quantum gravity.
Here, we present new results using a formulation situated

on the middle ground between standard effective field theory
on one hand and nonperturbative effects on the other: We
extend effective field theory by applying nonadiabatic
quantum dynamics, foregoing the derivative expansion
of quantum corrections that is implicitly assumed when
they are expressed in higher-curvature form. Our formula-
tion will therefore be sensitive to new (and possibly

nonlocal) corrections, while maintaining crucial consistency
conditions for constraint equations and an application to
space-time physics. The importance of such consistency,
related to the question of whether general covariance can be
maintained by quantum corrections, has recently been high-
lighted by the finding that most black-hole models or other
space-time descriptions proposed in the field of loop quan-
tum gravity violate covariance [4–6]. (A more careful
approach that aims to maintain covariance as much as
possible has been studied in [7–16], using a variety of
models.) One of these no-go theorems that ruled out
covariance for certain modifications encountered in models
of loop quantum gravity, derived in [5], relies on the local
nature of current models. The no-go theorem could therefore
be evaded by constructing suitable nonlocal quantum cor-
rections, possibly leading to consistent implementations of
modifications in covariant models. The present paper can be
considered a first step in this direction, studying nonlocal
quantum corrections in spherically symmetric canonical
quantum gravity. We will formalize our consistency con-
ditions inmore detail whenwe introduce relevant ingredients
of space-time physics in Sec. III.
Our formulation is based on canonical methods of

nonadiabatic quantum dynamics, used for some time in
various fields such as quantum chaos or quantum chemistry
[17–20] mainly for systems with finitely many classical
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degrees of freedom. Related methods [21–23] have been
applied recently to spherically symmetric models of col-
lapsing shells [24]. Our task will be to extend these
methods to quantum field theories, and to incorporate
access to space-time structures in order to implement
consistency conditions required for general covariance. In
particular, wewill consider a generalization of quasiclassical
methods to constrained systems, applied to the Hamiltonian
and diffeomorphism constraints of canonical general rela-
tivity. By requiring that quantum-corrected constraints obey
suitable Poisson brackets, known from hypersurface defor-
mations [25–28], we will show that such constraints can be
imposed consistently and solved for modified metric com-
ponents and their quantum fluctuations.
In order to reduce the complexity of these tasks, we will

work with spherically symmetric models and analyze, for
now, only static solutions. In a field theory, even static
solutions are sensitive to nonadiabatic methods because
they may vary significantly in a spatial direction. An
implementation of nonadiabatic quantum dynamics with
methods from other fields is therefore of interest. In this
way, we will be able to explore new quantum effects in a
tractable manner.
We will review canonical effective methods, which

provide the mathematical basis for nonadiabatic, quasi-
classical dynamics in Sec. II. We will first summarize the
well-developed version of these methods applied to the
quantum mechanics of a single degree of freedom, as well
as an extension to constrained systems. Section III is the
central part of our paper, in which we generalize quasi-
classical methods to the field theory given by spherically
symmetric gravity. We will describe the form of effective
constraints encountered in this system, and derive the
equations to be solved for static solutions with leading
quasiclassical corrections. Although multiple integrations
will be required, interesting information about these sol-
utions can be obtained in closed form, in particular
regarding the near-horizon and the asymptotic behaviors.
We will discuss the self-consistency of our solutions from
the perspective of an intuitively expected behavior of
quantum fluctuations, demonstrating that they are smaller
in the asymptotic regime.

II. CANONICAL EFFECTIVE THEORIES

Canonical, nonadiabatic methods of quantum dynamics
provide a quasiclassical formulation in which the classical
phase space, say ðq; pÞ, is extended by a certain number of
quantum degrees of freedom, depending on the order in an
expansion by ℏ. To leading order, the classical variables q
and p are combined with a second canonical pair, ðs; psÞ
where s ¼ Δq, such that a classical potential VðqÞ is turned
into a specific effective potential Veffðq; sÞ. The derivation
of this effective potential (and the physical meaning of the
momentum ps) requires making use of methods of Poisson
geometry.

A. Effective Hamiltonians

First, if the classical system is described by a
Hamiltonian

H ¼ p2

2m
þ VðqÞ; ð1Þ

one can define an effective Hamiltonian as the expectation
value Heff ¼ hĤi of the corresponding Hamilton operator,
taken in an arbitrary state. The effective Hamiltonian is
therefore a function on the state space of the system. A
systematic semiclassical description parameterizes suitable
states by their expectation values of basic operators,
q ¼ hq̂i and p ¼ hp̂i, as well as a series of moments such
as ΔðqnÞ ¼ hðq̂ − hq̂iÞni. Taking into account ordering
choices, we follow [29,30] and define a specific set of
moments of a state by

ΔðqnpmÞ ¼ hðq̂ − hq̂iÞnðp̂ − hp̂iÞmisymm ð2Þ

in completely symmetric (or Weyl) ordering. The moment
order, nþm, corresponds to the order in a semiclassical
expansion, given by ℏðnþmÞ=2.
Moments, together with the basic expectation values,

form a phase space equipped with a Poisson bracket that is
obtained by extending the definition

fhÂi; hB̂ig ¼ h½Â; B̂�i
iℏ

ð3Þ

using linearity and the Leibniz rule. With this bracket, the
effective Hamiltonian Heff ¼ hĤi indeed generates the
correct Hamiltonian dynamics: The equation

fhÂi; Heffg ¼ h½Â; Ĥ�i
iℏ

¼ dhÂi
dt

ð4Þ

is equivalent to quantum evolution of generic expectation
values implied by the Schrödinger equation. At fixed order in
ℏ, the resulting Poisson manifold is, in general, not sym-
plectic. That is, it is described by a family of symplectic
leaves, on which certain Casimir functions take constant
values. A Casimir function has vanishing Poisson brackets
with any other function on the same Poisson manifold. It
therefore implies a degeneracy of the Poisson tensor which
cannot be inverted to obtain a symplectic form.The dynamics
are nevertheless determined uniquely because Hamilton’s
equations, used inwhat follows for evolution aswell as gauge
transformations, only require a Poisson bracket.
The effective Hamiltonian Heff ¼ hĤi used in (4) can be

interpreted as a function of the moments obtained from the
state that appears in the expectationvalue. It can be computed
explicitly to orderN=2 in ℏ, for any integerN, by applying a
Taylor expansion to hĤi around any fixed pair of basic
expectation values:
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Heff ¼ hHðq̂; p̂Þi ¼ hHðqþ ðq̂ − qÞ; pþ ðp̂ − pÞi

¼ Hðq; pÞ þ
XN

nþm¼2

1

n!m!

∂
nþmHðq; pÞ
∂qn∂pm ΔðqnpmÞ: ð5Þ

(Here,we assume that theHamilton operator isWeyl ordered.
For a Hamiltonian polynomial in q and p, the series always
truncates at a finite order. It merely rewrites bare moments
hq̂np̂mi in terms of central moments ΔðqnpmÞ. These are
centered around basic expectation values, according to (2).
For nonpolynomial Hamiltonians, the series is in general
asymptotic.)
Written as a phase-space function, the Hamiltonian (5)

generates equations of motion. This is accomplished by
coupling basic expectation values and moments, such as
hq̂i and hp̂i, by applying Hamilton’s equations with the
Poisson bracket (4). However, while it can easily be seen
that fhq̂i; hp̂ig ¼ 1 is of canonical form, the moments are
not canonical variables. For instance, fΔðq2Þ;Δðp2Þg ¼
4ΔðqpÞ. More generally, second-order moments of M
classical degrees of freedom have brackets equivalent to
the Lie algebra spð2M;RÞ [31,32], while higher-order
moments have brackets quadratic in moments [29,33].
It is therefore convenient to apply a transformation from

moments to canonical coordinates. Such a transformation
always exists locally, according to the Darboux theorem
[34] or its extension to Poisson manifolds [35]. To second
order for a single classical degree of freedom, canonical
coordinates for the moments Δðq2Þ, ΔðqpÞ and Δðp2Þ are
given by ðs; psÞ such that [17,18,20]

Δðq2Þ ¼ s2; ΔðqpÞ ¼ sps; Δðp2Þ ¼ p2
s þ

U
s2

ð6Þ

with a Casimir function U, restricted by Heisenberg’s
uncertainty relation to obey the inequality U ≥ ℏ2=4. As
a Casimir function, U has vanishing Poisson brackets with
any other phase-space function that depends only on basic
expectation values and second-order moments. In particu-
lar, its Poisson bracket with the Hamiltonian vanishes in a
second-order truncation, which means that U is conserved
to this order. In quantum mechanics, the phase-space
function U is reduced to a constant on any given solution
which determines how close the evolving state is to
saturating the uncertainty relation. One of the more
technical aims of the present paper will be to explore
the role of U in a field theory, where it may be a function of
spatial coordinates.
Inserting the canonical form (6) of moments in the

expansion (5) for N ¼ 2, assuming a classical-mechanics
Hamiltonian with generic potential VðqÞ, we obtain

Heff ¼
p2

2m
þ p2

s

2m
þ U
2ms2

þ VðqÞ þ 1

2
V 00ðqÞs2: ð7Þ

The last three terms together form the effective potential

Veffðq; sÞ ¼
U

2ms2
þ VðqÞ þ 1

2
V 00ðqÞs2: ð8Þ

The independent quantum degree of freedom s describes
quantum corrections by two terms in the effective potential:
The first term, U=ð2ms2Þ, originates in the kinetic energy
or momentum fluctuations. In the effective picture, its
U=s2-form (where U is strictly positive) prevents position
fluctuations s from reaching zero. The other term,
1
2
V 00ðqÞs2, may be positive or negative depending on the

classical potential. It is positive around local minima, where
it raises the ground-state energy by a term analogous to
zero-point fluctuations. The term is negative around local
maxima, which would be relevant in quasiclassical descrip-
tions of tunneling phenomena.
The description is nonadiabatic because no assumption

has been made about the rate of change of s compared with
q. If, by contrast, one assumes that s changes slowly and
merely tracks its q-dependent minimum

sminðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðxÞ

mV 00ðqÞ
4

s
ð9Þ

of a ground state in the potential (8), one obtains a
q-dependent effective potential

V low−energyðqÞ ¼ VðqÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðxÞV 00ðqÞ

m

r
: ð10Þ

This quasiclassical result equals the standard low-energy
effective potential for the minimum value U ¼ ℏ2=4
[29,36]. For the harmonic oscillator, for instance, V 00ðqÞ ¼
mω2 implies the correct zero-point energy 1

2
ℏω. A higher-

order adiabatic approximation implies higher-derivative
corrections to the classical equations of motion [37]. An
adiabatic approximation to all orders would imply a non-
local theory with time derivatives of arbitrarily high orders.
Such a nonlocal theory, which is often complicated because
it cannot be analyzed by solving local partial differential
equations, can more easily be studied by keeping s as an
independent field in a nonadiabatic quasiclassical formu-
lation. (From the point of view of the nonlocal theory, s
would be considered an auxiliary field that makes it
possible to write nonlocal equations in local form. Here,
however, s has physical meaning; s represents quantum
fluctuations in one of the classical degrees of freedom. The
local formulation is therefore more physical than an
alternative nonlocal theory obtained by eliminating s by
partially solving equations for it in an adiabatic expansion.)
Along similar lines, a canonical moment description of

field theories has been performed in [38], where the analog
of (10) is the Coleman–Weinberg potential [39]. Here, we
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apply canonical moment methods to a field theory moti-
vated by spherically symmetric gravitational systems. This
formluation retains independent quantum degrees of free-
dom, such as a field version of s. We therefore derive
nonadiabatic or nonlocal effects of quantum gravity.

B. Effective constraints

Relativistic systems are subject to constraints, instead of
Hamiltonian evolution with respect to an absolute time. The
formalism of effective and quasiclassical methods therefore
has to be generalized to constrained systems, as done in
[40–42]. The main observation is that the presence of new
quantum degrees of freedom, such as Δðq2Þ, implies
additional constraints compared with the classical theory.
An effective constraint,

Ceff ¼ hĈi ð11Þ

for a constraint operator Ĉ, is defined just like an effective
Hamiltonian. An effective constraint is a function on the
phase space of basic expectation values and moments,
which can be computed by Taylor expansion as in (5). The
Hamilton’s equations generated by Ceff correspond to
gauge transformations rather than strict evolution.
According to Dirac’s quantization procedure for con-
strained systems, effective constraints must vanish on
physical solutions, Ceff ¼ 0. This is because the constraint
operator Ĉ annihilates any admissible state upon which it
acts. (As a general phase-space function, Ceff is obtained
for states in the so-called kinematical Hilbert space of states
not necessarily annihilated by Ĉ. In addition, solving the
equation Ceff implicitly restricts solutions to the physical
Hilbert space of states annihilated by Ĉ.)
Classical constraints, where Cðq; pÞ and fðq; pÞCðq; pÞ

as phase-space functions imply the same gauge flow on the
constraint surface, and have the same solution space as long
as f ≠ 0. In contrast, expressions such as hĈi, and
hfðq̂; p̂ÞĈi in general, imply independent functions when
expressed in terms of basic expectation values and
moments. (For instance, in the simple case of Ĉ ¼ p̂
and fðq̂; p̂Þ, the constraint hĈi ¼ hp̂i ¼ 0 restricts the
expectation value hp̂i, while hfðq̂; p̂ÞĈi ¼ hp̂2i ¼ 0 then
requires zero variance as well. In a kinematical state, the
expectation value hp̂ and the variance Δðp2Þ can be chosen
independently, for instance in a standard Gaussian wave
function.) Effective descriptions of singly-constrained
classical systems are therefore subject to multiple con-
straints. These constraints are of a number that depends on
the order of moments considered. Based on [40,41], it is
convenient to organize higher-order constraints by powers
of the same basic operators used in the moments that
describe a given system. In addition to Ceff ¼ hĈi, we have
independent constraints

Cqnpn ¼ hððq̂ − hq̂iÞnðp̂ − hp̂iÞmÞWeylĈi ð12Þ

for integer n and m such that nþm ≥ 1.
While we symmetrize products of noncommuting q̂ and

p̂, we have to keep Ĉ to the right, to make sure that it
always acts on the state used in the expectation value. In
general, higher-order effective constraints therefore take
complex values. Solving them for moments then results in
complex values. This indicates that the inner product used
on the kinematical Hilbert space which defines effective
constraint functions is adjusted when a physical Hilbert
space is introduced for the solution space. In an effective
constrained system, the transition from a kinematical to a
physical Hilbert space, which can be very complicated in
generic quantum systems and is in general uncontrolled, is
implicitly performed by simply imposing reality conditions
for combinations of moments that solve the constraints.
The consistency of this approach has been demonstrated in
several examples [40,41,43–48].
Because hÔ − hÔii ¼ 0 for any operator Ô, all terms in

higher-order constraints (12) contain at least one moment
factor. Therefore, they can be considered as constraints on
the moments, supplementing the effective constraint (11)
which restricts basic expectation values, subject to quantum
corrections depending on moments. Since moments up to a
given order in general form a Poisson manifold that is not
symplectic, applying the usual constraint formalism
requires a generalization to Poisson manifolds as given
in [49]. In particular, it is possible for a number N of first-
class constraints (that is, Ci with i ¼ 1;…; N such that all
Poisson brackets fCi; Cjg ≈ 0 vanish on the solution space
of the constraints Ci) to generate gauge flows that span a
hypersurface of dimension less than N.
The formalism of effective constraints has a straightfor-

ward generalization to systems with more than one classical
constraint. If the classical constraints are first class, the
corresponding effective and higher-order constraints are
then guaranteed to be first class as well. A new feature
arises in constrained systems with structure functions, as in
general relativity. If there is a first-class quantization with
constraint operators Ĉi such that ½Ĉi; Ĉj� ¼ iℏ

P
k f̂

k
ijĈk

with operator-valued coefficients f̂kij, effective constraints
have the Poisson-bracket relations [42]

fCi;eff ; Cj;effg ¼
X
k

hf̂kijĈki ¼
X
k

fkijeffCk;eff þ � � � ð13Þ

where fkij eff are effective structure functions obtained from

hf̂kiji, and the dots indicate neglected higher-order con-
straints. For systems with structure functions, the basic
effective constraints (11) and higher-order constraints (12)
are therefore coupled in the constraint algebra, forming an
enlarged system of underlying gauge symmetries.
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It is an interesting question whether such an enlarged
system in models of gravity can be interpreted as an
extended space-time structure. Here, we will not address
this question in complete generality because we will restrict
our attention to static solutions. However, our constraints
will have higher-order corrections, allowing us a glimpse
on what moment-based extended space-time structures
might entail. In our technical analysis, we will combine
the formalism of effective constraints with a field-theory
version of the canonical variables (6) for moments,
restricted to spherical symmetry. The metric components
that determine the fields of spherically symmetric gravity
will be complemented by an additional canonical field, ϕ3,
representing quantum fluctuations of ϕ2.

III. SPACE-TIME IN QUASICLASSICAL FORM

In a classical canonical formulation of general relativity,
the line element of spherically symmetric space-times is
defined by

ds2 ¼ −Nðt; xÞ2dt2 þ qxxðt; xÞðdxþMðt; xÞdtÞ2
þ qφφðt; xÞdΩ2 ð14Þ

with the lapse function N, the radial component M of the
shift vector, and two independent spatial metric compo-
nents, qxx and qφφ.
The definition of a line element entails that it implies

coordinate invariant geometrical statements such as dis-
tances, areas or volumes as well as physically important
concepts such as geodesics or horizons. A geometry
described by a line element can therefore be evaluated with
any choice of coordinates, or any conditions slicing space-
time into spatial hypersurfaces. However, individual metric
components such as N or qxx are not invariant and must
transform in a specific way under coordinate changes for the
line element to be invariant. Classically, this consistency
condition is described by the tensor-transformation law for
the space-time metric. But it is not clear that quantization
(even in a quasiclassical form, which avoids operators but
amends terms—such asN and qxx—by quantum corrections
δN and δqxx) can maintain this condition.
We will use a canonical approach, in which the space-

time metric is replaced by time-dependent families of fields
(for qxxðtÞ and qφφðtÞ, as well as their momenta). We will
do this such that fixing the value of t is classically
equivalent to fixing a constant-t hypersurface in space-
time. The lapse function N and shift vector M then appear
as coefficients in evolution equations for these fields. These
evolution equations are obtained as Hamilton’s equations
generated by a phase-space function, which can be written
in the form H½N� þD½M� with the Hamiltonian constraint
H and the diffeomorphism constraint D. Since changes of
hypersurfaces are gauge transformations, their generators

H and D are constrained to vanish. Several consistency
conditions then immediately arise, because the constraints
H ¼ 0 and D ¼ 0 must hold at all times. Therefore, they
must be preserved by Hamiltonian evolution generated by
H½N� þD½M�, and the combination of two slicing changes
must be another slicing change. In technical terms, the
constraints must therefore be first-class. They must also
have Poisson brackets suitable for the geometrical form of
hypersurface deformations in space-time. Since it is diffi-
cult to evaluate these conditions for quantum-corrected
constraints, we will do so here only for a specific class of
gauge transformations that preserve the static nature of
solutions. We will therefore check that the Poisson brackets
of constraints have the correct form, only in the case of
vanishing momenta. What we will now refer to as con-
sistency conditions has the following ingredients:

(i) There is a quasiclassical set of constraints, of the
form H þ δH and Dþ δD, where H and D are the
classical expressions. Additionally, δH and δD
depend on quantum fluctuations, in a specific way
derived from the classical constraints following (5).

(ii) The constraint brackets remain first class, and of
hypersurface-deformation form, when restricted to
the phase-space submanifold of vanishing momenta.
This value, fðH þ δHÞ½N1�; ðH þ δHÞ½N2�g, is pro-
portional to the diffeomorphism constraint, and
therefore vanishes when restricted to the submani-
fold of vanishing momenta. We set the momenta
equal to zero, only after evaluating the Poisson
bracket, which therefore is not trivially zero.

(iii) We will be able to go slightly beyond the preceding
condition by comparing momentum-dependent
terms in the Poisson bracket fðH þ δHÞ½N1�;
ðH þ δHÞ½N2�g with terms expected from the
classical structure function resulting from this
bracket. Some terms are as expected, but others
are not. This observation highlights the necessity of
vanishing momenta at the current stage of develop-
ments for quasiclassical constraints.

(iv) In practical terms, we will explicitly demonstrate
that all the constraint and evolution equations of the
quasiclassical system have mutually consistent static
solutions with the desired classical limit.

We will now recall detailed definitions of the phase-space
variables and properties of the constraints.

A. Variables and constraints

At any x, the phase space of metric components has a
boundary given by the inequality det q ¼ qxxq2φφ > 0.
A canonical quantization of these variables therefore
requires some care [50,51]. Here, we avoid this issue by
using a triad formulation, with two components Ex and Eφ

of a (densitized) triad at each x, related to the metric
components by the canonical transformation
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qxx ¼
ðEφÞ2
jExj ; qφφ ¼ jExj: ð15Þ

(These components of a spherically symmetric metric
are derived from the general relationship qab ¼ Ea

i E
bi=

j detðEc
jÞj between the inverse spatial metric and a densitized

triadEa
i .) In our explicit calculations,wewill assumeEx > 0,

corresponding to a right-handed triad. But in general, Ex,
unlike themetric components, may take negative values for a
left-handed triad thanks to absolute values in (15), and the
sign ofEφ does notmatter thanks to the quadratic appearance
in (15). In a triad formulation, it is therefore possible to apply
standard canonical quantization of a phase space without
boundaries. According to the appearance ofEx andEφ in the
spatial metric, the former (times 4π) represents the areas of
2-spheres at a constant radial coordinate x, while the latter
determines the radial distance.
Momenta of the triad fields are classically given by the

components of extrinsic curvature, such that we have basic
Poisson brackets [52–54]

fKxðxÞ; ExðyÞg ¼ 2Gδðx; yÞ and

fKφðxÞ; EφðyÞg ¼ Gδðx; yÞ ð16Þ

with Newton’s constantG. (There is no factor of two in the
second equation because the angular direction represents
two degrees of freedom on a 2-sphere that are strictly
related by spherical symmetry.) The relationship between
Kx and Kφ and derivatives of the triad components
follows from equations of motion of the classical theory.
Classically, Kφ is proportional to the change in time of Ex

or of 2-sphere areas, while Kx determines the change in
time of the radial distance. These relationships, in general,
may be modified by quantum effects introduced in the
canonical dynamics.
Specific equations of motion are generated by a combi-

nation of constraints, the Hamiltonian constraint H½N�,
corresponding to conservation of energy, and the diffeo-
morphism constraint D½M�, corresponding to conservation
of momentum, such that ḟ ¼ ff;H½N� þD½M�g for any
phase-space function f. The dot refers to a time derivative
in the direction of an evolution vector field ta ¼ Nna þ
Mea determined by lapse and shift [27,55], where na is the
future-pointing unit normal to a space-like foliation and ea

a unit vector tangential to the foliation. In classical spheri-
cally symmetric gravity, the constraints as phase-space
functions take the form

H½N� ¼ −
1

G

Z
dxN

�
Eϕ

2
ffiffiffiffiffiffi
Ex

p K2
φ þ

ffiffiffiffiffiffi
Ex

p
KφKx þ

Eϕ

2
ffiffiffiffiffiffi
Ex

p −
ððExÞ0Þ2
8

ffiffiffiffiffiffi
Ex

p
Eϕ

þ
ffiffiffiffiffiffi
Ex

p ðExÞ0ðEϕÞ0
2ðEϕÞ2 −

ffiffiffiffiffiffi
Ex

p ðExÞ00
2Eϕ

�
ð17Þ

and

D½M� ¼ 1

2G

Z
dxMð2K0

φEφ − KxðExÞ0Þ: ð18Þ

They form a first-class system with brackets

fD½M1�; D½M2�g ¼ D½M1M0
2 −M2M0

1� ð19Þ

fH½N�; D½M�g ¼ −H½MN0� ð20Þ

and

fH½N1�; H½N2�g ¼ −D½ExðEφÞ−2ðN1N0
2 − N2N0

1Þ� ð21Þ

corresponding to deformations of spacelike hypersurfaces
in classical space-times with spherical symmetry. The
structure function Ex=ðEφÞ2 in the last equation is the only
component of the inverse spatial metric that contributes if
spherical symmetry is imposed.
Any (1þ 1)-dimensional triad theory subject to brackets

(19), (20), and (21) is generally covariant [56], in the sense
that solutions of the theory are subject to gauge trans-
formations equivalent to space-time coordinate transfor-
mations. The general form of the brackets should therefore

be maintained by quantum corrections. More generally, it
may be possible that quantum corrections preserve the first-
class nature of the two constraints, H½N� and D½M�, but
with modified brackets. In particular, as in (13) the phase-
space function ExðEφÞ−2 in (21) may be quantum corrected
if Ex and Eφ are quantized. Such a theory would still be
consistent, but it may not describe space-time with
Riemannian geometry. It would rather describe a quantum
version of space-time with a structure that depends on the
detailed modification of the coefficient ExðEφÞ−2, or on
higher-order versions (12) of the gravitational constraints.
Quantum corrections considered in the present paper will

not present a clear modification of the structure function,
but information about this possibility is limited by the
restriction to static configurations that we will make for
tractable equations. Further analysis of nonstatic solutions
will be necessary before statements about the quasiclassical
structure of space-time can be made. Nevertheless, within
the setting to be developed here, it is possible to study
implications of quantum effects on specific static solutions.
To this end, we initiate and apply here a canonical
description of quasiclassical quantum field theory. The
canonical nature makes it possible to extend the Poisson
brackets used in (19) and (21) to constraints amended by
quantum corrections. Consistent orderings of constraint
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operators are known in spherically symmetric quantum
gravity [57,58], which guarantees that closed effective
constraint brackets of the form (13) exist. The required
equations have been derived explicitly in [59], where
consistency was confirmed independently. The quasiclass-
ical nature means that we will be able to include key
features such as quantum fluctuations or uncertainty
relations, in our analysis. (In addition, factor ordering
choices matter in quantum constraints, which in our context
imply certain imaginary contributions to effective con-
straints that we will not consider in detail here.)
It will also turn out to be important that the methods we

use, which are generalized versions of what has been
known for some time in quantum chemistry [20], are
nonadiabatic. In our context, this nonadiabaticity means
that we will not be required to express quantum corrections
in the form of a derivative expansion, as implicitly done by
common methods of quantum field theory such as low-
energy potentials or Feynman expansions. Quantum cor-
rections are rather expressed in terms of independent

degrees of freedom that physically correspond to fluctua-
tions or higher moments of a state.

B. Canonical fields

Before we implement fluctuation variables, we transform
our current fields to strictly canonical form, removing a
factor of two in (16). (From now on, we choose units such
that 2G ¼ 1.) Also renaming the fields, this transformation
is accomplished by introducing

ϕ1 ¼ Ex; p1 ¼ −Kx; ϕ2 ¼ 2Eφ; p2 ¼ −Kφ:

ð22Þ

In this notation, ϕ1 and ϕ2 therefore represent the metric
components with momenta p1 and p2. Classically, the
momentum fields have the usual interpretation as extrinsic
curvature, but this relationship will be modified by quan-
tum corrections. In these variables, the Hamiltonian con-
straint takes the form

H½N� ¼ −
Z

dxNðxÞ
�
ϕ2p2

2

2
ffiffiffiffiffi
ϕ1

p þ 2
ffiffiffiffiffi
ϕ1

p
p1p2 þ

�
1 −

�
ϕ0
1

ϕ2

�
2
�

ϕ2

2
ffiffiffiffiffi
ϕ1

p − 2

�
ϕ0
1

ϕ2

�0 ffiffiffiffiffi
ϕ1

p �
ð23Þ

while

D½M� ¼
Z

dxMðxÞð−ϕ0
1p1 þ p0

2ϕ2Þ: ð24Þ

The number of independent fields can be reduced by
making a gauge choice for Ex or ϕ1 such that x is the usual
area radius: ϕ1 ¼ x2. The gauge-fixing condition, gðxÞ ¼
ϕ1ðxÞ − x2 for all x, then forms a second-class pair of
constraints, together with the diffeomorphism constraint.
This is because fgðxÞ; D½M�g ¼ −2MðxÞϕ1ðxÞϕ0

1ðxÞ≈
−4MðxÞx3 ≠ 0, unless x ¼ 0 orMðxÞ ¼ 0. Here,≈ indicates
that we have used gðxÞ ¼ 0 in this step. For second-class
constraints, we have to solve both conditions,D½M� ¼ 0 for
allM and gðxÞ ¼ 0 for all x. We do this while removing the
diffeomorphism constraint and fixing its gauge freedom, by
using a specific radial coordinate x, such that ϕ1ðxÞ ¼ x2. In
the static case, D½M� is automatically zero. However, its
gauge flow, restricted to the submanifold of zeromomenta in
phase space, does not identically vanish. This is because it
may still change ϕ1 and ϕ2. This freedom is fixed by
imposing the condition gðxÞ ¼ 0.
The remaining flow generated by the Hamiltonian

constraint will be time evolution for a given lapse function
N. The only fluctuating field will then be ϕ2, for which we
introduce an independent quantum degree of freedom ϕ3 as
a field version of s ¼ Δq as recalled for quantum

mechanics in Sec. II A, together with a momentum field
p3. Therefore,

Δðϕ2
2Þ¼ϕ2

3; Δðϕ2p2Þ¼ϕ3p3; Δðp2
2Þ¼p2

3þ
UðxÞ
ϕ2
3

:

ð25Þ

As our notation indicates, the Casimir function U, which
was a function on phase space but constant along solutions
in quasiclassical quantum mechanics, may now be a
function of the spatial coordinate x, just like the other
canonical fields. There are no equations of motion for U
because it does not have a momentum field. One of the aims
of this paper is to look for additional consistency conditions
that may be used to determine U based on U-dependent
equations of motion for the other fields.
In order to determine how the new fields appear in an

effective Hamiltonian, we need to perform a Taylor
expansion of H½N� by ϕ2 and p2, which is rather lengthy.
The result is that the effective Hamiltonian constraint is of
the form

H̄½N� ¼ H½N� þH2½N� ð26Þ

with the classical H½N� from (23) and a correction
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H2½N� ¼
Z

dxNðxÞ
�
1

2

∂
2H
∂p2

2

�
p2
3 þ

U
ϕ2
3

�
þ ∂

2H
∂ϕ2∂p2

ϕ3p3 þ
1

2

∂
2H
∂ϕ2

2

ϕ2
3 þ

∂
2H

∂ϕ2∂ϕ
0
2

ϕ3ϕ
0
3

�

¼ −
Z

dxNðxÞ
�
ϕ2p2

3

2
ffiffiffiffiffi
ϕ1

p þϕ3p2p3ffiffiffiffiffi
ϕ1

p þ
�
6

ffiffiffiffiffi
ϕ1

p
ϕ0
1ϕ

0
2

ϕ4
2

−
1

2

ðϕ0
1Þ2ffiffiffiffiffi

ϕ1

p
ϕ3
2

− 2
ϕ00
1

ffiffiffiffiffi
ϕ1

p
ϕ3
2

�
ϕ2
3 − 4

ffiffiffiffiffi
ϕ1

p
ϕ0
1ϕ3ϕ

0
3

ϕ3
2

þ UðxÞϕ2

2
ffiffiffiffiffi
ϕ1

p
ϕ2
3

�
: ð27Þ

As in (5), the effective Hamiltonian follows from a
Taylor expansion, here in terms of ϕ2ðxÞ at any x. The
leading corrections are expressed in terms of second-order
partial derivatives in the first line of the preceding equation,
which are evaluated in the next two lines.
The last term in (27), 1

2
UðxÞϕ2ϕ

−1=2
1 ϕ−2

3 , is implied by
(25). Its analog in quantum mechanics has a contribution
from zero-point fluctuations [38] that would be subtracted
out in a quantum field theory, or be subject to renormal-
ization. [See also the simple example we gave after (10).]
For this reason, and because uncertainty relations for
operator-valued fields are less clear than those of quantum
mechanics, we will not impose a nonzero lower bound on
UðxÞ such as ℏ2=4. We will, however, require that UðxÞ be
positive for all x, motivated by its interpretation as a
remnant of zero-point fluctuations. The value of UðxÞ at
a given position can then be used as an indication of the
strength of quantum effects.
From the perspective of hypersurface deformation gen-

erators, the U-term in (27) does not contribute to the
Poisson bracket of two Hamiltonian constraints because it
does not contain any spatial derivatives or momenta.
Therefore, it does not have an effect on the main con-
sistency test performed in this paper, given by closure of the
quasiclassical constraints in the static limit. The term will,
however, affect our static solutions to be derived below.

C. Spatial diffeomorphisms

It is noteworthy that the function UðxÞ, according to its
first appearance in (25), should have spatial density weight
two so as to be consistent with a density weight one of ϕ3

(inherited from ϕ2) and density weight zero of p3. This
property provides further motivation for allowing UðxÞ to
be a function of x, rather than a constant which would be
possible for a density only in a specific spatial coordinate
choice. Moreover, any lower bound such as ℏ2=4, imposed
on a density, would not be respected by transformations of
the spatial coordinate, while positivity UðxÞ ≥ 0 is com-
patible with a density weight.
The density weight of UðxÞ also implies that the U-term

in (27) has the correct density weight one, as expected for
any contribution to a spatial integrand. If the density weight
were ignored, the term would have density weight minus
one because ϕ2 and ϕ3 have the same transformation
property according to (25), and ϕ2 has density weight
one. This unconventional transformation behavior, if it

were used, would be analogous to a property studied in the
minisuperspace context [60–62], where it originated in a
contribution to the dynamics from infrared modes included
in a symmetric model. Spatially homogeneous minisuper-
space models do not provide control over the density
weight because the spatial dependence of all functions is
ignored. The present paper is the first one that studies this
phenomenon in a field-theory setting in which density
weights can be determined unambiguously. We will see
below that the density weight of UðxÞ may be ignored
consistently if only spatial transformations are considered
that are generated by a quantum corrected diffeomorphism
constraint equal to the Poisson bracket of two Hamiltonian
constraints (including the structure function). This gener-
ator is sufficient for formal consistency of the quasiclassical
constraints. However, if one tries to analyze full covariance
under all spatial coordinate transformations, which lies
outside the scope of the present paper, there may be further
subtleties related to spatial transformations in spatially
inhomogeneous quantum midisuperspace models.
The effective diffeomorphism constraint does not follow

directly from the quantum-mechanics model because its
structure is rather different from a Hamiltonian. However,
we may expect that the effective diffeomorphism constraint
should be of the form

D̄½M� ¼
Z

dxMðxÞð−ϕ0
1p1 þ p0

2ϕ2 þ p0
3ϕ3Þ: ð28Þ

Unlike ϕ1, which transforms as a standard scalar field in the
symmetry reduced model, the field ϕ2 transforms with
density weight one, a property that is inherited by the
original appearance of ϕ2 in the metric components. The
new field ϕ3, which represents quantum fluctuations of ϕ2,
is assigned the same density weight. These considerations
explain the different signs and positions of spatial deriv-
atives in the three terms of (28).
The new term, compared with the classical constraint,

can be derived from a quantized p0
2ϕ2 after applying a

point-splitting procedure: In order to evaluate the expect-
ation value of a product of field operators, defining
the effective diffeomorphism constraint, we follow the
quantum mechanics example of (5). We first introduce
two slightly different positions for p̂0

2ðxÞ and ϕ̂2ðyÞ, such
that the prime uniquely refers to a derivative only
of p̂2. This holds, even in a product of these two operators
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or in the quantum covariance hp̂0
2ðxÞϕ̂2ðyÞisymm ¼

dhp̂2ðxÞϕ̂2ðyÞisymm=dx. Taking the limit x → y after mov-
ing the derivative out of the expectation value, we obtain

hp̂0
2ðxÞϕ̂2ðxÞisymm ¼ limy→x dhp̂2ðxÞϕ̂2ðyÞisymm=dx, with-

out any ambiguity as to which operator the derivative is
acting on. Continuing with this equation, we have

hp̂0
2ðxÞϕ̂2ðxÞisymm ¼ lim

y→x

d
dx

hp̂2ðxÞϕ̂2ðyÞisymm ¼ lim
y→x

d
dx

�
hp̂2ðxÞihϕ̂2ðyÞi þ Δðp2ðxÞϕ2ðyÞÞ

�
¼ lim

y→x

d
dx

�
hp̂2ðxÞihϕ̂2ðyÞi þ p3ðxÞϕ3ðyÞ

�
¼ p0

2ϕ2 þ p0
3ϕ3: ð29Þ

(We may assume the symmetric ordering of p̂0
2 and ϕ̂2

because reordering terms of the quadratic expression would
merely be introduce constants.) This form of the diffeo-
morphism constraint is also consistent with the trans-
formation behavior of ϕ3 which, like ϕ2, should be a
scalar density, as already observed in (28).
A schematic operator version of the diffeomorphism

constraint can also be used to determine which higher-order
constraints should contribute to the effective constraint
brackets, as in (13). The classical bracket (21), after fixing
ϕ1 ¼ Ex ¼ x2 to be nondynamical, shows that the two
expectation values −4hϕ̂−2

2 ϕ1ϕ
0
1p1i and 4hϕ1ϕ̂

−1
2 p̂0

2i will
be relevant, which we should expand by moments of ϕ2 and
p2. Ignoring ordering questions for now, we therefore
expect the replacements

−4
ϕ1ϕ

0
1p1

ϕ2
2

→ −4
�

ϕ1ϕ
0
1p1

ðϕ2 þ dΔϕ2Þ2
�

∼ −4
ϕ1ϕ

0
1p1

ϕ2
2

− 12
ϕ1ϕ

0
1ϕ

2
3p1

ϕ2
2

ð30Þ

and

4
ϕ1p0

2

ϕ2

→ 4

�
ϕ1ðp2 þ dΔp2Þ0

ϕ2 þ dΔϕ2

�

∼ 4
ϕ1p0

2

ϕ2

þ ϕ1ϕ
2
3p

0
2

ϕ3
2

− 4
ϕ1ϕ3p0

3

ϕ2
2

ð31Þ

where dΔϕ2 ¼ ϕ̂2 − ϕ2 and dΔp2 ¼ p̂2 − p2. Interestingly,
the last term in the preceding equation cancels out
completely with the last term in (28) once the latter
equation is evaluated with the structure function according
to (21). We therefore do not expect a term proportional to
p0
3 in the bracket of two Hamiltonian constraints, even

though it appears in (28).
With this result we can return to the U-term in (27),

proportional toUϕ2=ð
ffiffiffiffiffi
ϕ1

p
ϕ2
3Þ. Even if the density weight of

UðxÞ is ignored, this term is consistent with gauge trans-
formations generated by a quantum-corrected diffeomor-
phismconstraint that includes the structure function expected
for the bracket of two Hamiltonian constraints: Due to the
fact that the p3-term is expected to cancel out in this
expression, these gauge transformations do not act on the
ϕ3-dependence of the U-term. If this dependence is ignored
for the purpose of counting density weights relevant for a
Poisson bracket with the diffeomorphism constraint, the
remaining dependence on ϕ2 provides the expected density
weight of one, suitable for an integrand. (If thedensityweight
of ϕ3 is included in the count, one has to assign a density
weight two toUðxÞ. As already mentioned, this definition is
likely necessary if one attempts to extend diffeomorphism to
arbitrary shift vectors. If the structure function is not included
in the diffeomorphism constraint, the latter depends on p3

and is sensitive to the density weight of jϕ3i.)
As a further test ofmutual consistency of thequasiclassical

constraints, we now evaluate the bracket of two Hamiltonian
constraints in more detail. The derivation of fH̄½N�; H̄½M�g
can be split up into smaller calculations using

fH̄½N�; H̄½M�g ¼ fH½N�; H½M�g þ fH½N�; H2½M�g þ fH2½N�; H½M�g þ fH2½N�; H2½M�g
¼ fH½N�; H½M�g þ fH½N�; H2½M�g − fH½M�; H2½N�g þ fH2½N�; H2½M�g ð32Þ

based on the antisymmetry of the Poisson bracket. We
already have the first term in (32), so we only need to derive
the second term, fH½N�; H2½M�g, and the last term,
fH2½N�; H2½M�g. The third term can then be obtained from
the second term by flipping N and M. The last bracket,

fH2½N�; H2½M�g, and the combination fH½N�; H2½M�g −
fH½M�; H2½N�g are antisymmetric in N and M. It is
therefore sufficient to consider only terms in which a
spatial derivative of ϕ2 or ϕ3 appears, which after integra-
tion by parts then leads to the nonzero antisymmetric
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combination NM0 − N0M. We are interested here in the
Poisson brackets of gauge generators, relevant for our
consistency conditions, as well as asymptotically flat
solutions close to the classical case for large x. Therefore,
the lapse function is required to drop off to zero at infinity,
while the ϕ-dependent terms in the constraint remain finite.
(The fields ϕ1 and ϕ2 asymptotically grow like x2 and x,
respectively, but the momentum-independent terms in the

Hamiltonian constraint contain only ratios or derivatives of
these fields with finite limits.) We can then ignore boundary
terms when integrating by parts for gauge generators. Lapse
functions with nonzero limits at infinity correspond to
symmetry generators in the asymptotically flat region,
which we do not consider here.
A lengthy calculation produces the result

fH̄½N�; H̄½N�g ¼
Z

dxðNM0 − N0MÞ
�
−4

ϕ1ϕ
0
1

ϕ2
2

p1 þ 4
ϕ1

ϕ2

p0
2 þ 12

ϕ1ϕ
0
1ϕ

2
3

ϕ4
2

p1 − 4
ϕ1ϕ

2
3

ϕ3
2

p0
2 − 2

ϕ0
1ϕ3

ϕ2
2

p3

�

¼
Z

dxðNM0 − N0MÞ 4ϕ1

ϕ2
2

�
−ϕ0

1p1 þ ϕ2p0
2 þ 3

ϕ2
3

ϕ2
2

ϕ0
1p1 −

ϕ2
3

ϕ2

p0
2 −

1

2
ϕ0
1ϕ3p3

�
ð33Þ

for the Poisson bracket of two Hamiltonian constraints. The
first two terms are the classical diffeomorphism constraint
with the correct structure function, while the next two terms
are quantum corrections as expected from the expansions
(30) and (31). The last term does not correspond to a
contribution in the diffeomorphism constraint. It can be
seen as a consequence of our reduction, which includes
quantum corrections only of ϕ2 but not of ϕ1. In particular,
a complete effective constraint would include moments
such asΔðϕ2ϕ

0
1Þ as well asΔðp1p2Þwith a bracket that can

contribute to the ϕ3p3-term we obtained here. As shown by
the consistency check in [59], all such contributions indeed
cancel out in the complete effective system, while they do
not completely cancel out in our reduction. The left-over
contribution here re-introduces a p3-dependence that gen-
erates nontrivial transformations on theU-term in (27). Our
system is therefore not fully consistent if generic spheri-
cally symmetric configurations are considered, but it may
be used for static solutions for which the last term in
fH̄½N�; H̄½N�g vanishes. The solutions we obtain are also

reliable as consistent configurations in the complete system
in which all cross-correlations between ϕ1 and ϕ2 vanish.

D. Higher-order constraint

In addition to H̄½N� and D½M�, there is one higher-order
constraint of the form (12) that is relevant for static
solutions at second order in moments:

Hϕ2
½L� ¼ hðϕ̂2 − hϕ̂2iÞĤ½L�i: ð34Þ

This constraint does not directly contribute to the brackets
of hypersurface deformations, but it provides additional
restrictions on the fields that are implied by imposing the
quantum constraint. For a derivation of Hϕ2

½L� in terms of
moments, we need a Taylor expansion of Ĥ½L� to first order
in ϕ̂2 − hϕ̂2i and p̂2 − hp̂2i. These terms, together with the
factor of hϕ̂2 − hϕ̂2ii included in the definition of Hϕ2

½L�,
then produce second-order moments. Considering the fact
that Ĥ locally depends ϕ2 as well as on ϕ̂0

2, we write

Hϕ2
½L� ¼

Z
dxLðxÞ

�
∂H
∂ϕ2

ϕ2
3 þ

∂H
∂ϕ0

2

ϕ3ϕ
0
3 þ

∂H
∂p2

ϕ3p3

�

¼ −
Z

dxLðxÞ
��

p2
2

2
ffiffiffiffiffi
ϕ1

p þ 1

2
ffiffiffiffiffi
ϕ1

p þ ðϕ0
1Þ2 þ 4ϕ1ϕ1

00

2
ffiffiffiffiffi
ϕ1

p
ϕ2
2

− 4

ffiffiffiffiffi
ϕ1

p
ϕ0
1ϕ

0
2

ϕ3
2

�
ϕ2
3

þ 2
ffiffiffiffiffi
ϕ1

p
ϕ0
1

ϕ2
2

ϕ3ϕ
0
3 þ

�
ϕ2p2ffiffiffiffiffi
ϕ1

p þ 2
ffiffiffiffiffi
ϕ1

p
p1

�
ϕ3p3

�
: ð35Þ

In the first line, the common factor of ϕ2 in all three
terms is implied by the explicit factor of hϕ̂2 − hϕ̂2ii in the
definition of Hϕ2

½L�. The remaining factors of ϕ3, ϕ0
3 and

p3, respectively, are correspond to first-order terms in a
Taylor expansion of H.

The presence of higher-order constraints implies that
evolution is not uniquely determined by the classical pair of
two functions, lapse and shift, but also requires the
specification of additional functions such as L. The latter
determine the direction of a time evolution vector field in
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moment or state space. The general form of evolution
equations with moment terms is therefore given by

ḟ ¼ ff; H̄½N� þD½M� þHϕ2
½L� þ � � �g ð36Þ

for any phase-space function f, where the dots indicate
further higher-order constraints that would involve higher
moments or higher-order versions of the diffeomorphism
constraint. The former do not appear to second order as
considered here, while the latter, just like the classicalD½M�,
is not included for static solutions. Our evolution equations
will therefore be given by ḟ ¼ ff; H̄½N� þHϕ2

½L�g. In the
static case, N is classically determined by the consistency
condition that evolution equations be compatible with static
behavior. As we will see, the same is true for L if quantum
fluctuations are required to be static too.

E. Solutions

We will derive properties of static solutions in radial
gauge, choosing ϕ1 ¼ x2 such that x is the area radius.
Since our extended system is first class according to (13),
we are allowed to fix the gauge in order to determine
solutions. All momenta vanish for static solutions, and we
are left with four free functions, ϕ2, ϕ3, N, and L.

1. Equations

The diffeomorphism constraint (along with its higher-
order versions) is identically satisfied for static solutions,
and we have fixed its flow. Two equations of motion,

ϕ̇2 ¼ fϕ2; H̄½N� þHϕ2
½L�g ¼ δH̄½N�

δp2

þ δHϕ2
½L�

δp2

¼
�
2xp1 þ

ϕ2p2

x
þ ϕ3p3

x

�
N þ ϕ3

x
ðϕ3p2 þ ϕ2p3ÞL

ð37Þ

and

ϕ̇3 ¼fϕ3; H̄½N�þHϕ2
½L�g¼ δH̄½N�

δp3

þδHϕ2
½L�

δp3

¼ 1

x
ðϕ2p3þϕ3p2ÞNþ

�
ϕ2p2ffiffiffiffiffi
ϕ1

p þ2
ffiffiffiffiffi
ϕ1

p
p1

�
ϕ3L; ð38Þ

are identically satisfied in the static case.
The remaining equations are therefore given by two

constraints, H̄½N� ¼ 0 and Hϕ2
½L� ¼ 0, and two equations

of motion,

0¼ ṗ2¼fp2;H̄½N�þHϕ2
½L�g¼−

δH̄½N�
δϕ2

−
δHϕ2

½L�
δϕ2

ð39Þ

and

0 ¼ ṗ3 ¼ fp3; H̄½N� þHϕ2
½L�g ¼ −

δH̄½N�
δϕ3

−
δHϕ2

½L�
δϕ3

ð40Þ

in static form. These implement the correct flow generated
by the Hamiltonian constraint as required for static sol-
utions. The full equations are rather lengthy, and will be
shown in a more specific form when we start solving them
below. With these conditions, we obtain the Hamiltonian
constraint

H̄½N� ¼ −
Z

dxNðxÞ
�
ϕ2

2x
−
2x
ϕ2

− 4x

�
x
ϕ2

�0

þ
�
12

x2ϕ0
2

ϕ4
2

−
6x
ϕ3
2

�
ϕ2
3 − 8

x2ϕ3ϕ
0
3

ϕ3
2

þ Uϕ2

2xϕ2
3

�
; ð41Þ

the higher-order constraint

Hϕ2
½L�¼−

Z
dxLðxÞ

��
1

2x
þ6x
ϕ2
2

−8
x2ϕ0

2

ϕ3
2

�
ϕ2
3þ

4x2

ϕ2
2

ϕ3ϕ
0
3

�
ð42Þ

and the two equations of motion.
These four equations are coupled differential equations

for the four free functions. In order to simplify the solution
procedure, we proceed perturbatively and assume that ϕ2

and N are given by their classical solutions (according to
the Schwarzschild line element) plus small corrections of
the order of ϕ2

3:

ϕ2 ¼ ϕð0Þ
2 þ δϕ2 ¼

2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ=x

p þ δϕ2

N ¼ Nð0Þ þ δN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ=x

p
þ δN ð43Þ

whereϕð0Þ
2 andNð0Þ are obtained from the Schwarzschild line

element. The constant μ is equal to the mass in our units,
having set 2G equal to one in order to simplify several
numerical factors in the constraints and Poisson brackets.
Transforming to the more standard choice where G equals
one can easily be achieved by equating μ to twice the mass.
The higher-order constraint equation Hϕ2

½L� ¼ 0 then
takes the form

0 ¼ Hϕ2
½L�

¼ −
Z

dxLðxÞϕ3

�
3μ

2x2
ϕ3 þ

�
1 −

μ

x

�
ϕ0
3

�
þOðϕ2

3δϕ2Þ

ð44Þ

and can be interpreted as a first-order differential equation
for ϕ3. Its general solution is
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ϕ3ðxÞ ¼
C

ð1 − μ=xÞ3=2 ð45Þ

with an integration constant C. This solution diverges at the
horizon, which is not surprising because this is where our
background solutions (43) break down in the Schwarzschild
coordinate system. At spatial infinity, ϕ3 approaches a
constant while ϕ2 diverges. Fluctuations are therefore small
at low curvature.

2. Metric correction

Using our solution for ϕ3, the constraint (41) implies a
differential equation for δϕ2, coupled to δN. Only the
classical part of the constraint contributes to the depend-
ence on δϕ2 and δN in our perturbative treatment because
H2½N� is quadratic in the small ϕ3, such that any con-
tribution from δϕ2 or δN would be of higher order. For this
contribution, we have

H½N� ¼ H½N�j
ϕð0Þ
2

þ
Z

dxðNð0Þ þ δNÞ
�
∂H
∂ϕ2

δϕ2 þ
∂H
∂ϕ0

2

δϕ0
2

�
þ
Z

dxNð0Þ
�
1

2

∂
2H
∂ϕ2

2

ðδϕ2Þ2 þ
∂
2H

∂ϕ2∂ϕ
0
2

δϕ2δϕ
0
2

�
ð46Þ

where all coefficients are evaluated at the classical solution. Therefore, H½N�j
ϕð0Þ
2

is set to zero by definition of ϕð0Þ
2 There is

no second-order term in δϕ0
2 because the dependence ofH½N� on ϕ0

2 is linear. In the first line, we can integrate by parts in the
last term. Several resulting contributions then equal the integral of δϕ2 times the classical

−ṗ2ðyÞjNð0Þ ¼ −fp2ðyÞ; H½Nð0Þ�g ¼ δH½Nð0Þ�
δϕ2ðyÞ

¼
Z

dxNð0ÞðxÞ
�
∂HðxÞ
∂ϕ2ðyÞ

δðx − yÞ þ ∂HðxÞ
∂ϕ0

2ðyÞ
∂δðx − yÞ

∂x

�
¼ Nð0Þ ∂H

∂ϕ2

−
�
Nð0Þ ∂H

∂ϕ0
2

�0
ð47Þ

which vanishes for static background solutions. For the δN-terms, we can also integrate by parts,Z
dxδN

�
∂H
∂ϕ2

δϕ2 þ
∂H
∂ϕ0

2

δϕ0
2

�
¼

Z
dx

δN

Nð0Þ

�
Nð0Þ ∂H

∂ϕ2

δϕ2 þ Nð0Þ ∂H
∂ϕ0

2

δϕ0
2

�

¼
Z

dxδϕ2

��
Nð0Þ ∂H

∂ϕ2

−
�
Nð0Þ ∂H

∂ϕ0
2

�0�
δN − Nð0Þ ∂H

∂ϕ0
2

�
δN

Nð0Þ

�0�
ð48Þ

The first δN-term in this expression vanishes, again by virtue of (47), but one term now remains, containing ðδN=Nð0ÞÞ0.
Including this term in the expanded Hamiltonian constraint, we are left with

H½N� ¼
Z

dxNð0Þ
�
−
∂H
∂ϕ0

2

δϕ2

�
δN

Nð0Þ

�0
þ 1

2

∂
2H
∂ϕ2

2

ðδϕ2Þ2 þ
∂
2H

∂ϕ2∂ϕ
0
2

δϕ2δϕ
0
2

�
: ð49Þ

The expansion of H̄½N� contributes additional terms depending on ϕ3, which by construction of H2½N� from a Taylor
expansion have the same coefficients as the last two δϕ2-terms in (49). All these terms can be combined to

H̄½N� ¼
Z

dxNð0Þ
�
−
∂H
∂ϕ0

2

δϕ2

�
δN

Nð0Þ

�0
þ 1

2

∂
2H
∂ϕ2

2

ððδϕ2Þ2 þ ϕ2
3Þ þ

1

2

∂
2H

∂ϕ2∂ϕ
0
2

ððδϕ2Þ2 þ ϕ2
3Þ0 þ

UðxÞϕ2

2
ffiffiffiffiffi
ϕ1

p
ϕ2
3

�
: ð50Þ

(The U-term should be considered second-order because it is derived from Δðp2
2Þ in (25). The function UðxÞ is therefore of

fourth order in the quasiclassical expansion. If moments of a semiclassical or Gaussian state are used, one order in the
quasiclassical expansion corresponds to a factor of

ffiffiffi
ℏ

p
.) Inserting classical solutions, from the background upon which we

evaluate the perturbations, in the coefficients, we obtain

H̄½N� ¼
Z

dx

�
−
�
1 −

μ

x

�
δϕ2δN0 þ μ

2x2
δϕ2δN þUðxÞ

ϕ2
3

þ 3

4x2

�
1 −

μ

x

��
1 −

2μ

x

�
ððδϕ2Þ2 þ ϕ2

3Þ −
1

2x

�
1 −

μ

x

�
2

ððδϕ2Þ2 þ ϕ2
3Þ0

�
: ð51Þ
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In order to simplify this expression, we can combine it with the a nonvanishing contribution to the full ṗ2 to linear order
in δϕ2 and δN, which will allow us to eliminate δN from (50). Using (47) for the expanded solution, this linear contribution
to ϕ̇2 is given by

ṗ2jlinear ¼ −
∂Hlinear

∂ϕ2

Nð0Þ −
∂Hð0Þ

∂ϕ2

δN þ
�
∂Hlinear

∂ϕ0
2

Nð0Þ þ ∂Hð0Þ

∂ϕ0
2

δN

�0

¼ −
�
∂
2H
∂ϕ2

2

δϕ2 þ
∂
2H

∂ϕ0
2∂ϕ2

δϕ0
2 −

�
∂
2H

∂ϕ0
2∂ϕ2

δϕ2

�0�
Nð0Þ þ ∂

2H
∂ϕ0

2∂ϕ2

δϕ2Nð0Þ0 −
�
∂H
∂ϕ2

−
�
∂H
∂ϕ0

2

�0�
δN þ ∂H

∂ϕ0
2

δN0

¼ −
�
∂
2H
∂ϕ2

2

−
�

∂
2H

∂ϕ0
2∂ϕ2

�0�
δϕ2Nð0Þ þ ∂

2H
∂ϕ0

2∂ϕ2

δϕ2Nð0Þ0 −
�
∂H
∂ϕ2

−
�
∂H
∂ϕ0

2

�0�
δN þ ∂H

∂ϕ0
2

δN0: ð52Þ

Upon inserting background solutions in the coefficients, the δN-terms in

ṗ2jlinear ¼ −
1

2x2

�
1 −

μ

x

�
δϕ2 −

μ

2x2
δN þ

�
1 −

μ

x

�
δN0 ¼ 0 ð53Þ

are of the same form as those of (50) and can therefore be eliminated from this equation. The simplified second-order
constraint,

H̄½N� ¼
Z

dx

�
−

1

2x2

�
1 −

μ

x

�
ðδϕ2Þ2 þ

UðxÞ
ϕ2
3

þ 3

4x2

�
1 −

μ

x

��
1 −

2μ

x

�
ððδϕ2Þ2 þ ϕ2

3Þ −
1

2x

�
1 −

μ

x

�
2

ððδϕ2Þ2 þ ϕ2
3Þ0

�
; ð54Þ

provides a differential equation for δϕ2 if we use the known solution (45) for ϕ3. Keeping some of the ϕ2
3-terms for now, we

write this differential equation as an inhomogeneous one for ðδϕ2Þ2 þ ϕ2
3:

1

4x2

�
1 −

μ

x

��
1 −

6μ

x

�
ððδϕ2Þ2 þ ϕ2

3Þ −
1

2x

�
1 −

μ

x

�
2

ððδϕ2Þ2 þ ϕ2
3Þ0 ¼ −

C2

2x2ð1 − μ=xÞ2 −
UðxÞ
C2

�
1 −

μ

x

�
3

: ð55Þ

The corresponding homogeneous equation can easily be solved for

ðδϕ2Þ2 þ ϕ2
3 ¼

D
ffiffiffi
x

p
ð1 − μ=xÞ5=2 ; ð56Þ

which then implies the differential equation

D0 ¼ C2

ðx − μÞ3=2 þ
2UðxÞ
C2

ðx − μÞ7=2
x3

ð57Þ

for solution of the inhomogeneous equation of the form (56) with x-dependent D. Solving this equation, we obtain

ðδϕ2Þ2 þ ϕ2
3 ¼

E
ffiffiffi
x

p
ð1 − μ=xÞ5=2 −

2C2

ð1 − μ=xÞ3 þ
2

ffiffiffi
x

p
C2ð1 − μ=xÞ5=2

Z
UðxÞ

�
1 −

μ

x

�
7=2 ffiffiffi

x
p

dx ð58Þ

with a new integration constant E, or

δϕ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ffiffiffi
x

p
ð1 − μ=xÞ5=2 −

3C2

ð1 − μ=xÞ3 þ
2

ffiffiffi
x

p
C2ð1 − μ=xÞ5=2

Z
UðxÞ

�
1 −

μ

x

�
7=2 ffiffiffi

x
p

dx

s
: ð59Þ

(For constant U, there is a closed-form logarithmic expression for
R ð1 − μ=xÞ7=2 ffiffiffi

x
p

dx, but it is lengthy.)
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Notice that the second term dominates near the horizon,
where it is negative. The perturbative solution therefore
breaks down before the horizon is reached, where ϕ3 is
large but still finite. For x ≫ μ, the dominant behavior of
ϕ2ðxÞ is determined by the last term in (59), which, for an
asymptotically constant UðxÞ, behaves like Ux2 (the
integral can then be approximated as

R
x1=2dx ¼ 2

3
x3=2).

In this case, therefore, δϕ2 ∼
ffiffiffiffi
U

p
x grows with x, but so

does the classical solution ϕ2ð0Þ. Since ϕð0Þ
2 ∼ x for x ≫ μ,

the ratio ðδϕ2Þ=ϕð0Þ
2 ∼

ffiffiffiffi
U

p
implies a nearly constant

correction of the order of ℏ for semiclassical states, where
U ≈ ℏ2=4 remains asymptotically constant. The first term
in (59) may also be relevant in intermediate regimes, where
it would imply a δϕ2 that behaves like x1=4. The correction
to ϕ2 then increases asymptotically, unlike ϕ3, but less

slowly than ϕð0Þ
2 : we have ðδϕ2Þ=ϕð0Þ

2 ∼ x−3=4 from the first
term in (59).

3. Lapse correction

Given this solution for δϕ2, we can go back to (53) as a
differential equation for δN. So far, we have not fully
solved this equation and only used it to eliminate δN from
(50). Our solution for δϕ2 obtained in this way now makes
it possible to solve (53) for δN, although the lengthy form
of (59) makes it hard to find a complete analytical solution.
Nevertheless, the form of the solution in certain limits will
turn out to be instructive.
We first rewrite equation (53) as

0 ¼
�
1 −

μ

x

�
3=2

�
−

1

2x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ=x

p δϕ2 þ
�

δNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ=x

p �0�
ð60Þ

such that

δN ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

x

r Z
δϕ2

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ=x

p dx ð61Þ

where (59) should be inserted in the integral. A simple
integration is obtained in regimes in which bothC2-terms in
(59) can be ignored, in which case

δN ∼ −
2

3

ffiffiffiffi
E

p

x3=4ð1 − μ=xÞ1=4 þ F

ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

x

r
ð62Þ

with a new integration constant F. The F-term just changes
the background lapse function by a constant factor 1þ F,
which can be absorbed in the time coordinate. The
remaining correction to the lapse function,

δN ∼ −
2

3

ffiffiffiffi
E

p

x3=4ð1 − μ=xÞ1=4 ; ð63Þ

shows an interesting asymptotic behavior of the correction
which falls off more slowly than the classical curvature
correction −μ=x of the lapse function. Using this term as a
correction of Newton’s potential in a weak-field line
element shows that nonlocal effects could imply larger
corrections than effective field theory in a derivative
expansion, where the leading correction would be of the
order 1=x3 [2]. However, our simplified solution (63),
based on the E-term in (59), does not apply in the
completely asymptotic regime where the U-term in (59)
would be dominant. Since this term, for asymptotically
constant UðxÞ, implies an asymptotic behavior of
δϕ2 ∼

ffiffiffiffi
U

p
x, the corresponding δN according to (61) is

δN ∼
ffiffiffiffi
U

p
logðμ=xÞ. Interpreted as a correction to Newton’s

potential, this term suggests a relationship with infrared
contributions, consistent with the interpretation of fluc-
tuation terms in quantum cosmological models that have
the same origin as U here [60,61].
We are left with the equation ṗ3 ¼ 0, a differential

equation for L. It is straightforward to solve

ṗ3

ϕ3

¼ −
∂
2H
∂ϕ2

2

Nð0Þ þ
�

∂
2H

∂ϕ2∂ϕ
0
2

Nð0Þ
�0

þUðxÞϕð0Þ
2 Nð0Þffiffiffiffiffi

ϕ1

p
ϕ4
3

− 2
∂H
∂ϕ2

Lþ
�
∂H
∂ϕ0

2

L

�0

¼ −
1 − μ=x
2x2

þ 2UðxÞ
C4

�
1 −

μ

x

�
6

−
2μ

x2
Lþ

�
1 −

μ

x

�
L0

¼
�
1 −

μ

x

�
3
�
−

1

2ðx − μÞ2 þ
2UðxÞ
C4

�
1 −

μ

x

�
3

þ
�

L
ð1 − μ=xÞ2

�0�
¼ 0 ð64Þ

for L, where we have used background solutions in all coefficients. The result is

L ¼ −
1 − μ=x

2x
þ G

�
1 −

μ

x

�
2

−
2UðxÞx
C4

�
1 −

μ

x

�
2
��

1 −
μ

x

�
3

þ 3μ

2x

�
1 −

μ

x

�
2

þ 3μ2

x2

�
1 −

μ

x

�
þ 3μ

x
log

�
μ

x

��
ð65Þ
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with a new integration constant G. Since L vanishes at
x ¼ μ, the evolution of fluctuations freezes at the horizon,
just as the evolution of the classical metric.

4. Quantum effects

We have obtained complete solutions, up to two remain-
ing integrations. These are not only lengthy in analytical
form but also require additional information about the
function UðxÞ, which quantifies the strength of quantum
effects. So far, we have mainly discussed U-dependent
modifications in asymptotic low-curvature regimes, in
which we assumed that UðxÞ is nearly constant. The results
were encouraging, in that they showed that a nearly
constant U also implies a nearly constant relative metric

fluctuation, given by δϕ2=ϕ
ð0Þ
2 . Nevertheless, it is of interest

to obtain independent information about the possible form
of UðxÞ.
Since the field UðxÞ does not have a momentum, in the

truncation to second-order moments used here, it is not
subject directly to an evolution equation. (At higher moment
orders, the uncertainty product Δðϕ2

2ÞΔðp2
2Þ − Δðϕ2p2Þ,

which equals U to second order, is not conserved. The
momentumofU can therefore be thought of as a combination

of higher-order moments that are eliminated in our trunca-
tion.) However, it turns out that we can use another equation
ofmotion in order to derive a consistency condition forUðxÞ:
We have implemented the leading nonzero terms in the
equation ṗ2 ¼ 0, which were of linear order in δϕ2 and δN.
Since we used second-order constraints, there is also a
second-order contribution to ṗ2. Setting this contribution
equal to zero for static solutions allows us to test the self-
consistency of the formalism. A long calculation (performed
usingMathematica) implies an equation forUðxÞ of the form

0 ¼ f1ðxÞ þ f2ðxÞUðxÞ þ f3ðxÞUðxÞ2 þ f4ðxÞU0ðxÞ
þ f5ðxÞI½U� þ f6ðxÞUðxÞI½U� þ f7ðxÞU0ðxÞI½U�
þ f8ðxÞI½U�2 ð66Þ

where

I½U� ¼
Z ffiffiffi

x
p ð1 − μ=xÞ7=2UðxÞdx ð67Þ

and the U-independent coefficient functions are

f1ðxÞ ¼ 36C8

ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

x

r � ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

x

r �
1þ 3μ

2x
−
3μ2

2x2

�
þ 1

�

− 3C6Ex1=2
�
1 −

μ

x

�� ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

x

r �
5þ 7μ

x
−
6μ2

x2

�
þ 9

�
þ 5C4E2x

�
1 −

μ

x

�
3=2

ð68Þ

f2ðxÞ ¼ 12C4x2
�
1 −

μ

x

�
11=2

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

x

r �
3þ 13μ

x

�
− 1

�

− 4C2Ex5=2
�
1 −

μ

x

�
6
� ffiffiffiffiffiffiffiffiffiffiffi

1 −
μ

x

r �
3þ 14μ

x

�
− 1

�
ð69Þ

f3ðxÞ ¼ 16x4
�
1 −

μ

x

�
11

ð70Þ

f4ðxÞ ¼ 16C2x3
�
1 −

μ

x

�
7
�
3C2 − E

ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
1 −

μ

x

r �
ð71Þ

f5ðxÞ ¼ −6C4x1=2
�
1−

μ

x

�� ffiffiffiffiffiffiffiffiffiffi
1−

μ

x

r �
5þ 7μ

x
−
6μ2

x2

�
þ 9

�

þ 20C2Ex

�
1−

μ

x

�
3=2

ð72Þ

f6ðxÞ¼−8x5=2
� ffiffiffiffiffiffiffiffiffiffi

1−
μ

x

r �
3þ14μ

x

�
−1

��
1−

μ

x

�
6

ð73Þ

f7ðxÞ ¼ −32x7=2
�
1 −

μ

x

�
15=2

ð74Þ

f8ðxÞ ¼ 20x

�
1 −

μ

x

�
3=2

: ð75Þ

This long equation can be analyzed in the asymptotic
regime if we assume that UðxÞ is of power-law form there.
In the derivative terms, xU0ðxÞ is then of the same order as
UðxÞ, and asymptotically for x ≫ μ with nearly constant U
the integral behaves like x3=2. In (66), the contributions
with coefficient functions f3ðxÞ, f6ðxÞ, f7ðxÞ, and f8ðxÞ
are then dominant, such that the equation simplifies to

aUðxÞ2 þ bUðxÞI½U�=x3=2
þ cxU0ðxÞI½U�=x3=2 þ dI½U�2=x3 ¼ 0 ð76Þ

with x-independent coefficients a, b, c, and d. For nearly
constant U at x ≫ μ, we have I½U� ∼ 2

3
x3=2U, and therefore

our equation takes the form

ãUðxÞ2 þ cxUðxÞU0ðxÞ ¼ 0 ð77Þ
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with a new constant ã. The simplified equation therefore
has solutions UðxÞ ¼ 0 or a power law for UðxÞ.
Asymptotically, these solutions are consistent with our
condition that UðxÞ not be negative. Numerical solutions at
smaller x, shown in Fig. 1 confirm this behavior.
This result is encouraging because the non-negativity

condition is motivated by the quantum-mechanics origin of
our modifications, which is independent of the consistency
conditions we checked for the constraint brackets. The
observation that solutions respect the quantum condition
indicates that the equations are self-consistent, not only as a
model of modified gravity, but also from the perspective of
quantum physics.

IV. CONCLUSIONS

Any quantum theory, and in particular quantum gravity,
is expected to imply nonlocal behavior. Nonlocal action
principles and their equations of motion are usually hard to
solve, but if one assumes a specific nonlocal action, it can
often be analyzed by mapping the theory to a local one in
which classical degrees of freedom are coupled to auxiliary
fields. We have introduced here a new, systematic quasi-
classical formulation of spherically symmetric models in
quantum gravity with nonlocal corrections derived in a
canonical quantization. By implementing quantum fluctu-
ations and correlations as physical versions of what would
usually be called auxiliary fields in a nonlocal theory,
a multifield local theory is obtained in which coupling
terms are completely determined by the rules of canonical
quantization.
The presence of new degrees of freedom implies that

such quantum extended theories are more complex than the
classical model. Working with vacuum spherically sym-
metric models, we constructed a tractable constrained
system in which one of the metric components, ϕ1, is

fixed by using the area radius (a partial gauge fixing of the
theory). Doubling the classical field content by introducing
second-order quantum moments, we therefore obtained a
theory for two independent fields that represent a single
classical metric component (the radial distance measure ϕ2)
and its quantum fluctuation (ϕ3). While the reduced system
ignores cross-correlations between the radial distance
ϕ2=ð2

ffiffiffiffiffi
ϕ1

p Þ and the area radius
ffiffiffiffiffi
ϕ1

p
, it is formally

consistent for static solutions and allows explicit solutions
in almost complete closed form.
The fluctuation field ϕ3 couples dynamically to expect-

ation value ϕ2, representing one of the metric components.
The former field cannot vanish owing to uncertainty
relations, and through the coupling terms it implies changes
δϕ2 of the metric field compared with its classical behavior.
Through canonical equations of motion, the staticity con-
dition determines the lapse function N for a given ϕ2, such
that δN inherits certain changes from δϕ2. Using the
appearance of these fields in a classical-type line element,
we obtain a quantum-corrected space-time geometry from

ds2 ¼ −ðNð0Þ þ δNÞ2dt2 þ ðϕð0Þ
2 þ δϕ2Þ2

4x2
dx2 þ x2dΩ2

∼ −ðNð0Þ2 þ 2Nð0ÞδNÞdt2 þ ϕð0Þ2
2 þ 2ϕð0Þ

2 δϕ2

4x2
dx2

þ x2dΩ2 ð78Þ

to first order in δN and δϕ2. The latter values are given by
the rather lengthy expressions (61) and (59), respectively.
However, a word of caution is in order when we organize
our solutions in this form: So far, we have checked the
consistency of our quasiclassical constraints only for static
configurations, and therefore we can use a line element of
the form (78) only for static slicings. It might be tempting to
apply a more general coordinate transformation once
solutions have been put into the form of a line element,
but by doing so we would leave the range of validity of our
derivations here. The cosmological analysis [63] extended
our static constraints to nonstatic ones, observing that
consistency then requires an inclusion also of fluctuations
of ϕ1. An application to black-hole models remains to be
completed.
We have observed several interesting features of our

solutions. In particular, the quasiclassical approximation
breaks down before the horizon is reached, which suggests
that nonlocal effects may be crucial for horizon dynamics
of quantum black holes. A confirmation of this expectation
would, however, have to await a solution of higher-order
quasiclassical approximations, as well as an extension to
nonstatic configurations that would allow us to use different
space-time slicings.
The asymptotic behavior is more reliable within the

restrictions of our model. We analyzed it by studying
solutions for one of the new quantum fields that

3.0 3.5 4.0 4.5 5.0
x

0.01

0.02

0.03

0.04

0.05

0.06

U(x)
Varying Initial Condition

FIG. 1. An example of two numerical results for UðxÞ follow-
ing from Eq. (66). Two choices of initial values were set for UðxÞ
at x ¼ 2.5, given by Uin ¼ 0.01 in the lower curve and Uin ¼
0.06 for the upper curve, respectively. Constants are set as
follows: C ¼ 0.01; E ¼ 0.0001; μ ¼ 1.
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corresponds to the uncertainty of a state in quantum
mechanics. For this field, we found an asymptotic fall-
off behavior consistent with a positivity condition. Our
quasiclassical solutions are therefore consistent with the
existence of an underlying quantum state of static, spheri-
cally symmetric space-times. In a full quantum field theory,
important properties such as positivity would be implied by
unitary evolution. The fact that we observed a positivity
property without explicitly deriving unitary evolution from
the quasiclassical constraints indicates that our treatment is
self-consistent and does reveal features of an underlying
quantum theory of gravity. Our analysis therefore shows
that quasiclassical methods are promising in applications to

inhomogeneous models of quantum gravity. They allow
explicit derivations of quantum corrections without requir-
ing additional assumptions beyond what is provided by
canonical quantization.
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